常州市高一数学寒假作业-习题精编(含答案) (5)

合集下载

高一年级(必修1)寒假作业5Word版含答案

高一年级(必修1)寒假作业5Word版含答案

高一年级(必修1)寒假作业5一.选择题:1.在“①高一数学课本上的难题; ②所有的正三角形; ③方程220x +=的实数解;”中,能够形成集合的是_________A. ②B. ③C. ②③D. ①②③2.已知集合{2,0,2}A =-,B=2{|20}x x x --=,则____A B =A.∅B.{2}C.{0}D.{-2}3.设全集{1,2,3,4,5,6,7},{2,3,4,6},{1,4,5}U M N ===,则{1,5}等于________A.M NB. M NC.()U C M ND. ()U M C N4.设A={|12}x x <<,B={|}x x a ≤,若A B ≠⊂,则实数a 的取值范围是________ A.a ≥2 B.a ≤1 C. a ≥1 D. a ≤25.满足1234{,,,}M a a a a ⊆,且12312{,,}{,}M a a a a a = 的集合M 的个数是______A.3B.2C.1D.无穷多个6.已知集合{|212},{|21,}M x x N x x k k N +=-≤-≤==-∈,则M N 子集的个数是________________A.2B.1C.4D.8 7.11{|,},{|,}623n A x x m m Z B x x n Z ==+∈==-∈,1{|,}26p C x x p Z ==+∈,则A 、B 、C 的关系是___________A.A=B=CB.A B C ⊆=C.A B C ⊆⊆D.B C A ⊆⊆8.某班在全明星投票期间,对本班55位学生进行了调查,发现支持科比的有26人,支持詹姆斯的有23人,还有12人既不支持科比也不支持詹姆斯,则在该班中既支持科比又支持詹姆斯的人数为_______________A.5B.6C.35D.389.设I 为全集,1S ,2S ,3S 是I 的三个非空子集,且1S ∪2S ∪3S =I ,则下列结论正确的是___________:A.1()I C S ∩(2S ∪3S )=∅B.1S ⊆ 1()I C S ∩3()I C SC. 1()I C S ∩3()I C S =13()I C S SD.123()()I I S C S C S ⊆10.已知集合{|4A x x =<-或1}x >,M={|2121}x k x k -≤≤+,若M A ⊆,则实数k 的取值范围是_________________.1A k > B.52k <- C.1k >或52k <- D.512k -<< 11.设U R =,{|2A x x =≤-或5}x ≥,{|2}B x x =≤,{|23}C x a x a =-≤≤-,若(())U C C A B C = ,则实数a 的取值范围是_______________A.a>1B.a<1C.a>0D.a<012.已知集合1234567{,,,,,,,,,}A a a a a a a a a a a =,其中0(1,2,i a i >=,集合B={(,)|,,()}a b a A b A a b A ∈∈-∈,则集合B 的元素至多有___________个A.55B.45C.35D.65二.填空题:13.设集合A={-1,2},2{|20}B x x ax b =-+=,若,B B A ≠≠∅⊂,则a+b=____________ 14.已知2{,2},{,2},A a B a A B A B === ,则a=__________15.若集合2{1,3,},{1,}A x B x ==,{1,3,}A B x = ,x Q ∈,则x 的值是______16.已知2{|430}A x x x =-+≥,{|}B x a x b =<<,,A B R A B ==∅ ,则 22a b +=_______________________三.解答题:17.已知集合2{4,21,},{5,1,9},{9}A a a B a a A B =--=--= ,求a 的值18.集合{|35},{|223},A x x B x m x m B A =-≤≤=+<<-⊆,求m 的取值范围19.已知集合2{|60},{|1}A x x x B x m x m =--<=<-<①若A B A = ,求实数m 的取值范围②若()R C A B ≠∅ ,求实数m 的取值范围20.222{|190},{|560}A x x ax a B x x x =-+-==-+=,2{|280}C x x x =+-= ①若A B A B = ,求实数a 的值 ②若(),A B A C ≠∅⊂=∅ ,求a 的值21.已知集合2{|20}A x x x p =++=,若{|0}A x x >=∅ ,求实数p 的取值范围22.已知正整数集合222212341234{,,,},{,,,}A a a a a B a a a a ==,其中123a a a a <<<,如果1414{,},10,A B a a a a A B =+= 的所有元素之和为124,①求1a 和4a 的值 ②求集合A高一年级(必修1)寒假作业5答案1-6.CBCABD 7-12.BBCCBB 13.0或者6 14. 0或者1 15.0 16.1017.-3注意集合元素的互异性18.(,4]-∞ 19.(1)1m ≥-(2).m<-1 20.(1)a=5(2)a=-221.0p ≥ 22.(1)141,9a a ==(2){1,3,5,9},{1,9,25,81}A B ==。

