山西省吕梁市石楼县石楼中学高一数学1.1.2集合的基本关系学案新必修1
高中数学必修一 《1 2 集合间的基本关系》获奖说课导学案
【新教材】1.2 集合的基本关系学案(人教A版)1. 了解集合之间包含与相等的含义,能识别给定集合的子集.2. 理解子集.真子集的概念.3. 能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用。
重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.一、预习导入阅读课本7-8页,填写。
1.集合与集合的关系(1)一般地,对于两个集合A,B,如果集合A中_____________元素都是集合B中的元素,我们就说这两个集合有_____________关系,称集合A为B的______.记作:A_________ B(或B _________ A)读作:A包含于B(或B包含A).图示:(2)如果两个集合所含的元素完全相同(A______ B且B ______ A),那么我们称这两个集合相等.记作:A ______B读作:A等于B.图示:2. 真子集A ,存在元素x______ B且x______ A,则称集合A是集合B的真子集。
若集合B记作:A ______B (或B ______A ) 读作:A 真包含于B (或B 真包含A )3.空集__________________的集合称为空集,记作:∅. 规定:空集是任何集合的子集。
4.常用结论(1)A __________ A (类比a a ≤)(2)空集是__________的子集,是_____________的真子集。
(3)若,,A B B C ⊆⊆则A __________ C (类比b a ≤,c b ≤则c a ≤)(4)一般地,一个集合元素若为n 个,则其子集数为________个,其真子集数为________个,特别地,空集的子集个数为________,真子集个数为________。
1.判断(正确的打“√”,错误的打“×”)(1)空集中只有元素0,而无其余元素. ( ) (2)任何一个集合都有子集. ( ) (3)若A =B ,则A ⊆B . ( ) (4)空集是任何集合的真子集. ( ) 2.用适当的符号填空(1) a______{a,b,c} (2) 0_______{x|x 2=0} (3) ∅________{x ∈R|x 2+1=0} (4) {0,1}_____N(5) {∅}_____{x|x 2=x} (6){2,1}____{x|x 2−3x +2=0} 3.设a ∈R ,若集合{2,9}={1-a,9},则a =________.例1 (1)写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集;(2)填写下表,并回答问题:由此猜想:含n 个元素的集合{a 1,a 2,…,a n}的所有子集的个数是多少?真子集的个数及非空真子集的个数呢?例2 下列能正确表示集合M={-1,0,1}和N={x|x 2+x=0}的关系的维恩图是( )例3 已知集合A={x|-5<x<2},B={x|2a-3<x<a-2}. (1)若a=-1,试判断集合A,B 之间是否存在子集关系; (2)若A ⊇B,求实数a 的取值范围.变式1. [变条件] 【例3】(2)中,是否存在实数a,使得A ⊆B?若存在,求出实数a 的取值范围;若不存在,试说明理由.变式2. [变条件] 若集合A={x|x<-5或x>2},B={x|2a-3<x<a-2},且A ⊇B,求实数a 的取值范围.1.已知集合A ={2,-1},集合B ={m 2-m ,-1},且A =B ,则实数m 等于( )A .2B .-1C .2或-1D .42.已知集合A ={x|-1-x<0},则下列各式正确的是( )A .0⊆AB .{0}∈AC .∅∈AD .{0}⊆A3.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为( )A .6B .5C.4 D.34.已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间的关系是( ) A.A⊆B B.A=BC.A B D.A B5.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有两个子集,则a的值是( ) A.1 B.-1C.0,1 D.-1,0,1=1},则A,B的关系是________.6.设x,y∈R,A={(x,y)|y=x},B={(x,y)|yx7.已知集合A={x|x<3},集合B={x|x<m},且A⊆B,则实数m满足的条件是________.8.已知A={x∈R|x<-2或x>3},B={x∈R|a≤x≤2a-1},若B⊆A,求实数a的取值范围.答案小试牛刀1.答案:(1) ×(2) √(3) √ (4)×2.(1)∈(2)= (3)=(4)⊆(5)⊈(6)=3.-1自主探究例1【答案】见解析【解析】分析:(1)利用子集的概念,按照集合中不含任何元素、含有一个元素、含有两个元素、含有三个元素这四种情况分别写出子集.(2)由特殊到一般,归纳得出.解:(1)不含任何元素的子集为⌀;含有一个元素的子集为{0},{1},{2};含有两个元素的子集为{0,1},{0,2},{1,2};含有三个元素的子集为{0,1,2}.故集合{0,1,2}的所有子集为⌀,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}.其中除去集合{0,1,2},剩下的都是{0,1,2}的真子集.(2)由此猜想:含n 个元素的集合{a 1,a 2,…,a n}的所有子集的个数是2n,真子集的个数是2n-1,非空真子集的个数是2n-2. 例2【答案】B【解析】∵N={x|x 2+x=0}={x|x=0或x=-1}={0,-1},∴N ⫋M,故选B. 例3【答案】见解析【解析】分析:(1)令a=-1,写出集合B,分析两个集合中元素之间的关系,判断其子集关系;(2)根据集合B 是否为空集进行分类讨论;然后把两集合在数轴上标出,根据子集关系确定端点值之间的大小关系,进而列出参数a 所满足的条件.解:(1)若a=-1,则B={x|-5<x<-3}. 如图在数轴上标出集合A,B.由图可知,B ⫋A. (2)由已知A ⊇B.①当B=⌀时,2a-3≥a-2,解得a ≥1.显然成立. ②当B ≠⌀时,2a-3<a-2,解得a<1.由已知A ⊇B,如图在数轴上表示出两个集合, 由图可得{2a -3≥-5,a -2≤2,解得-1≤a≤4.又因为a<1,所以实数a 的取值范围为-1≤a<1 变式1.【答案】见解析【解析】因为A={x|-5<x<2},所以若A ⊆B,则B 一定不是空集.此时有{2a -3≤-5,a -2≥2,即{a ≤-1,a ≥4,显然实数a 不存在.变式2.【答案】见解析【解析】①当B=⌀时,2a-3≥a-2,解得a ≥1.显然成立. ②当B ≠⌀时,2a-3<a-2,解得a<1.由已知A ⊇B,如图在数轴上表示出两个集合,由图可知2a-3≥2或a-2≤-5,解得a ≥52 或a ≤-3.又因为a<1,所以a ≤-3.综上,实数a 的取值范围为a ≥1或a ≤-3. 当堂检测1-5.CDADD 6.B A 7.m≥38.【答案】见解析【解析】∵B ⊆A ,∴B 的可能情况有B ≠∅和B =∅两种. ①当B =∅时,由a>2a -1,得a<1. ②当B≠∅时,∵B ⊆A ,∴⎩⎪⎨⎪⎧a>3,a≤2a-1或⎩⎪⎨⎪⎧2a -1<-2,a≤2a-1成立,解得a>3;综上可知,实数a 的取值范围是{a|a<1或a>3}.。
高中数学_集合间的基本关系教学设计学情分析教材分析课后反思
课标分析通过对课程标准的学习制订本节课的教学目标,确定本节课的重点、难点如下:一、教学目标(一)知识与技能(1)了解集合之间包含与相等的含义,能识别给定集合的子集;(2)理解子集、真子集、空集的概念;(3)能使用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用。
(二)过程与方法(1)通过类比实数得到集合间的基本关系体会类比对发现新结论的作用。
(2)通过探究、思考,培养学生的逻辑思维能力。
(三)情感态度价值观(1)培养学生学习数学的兴趣和探索精神,并让他们真实地感受到数学的简洁美。
(2)培养学生主动学习的习惯,提高合作交流能力和团结协作精神。
二、教学重点与难点重点:集合间的包含关系,子集、真子集的概念难点:属于关系与包含关系的区别,空集的含义。
学情分析集合的基本运算是学生如高中后接触到的第一部分数学知识。
学生在小学和初中阶段已经接触过与集合有关的问题,学生入手较易。
这部分内容贴近生活与实际联系密切,学生有一定的学习兴趣和愿望。
另一方面,学生从初中阶段到高中阶段,数学思维应有一个适应的过程,再加上高中阶段知识容量大,学习速度相对较快,部分学生不能尽快适应高中数学的学习,在逻辑思维和抽象概括能力方面有所欠缺。
所执教班级的学生普遍存在数学基础知识较差,学数学没有很好的方法,对数学思维存在较大困难,学习习惯也不太好,执教难度相对较大。
评测练习1. 下列结论正确的是( )。
A. ∅ AB. {0}∅∈C. {1,2}Z ⊆D. {0}{0,1}∈2. 设{}{}1,A x x B x x a =>=>,且A B ⊆,则实数a 的取值范围为( )。
A. 1a <B. 1a ≤C. 1a >D. 1a ≥3. 若2{1,2}{|0}x x bx c =++=,则( )。
A. 3,2b c =-= B. 3,2b c ==-C. 2,3b c =-=D. 2,3b c ==-4. 满足},,,{},{d c b a A b a ⊂⊆的集合A 有 个。
高中数学人教版(新教材)必修1学案1:1.2 集合间的基本关系
