最新工程力学练习册习题答案3共3份

合集下载

工程力学练习册习题答案汇总

工程力学练习册习题答案汇总

工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体 A ,构件 AB , BC 或 ABC 的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。

(a(b(c(d(e(f(g1-2 试画出图示各题中 AC 杆(带销钉和 BC 杆的受力图(a (b (c(a1-3 画出图中指定物体的受力图。

所有摩擦均不计, 各物自重除图中已画出的外均不计。

(a(b(c(d(e(f(g第二章平面力系2-1 电动机重 P=5000N ,放在水平梁 AC 的中央,如图所示。

梁的 A 端以铰链固定, 另一端以撑杆 BC 支持, 撑杆与水平梁的夹角为 30 0。

如忽略撑杆与梁的重量, 求绞支座 A 、 B 处的约束反力。

题 2-1图∑∑=︒+︒==︒-︒=P F F F F F FB A y A B x 30sin 30sin , 0030cos 30cos , 0解得 : N P F F B A 5000=== 2-2 物体重 P=20kN ,用绳子挂在支架的滑轮 B 上,绳子的另一端接在绞车D 上,如图所示。

转动绞车,物体便能升起。

设滑轮的大小及轴承的摩擦略去不计,杆重不计, A 、 B 、 C 三处均为铰链连接。

当物体处于平衡状态时,求拉杆 AB 和支杆BC 所受的力。

题 2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin , 0030sin 30cos , 0P P F F P F F FBC y BC AB x解得 :P F P F BC AB 732. 2732. 3=-=2-3 如图所示,输电线 ACB 架在两电线杆之间,形成一下垂线,下垂距离 CD =f =1m , 两电线杆间距离 AB =40m。

电线 ACB 段重 P=400N ,可近视认为沿 AB 直线均匀分布,求电线的中点和两端的拉力。

题 2-3图以 AC 段电线为研究对象,三力汇交NF NF F F F F F FC A GA y C A x 200020110/1tan sin , 0, cos , 0=======∑∑解得:ααα2-4 图示为一拔桩装置。

工程力学练习册第2版答案

工程力学练习册第2版答案

工程力学练习册第2版答案工程力学是研究物体在外力作用下的运动规律和内部应力分布的科学。

本练习册旨在帮助学生更好地理解和掌握工程力学的基本概念、原理和计算方法。

以下是《工程力学练习册第2版》的部分习题及答案。

习题一:静力学基础1. 某物体受到三个共点力的作用,分别为F1=200N,F2=300N,F3=100N。

若F1和F2的夹角为120°,求这三个力的合力大小。

答案:首先,根据矢量合成法则,我们可以使用余弦定理计算合力的大小: \[ F_{合} = \sqrt{F1^2 + F2^2 + 2 \cdot F1 \cdot F2 \cdot\cos(120°)} \]\[ F_{合} = \sqrt{200^2 + 300^2 + 2 \cdot 200 \cdot 300\cdot (-0.5)} \]\[ F_{合} = \sqrt{40000 + 90000 - 60000} \]\[ F_{合} = \sqrt{70000} \approx 264.58N \]2. 一个物体在水平面上,受到一个斜向上的拉力F=150N,与水平方向夹角为30°。

求物体受到的支持力和摩擦力的大小。

答案:将拉力分解为水平和垂直分量:\[ F_{水平} = F \cdot \cos(30°) = 150 \cdot 0.866 \approx 129.9N \]\[ F_{垂直} = F \cdot \sin(30°) = 150 \cdot 0.5 = 75N \] 物体在水平面上,支持力等于垂直向上的力,即:\[ N = F_{垂直} = 75N \]摩擦力的大小由水平力决定:\[ f = \mu \cdot N \]其中μ为摩擦系数,由于题目未给出,我们无法计算具体数值。

习题二:材料力学1. 一根直径为d=20mm,长度为L=2m的圆杆,在一端受到一个拉力P=10kN。

工程力学(第二版)习题册答案

工程力学(第二版)习题册答案

一、填空题
1. 相 对 滑 动 相 对 滑 动 趋 势 接触面的切线 相反 2. 10N 20N 30N 30N 30N 3. 100N 竖直向上 平衡 4. 平稳无冲击 自锁
阻碍物体相对滑动
相对滑动趋势
二、选择题
1. A
三、简答题
1. ①问题中含有可能发生相对滑动的摩擦面,因此,存在摩擦力; ②受力图中要画出摩擦力,摩擦力总是沿着接触面的切线方向并与物体相对滑
7.
8.
9.
第二章 平面力系
第一节 共线力系的合成与平衡
一、填空题
1. 在同一条直线上
2. FR Fi FR 0
二、计算题
设向右为正方向。 则 FR=120+40-80-200=-120N 方向:水平向左
第二节 平面汇交力系的合成
一、填空题
1. 作用于同一平面内且各力作用线相交于一点的力系 共线力系 力的作用点 2. -F 或 F 0 0 -F 或 F 3. 合力在任一坐标轴上的投影 各分力在同一轴上投影的代数和 4. F4 F3 5. 自行封闭 6. 所有各力在 x 轴上投影的代数和为零 所有各力在 y 轴上投影的代数和为零 Fx 0 Fy 0
3. 后轮:摩擦力向前 前轮:摩擦力向后
4. 不下滑,处于自锁状态
四、计算题
FT 60 18 3N
五、应用题
1. (提示)从摩擦力与 F 对 B 点的力矩大小的比较进行考虑
第三章 空间力系 第一节 力在空间坐标轴上的投影与合成
一、填空题
1. 力的作用线不都在同一平面内呈空间分布的力系 2. 一次投影法 二次投影法
二、选择题
1. A 2.B
它所限制物体
三、简答题
1.柔性体约束只能承受拉力,不能承受压力。 2.被约束物体可以沿约束的水平方向自由滑动,也可以向离开约束的方向运动, 但不能向垂直指向约束的方向运动。 3.剪刀的两半部分可以绕销钉轴线相对转动,但不能在垂直销钉轴线的平面内沿 任意方向做相对移动。 4.木条不能沿圆柱销半径方向移动,但可以绕销轴做相对转动。 5.固定端约束既限制物体在约束处沿任何方向的移动,也限制物体在约束处的转 动。

(完整版)工程力学习题解答(详解版)

(完整版)工程力学习题解答(详解版)

工程力学答案详解1-1试画出以下各题中圆柱或圆盘的受力图。

与其它物体接触处的摩擦力均略去。

解:1-2 试画出以下各题中AB 杆的受力图。

(a) B(b)(c)(d)A(e)A(a)(b) A(c)A(d)A(e)(c)(a)(b)解:1-3 试画出以下各题中AB 梁的受力图。

(d)(e)BB(a)B(b)(c)F B(a)(c)F (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。

(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。

解:(a)F (b)W(c)(d)D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b)B(c)BF D1-5 试画出以下各题中指定物体的受力图。

(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。

解:(a)(d) FC(e)WB (f)F FBC(c)(d)AT F BAF (b)(e)(b)(c)(d)(e)CAA C’CDDB2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。