高一数学第一学期寒假作业5

高一数学第一学期寒假作业5

C高一数学第一学期寒假作业5班级 姓名 学号1.已知集合{}111,1,|24,_________.2x M N x Z M N +⎧⎫=-=∈<<=⎨⎬⎩⎭则2.直线l 通过点P (3,2)且与x ,y 正半轴分别交于A 、B 两点,△AOB 的面积为12,则直线l 的方程为__________________.3.不管m 为何值,直线y+1=m(x-2)总过一个定点,其中m R ∈,则该定点的坐标为____________.4.若函数y=f(x)是定义在R 上的偶函数,在(],0-∞上是减函数,且f(2)=0,则使得f(x)<0的x 的取值范畴是___________________。

5.有以下命题:①直线m//平面α,直线n//平面α,则m//n ;②直线m ⊥平面α,直线n ⊥直线m ,则n//α;③直线m//平面α,直线m//平面β,则α//β; ④直线m ,n 是异面直线,过空间任一点(点不在直线m ,n 上),必存在一个平面与直线m ,n 都平行。

其中正确命题的个数是_____________个。

6.设a>1,函数f(x)=log a x 在[a,2a]上的最大值与最小值之差为12,则a=_________。

7.设方程x 2-mx+1=0的两个根为,,αβαβ且0<<1<<2,则实数m 的取值范畴是____________。

8.若三点A (2,2),B (a ,0),C (0,b )(ab ≠0)共线, 则11a b+的值等于___________。

E 9.已知在四面体ABCD 中,E 、F 分别是AC 、BD 的中点,若 D F CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角为______________.10.已知函数(1)()log (2)(*),(1)(2)()n f x n n N f f f k +=+∈定义使为整数的数(*)k k N ∈叫做希望数,则在区间[1,10]内如此的希望数共有_______个。

高一数学寒假作业答案

高一数学寒假作业答案

高一数学寒假作业答案作业一答案1、自然语言、列举法、描述法.2、用适当的符号填空.(1)∈⊆, 2)⊆=, (3)⊇⊇, (4),⊆3、(1),(3),(5)4、{x |1<x <2},{x |-1<x <3},{1-≤x x 或}2≥x ,{1≤x x 或}3≥x .5、,),(,B C B A C B A B A B A ⋃⋃⋂⋂6、.,,,,,A A A A φφ 7、{}6,3,2.9、(4)中的两个函数是同一函数,因为,它们的定义域、对应法则相同;(1)(2)中,两个函数的定义域不同,(3)中,两个函数的对应法则不同. 10、(4). 11、-2.12、13、1+. 14、1.15、1,-3. 16、2b ≤-.17、原点,原点,y 轴. 18、增,最小值,-7 . 19、 解:⎭⎬⎫⎩⎨⎧≥=25x x B 因为,A B ⊆ 所以,.25≥a 20、 解:因为{}5,3=A , 集合B 表示满足等式01=-ax 的X 的值,当0=a 时,01=-ax 变为01=-,它不成立,所以0≠a当0≠a 时,01=-ax 是一元一次方程,它的根为ax 1=,因为,B ⊆A ,所以31=a 或51=a , 于是,31=a 或.51=a21、(1)解:由⎩⎨⎧≥+-≠-04303x x 得 ⎭⎬⎫⎩⎨⎧≤34x x所以,此函数定义域为]34,(-∞.(2) 解:由⎩⎨⎧>-≥-0409x x 得 {}94≤<x x 所以,此函数定义域为].9,4(22、 有,是(1). 23、证明:(1)设)1,0(,21∈x x 且21x x <2121212211211)()1(1)()(x x x x x x x x x x x f x f --=+-+=-由假设知,01,0,0212121<-><-x x x x x x ,有)()(21x f x f >所以,x x x f 1)(+= 在(0,1)上是减函数.(2) 设),1[,21+∞∈x x 且21x x <2121212211211)()1(1)()(x x x x x x x x x x x f x f --=+-+=-由假设知,01,0,0212121>-><-x x x x x x ,有)()(21x f x f <所以,xx x f 1)(+= 在),1[+∞上是增函数.24、 (1)(2)(4)是偶函数;(5)是奇函数;(3)(6)是非奇非偶函数.作业二答案一、填空题1、解析: 因为x>1,xa -1<1,所以a -1<0,解得a<1.2、解析:因为函数f(x)=k ·x α是幂函数,所以k =1,又函数f(x)的图象过点⎪⎪⎭⎫ ⎝⎛22,21,所以2221=⎪⎭⎫ ⎝⎛α,解得α=12,则k +α=32.3、解析:∵f(x)=ln(x +3)1-2x,∴要使函数f(x)有意义,需使⎩⎨⎧x +3>01-2x >0,即-3<x<0. 4、当x ≤0时,0<2x≤1,由图象可知方程f(x)-a =0有两个实根,即y =f(x)与y =a 的图象有两个交点,所以由图象可知0<a ≤1.即实数a 的取值范围为(0,1].5、解析: ∵-2<1,∴f(-2)=1+log 2(2+2)=1+log 24=1+2=3.∵log 212>1,∴f(log 212)=2l o g 212-1=122=6.∴f(-2)+f(log 212)=3+6=9.6、解析:当x<0时,-x>0,f(-x)=(-x)3+ln(1-x),∵f(x)是R 上的奇函数,∴当x>0时,f(x)=-f(-x)=-[(-x)3+l n(1-x)],∴f(x)=x 3-ln(1-x). 7、解析:a 与b 比较,幂函数性质,则a>b,且a>1,b 与c 比较,则c>b,则a>c>b 8、a>3 9、(-1,1) 10、a=2 11、()0,∞- 12、[)+∞,4 13、()+∞-,8 14、4115、21三、解答题16、(1)、解:原式=100127232122474223232434143412162131=---+⨯=-⨯-⨯-⎪⎪⎭⎫ ⎝⎛⨯+⎪⎪⎭⎫ ⎝⎛⨯ (2)、解:原式=()()()5lg 2lg 215lg 7lg 2212lg 23347lg 22lg 521+=++⨯-- (3)、解:原式=(lg 2)2+(1+lg 5)lg 2+lg 52=(lg 2+lg 5+1)lg 2+2lg 5=(1+1)lg 2+2lg 5=2(lg 2+lg 5)=2.17、(1)证明略。