1.2 集合间的基本关系学习目标1.了解集合之间包含与相等的含义,能识别给定集合的子集;2.理解子集、真子集的概念;3.能使用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用,体会数形结合的思想.重点难点重点:集合间的包含与相等关系,子集与其子集的概念;难点:属于关系与包含关系的区别.知识梳理1.集合与集合的关系(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 包含于B (或B 包含A ).图示:(2)如果两个集合所含的元素完全相同(A B B A ⊆⊆且),那么我们称这两个集合相等.记作:A =B读作:A 等于B. 图示:2. 真子集 若集合A B ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集.记作:A B (或B A )读作:A 真包含于B (或B 真包含A )3.空集不含有任何元素的集合称为空集,记作:∅.规定:空集是任何集合的子集.学习目标探究一子集1.观察以下几组集合,并指出它们元素间的关系:①A ={1,2,3},B ={1,2,3,4,5};②A 为立德中学高一(2)班全体女生组成的集合, B 为这个班全体学生组成的集合; ③A ={x |x >2},B ={x |x >1}.2.子集定义:一般地,对于两个集合A 、B ,如果集合A 中都是集合B 中的元素,我们就说这两个 集合有包含关系,称集合A 为集合B 的.记作:(A B B A ⊆⊇或)读作:(或“”)符号语言:任意有则.3.韦恩图(Venn 图):用一条封闭曲线(圆、椭圆、长方形等)的内部来代表集合叫集合的韦恩图表示.牛刀小试1:图中A 是否为集合B 的子集?牛刀小试2:判断集合A 是否为集合B 的子集,若是则在()打√,若不是则在()打×:①A ={1,3,5}, B ={1,2,3,4,5,6} ( )②A ={1,3,5}, B ={1,3,6,9} ( )③A ={0}, B={x | x 2+2=0} ( )④A ={a,b,c,d }, B ={d,b,c,a } ( )探究二集合相等BB A,A1.观察下列两个集合,并指出它们元素间的关系(1)A ={x |x 是两条边相等的三角形},B ={x |x 是等腰三角形};2.定义:如果集合A 的都是集合B 的元素,同时集合B 都是集合A 的元素,我们就说集合A 等于集合B ,记作.牛刀小试3:()(){}{}12012A x x x B A B =++==--,,.集合与什么关系?探究三真子集1.观察以下几组集合,并指出它们元素间的关系:(1)A ={1,3,5}, B ={1,2,3,4,5,6};(2)A ={四边形}, B ={多边形}.2.定义:如果集合A ⊆B ,但存在元素,且,称集合A 是集合B 的真子集.记作:(或)读作:“A 真含于B ”(或B 真包含A ).探究四空集1.我们把的集合叫做空集,记为φ,并规定:空集是任何集合的子集.空集是任何非空集合的真子集.即φB ,(B φ≠) 例如:方程x 2+1=0没有实数根,所以方程 x 2+1=0的实数根组成的集合为φ.问题:你还能举几个空集的例子吗?2.深化概念:(1)包含关系{}a A ⊆与属于关系a A ∈有什么区别?(2)集合A B 与集合A B ⊆有什么区别?(3)0,{0}与 Φ三者之间有什么关系?3.结论:由上述集合之间的基本关系,可以得到下列结论:(1)任何一个集合是它本身的子集,即.(2)对于集合A 、B 、C ,若,,A B B C ⊆⊆则(类比b a ≤,c b ≤则c a ≤). 例1.写出集合{a ,b }的所有子集,并指出哪些是它的真子集.例2.判断下列各题中集合A 是否为集合B 的子集,并说明理由.(1)A ={1,2,3},B ={x |x 是8的约数};(2)A ={x |x 是长方形},B ={x |x 是两条对角线相等的平行四边形}达标检测1.集合A ={-1,0,1},A 的子集中含有元素0的子集共有( )A .2个B .4个C .6个D .8个2.已知集合M={x|-3<x<2,x∈Z},则下列集合是集合M的子集的为( ) A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤,x∈N}3.①0∈{0},②∅{0},③{0,1}⊆{(0,1)},④{(a,b)}={(b,a)}.上面关系中正确的个数为( )A.1 B.2C.3 D.44.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是( )A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}5.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.——★ 参*考*答*案★——学习过程:探究一1.集合A的元素都属于集合B2.任何一个元素子集集合A含于集合B集合B包含集合Ax∈A,x∈BA⊆B牛刀小试1 集合A不是集合B的子集牛刀小试2 ①√ ②×③×④√探究二集合相等1.(1)中集合A中的元素和集合B中的元素相同.2.任何一个元素任何一个元素A=B牛刀小试3 A=B探究三真子集1.集合A中元素都是集合B的元素,但集合B有的元素不属于集合A.2.x∈Bx AA BB A探究四空集1.不含任何元素2.(1)前者为集合之间关系,后者为元素与集合之间的关系.(2) A = B或A B(3){0}与Φ :{0}是含有一个元素0的集合,Φ是不含任何元素的集合.如Φ{0}不能写成Φ ={0},Φ ∈{0}3.(1)(2)例1.解:集合{a,b}的子集:,{a},{b} ,{a, b}.集合{a,b}真子集:,{a},{b}.例2.解:(1)因为3不是8的约数,所以集合A不是集合B的子集.三、达标检测1.『解析』根据题意,在集合A的子集中,含有元素0的子集有{0}、{0,1}、{0,-1}、{-1,0,1}四个,故选B.『答案』B2.『解析』集合M={-2,-1,0,1},集合R={-3,-2},集合S={0,1},不难发现集合P 中的元素-3∉M,集合Q中的元素2∉M,集合R中的元素-3∉M,而集合S={0,1}中的任意一个元素都在集合M中,所以S⊆M.故选D.『答案』D3.『解析』①正确,0是集合{0}的元素;②正确,∅是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.『答案』B4.『解析』由A={x|1<x<2},B={x|x<a},A⊆B,则{a|a≥2}.『答案』D5.『解』因为A={(x,y)|x+y=2,x,y∈N},所以A={(0,2),(1,1),(2,0)}.所以A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.。
高一数学必修一精品教案:1.1.2集合间的基本关系Word版含答案
课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课 型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用Venn 图表达集合间的关系;(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn 图表达集合间的关系。
教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、 复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2;(3)-1.5 R2、 类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:)(A B B A ⊇⊆或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B用Venn)(A B B A ⊇⊆或(二)A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=AB B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念⊆若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。
记作:A B (或B A )读作:A 真包含于B (或B 真包含A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。
(五) 结论:○1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。
高一数学上册《集合之间的关系》教案、教学设计
1.通过实际问题引入集合的概念,引导学生从具体实例中抽象出集合的定义,培养其从特殊到一般的归纳能力。
2.利用图形、表格等直观手段,帮助学生形象地理解集合之间的关系,提高其空间想象能力和直观感知能力。
3.通过小组讨论、合作探究的方式,引导学生自主发现集合运算的规律,培养其合作意识和团队精神。
-引导学生探索集合的其他性质,如幂集、无穷集合等,提高学生的数学素养。
-介绍集合论在数学及相关领域中的应用,增强学生的学习兴趣。
3.教学评价:
-采用多元化的评价方式,如课堂提问、课后作业、小组讨论、小测验等,全面了解学生的学习情况。
-关注学生的个体差异,鼓励学生积极参与,及时给予表扬和鼓励,提高学生的自信心。
-数学日记:要求学生以日记的形式记录自己在解决集合问题时的心得体会,促进学生对知识的内化。
4.预习作业:
-预习下一节课的内容:提前让学生预习下一节课关于集合的拓展知识,如幂集、无穷集合等,为课堂学习做好准备。
-提出疑问:鼓励学生在预习过程中提出自己的疑问,以便在课堂上进行讨论和解答。
在作业布置过程中,关注以下几点:
1.作业量适中,难度适宜,避免过度的作业压力,让学生有足够的时间消化和吸收所学知识。
2.鼓励学生主动思考和探究,培养其独立解决问题的能力。
3.注重作业反馈,及时批改和讲评,帮助学生发现并纠正错误,提高学习效果。
4.关注学生的个体差异,针对不同学生的学习情况,给予个性化的作业指导。
2.互动交流:
-各小组汇报讨论成果,分享解题方法。
-教师点评各小组的表现,给予鼓励和指导。
(四)课堂练习
在这一环节,我将设计一些具有针对性的练习题,让学生巩固所学知识。
1.练习题设计:
高中数学第一章集合1.2集合的基本关系学案含解析北师大版必
学习资料§2集合的基本关系内容标准学科素养1。
理解集合之间的包含与相等的含义,并会用符号和Venn图表示.2。
能识别给定集合的子集、真子集,并能判断给定集合的关系.3。
在具体情境中,了解空集的含义及其性质。
精确概念含义准确分类讨论提升数学运算授课提示:对应学生用书第6页[基础认识]知识点一Venn图知识梳理1。
定义:在数学中,常用封闭曲线的内部表示集合,这种图称为Venn图,这种表示集合的方法叫作图示法.2.适用范围:元素个数较少的集合.3.使用方法:把元素写在封闭曲线的内部.知识点二子集错误!(正确的打“√”,错误的打“×”)(1)任何集合都有两个子集.()(2)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C。