解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。

2-3 水平力F 作用在刚架的B 点,如图所示。

如不计刚架重量,试求支座A 和D 处的约束力。

解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:(2)F 1F FDF F AF D211 1.122D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。

工程力学习题答案

工程力学习题答案

工程力学习题答案第一章 静力学基础知识思考题:1. ×;2. √;3. √;4. √;5. ×;6. ×;7. √;8. √习题一1 解:(a )杆AB 在A 、B 、C 三处受力作用。

由于力p 和B R的作用线交于点O 。

如图(a )所示,根据三力平衡汇交定理, 可以判断支座A 点的约束反力必沿 通过A 、O 两点的连线。

(b )同上。

由于力p 和B R的作用线交于O 点,根据三力平衡汇交定理, 可判断A 点的约束反力方向如 下图(b )所示。

2.不计杆重,画出下列各图中AB 解:(a )取杆AB 处受绳索作用的拉力B T ,在A和E 两处还受光滑接触面约束。

约束力A N 和并指向杆。

其中力E N 与杆垂直,力A N 通过半圆槽的圆心O 。

AB 杆受力图见下图(a )。

(b)由于不计杆重,曲杆BC 只在两端受铰销B 和C 对它作用的约束力B N 和C N ,故曲杆BC 是二力构件或二力体,此两力的作用线必须通过B 、C 两点的连线,且B N =C N 。

研究杆两点受到约束反力A N 和B N,以及力偶m 的作用而平衡。

根据力偶的性质,A N 和B N(d)由于不计杆重,杆AB 在A 、C 两处受绳索作用的拉力A T 和C T ,在B 点受到支座反力B N 。

A T 和C T 相交于O 点,根据三力平衡汇交定理,可以判断B N必沿通过B 、O 两点的连线。

见图(d ).第二章力系的简化与平衡思考题:1. √;2. ×;3. ×;4. ×;5. √;6. ×;7. ×;8. ×;9. √.1. 平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm ,求此力系向O 点简化的结果,并确定其合力位置。

解:设该力系主矢为R ' ,其在两坐标轴上的投影分别为x R 、y R 。

由合力投影定理有:x i R x =∑ 1.53=-=-1.5kN2y i R y ==-∑ kNsin /i y R α'=∑0.8=-;cos /i x R α'=∑0.6=- 233α≈由合力矩定理可求出主矩:300()30.31015000.21008020000.5580i M M F ==⨯⨯-⨯---⨯=-∑m N合力大小为:' 2.5R R ==kN ,方向233α≈m 23.2=cm ,位于O 点的右侧。

工程力学练习册习题答案

工程力学练习册习题答案

工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。

(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。

所有摩擦均不计,各物自重除图中已画出的外均不计。

(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。

梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。

如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。

题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。

转动绞车,物体便能升起。

设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。

当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。

题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F BC AB 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。

电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。

题2-3图以AC 段电线为研究对象,三力汇交 NF N F F F FF F F C A GA yC A x 200020110/1tan sin ,0,cos ,0=======∑∑解得:ααα2-4 图示为一拔桩装置。

工程力学练习册习题答案3共3份

工程力学练习册习题答案3共3份

第六章 杆件的应力1q题6-13图由梁的两部分紧密接触知:两者变形后中性层的曲率半径相同,设圆管和圆杆各自承担的弯矩为M1和M2,抗弯刚度为2211I E I E 和即:MI I I M M I I I M E E ql M M I E MI E M 21222111212212221112;222811+=+===+==又ρ6-1 梁截面如图所示,剪力50Q kN =,试计算该截面上最大弯曲切应力。

题6-14图MPa A Q 8.264070210503233max=⨯⨯⨯⨯==τ2 附录Ⅰ 平面图形的几何性质第七章 应力状态分析7-1 单元体各面应力(单位MPa )如图所示,试用解析法求解指定斜截面上的正应力和切应力。

(a)题7-1图(a )MPaMPa x yx x yx yx x y x 32.272cos 2sin 232.272sin 2cos 2260,20,0,40-=+-=-=--++=︒===-=ατασστατασσσσσατσσαα(b)MPaMPa x yx x yx yx x y x 66.182cos 2sin 23.522sin 2cos 2230,20,50,30=+-==--++=︒=-===ατασστατασσσσσατσσαα附录Ⅰ平面图形的几何性质3题7-1图(c)MPaMPaxyxxyxyxxyx302cos2sin2102sin2cos2245,40,60,0-=+-=-=--++=︒====ατασστατασσσσσατσσαα(d)MPaMPaxyxxyxyxxyx6.602cos2sin2352sin2cos2230,0,70,70=+-==--++=︒==-==ατασστατασσσσσατσσαα7-2已知应力状态如图所示,应力单位为MPa。

试用解析法和应力圆分别求:(1)主应力大小,主平面位置;(2)在单元体上绘出主平面位置和主应力方向;(3)最大切应力。

工程力学练习册及答案

工程力学练习册及答案

工程力学练习册及答案### 工程力学练习册及答案#### 第一章:静力学基础练习题1:已知一个物体受到三个力的作用,分别为F1=50N,F2=30N,F3=20N,且这三个力的方向分别为北偏东30°,南偏西45°,和正南方向。

求这三个力的合力。

答案:首先,将力F1和F2分解为水平和垂直分量。

F1的水平分量为F1*cos(30°),垂直分量为F1*sin(30°)。

同理,F2的水平分量为F2*cos(135°),垂直分量为F2*sin(135°)。

F3的水平分量为0,垂直分量为F3。

计算得:- F1的水平分量:50*cos(30°) = 43.30N- F1的垂直分量:50*sin(30°) = 25N- F2的水平分量:30*cos(135°) = -25.98N- F2的垂直分量:30*sin(135°) = 25.98N- F3的水平分量:0- F3的垂直分量:20N合力的水平分量为:43.30N - 25.98N = 17.32N合力的垂直分量为:25N + 25.98N + 20N = 70.98N合力的大小为:√(17.32^2 + 70.98^2) ≈ 73.71N合力的方向为:tan^-1(70.98/17.32) ≈ 82.9°,即北偏东82.9°。