2019-2020年高一数学寒假作业5含答案.docx

2019-2020年高一数学寒假作业5含答案.docx

2019-2020 年高一数学寒假作业 5 含答案一、选择题 .1.设集合P1,2,3,4 ,Q x x2x2 0, x R,则P Q()A. {1, 2}B. {3,4}C. {1}D.{ -2,- 1,0,1,2}2.下列函数与y x 有相同图象的一个函数是()A y x2B y x2xC y a log a x(a0且a1)D y log a a x3.下列函数在 R上单调递增的是()1A. y | x |B. y lg xC.y x 2D. y 2x4.下列函数中,值域是(0, +∞)的是()A. y (13)1 x1B. y2x1C. y 52 xD. y1 2 x5.函数y log a x( a0, a1) 的反函数的图象过( 1,2) 点,则a的值为()22A. 2B.1C.2或1D. 3226.函数 f(x)=a x与 g(x)=ax-a 的图象有可能是下图中的()7.三个数50.6,0.65, log 0.6 5的大小顺序是()A.0.65log0.6 550.6B.0.6550.6log 0.6 5 C.log0.650.6550.6D.log0.65 50 .60.658.已知f (x)ax7bx5 cx3 2 ,且 f ( 5)17,则 f (5) 的值为( ) A.13B.19C. 13D. 199.三棱锥S ABC及其三视图中的正(主)视图和侧(左)视图如图所示,则棱SB的长为()A.2 11B.C. 38D.4 216 310. 已知点P( x, y)在直线x 2 y 3 上移动,当 2x4y取得最小值时,过点 P( x, y)引圆( x1)2( y 1 )21的切线,则此切线段的长度为()242A.63C.13 2B.D.222二.填空题 .11.如图,网格纸上小正方形的边长为2,粗线画出的是某几何体的三视图,则此几何体的体积为 _________.12.已知正四棱锥 V ABCD ,底面面积为 16m2,一条侧棱长为2 11m,则它的侧面积为.13.(5 分)点 A(1,﹣ 2)关于直线 x+y﹣ 3=0 对称的点坐标为.14.已知直线l1: x2ay10,与l2: (2a 1)x ay 1 0平行,则 a 的值是_______.三、解答题 .15.已知函数 f x lg2x lg 2 x .( 1)求函数f x 的定义域;( 2)若不等式 f x m 有解,求实数m 的取值范围.16.(本题满分14 分) 已知P( 5,0),点Q 是圆(x5)2y 236 上的点,M是线段PQ 的中点.(Ⅰ)求点M的轨迹C 的方程.(Ⅱ)过点P 的直线l 和轨迹C 有两个交点A、B(A、 B 不重合),①若AB 4 ,,求直线l 的方程.②求 PA PB 的值.17.(本题 12 分)如图,在四棱锥S-ABCD中,平面SAD平面ABCD,四边形ABCD为正方形,且P、Q分别为 AD、 SB的中点.(l)求证: CD 平面 SAD;(2) 求证: PQ// 平面 SCD;(3)若 SA=SD, M为 BC的中点,在棱 SC上是否存在点 N,使得平面 DMN 平面 ABCD,并证明你的结论【 KS5U】新课标2016 年高一数学寒假作业5参考答案1.C2.D3.D4.A5.B6.D7.C8.A9.B10.A11.7212.16 10m213.( 5, 2)考点:点到直线的距离公式;直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:设点 A( 1,﹣ 2)关于直线x+y﹣ 3= 0 对称的点坐标为B( a, b),则,由此能求出结果.解答:解:设点A( 1,﹣ 2)关于直线x+y﹣ 3=0 对称的点坐标为B(a, b),则,解得 a=5, b=2,∴点 A( 1,﹣ 2)关于直线x+y ﹣ 3=0 对称的点坐标为B( 5, 2).故答案为:( 5,2).点评:本题考查满足条件的点的坐标的求法,是基础题,解题时要认真审题,注意对称问题的合理运用.1 14.0 或415.解:( 1)x足2x02x2,2x,∴∴所求函数的定域(2, 2) 3 分明:如果直接由 f (x)lg(4 x2 ) ,4x20 得到定域 (2, 2) ,不得分。