()提示:(1)×(2)×[(1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.集合A是函数y=x2的x的范围,即A=R;集合B是函数y=x2的y的范围,即B={y|y≥0};集合C是函数y=x2图像上的点组成的集合,因此这三个集合互不相等.]知识梳理 1.子集的概念文字语言符号语言图形语言一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,就说这两个集合有包含关系,称集合A是集合B的子集A⊆B(或B⊇A)(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C ,那么A⊆C。
(3)若A⊆B,B⊆A,则称集合A与集合B相等,记作A=B。
知识点三真子集思考并完成以下问题(1)已知集合A={x|-1<x<2},B={x|0<x<1},则()A.B⊆A B.A B C.B A D.A⊆B (2)已知{0,1}A⊆{-1,0,1},则集合A=________。
提示:(1)C(2){-1,0,1}知识梳理定义符号表示图形表示真子集对于两个集合A与B,如果集合A⊆B,并且A≠B,称集合A是集合B的真子集A B(或B A)思考并完成以下问题集合A是集合B的真子集与集合A是集合B的子集之间有什么区别?提示:区别在于集合A是集合B的子集存在着A=B的可能,但集合A是集合B的真子集就不存在A=B的可能.知识梳理 1.定义:不含任何元素的集合,叫做空集.2.符号表示为:∅。
集合间的基本关系(学案)-人教A版2019必修第一册高一数学教材配套学案
1.2集合间的基本关系【学习目标】素养目标学科素养1. 理解子集、真子集、空集的概念;(重点)2. 能用符号和Venn图表示集合间的关系;(难点)3. 掌握列举有限集的所有子集的方法。
1、逻辑推理2、直观想象3、数形结合【自主学习】一. 子集的相关概念1.Venn图表示:在数学中,经常用平面上___ ___ 的_____代表集合,这种图称为Venn图,这种表示集合的方法叫做图示法.优点:形象直观。
2.子集、真子集、集合相等定义符号表示图形表示子集如果集合A中的元素都是集合B中的元素,就称集合A是集合B的子集A B(或B A)真子集如果集合A⊆B,但存在元素_________,就称集合A是集合B的真子集A B(或B A)集合相等如果集合A的元素都是集合B的元素,同时集合B的元素都是集合A的元素,那么集合A与集合B相等A B3.子集的性质(1)任何一个集合是它本身的,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么.二. 空集定义的集合叫做空集符号用符号表示为___规定空集是任何集合的,是任何非空集合的________A【小试牛刀】1.思考辨析(正确的画“√”,错误的画“×”)(1)空集中只有元素0,而无其余元素.()(2)任何一个集合都有子集.()(3)若A=B,则A⊆B.()(4)空集是任何集合的真子集.()2.已知集合A={x|-1-x<0},则下列各式正确的是()A.0⊆A B.{0}⊆A C.⊆⊆A D.{0}⊆A【经典例题】题型一集合间关系的判断点拨:判断集合间关系的常用方法(1)列举观察法:当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之间的关系.(2)集合元素特征法:首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用Venn图、数轴等直观地判断集合间的关系.一般地,判断不等式的解集之间的关系,适合画出数轴.例1 下列各式中,正确的个数是()⊆{0}⊆{0,1,2};⊆{0,1,2}⊆{2,1,0};⊆⊆⊆{0,1,2};⊆⊆={0};⊆{0,1}={(0,1)};⊆0={0}.A.1B.2C.3D.4【跟踪训练】1(1)若集合M={x|x2-1=0},T={-1,0,1},则M与T的关系是()A.M T B.M⊆T C.M=T D.M ⊆T(2)用Venn图表示下列集合之间的关系:A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},D={x|x是正方形}.题型二子集、真子集的个数问题点拨:公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含n个元素的集合有(2n-2)个非空真子集.例2 写出集合{a,b}的所有子集,并指出哪些是它的真子集.例2-变式写出集合{a,b,c}的所有子集? 写出集合{a,b,c,d}的所有子集?【跟踪训练】2 满足{a,b}⊆A{a,b,c,d,e}的集合A的个数是()A.2B.6 C.7D.8题型三根据集合的包含关系求参数点拨:1.分析集合间的关系时,首先要分析、简化每个集合.2.借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.3.此类问题要注意对空集的讨论.例3 已知集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且B⊆A.求实数m的取值范围.【跟踪训练】3 设集合A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=15,试判定集合A与B的关系;(2)若B⊆A,求实数a的取值集合.【当堂达标】1.下列说法:⊆空集没有子集;⊆任何集合至少有两个子集;⊆空集是任何集合的真子集;⊆若⊆A,则A≠⊆.其中正确的有()A.0个B.1个C.2个D.3个2.已知集合A={-1,0,1},则含有元素0的A的子集的个数为()A.2 B.4 C.6 D.83.设A={x|2<x<3},B={x|x<m},若A⊆B,则m的取值范围是()A.m>3 B.m≥3 C.m<3 D.m≤34.已知集合A={x|x-3>0},B={x|2x-5≥0},则这两个集合的关系是________.5.已知A={x|x2-3x+2=0},B={x|ax-2=0},且B⊆A,求由实数a的值组成的集合C.6.已知集合A={x|x<-1,或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.【课堂小结】1.知识点:(1)子集、真子集、空集、集合相等的概念及集合间关系的判断.(2)求子集、真子集的个数问题.(3)由集合间的关系求参数的值或范围.2.方法归纳:数形结合、分类讨论.3.常见误区:忽略对集合是否为空集的讨论,忽视是否能够取到端点.【参考答案】【自主学习】一.1.封闭曲线内部2.任意一个 ⊆⊇ x ∈B ,且x ∉A 任何一个 任何一个 =3.子集 A ⊆C二.不含任何元素 ∅ 子集 真子集 【小试牛刀】1.(1)× (2)√ (3)√ (4)×2. D 解析:集合A ={x |-1-x <0}={x |x >-1},所以0∈A ,{0}⊆A ,D 正确. 【经典例题】例1 B 解析:(1)对于①,是集合与集合的关系,应为{0}{0,1,2};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,1}是含有两个元素0与1的集合,而{(0,1)}是以有序数组(0,1)为元素的单元素集合,所以{0,1}与{(0,1)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③是正确的,应选B.【跟踪训练】1 (1)A 解析:因为M ={x |x 2-1=0}={-1,1},又T ={-1,0,1},所以M T . (2)根据几何图形的相关知识明确各元素所在集合之间的关系,再画Venn 图.如图例2 解:集合{a,b}的所有子集为∅,{a},{b},{a,b}. 真子集为∅,{a},{b}.例2-变式:集合{a,b,c}的所有子集为∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}. 集合{a,b,c,d}的所有子集为∅,{a},{b},{c},{d},{a,b},{a,c},{a,d},{b,c}, {b,d},{c,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d},{a,b,c,d}.【跟踪训练】2 C 解析:由题意知,集合A 可以为{a ,b },{a ,b ,c },{a ,b ,d },{a ,b ,e },{a ,b ,c ,d },{a ,b ,c ,e },{a ,b ,d ,e }.例3 解:(1)因为B ⊆A ,当B =⊆时,m +1≤2m -1,解得m ≥2.(2)当B ≠⊆时,有⎩⎨⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2,综上得m ≥-1.【跟踪训练】3 解:(1)由x 2-8x +15=0得x =3或x =5,故A ={3,5},当a =15时, 由ax -1=0得x =5.所以B ={5},所以BA .(2)当B =∅时,满足B ⊆A ,此时a =0;当B ≠∅,a ≠0时,集合B =⎩⎨⎧⎭⎬⎫1a ,由B ⊆A 得1a =3或1a =5,所以a =13或a =15.综上所述,实数a 的取值集合为⎩⎨⎧⎭⎬⎫0,13,15 【当堂达标】1.B 解析:⊆空集是它本身的子集;⊆空集只有一个子集;⊆空集不是它本身的真子集;⊆空集是任何非空集合的真子集.因此,⊆⊆⊆错误,⊆正确.2.B 解析:根据题意,含有元素0的A 的子集为{0},{0,1},{0,-1},{-1,0,1},共4个.3.B 解析:因为A ={x |2<x <3},B ={x |x <m },A ⊆B ,将集合A ,B 表示在数轴上,如图所示,所以m ≥3.4.A B解析:A ={x |x -3>0}={x |x >3},B ={x |2x -5≥0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥52. 结合数轴知A B .5.解:由x 2-3x +2=0,得x =1或x =2. 所以A ={1,2}.因为B ⊆A ,所以对B 分类讨论如下:①若B =∅,即方程ax -2=0无解,此时a =0; ②若B ≠∅,则B ={1}或B ={2}. 当B ={1}时,有a -2=0,即a =2; 当B ={2}时,有2a -2=0,即a =1.综上可知,符合题意的实数a 所组成的集合C ={0,1,2}. 6.解:(1)因为B ⊆A ,所以m 2=2m -1,即(m -1)2=0,所以m =1.当m =1时,A ={-1,3,1},B ={3,1},满足B ⊆A ,故m =1. (2)当B =⊆时,只需2a >a +3,即a >3; 当B ≠⊆时,根据题意作出如图所示的数轴,可得⎩⎨⎧ a +3≥2a a +3<-1或⎩⎨⎧a +3≥2a 2a >4,解得a <-4或2<a ≤3.综上可得,实数a 的取值范围为a <-4或a >2.。