练习题2:一个均匀的圆柱体,其质量为10kg,半径为0.5m,求其在水平面上的静摩擦力。

答案:圆柱体在水平面上的静摩擦力取决于作用在它上面的外力。

如果外力小于或等于静摩擦力,圆柱体将保持静止。

静摩擦力的计算公式为:\[ f_{max} = \mu N \]其中,\( \mu \) 是静摩擦系数,\( N \) 是圆柱体的正压力。

对于均匀圆柱体,\( N = mg \),其中\( m \)是质量,\( g \)是重力加速度。

《工程力学》详细版习题参考答案

《工程力学》详细版习题参考答案

∑ Fx
=FAx
+
FBx
+
FCx
=− 1 2
F
+
F

1 2
F
=0
∑ Fy
= FAy
+
FBy
+
FCy
= − 3 2
F
+
3 F = 0 2
∑ M B= FBy ⋅ l=
3 Fl 2
因此,该力系的简化结果为一个力偶矩 M = 3Fl / 2 ,逆时针方向。
题 2-2 如图 2-19(a)所示,在钢架的 B 点作用有水平力 F,钢架重力忽 略不计。试求支座 A,D 的约束反力。
(a)
(b)
图 2-18
解:(1)如图 2-18(b)所示,建立直角坐标系 xBy。 (2)分别求出 A,B,C 各点处受力在 x,y 轴上的分力
思考题与练习题答案
FAx
= − 12 F ,FAy
= − 3 F 2
= FBx F= ,FBy 0
FCx
= − 12 F ,FCy
= 3 F 2
(3)求出各分力在 B 点处的合力和合力偶
(3)根据力偶系平衡条件列出方程,并求解未知量
∑ M =0 − aF + 2aFD =0
《工程力学》
可解得 F=Ay F=D F /2 。求得结果为正,说明 FAy 和 FD 的方向与假设方向相同。 题 2-3 如 图 2-20 ( a ) 所 示 , 水 平 梁 上 作 用 有 两 个 力 偶 , 分 别 为
3-4 什么是超静定问题?如何判断问题是静定还是超静定?请说明图 3-12 中哪些是静定问题,哪些是超静定问题?
(a)

工程力学练习册习题答案3共3份-5页word资料

工程力学练习册习题答案3共3份-5页word资料

第 1 页题6-13图由梁的两部分紧密接触知:两者变形后中性层的曲率半径相同,设圆管和圆杆各自承担的弯矩为M1和M2,抗弯刚度为2211I E I E 和即:6-1梁截面如图所示,剪力50Q kN =,试计算该截面上最大弯曲切应力。

题6-14图第七章 应力状态分析7-1 单元体各面应力(单位MPa )如图所示,试用解析法求解指定斜截面上的正应力和切应力。

题7-1图(a ) (b)题7-1图(c) (d)7-2 已知应力状态如图所示,应力单位为MPa 。

试用解析法和应力圆分别求:(1)主应力大小,主平面位置;(2)在单元体上绘出主平面位置和主应力方向;(3)最大切应力。

题7-2图(a)(b)题7-2图(c) (d)7-3 图示木制悬臂梁的横截面是高为200mm 、宽为60mm 的矩形。

在A 点木材纤维与水平线的倾角为20︒。

试求通过A 点沿纤维方向的斜面上的正应力和切应力。

题7-3图7-4 图示二向应力状态的应力单位为MPa ,试作应力圆,并求主应力。

题7-4图解法二:(解析法)7-5 在通过一点的两个平面上,应力如图所示,单位为MPa 。

试求主应力的数值和主平面的位置,并用单元体草图来表示。

题7-5图7-6 试求图示各应力状态的主应力和最大切应力,应力单位为MPa 。

题7-6图(a) (b) (c)7-7 列车通过钢桥时,用变形仪测得钢桥横梁A 点(见图)的应变为0.0004x ε=,0.00012y ε=-。

试求A 点在x 和y 方向的正应力。

设200E GPa =,0.3μ=。

题7-7图解得:0,80==y x MPa σσ7-8 图示微体处于平面应力状态,已知应力100x MPa σ=,80y MPa σ=,50x MPa τ=,弹性模量200E GPa =,泊松比0.3μ=,试求正应变x ε,y ε与切应变xy γ,以及30α︒=方位的正应变30ε︒题7-8图7-9 边长为10a mm =的立方体铝块紧密无隙地置于刚性模内,如图所示,模的变形不计。

工程力学习题册第三章 答案

工程力学习题册第三章  答案

第三章平面一般力系答案一、填空(将正确的答案填写在横线上)1、作用在物体上的各力的作用线都在同一平面内 ,并呈任意分布的力系,称为平面一般力系。

2、平面一般力系的两个基本问题是平面力系的简化 ,其平面条件的的应用。

3、力的平移定理表明,若将作用在物体某点的力平移到物体上的另一点,而不改变原力对物体的作用效果,则必须附加一力偶,其力偶距等于原来的力对新作用点的距。

4、平面一般力系向已知中心点简化后得到一力和一力偶距。

5平面一般力系的平衡条件为;各力在任意两个相互垂直的坐标轴上的分量的代数和均为零力系中所有的力对平面内任意点的力距的代数和也等零。

6.平面一般力系平衡方程中,两个投影式ΣFix=0 和ΣFiy=0 保证物体不发生移动 ;一个力矩式ΣMo(Fi)=0 保证物体不发生转动。

三个独立的方程,可以求解三个未知量。

7.平面一般力系平衡问题的求解中,固定铰链的约束反力可以分解为相互垂直的两个分力固定端约束反力可以简化为相互垂直的两个分力和一个附加力偶矩。

8.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣFiX=0适用于平面一般力系,使其用限制条件为AB连线与X轴不垂直。

9.平衡方程ΣMA(Fi)=0、ΣMB(Fi)=0、ΣMc(Fi)=0的使用限制条约为ABC不在同一直线上。

10.若力系中的各力作用现在同一平面内且相互平行,称为平面平行力系。

它是平面一般力系的特殊情况。

11.平面平行力系有两个独立方程,可以解出两个未知量。

12.平面平行力系的基本平衡方程是:ΣFi X=0,ΣM O(Fi)=0二、判断题(正确的打“√”,错误的打“×”)1.作用于物体上的力,其作用线可在物体上任意平行移动,其作用效果不变。

(×)2.平面一般力系的平衡方程可用于求解各种平面力系的平衡问题。

(√)3.若用平衡方程解出未知力为负值,则表明:(1)该力的真实方向与受力图上假设的方向相反。

(√)(2)该力在坐标轴上的投影一定为负值。

工程力学练习册答案

工程力学练习册答案

工程力学练习册答案问题1:请简述牛顿三大定律的内容。

答案:1. 牛顿第一定律(惯性定律):物体在没有外力作用时,将保持静止状态或匀速直线运动。

2. 牛顿第二定律(动力定律):物体的加速度与作用在物体上的净外力成正比,与物体的质量成反比,即\[ F = ma \]。

3. 牛顿第三定律(作用与反作用定律):对于两个相互作用的物体,它们之间的作用力和反作用力总是大小相等、方向相反。

问题2:何为应力和应变?它们之间的关系是什么?答案:- 应力:是单位面积上的内力,表示材料内部抵抗变形的能力。

- 应变:是材料尺寸的相对变化,表示材料的变形程度。

- 它们之间的关系通常通过应力-应变曲线来描述,该曲线反映了材料在不同应力水平下的变形特性。

问题3:简述材料力学中的弹性模量和剪切模量。

答案:- 弹性模量:也称为杨氏模量,是材料在弹性范围内应力与应变比值,表示材料的刚性。

- 剪切模量:材料在剪切应力作用下,剪切应力与剪切应变的比值,反映材料抵抗剪切变形的能力。

问题4:什么是静水压力?如何计算?答案:- 静水压力:是液体内部各点受到的均匀压力,与液体的密度、深度和重力加速度有关。

- 计算公式为:\[ P = \rho g h \],其中\( P \)是压力,\( \rho \)是液体密度,\( g \)是重力加速度,\( h \)是液体深度。