常州市高一数学寒假作业-习题精编(含答案) (2)

常州市高一数学寒假作业-习题精编(含答案) (2)

常州市高一数学寒假作业-习题精编2一、选择题(本大题共12小题,共60.0分)1.如图所示的Venn图中,若A={1,2,3,4,5},B={3,4,5,6,7},则阴影部分表示的集合是()A. {1,2,3,4,5,6,7}B. {1,2,3,4,5}C. {3,4,5,6,7}D. {1,2,6,7}2.若a>b,则下列各式正确的是()A. a-2>b-2B. 2-a>2-bC. -2a>-2bD. a2>b23.下列函数中,能用二分法求零点的是()A. B.C. D.4.下列选项中,两个函数表示同一个函数的是()A. y=,y=1B. y=,y=|x|C. y=x,y=ln e xD. y=,y=5.在正方体ABCD-A1B1C1D1中,异面直线AD1和B1C所成的角是()A. 30°B. 45°C. 60°D. 90°6.已知幂函数f(x)=x a的图象经过点(2,),则函数f(x)为()A. 奇函数且在(0,+∞)上单调递增B. 偶函数且在(0,+∞)上单调递减C. 非奇非偶函数且在(0,+∞)上单调递增D. 非奇非偶函数且在(0,+∞)上单调递减7.已知函数f(x)=,若f(f(-1)=6,则实数a的值为()A. 1B.C. 2D. 48.函数y=1g(1-x)+的定义域是()A. [-2,1]B. [-1,1)C. [-1,2]D. (1,2]9.在如图所示的多面体ABCDB1C1D1中,四边形ABCD、四边形BCC1B1、四边形CDC1C1都是边长为6的正方形,则此多面体ABCDB1C1D1的体积()A. 72B. 144C. 180D. 21610.函数f(x)=|x3|•ln的图象大致为()A. B.C. D.11.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若α⊥γ,β⊥γ,则α∥β③若α⊥β,m⊂α,则m⊥β④若α∥β,β∥γ,m⊥α,则m⊥γ其中正确命题的序号是()A. ①和②B. ①和④C. ②和③D. ③和④12.若函数y=f(x)图象上存在不同的两点A,B关于y轴对称,则称点对[A,B]是函数y=f(x)的一对“黄金点对”(注:点对[A,B]与[B,A]可看作同一对“黄金点对”).已知函数f(x)=,则此函数的“黄金点对“有()A. 0对B. 1对C. 2对D. 3对二、填空题(本大题共4小题,共20.0分)13.若a=log3,b=()0.5,则a、b的大小关系是______.(用“<”连接)14.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为4的直角三角形,俯视图是半径为2的四分之一圆周和两条半径,则这个几何体的体积为______.15.直三棱柱ABC-A1B1C1,内接于球O,且AB⊥BC,AB=3.BC=4.AA1=4,则球O的表面积______.16.已知偶函数f(x),x∈R,满足f(1-x)=f(1+x),且当0<x<1时,f(x)=ln(x+),e为自然数,则当2<x<3时,函数f(x)的解析式为______.三、解答题(本大题共6小题,共70.0分)17.化简或求下列各式的值.(Ⅰ)(2a3b)•(-5a b)÷(4);(Ⅱ)(lg5)2+lg5•lg20+.18.已知集合A={x|x2-7x+6<0},B={x|4-t<x<t},R为实数集.(Ⅰ)当t=4时,求A∪B及A∩∁R B;(Ⅱ)若A∪B=A,求实数t的取值范围.19.在长方体ABCD-A1B1C1D1中,求证:(Ⅰ)AB∥平面A1B1C;(Ⅱ)平面ABB1A1⊥平面A1BC.20.已知函数f(x)=-,若x∈R,f(x)满足f(-x)=-f(x).(Ⅰ)求实数a的值;(Ⅱ)判断函数f(x)(x∈R)的单调性,并说明理由;(Ⅲ)若对任意的t∈R,不等式f(t2-4t)+f(-k)<0恒成立,求k的取值范围.21.如图所示,已知长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD.(1)求证:直线CM⊥面DFN;(2)求点C到平面FDM的距离.22.已知函数f(x)=ax2-4ax+1+b(a>0)的定义域为[2,3],值域为[1,4];设g(x)=.(Ⅰ)求a,b的值;(Ⅱ)若不等式g(2x)-k2x≥0在x∈[1,2]上恒成立,求实数k的取值范围.答案和解析1.【答案】D【解析】【分析】本题考查根据Venn图表示集合的关系,集合的交集、并集运算,是基础题.根据图象确定阴影部分的集合元素特点,利用集合的交集和并集进行求解即可.【解答】解:阴影部分对应的集合为{x|x∈A∪B且x∉A∩B},因为A={1,2,3,4,5},B={3,4,5,6,7},所以A∪B={1,2,3,4,5,6,7},A∩B={3,4,5},∴阴影部分的集合为{1,2,6,7},故选:D.2.【答案】A【解析】解:因为a>b,所以a-2>b-2,故选项A正确,2-a<2-b,故选项B错误,-2a>-2b,故选项C错误,a2,b2无法比较大小,故选项D错误,故选:A.由不等式的基本性质,逐一检验即可.本题考查了不等式的基本性质,属简单题.3.