高中数学_集合间的基本关系教学设计学情分析教材分析课后反思
课型新授课主讲人教学环节教学内容师生互动设计意图引入放视频,从歌词“家是最小国,国是千万家”的讨论中引出要研究的问题师:看完视频,让学生谈谈感受生:爱国师:从数学角度,家与国有何关系?生;-家是国的一部分师:这就是本节课要研究的问题用一个好的引入,既能激发学生爱国之心,又能提高学习兴趣创设情境引入新课思考:实数有相等关系,大小关系,类比实数之间的关系,猜想集合之间是否具备类似的关系.分析示例:示例1:思考元素与集合的关系?(1)设A(“家”)为家庭成员构成的集合,B(“国”)为全体人民构成的集合(2)C={1,2,3},D={1,2,3,4,5}(3)E={1,2,7}, F={1,2,3,4,5}师:类比实数之间的关系,我们观察(1)(2)中元素与集合的关系生:实例(1)、(2)的共同特点是A的每一个元素都是B的元素.师:具备(1)、(2)的两个集合之间关系的称A是B的子集,那么A是B的子集怎样定义呢?类比生疑,通过对例1(1)(2)合作探究,发现共性,提出子集关系揭示主题深化概念1.子集的定义:一般地,对于两个集合A、B,如果A中任意一个元素都是B的元素,称集合A是集合B的子集,记作A B,读作:“A含于B”(或B包含A)三种语言师:定义中,关键是A中元素都在B中,注意书写、读法,亲自板书,为简洁使用符号语言生:一起读符号语言师:为更直观形象,引入韦恩图对子集定义的三种语言描述加以解释,强调要点及注意事项揭示主题深化概念判断子集的方法:E与F的关系2.集合相等定义示例2:考察下列各组集合,并指明两集合的关系:示例2:A={ x|x是两边相等的三角形},B={ x|x是等腰三角形},观察得知:A⊆B,B⊆A,则A=B.师:提问学生回答判断子集的方法生:找元素与集合关系师:示例2 观察A,B两个集合元素与集合的关系生:A中元素都在B中,B中元素都在A中师:这样的两个集合成为相等,在黑板上板书学生依据判断子集的方法,自行发现问题,并主动去解决问题,教师作总结实践训练提升能力练习1:观察下列各组集合,并指明两个集合的关系①_x0001_A=Z ,B=N;② {长方形},B={平行四边形};③ A={x|x2-3x+2=0},B={1,2}.师:找学生上黑板做题,老师进行批改。
2021-2022学年第二学期人教版必修一数学第2课《集合的基本关系》教案
2021-2022学年第二学期人教版必修一数学第2课《集合的基本关系》教案第一章集合与常用逻辑用语(1.2集合的基本关系教案)*课程数学 *课题集合的基本关系*教材人教版 *授课对象高一(18)班 *课时 2一、课标要求1.理解集合的之间的包含与相等关系。
2.能识别给定集合的子集和真子集。
3.在具体情境中了解空集的含义并会应用。
二、学情分析知识储备熟练掌握集合的相关概念及表示。
能力目标养成自主学习、合作交流、归纳总结的学习习惯,培养学生从具体到抽象、从一般到特殊的数学思维能力。
素养目标感受数学与现实生活的密切联系,增强学生的数学应用意识。
落实学科养成学会分析问题、解决问题的良好习惯。
四、教学重难点教学重点:集合间的包含与相等关系,子集与其子集的概念.教学难点:集合间的包含与相等关系,子集与其子集的概念.五、教学策略教法案例教学、情境教学法、启发式教学。
教学策略以解决现实问题为导向,分小组进行探究,并将结果分享交流,激发学生学习兴趣。
学习过程全程渗透职业教育理念,融入思政元素。
六、教学准备教学环境借助信息技术制作课件进行多媒体教学。
教学资源导学案、PPT、相关案例素材。
七、教学过程教学思路如图一图一教学思路课前体验导学教学内容:阅读课本7-8页,思考以下问题1. 集合与集合之间有什么关系?怎样表示集合间的这些关系?2. 集合的子集指什么?真子集又是什么?如何用符号表示?3. 空集是什么样的集合?空集和其他集合间具有什么关系?教师活动准备教学用到的素材。
学生活动设计意图培养学生的自学能力可有利于学生数学抽象思维能力的提高。
课中导入与分析(引入新课)教师活动问题l :实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗? (1){1,2,3},{1,2,3,4,5}A B ==;(2)设A 为国兴中学高一(3)班男生的全体组成的集合,B 为这个班学生的全体组成的集合;(3)设C={x|x 是两边相等的三角形},D={x|x 是等腰三角形}; (4){2,4,6},{6,4,2}E F ==;学生活动学生分小组讨论后自由发言。
学案1集合的概念、集合间的基本关系
学案1集合的概念、集合间的基本关系第一篇:学案1集合的概念、集合间的基本关系学案1集合的概念、集合间的基本关系一.考纲要求:集合及其表示(A)二.课堂练习1.已知全集U=R,Z是整数集,集合A={x|x2-x-6≥0,x∈R},则Z∩∁UA中元素的个数为________.2.已知全集U={1,2,3,4,5,6},集合A={1,2,3,4},B={1,3,5},则∁U(A∩B)=________3.已知全集U={1,2,3,4},集合P={1,2},Q={2,3},则P∩(∁UQ)=________.4.已知集合M={x|x<3},N={x|log2x>1},则M∩N=________5.已知集合A={3,2a},B={a,b},且A∩B={2},则A∪B=________6.已知集合A={x|x≤1,或x≥3},集合B={x|k<x<k+1,k∈R},若(∁RA)∩B=∅,则k的取值范围是________7.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.三.问题探讨问题1.集合的基本概念1.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数为________.2.设P,Q为两个非空实数集合,定义集合P-Q={a|a∈P但a∉Q},若P={a|a是小于10的自然数},Q={b|b是不大于10的正偶数},则P-Q中元素的个数为________.3.设a,b∈R,A={1,a+b,a},B=⎨0,⎧b⎫,b⎬,若A=B,求a,b的值。
a⎩⎭问题2.集合间的基本关系已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B⊆A,求实数m的取值范围.四.巩固练习1.已知集合A={x|x≤1,或x≥3},集合B={x|k<x<k+1,k∈R},若(∁RA)∩B=∅,则k的取值范围是________.2.已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为________11⎧⎫3.若x∈A,则∈A,就称A是伙伴关系集合,集合M=⎨-1,0,2,1,2,3⎬的所有非空子x⎩⎭集中,具有伙伴关系的集合个数为________.m2224.设集合A=((x,y)⎪≤(x-2)+y≤m,x,y∈R,)B={(x,y)|2m≤x+y≤2m+1,x,y⎪2∈R},若A∩B≠∅,求实数m的取值范围.第二篇:集合间的基本关系教案集合间的基本关系教案本资料为woRD文档,请点击下载地址下载全文下载地址.1.2集合间的基本关系整体设计教学分析课本从学生熟悉的集合出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,三维目标.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.重点难点.教学重点:理解集合间包含与相等的含义.教学难点:理解空集的含义.w课时安排课时教学过程导入新课思路1.实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?欲知谁正确,让我们一起来观察、研探.思路2.复习元素与集合的关系——属于与不属于的关系,填空:0N;2Q;-1.5R.类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?∈;推进新课新知探究提出问题观察下面几个例子:①A={1,2,3},B={1,2,3,4,5};②设A为国兴中学高一班男生的全体组成的集合,B为这个班学生的全体组成的集合;③设c={x|x是两条边相等的三角形},D={x|x是等腰三;∈)角形};④E={2,4,6},F={6,4,2}.你能发现两个集合间有什么关系吗?例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?试用Venn图表示例子①中集合A和集合B.已知AB,试用Venn图表示集合A和B的关系.任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?活动:教师从以下方面引导学生:观察两个集合间元素的特点.从它们含有的元素间的关系来考虑.规定:如果AB,但存在x∈B,且xA,我们称集合A是集合B的真子集,记作AB.实数中的“≤”类比集合中的.把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.封闭曲线可以是矩形也可以是椭圆等等,没有限制.分类讨论:当AB时,AB或A=B.方程x2+1=0没有实数解.空集记为,并规定:空集是任何集合的子集,即A;空集是任何非空集合的真子集,即A.类比子集.讨论结果:①集合A中的元素都在集合B中;②集合A中的元素都在集合B中;③集合c中的元素都在集合D中;④集合E中的元素都在集合F中.可以发现:对于任意两个集合A,B 有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.例子①中AB,但有一个元素4∈B,且4A;而例子②中集合E和集合F中的元素完全相同.若AB,且BA,则A=B.可以把集合中元素写在一个封闭曲线的内部来表示集合.如图1121所示表示集合A,如图1122所示表示集合B.图1-1-2-1图1-1-2-2如图1-1-2-3和图1-1-2-4所示.图1-1-2-3图1-1-2-4不能.因为方程x2+1=0没有实数解.空集.若AB,Bc,则Ac;若AB,Bc,则Ac.应用示例思路1.某工厂生产的产品在重量和长度上都合格时,该产品才合格.若用A 表示合格产品的集合,B表示重量合格的产品的集合,c表示长度合格的产品的集合.已知集合A、B、c均不是空集.则下列包含关系哪些成立?AB,BA,Ac,cA.试用Venn图表示集合A、B、c间的关系.活动:学生思考集合间的关系以及Venn图的表示形式.当集合A中的元素都属于集合B时,则AB成立,否则AB不成立.