问题5:请解释什么是材料的疲劳失效,并给出一个实际应用的例子。

答案:- 疲劳失效:是指材料在反复加载和卸载的过程中,即使应力水平低于材料的屈服强度,也可能发生断裂的现象。

- 实际应用例子:汽车的悬挂系统在长时间的行驶过程中,由于路面的不平,反复受到交变载荷的作用,可能会发生疲劳断裂。

结束语:工程力学是一门将理论知识与实际应用紧密结合的学科。

通过练习和理解上述问题的答案,可以帮助我们更好地掌握工程力学的基本概念和应用方法,为解决实际工程问题打下坚实的基础。

希望这些答案能够帮助你在学习工程力学的道路上更进一步。

工程力学练习册习题答案共份

工程力学练习册习题答案共份

第六章 杆件地应力1q题6-13图由梁地两部分紧密接触知:两者变形后中性层地曲率半径相同,设圆管和圆杆各自承担地弯矩为M1和M2,抗弯刚度为2211I E I E 和即:MI I I M M I I I M E E ql M M I E MI E M 21222111212212221112;222811+=+===+==又ρ6-1 梁截面如图所示,剪力50Q kN =,试计算该截面上最大弯曲切应力.题6-14图MPa A Q 8.264070210503233max=⨯⨯⨯⨯==τ2 附录Ⅰ 平面图形地几何性质第七章 应力状态分析7-1 单元体各面应力(单位MPa )如图所示,试用解析法求解指定斜截面上地正应力和切应力.(a)题7-1图(a )MPaMPa x yx x yx yx x y x 32.272cos 2sin 232.272sin 2cos 2260,20,0,40-=+-=-=--++=︒===-=ατασστατασσσσσατσσαα(b)MPaMPa x yx x yx yx x y x 66.182cos 2sin 23.522sin 2cos 2230,20,50,30=+-==--++=︒=-===ατασστατασσσσσατσσαα附录Ⅰ平面图形地几何性质3题7-1图(c)MPaMPaxyxxyxyxxyx302cos2sin2102sin2cos2245,40,60,0-=+-=-=--++=︒====ατασστατασσσσσατσσαα(d)MPaMPaxyxxyxyxxyx6.602cos2sin2352sin2cos2230,0,70,70=+-==--++=︒==-==ατασστατασσσσσατσσαα7-2已知应力状态如图所示,应力单位为MPa.试用解析法和应力圆分别求:(1)主应力大小,主平面位置;(2)在单元体上绘出主平面位置和主应力方向;(3)最大切应力.20(b)题7-2图(a)4 附录Ⅰ 平面图形地几何性质MPax yx yx x y x 57)2(220,0,5022max =+-++====τσσσσστσσ︒-=--=-=+--+=3.19,tan 7)2(20min022min ασστατσσσσσx xx yx yx MPa(b)MPax yx yx x y x 25)2(225,0,022max =+-++====τσσσσστσσ︒-=--=-=+--+=45,tan 25)2(20min022min ασστατσσσσσx xx yx yx MPa(c)(d)题7-2图(c)MPax yx yx x y x 2.11)2(240,20,4022max =+-++=-=-=-=τσσσσστσσ︒=--=-=+--+=52,tan 2.71)2(20min022min ασστατσσσσσx xx yx yx MPa(d)附录Ⅰ 平面图形地几何性质 5MPax yx yx x y x 02.30)2(220,30,2022max =+-++===-=τσσσσστσσ︒-=--=-=+--+=66.70,tan 02.27)2(20min022min ασστατσσσσσx xx yx yx MPa7-3 图示木制悬臂梁地横截面是高为200mm 、宽为60mm 地矩形.在A 点木材纤维与水平线地倾角为20︒.试求通过A 点沿纤维方向地斜面上地正应力和切应力.题7-3图MPa S Q A 25.006.02.022000323=⨯⨯⨯==τ︒-=70αMPaMPa x yx x yx yx x y x 19.02cos 2sin 216.02sin 2cos 2270,25.0,0,0=+-=-=--++=︒-====ατασστατασσσσσατσσαα7-4 图示二向应力状态地应力单位为MPa ,试作应力圆,并求主应力.6 附录Ⅰ 平面图形地几何性质题7-4图解法二:(解析法)M P aM P a y x yx yx x y x 40502sin 2cos 2260,0?,,80==--++=︒====σατασσσσσατσσα解得:MPa x 80max ==σσMPa y 40min ==σσ0,40,80321===∴σσσMPa7-5 在通过一点地两个平面上,应力如图所示,单位为MPa .试求主应力地数值和主平面地位置,并用单元体草图来表示.题7-5图附录Ⅰ 平面图形地几何性质 77-6 试求图示各应力状态地主应力和最大切应力,应力单位为MPa.50(a)50(b)(c)题7-6图(a)MPa 50502max ==σMPaMPa MPa50,0,5050321min -===∴-=σσσσMPa 50231max =-=σστ(b)MPa 17.5240)22030(2203022max =+++-=σ MPa 17.4240)22030(2203022min -=++--=σ MPaMPaMPa 17.47217.42,50,17.5231max 321=-=-===∴σστσσσ8 附录Ⅰ 平面图形地几何性质(c)MPa 13030)240120(24012022max =+-++=σ MPa 3030)220120(24012022min =+--+=σ MPaMPaMPa 80230,30,13031max 321=-=-===∴σστσσσ7-7 列车通过钢桥时,用变形仪测得钢桥横梁A 点(见图)地应变为0.0004x ε=,0.00012y ε=-.试求A 点在x 和y 方向地正应力.设200E GPa =,0.3μ=.题7-7图0004.0)(1=-=y x x E μσσε 00012.0)(1-=-=x y y Eμσσε解得:0,80==y x MPa σσ7-8 图示微体处于平面应力状态,已知应力100xMPa σ=,80y MPa σ=,50x MPa τ=,弹性模量200E GPa =,泊松比0.3μ=,试求正应变x ε,y ε与切应变xy γ,以及30α︒=方位地正应变30ε︒附录Ⅰ 平面图形地几何性质 9题7-8图31038.0)(1-⨯=-=y x x E μσσε 31025.0)(1-⨯=-=x y y Eμσσε31065.02.76)1(2-⨯===+=GGPaEG xxy τγμ31203030120120303010066.0)(13.1287.511807.5160sin 60cos 22-︒︒︒︒︒︒︒⨯=-==-=⇒+=+=︒-︒-++=μσσεσσσσστσσσσσEMPaMPay x x yx yx7-9 边长为10a mm =地立方体铝块紧密无隙地置于刚性模内,如图所示,模地变形不计.铝地70E GPa =,0.33μ=.若6P kN =,试求铝块地三个主应力和主应变.题7-9图10 附录Ⅰ 平面图形地几何性质建立图示坐标,由刚性模知==y x εε且MPa z 6001.060002-=-=σ 由广义胡克定律:)]([10)]([1=+-==+-=z x y y z y x x EEσσμσεσσμσε解得:MPa y x 55.29-==σσ3105785.0)]([1-⨯-=+-=y x z z Eσσμσε 第八章 强度设计8-1现有钢、铸铁两种杆材,其直径相同.