【答案】D【解析】解:由题意以及零点判定定理可知:只有选项D能够应用二分法求解函数的零点,故选:D.利用零点判定定理以及函数的图象,判断选项即可.本题考查了的判定定理的应用,二分法求解函数的零点,是基本知识的考查.4.【答案】C【解析】解:A.的定义域为{x|x≠0},y=1的定义域为R,定义域不同,不是同一个函数;B.和y=|x|的解析式不同,不是同一函数;C.y=x的定义域为R,y=ln e x=x的定义域为R,定义域和解析式都相同,是同一个函数;D.,,解析式不同,不是同一个函数.故选:C.根据函数的定义域,即可判断选项A的两个函数不是同一个函数,根据函数解析式不同,即可判断选项B,D的两函数都不是同一个函数,从而为同一个函数的只能选C.考查函数的定义,判断两函数是否为同一个函数的方法:看定义域和解析式是否都相同.5.【答案】D【解析】解:∵AD1∥BC1,∴正方体ABCD-A1B1C1D1的面对角线AD1和面对角线B1C所成的角就是直线B1C和BC1的夹角,∵BCC1B1是正方形,∴直线B1C和BC1垂直,∴正方体ABCD-A1B1C1D1的面对角线AD1和面对角线B1C所成的角为90°.故选D.正方体ABCD-A1B1C1D1的面对角线AD1和面对角线B1C所成的角就是直线B1C和BC1的夹角,由此能求出结果.本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.6.【答案】C【解析】解:幂函数f(x)=x a的图象经过点(2,),∴2a=,解得a=,∴函数f(x)=,∴函数f(x)是非奇非偶函数且在(0,+∞)上单调递增.故选:C.求出a=,从而函数f(x)=,由此得到函数f(x)是非奇非偶函数且在(0,+∞)上单调递增.本题考查命题真假的判断,考查幂函数的性质等基础知识,考查运算求解能力,是基础题.7.【答案】A【解析】解:函数f(x)=,若f(f(-1)=6,可得f(-1)=4,f(f(-1))=f(4)=4a+log24=6,解得a=1.故选:A.利用分段函数的解析式,由里及外逐步求解函数值得到方程求解即可.本题考查分段函数的应用,函数值的求法,考查计算能力.8.【答案】B【解析】解:要使原函数有意义,则:;解得-1≤x<1;∴原函数的定义域是:[-1,1).故选:B.可看出,要使得原函数有意义,则需满足,解出x的范围即可.考查函数定义域的概念及求法,对数函数的定义域,一元二次不等式的解法.9.【答案】B【解析】解:把该几何体不成正方体ABCD-A1B1C1D1,此多面体ABCDB1C1D1的体积V=V-V=63-=144.故选:B.把该几何体不成正方体ABCD-A1B1C1D1,此多面体ABCDB1C1D1的体积V=V-V,即可.考查四棱锥体积的求法,考查化归与转化思想、数形结合思想,是中档题.10.【答案】A【解析】解:f(-x)=|x3|•ln=)=-|x3|•ln=-f(x),则函数f(x)是奇函数,图象关于原点对称,排除B,D,f()=ln=ln<0,排除C,故选:A.判断函数的奇偶性和对称性,利用特殊点的函数值是否对应进行排除即可.本题主要考查函数图象的识别和判断,利用函数奇偶性和特殊值进行排除是解决本题的关键.11.【答案】B【解析】解:①若m⊥α,n∥α,则m⊥n成立,故①正确,②若α⊥γ,β⊥γ,则α∥β不成立,两个平面没有关系,故②错误③若α⊥β,m⊂α,则m⊥β不成立,可能m与β相交,故③错误,④若α∥β,β∥γ,m⊥α,则m⊥γ,成立,故④正确,故正确的是①④,故选:B.根据空间直线和平面平行,垂直的性质分别进行判断即可.本题主要考查命题的真假判断,涉及空间直线和平面平行和垂直的判定和性质,考查学生的空间想象能力.12.【答案】D【解析】解:由题意知函数f(x)=2x,x<0关于y轴对称的函数为y=2-x=()x,x>0,作出函数f(x)和y=()x,x>0的图象,由图象知当x>0时,f(x)和y=()x,x>0的图象有3个交点.所以函数f(x)的““黄金点对“有3对.故选:D.根据“黄金点对“,只需要作出当x<0时,函数f(x)关于y对称的函数的解析式以及图象,利用两个图象交点个数进行求解即可.本题主要考查分段函数的应用,结合“黄金点对“的定义,作出当x<0时,函数f(x)关于y对称的函数的解析式以及图象,利用数形结合是解决本题的关键.13.【答案】a<b【解析】解:;∴a<b.故答案为:a<b.容易看出,,从而可得出a,b的大小关系.考查对数函数的单调性,减函数的定义,指数函数的值域.14.【答案】【解析】解:由三视图可知几何体为圆锥的,圆锥的底面半径为1,母线长为2,∴圆锥的高为.∴V=××π×12×=.故答案为:.几何体为圆锥的,根据三视图的数据计算体积即可.本题考查了圆锥的三视图和体积计算,属于基础题.15.【答案】41π【解析】解:直三棱柱中,易知AB,BC,BB1两两垂直,可知其为长方体的一部分,利用长方体外接球直径为其体对角线长,可知其直径为=,∴=41π,故答案为:41π.利用三线垂直联想长方体,而长方体外接球直径为其体对角线长,容易得到球半径,得解.此题考查了三棱柱外接球,难度不大.16.【答案】f(x)=ln(x-2+)【解析】解:因为f(x)是偶函数,满足f(1-x)=f(1+x),所以f(1+x)=f(x-1),所以f(x)周期是2.