用相同的方法判断其他包含关系是否成立.教师提示学生以下两点:重量合格的产品不一定是合格产品,但合格的产品一定重量合格;长度合格的产品不一定是合格产品,但合格的产品一定长度合格.根据集合A、B、c间的关系来画出Venn图.解:包含关系成立的有:BA,cA.集合A、B、c间的关系用Venn图表示,如图1-1-2-5所示.图1-1-2-5变式训练课本P7练习3.点评:本题主要考查集合间的包含关系.其关键是首先明确两集合中的元素具体是什么.判断两个集合A、B之间是否有包含关系的步骤是:先明确集合A、B中的元素,再分析集合A、B中的元素之间的关系,得:当集合A中的元素都属于集合B时,有AB;当集合A 中的元素都属于集合B,当集合B中至少有一个元素不属于集合A时,有AB;当集合A中的元素都属于集合B,并且集合B中的元素也都属于集合A时,有A=B;当集合A中至少有一个元素不属于集合B,并且集合B中至少有一个元素也不属于集合A时,有AB,且BA,即集合A、B互不包含.2.写出集合{a,b}的所有子集,并指出哪些是它的真子集.活动:学生思考子集和真子集的定义,教师提示学生空集是任何集合的子集,一个集合不是其本身的真子集.按集合{a,b}的子集所含元素的个数分类讨论.解:集合{a,b}的所有子集为,{a},{b},{a,b}.真子集为,{a},{b}.变式训练XX山东济宁一模,1已知集合P={1,2},那么满足QP的集合Q的个数是A.4B.3c.2D.1分析:集合P={1,2}含有2个元素,其子集有22=4个,又集合QP,所以集合Q有4个.答案:A点评:本题主要考查子集和真子集的概念,以及分类讨论的思想.通常按子集中所含元素的个数来写出一个集合的所有子集,这样可以避免重复和遗漏.思考:集合A中含有n个元素,那么集合A有多少个子集?多少个真子集?解:当n=0时,即空集的子集为,即子集的个数是1=20;当n=1时,即含有一个元素的集合如{a}的子集为,{a},即子集的个数是2=21;当n=2时,即含有一个元素的集合如{a,b}的子集为,{a},{b},{a,b},即子集的个数是4=22.集合A中含有n个元素,那么集合A有2n个子集,由于一个集合不是其本身的真子集,所以集合A有个真子集.思路2 .XX上海高考,理1已知集合A={-1,3,2m-1},集合B={3,m2}.若BA,则实数m=_______.活动:先让学生思考BA的含义,根据BA,知集合B 中的元素都属于集合A,集合元素的互异性,列出方程求实数m的值.因为BA,所以3∈A,m2∈A.对m2的值分类讨论.解:∵BA,∴3∈A,m2∈A.∴m2=-1或m2=2m-1.解得m=1.∴m=1.答案:1点评:本题主要考查集合和子集的概念,以及集合元素的互异性.本题容易出现m2=3,其原因是忽视了集合元素的互异性.避免此类错误的方法是解得m的值后,再代入验证.讨论两集合之间关系时,通常依据相关的定义,观察这两个集合元素的关系,转化为解方程或解不等式.变式训练已知集合m={x|2-x<0},集合N={x|ax=1},若Nm,求实数a的取值范围.分析:集合N是关于x的方程ax=1的解集,集合m={x|x>2}≠,由于Nm,则N=或N≠,要对集合N是否为空集分类讨论.解:由题意得m={x|x>2}≠,则N=或N≠.当N=时,关于x的方程ax=1中无解,则有a=0;当N≠时,关于x的方程ax=1中有解,则a≠0,此时x=,又∵Nm,∴∈m.∴>2.∴0活动:学生思考子集的含义,并试着写出子集.按子集中所含元素的个数分类写出子集;由总结当n=0,n=1,n=2,n=3时子集的个数规律,归纳猜想出结论.答案:的子集有:,1个子集;{a}的子集有:、{a},即{a}有2个子集;{a,b}的子集有:、{a}、{b}、{a,b},即{a,b}有4个子集;{a,b,c}的子集有:、{a}、{b}、{c}、{a,b}、{a,c}、{b,c}、{a,b,c},即{a,b,c}有8个子集.由可得:当n=0时,有1=20个子集;当n=1时,集合m有2=21个子集;当n=2时,集合m有4=22个子集;当n=3时,集合m有8=23个子集;因此含有n个元素的集合m有2n个子集.w变式训练已知集合A{2,3,7},且A中至多有一个奇数,则这样的集合A有……A.3个B.4个c.5个D.6个分析:对集合A所含元素的个数分类讨论.A=或{2}或{3}或{7}或{2,3}或{2,7}共有6个.答案:D点评:本题主要考查子集的概念以及分类讨论和归纳推理的能力.集合m中含有n个元素,则集合m有2n个子集,有2n-1个真子集,记住这个结论,可以提高解题速度.写一个集合的子集时,按子集中元素的个数来写不易发生重复和遗漏现象.知能训练课本P7练习1、2.【补充练习】.判断正误:空集没有子集.空集是任何一个集合的真子集.任一集合必有两个或两个以上子集.若BA,那么凡不属于集合A的元素,则必不属于B.分析:关于判断题应确实把握好概念的实质.解:该题的5个命题,只有是正确的,其余全错.对于、来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集.对于来讲,可举反例,空集这一个集合就只有自身一个子集.对于来讲,当x∈B时必有x∈A,则xA时也必有xB.2.集合A={x|-1A.无限集的真子集是有限集B.任何一个集合必定有两个子集c.自然数集是整数集的真子集D.{1}是质数集的真子集以下五个式子中,错误的个数为①{1}∈{0,1,2}②{1,-3}={-3,1}③{0,1,2}{1,0,2}④∈{0,1,2}⑤∈{0}A.5B.2c.3D.4m={x|3A.amB.amc.{a}∈mD.{a}m分析:该题要在四个选择肢中找到符合条件的选择肢,必须对概念把握准确,无限集的真子集有可能是无限集,如N是R的真子集,排除A;由于只有一个子集,即它本身,排除B;由于1不是质数,排除D.该题涉及到的是元素与集合,集合与集合的关系.①应是{1}{0,1,2},④应是{0,1,2},⑤应是{0}.故错误的有①④⑤.m={x|3cD4.判断如下集合A与B之间有怎样的包含或相等关系:A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z};A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}.解:因A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z},故A、B都是由奇数构成的,即A=B.因A={x|x=2m,m∈Z},B={x|x=4n,n∈Z},又x=4n=2•2n,在x=2m 中,m可以取奇数,也可以取偶数;而在x=4n中,2n只能是偶数.故集合A、B的元素都是偶数.但B中元素是由A中部分元素构成,则有BA.点评:此题是集合中较抽象的题目.要注意其元素的合理寻求.5.已知集合P={x|x2+x-6=0},Q={x|ax+1=0}满足QP,求a所取的一切值.解:因P={x|x2+x-6=0}={2,-3},当a=0时,Q={x|ax+1=0}=,QP成立.又当a≠0时,Q={x|ax+1=0}={},要QP成立,则有=2或=-3,a=或a=.综上所述,a=0或a=或a=.点评:这类题目给的条件中含有字母,一般需分类讨论.本题易漏掉a=0,ax+1=0无解,即Q为空集的情况,而当Q=时,满足QP.6.已知集合A={x∈R|x2-3x+4=0},B={x∈R|=0},要使APB,求满足条件的集合P.解:由A={x∈R|x2-3x+4=0}=,B={x∈R|=0}={-1,1,-4},由APB知集合P非空,且其元素全属于B,即有满足条件的集合P为{1}或{-1}或{-4}或{-1,1}或{-1,-4}或{1,-4}或{-1,1,-4}.点评:要解决该题,必须确定满足条件的集合P的元素,而做到这点,必须明确A、B,充分把握子集、真子集的概念,准确化简集合是解决问题的首要条件.7.设A={0,1},B={x|xA},则A与B应具有何种关系?解:因A={0,1},B={x|xA},故x为,{0},{1},{0,1},即{0,1}是B中一元素.故A∈B.点评:注意该题的特殊性,一集合是另一集合的元素.8.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若BA,求实数m的取值范围;当x∈Z时,求A的非空真子集个数;当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.解:当m+1>2m-1即m<2时,B=满足BA.当m+1≤2m-1即m≥2时,要使BA成立,需可得2≤m≤3.综上所得实数m的取值范围m≤3.当x∈Z时,A={-2,-1,0,1,2,3,4,5},所以,A的非空真子集个数为2上标8-2=254.∵x∈R,且A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},又没有元素x使x∈A与x∈B同时成立.则①若B≠即m+1>2m-1,得m<2时满足条件;②若B≠,则要满足条件有:或解之,得m>4.综上有m<2或m>4.点评:此问题解决要注意:不应忽略;找A中的元素;分类讨论思想的运用.拓展提升问题:已知AB,且Ac,B={0,1,2,3,4},c={0,2,4,8},则满足上述条件的集合A共有多少个?活动:学生思考AB,且Ac所表达的含义.AB说明集合A是集合B 的子集,即集合A中元素属于集合B,同理有集合A中元素属于集合c.因此集合A中的元素是集合B和集合c的公共元素.思路1:写出由集合B 和集合c的公共元素所组成的集合,得满足条件的集合A;思路2:分析题意,仅求满足条件的集合A的个数,转化为求集合B和集合c的公共元素所组成的集合的子集个数.解法一:因AB,Ac,B={0,1,2,3,4},c={0,2,4,8},由此,满足AB,有:,{0},{1},{2},{3},{4},{0,1},{0,2},{2,3},{2,4},{0,3},{0,4},{1,2},{1,3},{1,4},{3,4},{0,2,4},{0,1,2},{0, 1,3},{0,1,4},{1,2,3},{1,2,4},{2,3,4},{0,3,4},{0,1,2,3},{1,2,3,4},{0,1,3,4},{0 ,2,3},{1,3,4},{0,1,2,4},{0,2,3,4},{0,1,2,3,4},共25=32.又满足Ac的集合A有:,{0},{2},{4},{8},{0,2},{0,4},{0,8},{2,4},{2,8},{4,8},{0,2,4},{0,2,8},{0,4,8},{2,4,8},{0,2,4,8},共24=16.其中同时满足AB,Ac的有8个:,{0},{2},{4},{0,2},{0,4},{2,4},{0,2,4},实际上到此就可看出,上述解法太繁.