从承载能力与经济效益两个方面考虑,图示结构中两种合理选择方案是(A )A 1杆为钢,2杆为铸铁B 1杆为铸铁,2杆为钢C 1、2杆均为钢D 1、2杆均为铸铁8-2有A 、B 、C 三种材料,其拉伸应力—应变实验曲线如图所示,曲线( B )材料地弹性模量E 大,曲线(A )材料地强度高,曲线( C )材料地塑性好.B8-3图示一正方形截面地阶形混凝土柱.设混凝土地密度为33/1004.2m kg ⨯=ρ,F=100kN,许用应力MPa 2][=σ.试根据强度条件选择截面宽度a 和b.mb bbbgb ga F ma a a a ga F 156.01028.91004.24052.08.91004.24103][443052.010248.91004.210100][462232352226223322≥⨯≤⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⇒≤++≥⨯≤⨯⨯⨯+⨯≤+解得:解得:即虑它们的强度条件:危险截面有二,分别考σρρσρ8-4三角架ABC 由AC 和BC 二杆组成.杆AC 由两根No.12b 地槽钢组成,许用应力为[σ]=160MPa ;杆BC 为一根No.22a 地工字钢,许用应力为[σ]=100MPa.求荷载F 地许可值[F].题8-2图a 题8-3图以节点为研究对象,列平衡方程:2692.152],[030sin 30sin ,0030cos 30cos ,0cm S AC S S FAC FF F F F F FF F F AC AC ACAC BC AC BC AC yBC AC x ⨯=≤=-==-︒-︒==︒-︒-=∑∑的截面积,查表得:为杆其中杆强度条件:解得:σ2578.35],[cm S BC S S FBC AC BC BCBC =≤的截面积,查表得:为杆其中杆强度条件:σ解得:kNF kN F F kN F F BC AC 8.3558.355502≤≤=≤=综合得:8-5 已知圆轴受外力偶矩m =2kNm,材料地许可切应力[τ]=60MPa. (1)试设计实心圆轴地直径D 1;(2)若该轴改为α=d /D =0.8地空心圆轴,式设计空心圆轴地内、外径d 2 、D 2m m D m W p 0554.01060200016][16][)1(3631=⨯⨯⨯=≥⇒≥πτπτ mD d m m D m W p 0528.0066.01060)8.01(200016][)1(16][)2(22364342=⨯==⨯⨯-⨯⨯=-⨯≥⇒≥απτπατ8-6 图示传动轴,主动轮B 输入功率P 1=368kW,从动轮A,C 输出地功率分别为P 2=147kW,P 3=221kW,轴地转速n =500r/min,材料地G =80GPa,许用切应力[]τ=70MPa,试设计轴地直径.Nm n p m 70285003689549954922=⨯=⨯= Nm n p m 66.42205002219549954933=⨯=⨯= 轴地最大扭矩为7028Nmm m Td d T 5.67][16][16133=≥⇒≤σπτπ由轴的强度条件:8-7阶梯形圆轴直径分别为d 1=40mm,d 2=70mm,轴上装有三个皮带轮,如图所示.己知由轮3输入地功率为N 3=3kW,轮1输出地功率为N 1=13kW,轴作匀速转动,转速n=200r/min,材料地许用切应力[]τ=60MPa,试校核轴地强度.8-8 图示传动轴传递地功率为 P =14kW,转速n =300r/min,[]τ=40MPa,试根据强度条件计算两种截面地直径:(1)实心圆截面地直径d ;(2)空心圆截面地内径d 1和外径d 2(d 1/ d 2=3/4).题8-6图题8-7图Nm n p T 62.4453001495499549=⨯=⨯= mm Td d T 4.38][16][161)1(33=≥⇒≤σπτπ实心轴的强度条件:mmd d mm Td d T 69.3259.431][16][1161)2(21342432=⨯==-≥⇒≤-αασπταπ)()(空心轴的强度条件:8-9传动轴地转速为n=500r/min,如图所示,主动轮1输入功率P1=368kW,从动轮2、3分别输出功率P 2=147kW,P3=221kW.己知[]τ=70MPa,试按强度条件求解下列问题:(1)试确定AB 段地直径d 1和BC 段地直径d 2. (2)若AB 和BC 两段选用同一直径,试确定直径d .. (3)主动轮和从动轮应如何安排才比较合理?计算外力偶矩,作扭矩图Nm n p M 06.70285003689549954911=⨯=⨯= Nm n p M 4.28075001479549954922=⨯=⨯=Nm n p M 66.42205002219549954933=⨯=⨯=题8-9图AB 段mm T d Nm T 80][16,06.70283111===τπ由强度条件: BC 段mm T d Nm T 5.67][16,66.42203222===τπ由强度条件: (2)将主动轮1和从动轮2位置互换,更合理这时:AB 段mm T d Nm T 9.58][16,4.28073111=='='τπ由强度条件:8-10一矩形拱面地简支木梁,梁上作用有均布荷载,已知:l =4m,b=140mm,h=210mm,q=2kN/m,弯曲时木木材地许用正应力[]σ=10MPa,试校核该梁地强度.简支梁地最大弯矩在中点处MPaMPa W M l kNm ql M 10][89.321.014.0614000,44281812max max 22max =<=⨯⨯===⨯⨯==σσ梁的最大正应力:所以,强度满足8-11图示简支梁上作用两个集中力,已知:l =6m,F 1=15kN,F 2=21kN,如果梁采用热轧普通工字钢,钢地许用应力[]σ=170MPa,试选择工字钢地型号.bh 题8-10图题8-11图作梁地弯矩图 由强度条件:3346max 5.22310235.21017038000][cm m M W =⨯=⨯=≥-σ 查表后选用20a 号工字钢8-12简支梁AB 如图所示.m a m l 2.0,2==.梁上地载荷q=10kN/m,=200kN.材料地许用应力为[][]MPa MPa 100,160==τσ.试选择适用地工字钢型号.由对称性知:kNm l x M kN F F B A 535.010)24.01(2001210)2(,210max =⨯--⨯-⨯====处3346max 3311031.31016053000][cm m M W =⨯=⨯=≥-σ2246max 5.31105.311010022100003][23cm m Q A =⨯=⨯⨯⨯=≥-τ综合后选用25a 号工字钢,23541.48,402cm A cm W ==题8-12图8-13图示槽形截面悬臂梁,F=10kN,M e =70kN·m,许用拉应力[σt ]=35MPa,许用压应力[σc ]=120MPa ,I z =1.02×108 mm 4,试校核梁地强度.作弯矩图,脆性材料且截面关于中性轴不对称,故危险截面为C+和C-两处C+截面最大正弯矩处,上压下拉MPa MPa t c3.471002.14.96503.751002.1)4.96250(504141=⨯⨯==⨯-⨯=--σσ C-截面最大负弯矩处,上拉下压MPa MPa c t 9.181002.14.96201.301002.1)4.96250(204242=⨯⨯==⨯-⨯=--σσ 由于][3.47][3.75max max t t c c MPa MPa σσσσ>=<=梁强度不足8-14 “T ”字形截面铸铁粱尺寸及载荷如图所示,若梁材料地拉伸许用应力为[]拉σ=40MPa,压缩许用应力为[]压σ= 160MPa,Z 轴通过截面地形心,已知截面对形心轴Z 地惯性矩410180cm I Z =,h=9.64cm,试计算该梁地许可载荷F.作梁地弯矩图,脆性材料且截面关于中性轴不对称,故危险截面为最大正负弯矩两处题8-14图最大正弯矩处,上压下拉。