当2<x<3时,0<x-2<1,所以f(x-2)=ln(x-2+)=f(x),所以函数f(x)的解析式为f(x)=ln(x-2+).故答案为:f(x)=ln(x-2+).由f(1-x)=f(1+x),再由偶函数性质得到函数周期,再求当2<x<3时f(x)解析式.本题考查函数的奇偶性,周期性应用求解析式,属于中档题.17.【答案】解:(Ⅰ)原式=;(Ⅱ)原式=lg5(lg5+lg20)+lg4=2(lg5+lg2)=2.【解析】(Ⅰ)进行分数指数幂的运算即可;(Ⅱ)进行对数的运算即可.考查分数指数幂和对数的运算,以及对数的换底公式.18.【答案】解:(Ⅰ)解二次不等式x2-7x+6<0得:1<x<6,即A,当t=4时,B=,C R B=,所以A∪B=,A∩C R B=,故答案为:A∪B=,A∩C R B=(Ⅱ)由A∪B=A,得:B⊆A,①当4-t≥t即t≤2时,B=∅,满足题意,②B≠∅时,由B⊆A得:,解得:2<t≤3,综合①②得:实数t的取值范围为:t≤3,故答案为:t≤3.【解析】(Ⅰ)由二次不等式的解法得:A,由集合的交、并、补的运算得:B=,C R B=,所以A∪B=,A∩C R B=,(Ⅱ)由集合间的包含关系得:因为A∪B=A,得:B⊆A,讨论①B=∅,②B≠∅时,运算即可得解本题考查了二次不等式的解法、集合的交、并、补的运算及集合间的包含关系,属简单题.19.【答案】证明:(Ⅰ)在长方体ABCD-A1B1C1D1中,∵AB∥A1B1,且AB⊄平面A1B1C,A1B1⊂平面A1B1C,∴AB∥平面A1B1C.(Ⅱ)在长方体ABCD-A1B1C1D1中,∵BC⊥AB,BC⊥BB1,AB∩BB1=B,∴BC⊥平面ABB1A1,∵BC⊂平面A1BC,∴平面ABB1A1⊥平面A1BC.【解析】(Ⅰ)推导出AB∥A1B1,由此能证明AB∥平面A1B1C.(Ⅱ)推导出BC⊥AB,BC⊥BB1,从而∴BC⊥平面ABB1A1,由此能证明平面ABB1A1⊥平面A1BC.本题考查线面平行、面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.20.【答案】解:(Ⅰ)函数f(x)=-,x∈R,且f(-x)=-f(x),∴-=-+,∴a=+=+=1;(Ⅱ)f(x)=-是定义域R上的单调减函数,证明如下:任取x1、x2∈R,且x1<x2,则f(x1)-f(x2)=(-)-(-)=-=,由(+1)(+1)>0,当x1<x2时,<,∴->0,∴f(x1)>f(x2),∴f(x)是定义域R上的单调减函数;(Ⅲ)对任意的t∈R,不等式f(t2-4t)+f(-k)<0恒成立,则f(t2-4t)<-f(-k)=f(k),根据f(x)是定义域R上的单调减函数,得t2-4t>k,设f(t)=t2-4t,t∈R,则f(t)=(t-2)2-4≥-4,∴k的取值范围是k<-4.【解析】(Ⅰ)根据f(-x)=-f(x)代入求得a的值;(Ⅱ)f(x)是定义域R上的单调减函数,利用定义证明即可;(Ⅲ)根据题意把不等式化为t2-4t>k,求出f(t)=t2-4t的最小值,即可得出k的取值范围.本题考查了函数的奇偶性与单调性应用问题,也考查了不等式恒成立问题,是中档题.21.【答案】证明:(1)∵长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD.∴DN⊥CM,CM⊥FN,又DN∩FN=N,∴CM⊥平面DFN.解:(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,则C(2,-2,0),D(0,-2,0),F(2,0,2),M(0,0,0),=(2,-2,0),=(0,-2,0),=(2,0,2),设平面FDM 的法向量=(x,y,z),则,取x=1,得=(1,0,-1),∴点C到平面FDM的距离d ===.【解析】(1)推导出DN⊥CM,CM⊥FN,由此能证明CM⊥平面DFN.(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,利用向量法能求出点C到平面FDM的距离.本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.22.【答案】解:(Ⅰ)∵函数f(x)=ax2-4ax+1+b(a>0)其图象对称轴为直线x=2,函数的定义域为[2,3],值域为[1,4],∴,解得:a=3,b=12;(Ⅱ)由(Ⅰ)得:f(x)=3x2-12x+13,g(x)==.若不等式g(2x)-k2x≥0在x∈[1,2]上恒成立,则k≤()2-2()+1在x∈[1,2]上恒成立,2x∈[2,4],∈[,],当=,即x=1时,()2-2()+1取最小值,故k ≤.【解析】本题考查二次函数在闭区间上的最值,考查函数恒成立问题问题,考查数形结合与等价转化、函数与方程思想的综合应用,是中档题.(Ⅰ)根据函数f(x)=ax2-4ax+1+b(a>0)的定义域为[2,3],值域为[1,4],其图象对称轴为直线x=2,且g(x)的最小值为1,最大值为4,列出方程可得实数a,b的值;(Ⅱ)若不等式g(2x)-k2x≥0在x∈[1,2]上恒成立,分离变量k,在x∈[1,2]上恒成立,进而得到实数k的取值范围.第11页,共11页。