解法二:题目只求集合A的个数,而未让说明A的具体元素,故可将问题等价转化为B、c的公共元素组成集合的子集数是多少.显然公共元素有0、2、4,组成集合的子集有23=8.点评:有关集合间关系的问题,常用分类讨论的思想来解决;关于集合的子集个数的结论要熟练掌握,其应用非常广泛.课堂小结本节课学习了:①子集、真子集、空集、Venn图等概念;②能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集;③清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明.作业课本P11习题1.1A组5.设计感想本节教学设计注重引导学生通过类比来获得新知,在实际教学中,要留给学生适当的思考时间,使学生自己通过类比得到正确结论.丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念,学生的数学学习活动不能仅限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、合作交流、阅读自学等都应成为学生学习数学的重要方式.第三篇:高中数学 1.1.2 集合间的基本关系学案新人教A版必修11、1、2 集合间的基本关系一、【学习目标】1、准确理解集合之间包含与相等的关系,能够识别并写出给定集合的子集和真子集,能准确的使用相关术语和符号;2、会使用Venn图、数轴表示集合间的关系,深刻体会Venn图在分析、理解集合问题中的作用;3、掌握子集和空集性质,能在解题中灵活运用;了解集合子集个数的求法.二、【自学内容和要求及自学过程】1、阅读教材第6页第1—7段,回答问题(子集、集合间的关系)<1>根据教材上的例子,你能发现集合间有什么关系吗?<2>根据上面的阐述,你能总结出子集的描述性定义并理解之吗?结论:<1>可以发现:对于题目中的两个集合A、B,集合A中的元素都在集合B中,其中第三个例子中集合C和集合D是相等的;<2>一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B 的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作:A⊆B(或B⊇A)读作:“A包含于B”(或“B包含A”);(引申:例子三中的集合C和集合D是什么关系呢)【教学效果】:基本上能达到自学的效果和预期的目标,注意防止学生不深入探究,这一点是最主要的.2、阅读教材第6页最后一段,回答问题(真子集)<3>教材上例子①中集合A是集合B的子集,例子③中集合C是集合D的子集,同样是子集,有什么区别?你能由此得出真子集的描述性定义吗?结论:<3>例子①中A⊆B,但有两个元素4∈B,5∈B且4∉A,5∉A;而例子③中集合C和集合D中的元素完全相同;由此,我们可以得到真子集的描述性定义:如果集合A⊆B,但存在元素, x∈B,且x∉A,我们称集合A是B的真子集,记作:AB(或BA)【教学效果】:子集和真子集是容易混淆的两个概念,要进一步练习和训练.3、阅读教材第6页倒数第2、3段,回答问题(集合相等)<4>结合例子③,类比实数中的结论:“若a≥b,且b≥a,则a=b”,在集合中,你发现了什么结论?结论:<4>如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集A⊆B,此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等,记作:A=B.【教学效果】:要注意集合相等的条件,这是我们证明两个集合相等的依据.3、阅读教材第7页,回答问题(空集)<5>你能给出空集的定义吗?你能理解空集的含义吗?结论:把不含任何元素的集合叫做空集,记作∅.并规定:空集是任何集合的子集,即∅⊆A;空集是任何非空集合的真子集,即∅A(A≠∅).【教学效果】:注意空集和{0}的区别.4、阅读教材有关Venn图的知识,回答问题(Venn图)<6>试用Venn图表示例子①中集合A和集合B;若已知A=B,试用Venn图表示集合A和B的关系.结论:如图所示【教学效果】:学生能达到预期的学习目标.三、【魅力精讲举一反三】四、【跟踪训练展我风采】(约12分钟)根据今天所学内容,完成下列练习练习一:<1>教材第7页练习第1题;<2>已知集合P={1,2},那么满足Q⊆P的集合Q的个数有几个?思考:集合A中含有n个元素,那么集合A有多少个子集?多少个真子集?结论:集合A中含有n个元素,那么集合A有2个子集,由于一个集合不是其本身的真子集,所以集n合A有2-1个真子集.n【教学效果】:要记住思考题的结论.练习二:教材第7页练习第2、3题;(通过练习二,提醒学生注意集合与集合间的关系与元素与集合间的关系的区别)练习三:已知集合A={-1,3,2m-1},集合B={3, m }.若B⊆A,则实数m=_______.(练习三是一个选2讲题目,时间够的话可以讲一讲,时间不够则放在作业上作为选做题)五、【学以致用能力提升】1、必做题:2、选做题:六、【提炼精华我有所得】这节课主要讲了五大块内容:子集、真子集、集合相等、空集、Venn图,其中最主要的是子集和真子集的区别,一定要给学生弄清楚,弄明白,而不是简单的类比.学生往往在子集和真子集上止步不前,不知道为何有了子集,又分出了一个真子集的概念?第二点要注意的是要让学生很明确,元素与集合间的关系与集合与集合间的关系是不能混淆的.什么情况下用包含关系,什么情况下用属于关系,都要点到.七、【教学反思】第四篇:备课资料(1.1.2集合间的基本关系)备课资料(1.1.2集合间的基本关系)备课资料[备选例题]【例1】下面的Venn图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系,问集合A、B、C、D、E分别是哪种图形的集合?图1-1-2-6 思路分析:结合Venn图,利用平面几何中梯形、平行四边形、菱形、正方形的定义来确定.解:梯形、平行四边形、菱形、正方形都是四边形,故A={四边形};梯形不是平行四边形、菱形、正方形,而菱形、正方形是平行四边形,故B={梯形},C={平行四边形};正方形是菱形,故E={正方形}, 即A={四边形},B={梯形},C={平行四边形},D={菱形},E={正方形}.【例2】2006全国高中数学联赛山东赛区预赛,3设集合A={x||x|2-3|x|+2=0},B={x|(a-2)x=2},则满足BA的a的值共有()A.2个B.3个C.4个D.5个分析:由已知得A={x||x|=1或|x|=2}={-2,-1,1,2},集合B是关于x的方程(a-2)x=2的解集, ∵BA,∴B=∅或B≠∅.当B=∅时,关于x的方程(a-2)x=2无解,∴a-2=0.∴a=2.当B≠∅时,关于x的方程(a-2)x=2的解x=∴2∈A, a-22222=-2或=-1或=1或=2.a-2a-2a-2a-2解得a=1或0或4或3,综上所得,a的值共有5个.答案:D 【例3】2005天津高考,文1集合A={x|0≤x<3且x∈N}的真子集的个数是()A.16B.8C.7D.4 分析:A={x|0≤x<3且x∈N}={0,1,2},则A的真子集有23-1=7个.答案:C 【例4】已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0},试判断集合B是不是集合A的子集?是否存在实数a使A=B成立?解析:先在数轴上表示集合A,然后化简集合B,由集合元素的互异性,可知此时应考虑a的取值是否为1,要使集合B成为集合A的子集,集合B的元素在数轴上的对应点必须在集合A对应的线段上,从而确定字母a的分类标准.当a=1时,B={1},所以B是A的子集;当13时,B不是A的子集.综上可知,当1≤a≤3时,B是A的子集.由于集合B最多只有两个元素,而集合A有无数个元素,故不存在实数a,使B=A.点评:分类讨论思想,就是科学合理地划分类别,通过“各个击破”,再求整体解决(即先化整为零,再聚零为整)的策略思想.类别的划分必须满足互斥、无漏、最简的要求,探索划分的数量界限是分类讨论的关键.[思考](1)空集中没有元素,怎么还是集合?(2)符号“∈”和“⊆”有什么区别? 剖析:(1)疑点是总是对空集这个概念迷惑不解,并产生怀疑的想法.产生这种想法的原因是没有了解建立空集这个概念的背景,其突破方法是通过实例来体会.例如,根据集合元素的性质,方程的解能够组成集合,这个集合叫做方程的解集.对于1=0,x2+4=0等方程来说,它们的解集x中没有元素.也就是说确实存在没有任何元素的集合,那么如何用数学符号来刻画没有元素的集合呢?为此引进了空集的概念,把不含任何元素的集合叫做空集.这就是建立空集这个概念的背景.由此看出,空集的概念是一个规定.又例如,不等式|x|<0的解集也是不含任何元素,就称不等式|x|<0的解集是空集.(2)难点是经常把这两个符号混淆,其突破方法是准确把握这两个符号的含义及其应用范围,并加以对比.符号∈只能适用于元素与集合之间,其左边只能写元素,其右边只能写集合,说明左边的元素属于右边的集合,表示元素与集合之间的关系,如-1∈Z,1∉Z;符号⊆只能适用于2集合与集合之间,其左右两边都必须写集合,说明左边的集合是右边集合的子集,表示集合与集合之间的关系,如{1}⊆{1,0},∅⊆{x|x<0}.(设计者:王立青)第五篇:1.1.2集合间的基本关系说课稿1.1.2集合间的基本关系数学必修1第一章第二节第1小节《集合间的基本关系》说课稿.一、教学内容分析集合概念及其理论是近代数学的基石,集合语言是现代数学的基本语言,通过学习、使用集合语言,有利于学生简洁、准确地表达数学内容,高中课程只将集合作为一种语言来学习,学生将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力.本章集合的初步知识是学生学习、掌握和使用数学语言的基础,是高中数学学习的出发点。
新版高一数学必修第一册第一章全部学案