工程力学练习册答案

工程力学练习册答案

第二章 平面力系2-1. 已知:CD AB AC ==,kN 10P =,求A 、B 处约束反力。

解:取杆ACD 为研究对象,受力如图。

=∑A m ,0245sin 0=⨯-⨯AC P AC F CkN P F C 28.282==∑=0x F ,045cos 0=-Ax C F F )(10←=kN F Ax ∑=0y F ,045sin 0=--P F F Ay C)(10↓=kN F Ay2-2. 已知力P 的作用线垂直于AB 杆,BC 杆与P 力的作用线夹角为045,杆BC 垂直于杆CD ,力Q 的作用线与CD 杆的夹角为060。

kN1P =,求系统平衡时Q =?解:分别取节点B 、C 为研究对象,受力如图。

对于节点B :0=∑x F ,045cos 0=-BC F P对于节点C :0=∑x F ,030cos 0'=-Q F BC 联立上两式解得:kN P Q 362362==2-3. 图示结构中,AB 杆水平,AC 杆与AB 杆的夹角为030,杆件的自重不计,kN 10W =,求B 、C 处反力。

解:取整体为研究对象,受力如图。

0=∑yF ,045cos 30sin 00=--T C F W FkN W F C 14.34)22(=+=(压)0=∑XF,045sin30cos 0=-+T C B F F F)(43.15←-=kN F B2-4. 已知:m N 200M 1⋅=,m N 500M 2⋅=,m 0.8AB CD AC ===, 求A 、C 处支反力。

解:取杆ACD 为研究对象,受力如图。

0=∑A m ,08.045sin 210=-+⨯MM F C B C F N F ==3752-5. 已知AD 杆上固接一销钉,此销钉可以在BC 杆的滑道内无摩擦地滑动,系统平衡在图示位置,BC 与AD 成045,m N 1000M 1⋅=,求2M 。

解:取杆AD 为研究对象,受力如图。

工程力学习题 及最终答案

工程力学习题 及最终答案

工程力学习题及最终答案(总63页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 绪论思 考 题1) 现代力学有哪些重要的特征2) 力是物体间的相互作用。

按其是否直接接触如何分类试举例说明。

3) 工程静力学的基本研究内容和主线是什么 4) 试述工程力学研究问题的一般方法。

第二章 刚体静力学基本概念与理论习 题2-1 求图中作用在托架上的合力F R 。

2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。

习题2-1图NN22-3 求图中汇交力系的合力F R 。

2-4 求图中力F 2的大小和其方向角?。

使 a )合力F R =, 方向沿x 轴。

b)合力为零。

2-5 二力作用如图,F 1=500N 。

为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和?角。

2习题2-2图(b )F 1F 1F 2习题2-3图(a )F 1习题2-4图2-6 画出图中各物体的受力图。

F12习题2-5图(b) B(a)A(c)(d)(eA42-7 画出图中各物体的受力图。

) 习题2-6图(b ))(d(a ) A BC DB ABCB52-8 试计算图中各种情况下F 力对o 点之矩。

2-9 求图中力系的合力F R 及其作用位置。

习题2-7图习题2-8图P(d )(c ))) 1F 362-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。

q 1=600N/m2习题2-9图F 3F 2( c1F 4F 372-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b 的大小。

第三章 静力平衡问题q=4kN/m( b )q( c )习题2-10图B习题2-11图8习 题3-1 图示液压夹紧装置中,油缸活塞直径D=120mm ,压力p =6N/mm 2,若?=30?, 求工件D 所受到的夹紧力F D 。