【高一】高一数学上册寒假练习题(带答案)

【高一】高一数学上册寒假练习题(带答案)

【高一】高一数学上册寒假练习题(带答案)高一数学寒假作业六一.(每小题3分,共计30分)1.圆心在轴上,半径为1,且过点(1,2)的圆的方程为()A. B.C. D.2.已知全集 ,则等于(A)(B)(C)(D)3.三个数 ,则的大小关系是()4.已知函数 ,则()A.3B.2C. 1D. 05.下列函数中,在区间(0,1)上是增函数的是()6.为了得到函数的图象,可以把函数的图象()(A)向左平移1个单位长度(B)向右平移1个单位长度(C)向左平移3个单位长度(D)向右平移3个单位长度7.当a>1时,同一直角坐标系中,函数y=a-x,y=logax的图象是y y y y1 1 1 1O 1 x O 1 x O 1 x O 1 xA. B. C. D.8.函数.若在上存在 ,使得 ,则实数的取值范围是()A. B.C. D.9.如图8-25,在三棱柱的侧棱A1A和B1B上各有一动点P,Q,且满足A1P=BQ,过P.Q.C三点的截面把棱柱分成两部分,则其体积之比为()A.3∶1B.2∶1C.4∶1D.∶110.如图8-26,下列四个平面形中,每个小四边形皆为正方形,其中可以沿两个正方形的相邻边折叠围成一个立方体的图形是()二.题(每小题4分,共计24分)13. ,则;14.若a>0,且a≠1,函数的图象必过定点;15.函数的定义域是;16.已知函数① ;② ;③ ;④同时具有性质:(1)图象过点(0,1)(2)在区间上是减函数;(3)是偶函数的函数是(填正确序号): .三.解答题:(共46分,其中17题10分,其他各题12分)解答题应写出文字说明.证明过程或演算步骤.17. 已知(1)求定义域;(2)求单调区间(3)求最大值,并求取最大值时x的值18.已知函数f (x )的定义域为 [-2,2],函数g (x ) = f (x -1)-f (3-2x )(1)求函数g (x )的定义域;(2)若函数f (x )在定义域上单调递减,求不等式g (x )<0的解集.19.已知曲线C:x2+y2-2x-4y+m=0(1)当m为何值时,曲线C表示圆;(2)若曲线C与直线x+2y-4=0交于M.N两点,且OM⊥ON(O为坐标原点),求m的值.20.设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3∶1,在满足条件①.②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.高一数学寒假作业六参考答案一、(每小题3分,共计30分)1-5 ACADA 6-10 BABBC二.题(每小题4分,共计24分)13. 14.(2,-1) 15.[-1,2) 16.(2)三.解答题:(共46分,其中17题10分,其他各题12分)解答题应写出文字说明.证明过程或演算步骤.17.(1)定义域(-1,3)(2)增区间(-1,1],减区间[1,3)(3)当x=1时,y取最大值为118解:(1). 解得:所以,函数定义域为: .(2).由g(x)<0,即:因为f(x)为减函数,所以得不等式的解集为: .19.已知曲线C:x2+y2-2x-4y+m=0(1)当m为何值时,曲线C表示圆;(2)若曲线C与直线x+2y-4=0交于M.N两点,且OM⊥ON(O为坐标原点),求m的值..解(1)由D2+E2-4F=4+16-4m=20-4m>0,得m<5.(2)设M(x1,y1),N(x2,y2),由OM⊥ON得x1x2+ y1y2=0.将直线方程x+2y-4=0与曲线C:x2+y2-2x-4y+m=0联立并消去y得5x2-8x+4m-16=0,由韦达定理得x1+x2= ①,x1x2= ②,又由x+2y-4=0得y= (4-x), ∴x1x2+y1y2=x1x2+ (4-x1)? (4-x2)= x1x2-( x1+x2)+4=0.将①.②代入得m= .20.设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3∶1,在满足条件①.②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.感谢您的阅读,祝您生活愉快。