新版高一数学必修第一册第一章全部学案第一章集合与常用逻辑用语第1节集合的概念1.了解集合的含义,体会元素与集合的“属于”关系.2.掌握集合的三种表示方法,常用数集及其专用符号,集合的三个基本特征.1.集合的含义与表示方法,元素与集合的关系;2.选择恰当的方法表示一些简单的集合一、集合的基本概念1.元素与集合的概念(1)把统称为,通常用 ________表示.(2)把叫做 (简称为集),通常用 ______ 表示.2.集合中元素三个特征:、____________、___________3、集合相等_____________________________________________________4.元素与集合的关系:(1)如果a.是集合A的元素,就说a A(2)如果a不是集合A的元素,就说a A5.常用的数集及其符号表示:非负整数集(自然数集)____________________________记作__________正整数集__________________________________________记作__________整数集____________________________________________记作__________有理数集__________________________________________记作_________实数集____________________________________________记作__________二、集合的表示方法1、列举法:将集合的元素出来,并置于花括号“{__}”内.元素之间要用分隔,列举时与无关.2.描述法:将集合的所有元素表示出来,写成{x|φ(x)}的形式探究一、集合的含义1.考察下列问题:(1)(1)1~20以内的所有偶数; (2)立德中学今年入学的全体高一学生; (3)所有正方形;(4)到直线l 的距离等于定长d 的所有的点; (5)方程0232=+-x x的所有实数根;(6)地球上的四大洋。
高一数学教案:1.1.2《集合间的基本关系》(新人教A版必修1)
1.1.2 集合间的基本关系教学目标:1.理解子集、真子集概念;2.会判断和证明两个集合包含关系;3.理解 ”、“⊆”的含义; 4.会判断简单集合的相等关系;5.渗透问题相对的观点。
教学重点:子集的概念、真子集的概念教学难点:元素与子集、属于与包含间区别、描述法给定集合的运算教学方法:讲、议结合法教学过程:(I )复习回顾问题1:元素与集合之间的关系是什么?问题2:集合有哪些表示方法?集合的分类如何?通过观察就会发现,这五组集合中,集合A 都是集合B 的一部分,从而有:规定:空集是任何集合的子集,即对于任意一个集合A 都有A 。
问题3:观察(7)和(8),集合A 与集合B 的元素,有何关系?⇒集合A 与集合B 的元素完全相同,从而有:问题4:(1)集合A 是否是其本身的子集?(由定义可知,是)(2)除去∅与A 本身外,集合A 的其它子集与集合A 的关系如何?(包含于A ,但不等于A )3.真子集:由“包含”与“相等”的关系,可有如下结论:(1)A ⊆A (任何集合都是其自身的子集);(2)若A ⊆B ,而且A ≠B (即B 中至少有一个元素不在A 中),则称集合A 是集合B 的真子集(p r o p e(3)对于集即可得出A ⊆C ;对 B , C ,同样有C, 即:包含关系具有“传递性”。
4.证明集合相等的方法:(1) 证明集合A ,B 中的元素完全相同;(具体数据)(2) 分别证明A ⊆B 和B ⊆A 即可。
(抽象情况) 对于集合A ,B ,若A ⊆B 而且B ⊆A ,则A=B 。
(III ) 例题分析: 1. 能判断存在子集关系的两个集合,谁是谁的子集,进一步确定其是否为真子集; 注意:子集并不是由原来集合中的部分元素组成的集合。
(因为:“空集是任何集合的子集”,但空集中不含任何元素;“A 是A 的子集”,但A 中含有A 的全部元素,而不是部分元素)。
2. 空集是任何集合的子集,是任何非空集合的真子集;3. 注意区别“包含于”,“包含”,“真包含”,“不包含”;4. 注意区别“∈”与“⊆”的不同涵义。
1.1.2集合间的基本关系说课稿[合集五篇]
1.1.2集合间的基本关系说课稿[合集五篇]第一篇:1.1.2集合间的基本关系说课稿1.1.2集合间的基本关系数学必修1第一章第二节第1小节《集合间的基本关系》说课稿.一、教学内容分析集合概念及其理论是近代数学的基石,集合语言是现代数学的基本语言,通过学习、使用集合语言,有利于学生简洁、准确地表达数学内容,高中课程只将集合作为一种语言来学习,学生将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力.本章集合的初步知识是学生学习、掌握和使用数学语言的基础,是高中数学学习的出发点。
本小节内容是在学习了集合的概念以及集合的表示方法、元素与集合的从属关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合之间的运算的基础,因此本小节起着承上启下的重要作用.本节课的教学重视过程的教学,因此我选择了启发式教学的教学方式。
通过问题情境的设置,层层深入,由具体到抽象,由特殊到一般,帮助学生的逐步提升数学思维。
二、学情分析本节课是学生进入高中学习的第3节数学课,也是学生正式学习集合语言的第3节课。
由于一切对于学生来说都是新的,所以学生的学习兴趣相对来说比较浓厚,有利于学习活动的展开。
而集合对于学生来说既熟悉又陌生,熟悉的是在初中就已经使用数轴求简单不等式(组)的解,用图示法表示四边形之间的关系,陌生的是使用集合的语言来描述集合之间的关系。
而从具体的实例中抽象出集合之间的包含关系的本质,对于学生是一个挑战。
根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标和教学重、难点如下:三、教学目标:知识与技能目标:(1)理解集合之间包含和相等的含义;(2)能识别给定集合的子集;(3)能使用Venn图表达集合之间的包含关系过程与方法目标:(1)通过复习元素与集合之间的关系,对照实数的相等与不相等的关系联系元素与集合之间的从属关系,探究集合之间的包含和相等关系;(2)初步经历使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力;情感、态度、价值观目标:(1)了解集合的包含、相等关系的含义,感受集合语言在描述客观现实和数学问题中的意义;(2)探索利用直观图示(Venn图)理解抽象概念,体会数形结合的思想。
1.2集合间的基本关系-2024-2025学年高一数学必修第一册+课件(人教A版2019)
(2)
集合
⌀
{a}
{a,b}
{a,b,c}
集合的子集
⌀
⌀,{a}
⌀,{a},{b},{a,b}
⌀,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}
子集的个数
1
2
4
8
由此猜想:含n个元素的集合{a1,a2,…,an}的所有子集的个数是2 ?真子集的个数
及非空真子集的个数是2 -2.
确定集合的子集、真子集
设A={x(x-16)(x+5x+4)=0},写出集合A的子集,并指出其中哪些是它的真子集?
解:由(x2-16)(x2+5x+4)=0,得(x-4)(x+1)(x+4)2=0,解方程得x=-4或x=-1
或x=4.
故集合A={-4,-1,4}.由0个元素构成的子集为∅;
由1个元素构成的子集为{-4},{-1},{4};
由2个元素构成的子集为{-4,-1},{-4,4},{-1,4};
由3个元素构成的子集为{-4,-1,4}.
因此集合A的子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4},{4,-1,4}.
真子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}.
知识讲解
2.填空
一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B
的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作
A=B.
也就是说,若A⊆B,且B⊆A,则A=B.
3.做一做
高中数学必修一《集合间的基本关系》优秀教学设计
高中数学必修一《集合间的基本关系》优秀教学设计1.1.2 集合间的基本关系教学设计一、教学目标1.知识与技能1) 了解集合之间包含与相等的含义,能够识别给定集合的子集。
2) 理解子集和真子集的概念。
3) 能够使用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用。
2.过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义。
3.情感、态度与价值观1) 树立数形结合的思想。
2) 体会类比对发现新结论的作用。
二、教学重点与难点重点:集合间的包含与相等关系,子集与其子集的概念。
难点:关系与包含关系的区别。
三、学法让学生通过观察、类比、思考、交流、讨论,发现集合间的基本关系。
四、教学过程一)复回顾:1.元素与集合之间的关系。
2.集合的三性:确定性、互异性、无序性。
3.集合的常用表示方法:列举法、描述法。
4.常见的数集表示。
二)创设情景,新课引入:问题1:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?让学生自由发言,教师不要急于做出判断,而是继续引导学生;欲知谁正确,让我们一起来观察、研探。
三)师生互动,新课讲解:问题1:观察下面几个例子,你能发现两个集合间有什么关系了吗?1) A={1,2,3}。
B={1,2,3,4,5};2) 设A为我班第一组男生的全体组成的集合,B为我班班第一组的全体组成的集合;3) 设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};4) E={2,4,6},F={6,4,2}。
组织学生充分讨论、交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系:归纳:①一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集。
记作:A⊆B(或B⊇A)读作:A包含于B(或B包含A)。
②如果两个集合所含的元素完全相同,那么我们称这两个集合相等。
《集合间的基本关系》示范公开课教学设计【高中数学人教版】