工程力学练习册答案

工程力学练习册答案

第一章 静力学公理与物体的受力分析第一章答案从略第二章 平面特殊力系2-1~2-5答案从略。

2-6解:选节点A 为研究对象,受力如图∑=0XF3015cos 1=+xos F F AB15cos 231F F AB -=选节点B 为研究对象,受力如图0=∑XF60cos 30cos 2=--F F AB12553.13F F F AB =-==21F :F 得出0.6442-13解:选整体为研究对象,受力如图所示∑=0M F F F B A ==_5.045sin =⨯+P FB A F KN F F =-==6.22-16.解:以整体为研究对象,受力如图所示,由平面力偶理论;F F F B A ==_,0=∑i m ,022=+M l FA B F F F L===-2-17.解:受力如图所示由平衡方程得:0X =∑,0AX= Y A =N B∑=0M Y A x2a+M-Qxa=0 Y AByP_A2-18. 解:先以杆AB 为研究对象, 由平面力偶系理论,设A F X P ==0im =∑ 10m p a -=1A mF X P a===再以杆件DC 为研究对象,/D F X =0im =∑ /20Fa m -=12m m =第三章 平面一般力系3-1~3-3从略3-4. 解:选BC 为研究对象,0=∑B M 0=-⨯M a N C a MN C =∑=0Y 0=-P YBP Y B=0=∑X 0=+CBN X aM NX CB-=-=选整体为研究对象,受力图如图0=∑X 0A C X N += aM N X C A -=-= ∑=0Y 102A Y P P q l ---= 122AY q l p =+ 0=∑A M 12()0,0232A AC am F M qa a M P Pa N a =-⋅---+=∑ 2332A qa Pa M =+3-5.解:先以杆BC 为研究对象()0=∑F m B,0tan 2=⋅⋅-⋅+θa Na Q M Cθθtan 2tan 2Qa M N C +⋅=AX F/F CN B X_C N C _B再以整体为研究对象∑=0X F , 0=+C A N X θθt a n 2t a n 2Qa M X A --=0=∑YF 0=--⋅-Q P a q YA Q P a q Y A ++⋅= ()0=∑F m A t a n222=+⋅⋅-⋅-⋅-⋅-M a N a Q a P a q m C A θa Q a P a q m A ⋅+⋅+⋅=222∴A 点的约束反力为:θθtan 2tan 2Qa M X A -⋅-= ,Q P a q Y A ++⋅= a Q a P a q m A ⋅+⋅+⋅=222C 点的约束反力为:θθtan 2tan 2Qa M N C +⋅= 3-7. 选起重机为研究对象0)(=∑F M F—01*23=+-Q N P E KNN E 10=∑=0Y 00=--+p N NF EKN N P N E F 50=-=∴ 再选CD 为研究对象0)(=∑F M C 06=-F D N N KN N D650=∴ =8.333KN 再选ABCD 为研究对象 0)(=∑F M A037512=+'-'-B F E D N N N N KN N B 100= 0=∑X 0=AX N ∑=0Y 0='-'-++'F EB D AYN N N N N N AY 33.48-=3-8.解:选DC 为研究对象,列平衡方程0=∑Y 0=-P N CP N C =选CA 为研究对象,=∑AM()025.2215.22=⨯-+⨯'B CN q N N B = ∑=0Y Y A = ∑=0X X A =AYBN EFX3-9. 解:先以杆BD 为研究对象b M N M b N F m D D B ==-⋅=∑,0,0)( 再以杆CB 为研究对象2,02,0)(FN b N b F F m Cc B ==⋅-⋅=∑ 再以整体为研究对象(图见原图)∑xF=0, 0=A XbMF qb Y N N F qb Y F A D c A y -+==++--=∑2,0,0 M Fbqb m b N M Fb b q m F m A D A A -+==∙+---=∑22,0222,0)(22最后再以杆AB 为研究对象∑xF=0, 0,033='='+''B BA X X X 2,0,033F b M Y Y qb Y F B B A y -='='+-=''∑ ∴A 处的约束反力为:M Fbqb m b M F qb Y X A A A -+=-+==22,2,02销钉B 对杆AB 处的约束反力为2,033Fb M Y X B B -='='''B X D F↑C N C2B X 2B YA X 3B Y AB 受力图3-10. 解:先以整体为研究对象()0=∑F m A,0075.210001=⨯+⋅EXN X E 2075-=()0=∑F m E, 01075.21000=⋅-⨯AX,N X A 2075=0=∑YF, 0=-+P Y Y E A (1)再以杆CE 为研究对象,()0=F m B, 015.011=⋅+⋅+⋅C E ET Y X,N Y E 2000=将E Y 回代到方程(1)中有N Y A 1000-=∴A 处的约束反力为:N X A 2075= ,N Y A 1000-=E 处的约束反力为:N X E 2075-= ,N Y E 2000=3-11. 选CD 为研究对象0=∑C M 得出Y D 选BCD 为研究对象, 0=∑B M 得出X D选整体为研究对象0=∑X X A =∑=0Y Y A =0=∑A M M A =3-12. 解:先以杆DE 为研究对象()0=∑F m D , 0223=⋅-⋅l F l N E , F N E 43= 再以杆BD 为研究对象()0=∑F m B ,03252342=⋅+⋅-⋅⋅-⋅l N l F l l q l N E CF l q N C 238+⋅=,最后以整体为研究对象0=∑X F ,02=+F X A ,2F X A -= 0=∑YF23-⋅-++F l q N N Y E C A 8743lq F Y A ⋅+-=()0=∑F m A0421272322=-⋅+⋅-⋅-⋅+⋅-M l N l F l F l N l q m E C AM l F l F l q m A +⋅+⋅-⋅=243432∴A 处的约束反力为:2FX A -= ,8743lq F Y A ⋅+-= ,M l F l F l q m A +⋅+⋅-⋅=243432 C 处的约束反力为:F l q N C 238+⋅=E 处的约束反力为:F N E 3= 3-13.选CB 研究对象,受力如图∑=0CM02cot =⨯-a S Pa BA α2cot αP S BA= 选CD 研究对象,受力如图∑=0C M 02=-M a S ED aM S ED 2=选整体研究对象,受力如图0=∑X 0=+--ED BA GS S X()M Pa aX G +=αcot 21∑=0Y 0=-P Y G P Y G =0=∑GM()(2c o t --++-a S S Pa M M BA ED G α()αcot 2Pa M abM G -=_E3-16. 解:因BCD 是二力杆,选ED 为研究对象,受力如图,由平面力偶系理论:∑=0M 060sin 3=+⨯-M a F E∑=0Y 030cos =+DB ES Y aM SF DBE 332-==在选AB 为研究对象,受力如图,均布荷载用集中力2qa 替代。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程力学练习册习题答案3共3份q题6-13图由梁的两部分紧密接触知:两者变形后中性层的曲率半径相同,设圆管和圆杆各自承担的弯矩为M1和M2,抗弯刚度为2211IEIE和即:MIIIMMIIIMEEqlMMIEMIEM21222111212212221112;222811+=+===+==又ρ6-1梁截面如图所示,剪力50Q kN=,试计算该截面上最大弯曲切应力。

题6-14图MPaAQ8.264070210503233max=⨯⨯⨯⨯==τ第七章 应力状态分析7-1单元体各面应力(单位MPa )如图所示,试用解析法求解指定斜截面上的正应力和切应力。

(a)题7-1图(a )MPaMPa x yx x yx yx x y x 32.272cos 2sin 232.272sin 2cos 2260,20,0,40-=+-=-=--++=︒===-=ατασστατασσσσσατσσαα(b)MPaMPa x yx x yx yx x y x 66.182cos 2sin 23.522sin 2cos 2230,20,50,30=+-==--++=︒=-===ατασστατασσσσσατσσαα题7-1图(c)MPaMPaxyxxyxyxxyx302cos2sin2102sin2cos2245,40,60,0-=+-=-=--++=︒====ατασστατασσσσσατσσαα(d)MPaMPaxyxxyxyxxyx6.602cos2sin2352sin2cos2230,0,70,70=+-==--++=︒==-==ατασστατασσσσσατσσαα7-2已知应力状态如图所示,应力单位为MPa。

试用解析法和应力圆分别求:(1)主应力大小,主平面位置;(2)在单元体上绘出主平面位置和主应力方向;(3)最大切应力。

题7-2图(a)MPa x yx yx x y x 57)2(220,0,5022max =+-++====τσσσσστσσ︒-=--=-=+--+=3.19,tan 7)2(20min022min ασστατσσσσσx xx yx yx MPa(b)MPax yx yx x y x 25)2(225,0,022max =+-++====τσσσσστσσ︒-=--=-=+--+=45,tan 25)2(20min022min ασστατσσσσσx xx yx yx MPa(c)(d)题7-2图(c)MPax yx yx x y x 2.11)2(240,20,4022max =+-++=-=-=-=τσσσσστσσ︒=--=-=+--+=52,tan 2.71)2(20min022min ασστατσσσσσx xx yx yx MPa(d)MPax yx yx x y x 02.30)2(220,30,2022max =+-++===-=τσσσσστσσ︒-=--=-=+--+=66.70,tan 02.27)2(20min022min ασστατσσσσσx xx yx yx MPa7-3图示木制悬臂梁的横截面是高为200mm 、宽为60mm 的矩形。