《1.2 集合间的基本关系》教学设计1.通过类比实数间的关系,观察、发现、形成集合间关系的概念,理解集合之间的包含与相等的含义,提升学生的数学抽象素养.2.能识别给定集合的子集,了解空集的含义.3.对集合之间的关系,能进行自然语言、图形语言(Venn图)、符号语言间的转换,提升数学抽象素养.教学重点:集合间包含与相等的含义,用集合语言表达数学对象或数学内容.教学难点:对相似概念及符号的理解,例如区别元素与集合、属于与包含等概念及其符号表示.PPT.一、概念的引入问题1:上一节我们学习了集合,对于这个新的研究对象,接下来该如何研究呢?比如要研究些什么?用什么方法研究?如果有困难可以阅读本节的引言.师生活动:学生独立思考、讨论交流,教学时要特别关注研究方法的指引.教师提示,类比已有的学习经验是一个好方法,类比已有的学习经验是一个好方法,比如我们已研究过“实数”,引导学生回顾实数研究了哪些内容,如实数间的关系、实数的运算等,最后确定集合的研究问题:集合间的关系,集合的运算设计意图:引入一个新的数学对象后,关键在于引导学生思考“如何研究一个数学对象”,这种思考有助于学生掌握研究数学对象的方法,学会发现问题和提出问题.这里采用的“类比”就是一种重要的数学思维方法.问题2:阅读教科书第7页“观察”,类比实数之间的相等关系、大小关系,集合与集合之间有哪些关系?师生活动:学生独立观察,充分思考,交流讨论.根据学生交流讨论情况,教师可以适时地选择以下问题进行追问.追问:(1)你从哪个角度来分析每组两个集合间的关系?(从元素与集合之间的关系.)(2)上述三个具体例子有什么共同特点?请你概括.(在每组的两个集合中,第一个集合中的任何一个元素都是第二个集合中的元素.).(3)上述三组集合中,前两组的两个集合间的关系与第三组的两个集合间的关系有什么不同之处?(不同之处是:前两组集合中,集合B中有的元素属于集合A,有的元素不属于集合A;第三组集合中,集合A中的任何一个元素都属于集合B,反过来,集合B中的任何一个元素也都属于集合A.)师生活动:教师引导学生梳理观察、讨论、分析的结果,抽象概括形成数学定义,介绍子集、包含关系和相等关系.一般地:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集.记作:A⊆B(B⊇A)读作:A 包含于B(或B包含A).设计意图:让学生通过观察、比较、归纳、概括出集合间的基本关系.并创设情境,让学生运用类比、联想、抽象、概括的思维方法解决问题,提升学生数学抽象素养.教学时要确保学生独立思考、讨论交流的时间.二、概念的理解问题3:阅读教科书第7页观察之后至第8页思考之前的内容,你有什么疑问?如果没有疑问,请你回答下列问题:(1)你能举几个具有包含关系、相等关系的集合,并用符号语言和Venn图表示吗?(2)子集和真子集的区别与联系是什么?(3)什么是空集?请你再举几个空集的例子.师生活动:让学生独立阅读这段内容,然后分别提出自己感到困惑的问题.教师根据学生回答的情况,进行补充,帮助学生提升对概念的理解,比如集合“{0}”是否为空集等例子.设计意图:对于难度不大的内容,特别是符号比较多时,通过阅读,熟悉自然语言、符号语言和图形语言,并建立它们之间的对应关系;通过阅读,提出自己的困惑,学会质疑,深入理解概念;通过举例子,抽象概念具体化,深入理解概念.问题4:包含关系{a}⊆A与属于关系a∈A有什么区别?试结合实例作出解释.师生活动:让学生独立思考,然后讨论交流,教师提问.预设的答案:{a}⊆A表示集合与集合间的关系,集合{a}是集合A的子集;而a∈A表示元素a与集合A间的关系.如针对集合A={0,1,2},{0}⊆{0,1,2}而0∈{0,1,2}.本图片为微课《【知识点解析】包含于的含义》及《【知识点解析】属于》的含义的知识讲解,微课中分别讲解了包含于和属于的意义,并进行了辨析,若需使用,请插入相应微课.设计意图:通过新学习的知识和已学习知识的对比,学生更容易区别集合的子集、元素与集合的关系,以及符号间的区别.问题5:通过类比实数关系的性质,你能发现集合之间的关系有哪些性质?师生活动:学生回顾、讨论、交流,教师提问.预设的答案:(1)任何一个集合是它本身的子集,即A⊆A(2)对于集合A⊆B,B⊆C,那么A⊆C.设计意图:类比实数关系的对称性、传递性等性质,得出两个集合间的关系的性质.在旧知识的基础上学习新知识有生长点,学生容易类比、掌握.三、概念的巩固应用例1 写出集合{a,b}的所有子集,并指出哪些是它的真子集.师生活动:学生分析解题思路,教师给出解答示范,特别突出有规律地列举.答案:子集有Φ,{a},{b},{a,b},其中真子集是Φ,{a},{b}.设计意图:巩固子集和真子集的概念和性质,体会分类的原则和方法,为保证不重不漏,要按照一定顺序写出子集,比如可以根据子集中元素的个数分类.例2 判断下列各题中集合A是否为集合B的子集,并说明理由:(1)A={1,2,3},B={x|x是8的约数};(2)A={x|x是长方形},B={x|x是两条对角线相等的平行四边形}.师生活动:学生判断,教师给出解答示范.答案:(1)A={1,2,3},B={x|x是8的约数}={1,2,4,8},其中3 ∉B,所以集合A不是集合B的子集.(2)A=B.设计意图:检验学生对子集概念的掌握情况,进一步明确判断两个集合之间关系的基本方法——定义法.例3 (1)已知集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若B⊆A,则实数m的取值范围为________.(2)已知集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若B⫋A,则实数m 的取值范围为________.师生活动:学生做练习,教师根据学生练习情况给予反馈.答案:(1)(-∞,3] ;(2)(-∞,3).设计意图:巩固两个集合的基本关系.两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系.特别要注意易错点:丢掉空集.常用数轴、Venn图来直观解决这类问题.练习:教科书第8-9页练习1,2,3题.四、归纳总结、布置作业问题6:本节课你有哪些收获?可以从以下几方面思考:(1)两个集合间的基本关系有哪些?如何判断两个集合间的关系?(2)你是如何研究集合间基本关系的?(3)包含关系与属于关系有什么区别?设计意图:从知识内容和研究方法两个方面对本节课进行小结.布置作业:教科书习题1.2第1,2,3题.五、目标检测设计1.用适当的符号填空:(1)0______{x|x2=x};(2)-1______{x|x2=x};(3)Φ______ {x|x2=x};(4){0}______{x|x2=x};(5){0,1}______ {x|x2=x};(6)Φ______ {x|x2<-1}.设计意图:考查学生对符号语言的掌握程度.2.已知满足条件{1,2}⫋M⊆{1,2,3,4,5},写出满足条件的集合M.设计意图:考查学生对子集的概念、性质与符号的理解.3.已知集合A={x|1≤x<5},C={x|-a<x≤a+3}.若C⊆A,则a的取值范围是________.设计意图:考查学生对符号语言的掌握程度.参考答案:1.(1)∈;(2)∉;(3)⊂;(4)⊂;(5)=;(6)=.2.M={1,2,3}、{1,2,4}、{1,2,5}、{1,2,3,4}、{1,2,3,5}、{1,2,4,5}、{1,2,3,4,5}.3.(-∞,-1].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、预习指导
●子集是怎样定义的?如何用符号表示集合A是集合B的子集?
●满足什么条件才称两个集合A与B相等?
●真子集是怎样定义的?用什么符号表示?
●空集中有几个元素?用什么符号表示?
●空集与其他集合之间有怎样的包含关系?
●你能用Venn图表示两集合的包含关系吗?
思维点拨---------类比思想
“已知三个实数a,b,c,若a≤b,a≥b,则a=b”类比可以得到结论:__________________
“已知三个实数a,b,c,若a≤b,b≤c,则a≤c”类比可以得到结论:__________________
二、预习自测
1、完成课本P7练习;
2、填空:
若A=﹛a,b﹜,则﹛a﹜__A;a__A.
A__A;φ__A;φ__﹛φ﹜
3、下列关系表达正确的是()
A.﹛2,3﹜⊆﹛x|x<8﹜
B.0φ
∈ C.﹛0﹜=φ D.﹛2﹜∈﹛2,3﹜
4、集合﹛-1,2,3﹜的真子集共有()
A.7个B.8个C.6个D.5个
5、下列四个命题:①{}φ=
1
x;②空集没有子集;③任何一个集合必
x
|2x
=
+
+0
有两个或两个以上的子集;④空集是任何一个集合的真子集。
其中正确的有()个B.1个C.2个D.3
师和同学探究解决。
若一个集合含有n个元素,则它的子集有多少个?真子集有多少个?非空真子集有多少个?
探究二 已知集合A={}a ,3,1,集合B={}
1,12+-a a ,B ⊆A ,求a 的值。
探究三 集合M=⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,412|,N=⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,214|则M 与N 的关系是什么?
探究四 已知M={}b a ,,2,N={}
2,2,2b a ,且M=N ,求a,b 的值。
探究五 已知集合A={}510|≤+<ax x ,B=⎭⎬⎫⎩⎨⎧≤<-221|x x ,若A ⊆B,则实数a 的取值范围是_____;若B ⊆A ,则实数a 的取值范围是_____;若A=B,则a 的值是_____。
方法总结:
本节知识结构图
学后反思总结:
1、已知集合M={}105|<<x x ,集合P={}1|+<m x x ,且M ⊆P,则实数m 的取值范围是_____;
2、若A B,A C,B={}3,2,1,0,C={}8,4,2,0,则满足上述条件的集合A 的所有可能是_____;
3、已知集合M=⎭⎬⎫⎩⎨⎧∈+=Z m m x x ,61|,N=⎭
⎬⎫⎩⎨⎧∈-=Z n n x x ,312|,则集合M,N 的关系是( )
A. M=N
B. M N
C. N M
D. N ⊆M 4、已知集合A={}
06|2=-+x x x ,B={}01|=+ax x ,满足B A,则实数a 取值的集合是( )
A.⎭⎬⎫⎩⎨⎧-31,21
B. ⎭⎬⎫⎩⎨⎧-21
C. ⎭⎬⎫⎩⎨⎧31
D. ⎭⎬⎫⎩
⎨⎧-31,21,0 5、下列各组中两个集合相等的是( )
①P={}Z n n x x ∈=,2|,Q={}Z n n x x ∈-=),1(2|
②P={}01|2=-x x ,Q={}01|2=+x x
③P={}Z m m x x ∈+=,12|,Q={}Z m m x x ∈±=,14|
④P={}1|2+=x y y ,Q={}
1|2+=x y x
A. ①②③④
B. ①③
C. ①②④
D. ②④
6、已知集合A={}30|<<x x ,集合B={}m x m x -<<4|,且B ⊆A,则实数m 满足的条件是_____;
7、试写出满足{}A b a ⊆, {}d c b a ,,,的集合A. 8、定义A ⊗B=⎭
⎬⎫⎩⎨⎧∈∈+=B y A x y x xy z z ,,|,设集合A={}2,0,B={}2,1,C={}1,⊂≠⊂≠
⊂≠⊂≠
⊂≠⊂≠
则集合(A⊗B)⊗C的所有元素之和为( )
A. 3
B. 9
C. 18
D. 27。