在A 点木材纤维与水平线的倾角为20︒。

试求通过A 点沿纤维方向的斜面上的正应力和切应力。

2kN1200100100A20︒题7-3图MPa S Q A 25.006.02.022000323=⨯⨯⨯==τ ︒-=70αMPaMPa x yx x yx yx x y x 19.02cos 2sin 216.02sin 2cos 2270,25.0,0,0=+-=-=--++=︒-====ατασστατασσσσσατσσαα7-4图示二向应力状态的应力单位为MPa ,试作应力圆,并求主应力。

508080τ50τ60︒题7-4图解法二:(解析法)MPaMPa y x yx yx x y x 40502sin 2cos 2260,0?,,80==--++=︒====σατασσσσσατσσα解得:MPa x 80max ==σσMPay 40min ==σσ0,40,80321===∴σσσMPa7-5在通过一点的两个平面上,应力如图所示,单位为MPa 。

试求主应力的数值和主平面的位置,并用单元体草图来表示。

题7-5图7-6试求图示各应力状态的主应力和最大切应力,应力单位为MPa 。

50(a)50402030(b)120403030(c)题7-6图(a)MPa 50502max ==σMPa MPa MPa50,0,5050321min -===∴-=σσσσMPa 50231max =-=σστ(b)MPa 17.5240)22030(2203022max =+++-=σ MPa 17.4240)22030(2203022min -=++--=σ MPaMPaMPa 17.47217.42,50,17.5231max 321=-=-===∴σστσσσ(c)MPa 13030)240120(24012022max =+-++=σ MPa 3030)220120(24012022min =+--+=σ MPaMPaMPa 80230,30,13031max 321=-=-===∴σστσσσ7-7列车通过钢桥时,用变形仪测得钢桥横梁A 点(见图)的应变为0.0004x ε=,0.00012y ε=-。

试求A 点在x 和y 方向的正应力。

设200E GPa =,0.3μ=。

题7-7图0004.0)(1=-=y x x E μσσε 00012.0)(1-=-=x y y Eμσσε解得:0,80==y x MPa σσ7-8图示微体处于平面应力状态,已知应力100x MPa σ=,80y MPa σ=,50x MPa τ=,弹性模量200E GPa =,泊松比0.3μ=,试求正应变x ε,y ε与切应变xy γ,以及30α︒=方位的正应变30ε︒题7-8图31038.0)(1-⨯=-=y x x E μσσε 31025.0)(1-⨯=-=x y y Eμσσε31065.02.76)1(2-⨯===+=GGPaEG xxy τγμ31203030120120303010066.0)(13.1287.511807.5160sin 60cos 22-︒︒︒︒︒︒︒⨯=-==-=⇒+=+=︒-︒-++=μσσεσσσσστσσσσσEMPa MPa y x x yx yx7-9边长为10a mm =的立方体铝块紧密无隙地置于刚性模内,如图所示,模的变形不计。

铝的70E GPa =,0.33μ=。

若6P kN =,试求铝块的三个主应力和主应变。

P题7-9图建立图示坐标,由刚性模知==yxεε且MPaz6001.060002-=-=σ由广义胡克定律:)]([1)]([1=+-==+-=zxyyzyxxEEσσμσεσσμσε解得:MPayx55.29-==σσ3105785.0)]([1-⨯-=+-=yxzz Eσσμσε第八章 强度设计8-1现有钢、铸铁两种杆材,其直径相同。

从承载能力与经济效益两个方面考虑,图示结构中两种合理选择方案是(A )A 1杆为钢,2杆为铸铁B 1杆为铸铁,2杆为钢C 1、2杆均为钢D 1、2杆均为铸铁8-2有A 、B 、C 三种材料,其拉伸应力—应变实验曲线如图所示,曲线( B )材料的弹性模量E 大,曲线(A )材料的强度高,曲线( C )材料的塑性好。

8-3图示一正方形截面的阶形混凝土柱。

设混凝土的密度为33/1004.2m kg ⨯=ρ,F=100kN ,许用应力MPa 2][=σ。

试根据强度条件选择截面宽度a 和b 。

Bε题8-2图F Fm b b b bgb ga F ma a a a ga F 156.01028.91004.24052.08.91004.24103][443052.010248.91004.210100][462232352226223322≥⨯≤⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⇒≤++≥⨯≤⨯⨯⨯+⨯≤+解得:解得:即虑它们的强度条件:危险截面有二,分别考σρρσρ8-4三角架ABC 由AC 和BC 二杆组成。

杆AC 由两根No.12b 的槽钢组成,许用应力为[σ]=160MPa ;杆BC 为一根No.22a 的工字钢,许用应力为[σ]=100MPa 。

求荷载F 的许可值[F]。

以节点为研究对象,列平衡方程:C 2m BA6π 6π 题8-4图2692.152],[030sin 30sin ,0030cos 30cos ,0cm S AC S S FAC FF F F F F FF F F AC AC AC AC BC AC BC AC yBC AC x ⨯=≤=-==-︒-︒==︒-︒-=∑∑的截面积,查表得:为杆其中杆强度条件:解得:σ2578.35],[cm S BC S S FBC AC BC BCBC =≤的截面积,查表得:为杆其中杆强度条件:σ解得:kNF kN F F kN F F BC AC 8.3558.355502≤≤=≤=综合得:8-5 已知圆轴受外力偶矩m =2kNm ,材料的许可切应力[τ]=60MPa 。

(1)试设计实心圆轴的直径D 1;(2)若该轴改为α=d /D =0.8的空心圆轴,式设计空心圆轴的内、外径d 2 、D 2m m D m W p 0554.01060200016][16][)1(3631=⨯⨯⨯=≥⇒≥πτπτ mD d mm D m W p 0528.0066.01060)8.01(200016][)1(16][)2(22364342=⨯==⨯⨯-⨯⨯=-⨯≥⇒≥απτπατ8-6 图示传动轴,主动轮B 输入功率P 1=368kW ,从动轮A ,C 输出的功率分别为P 2=147kW, P 3=221kW ,轴的转速n =500r/min ,材料的G =80GPa ,许用切应力[]τ=70MPa ,试设计轴的直径。

Nm n p m 70285003689549954922=⨯=⨯= Nm n p m 66.42205002219549954933=⨯=⨯= 轴的最大扭矩为7028Nmmm Td d T5.67][16][16133=≥⇒≤σπτπ由轴的强度条件:8-7阶梯形圆轴直径分别为d 1=40mm ,d 2=70mm ,轴上装有三个皮带轮,如图所示。

己知由轮3输入的功率为N 3=3kW ,轮1输出的功率为N 1=13kW,轴作匀速转动,转速n=200r/min ,材料的许用切应力[]τ=60MPa ,试校核轴的强度。

8-8 图示传动轴传递的功率为 P =14kW ,转速n =300r/min ,[]τ=40MPa ,试根据强度条件计算两种截面的直径:(1)实心圆截面的直径d ;(2)空心圆截面的内径d 1和外径d 2(d 1/ d 2=3/4)。

相关文档
最新文档