高一上册数学寒假作业高一上册数学寒假作业及答案

高一上册数学寒假作业高一上册数学寒假作业及答案

高一上册数学寒假作业高一上册数学寒假作业及答案高一上册数学寒假作业|高一上册数学寒假作业及答案高中新生应该根据自己的情况,以及高中阶段多学科知识、综合性强、知识与思维接触广泛的特点,寻找一套有效的学习方法。

今天,我们为全体学生整理了《高中一册数学寒假作业及答案》。

我希望这将有助于你的学习!高一上册数学寒假作业及答案(一)1.[0,1]上函数f(x)=x2的最小值为()a.1b.0c、 14天。

不存在解析:选b.由函数f(x)=x2在[0,1]上的图象(图略)知,F(x)=x2在[0,1]上单调增加,因此最小值为F(0)=02.函数f(x)=2x+6,x∈[1,2]x+7,x∈[-1,1],则f(x)的值、最小值分别为()a、 10,6b。

10,8c.8,6d.以上都不对分析:选择A.f(x)作为x的递增函数∈ [1,2],f(x)max=f(2)=10,f(x)min=f(-1)=63.函数y=-x2+2x在[1,2]上的值为()a、 1b。

二c.-1d.不存在分析:选择A。

因为函数y=-x2+2x=-(x-1)2+1,对称轴是x=1,开口是向下的,所以它是[1,2]上的单调递减函数,所以ymax=-1+2=14.函数y=1x-1在[2,3]上的最小值为()a、 2b。

十二c.13d.-12分析:选择B.函数y=1x-1作为[2,3]上的减法函数,∴ymin=13-1=12.5.一家公司同时在两地销售一辆品牌汽车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中销量(单位:辆)如果公司在两地共销售15辆汽车,则可获得的利润为()a.90万元b.60万元c、 120万元d.1225万元解析:选c.设公司在甲地销售x辆(0≤x≤15,x为正整数),则在乙地销售(15-x)辆,∴公司获得利润l=-x2+21x+2(15-x)=-x2+19x+30.∴当x=9或10时,l为120万元,故选c.6.给定函数f(x)=-x2+4x+A,x∈ [0,1],如果f(x)的最小值为-2,则f(x)的值为()a.-1b.0c、 1d。

高一数学寒假作业

高一数学寒假作业

一数学寒假作业及答案集合及其运算一、填空题:(本大题共10小题,每小题5分,共50分)1.集合{}5,4,3,2,1=M 的子集个数是 ▲ 2.如果集合A={x|ax 2+2x +1=0}中只有一个元素,则a 的值是 ▲ 3.设A={x|1<x <2},B={x|x <a}满足A ⊆B ,则实数a 的取值范围是 ▲ 4.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是 ▲5.全集I={0,1,2,3,4},集合A={0,1,2,3},B={2,3,4},则A C I ∪B C I = ▲6.集合A={a 2,a +1,-1},B={2a -1,| a -2 |, 3a 2+4},A ∩B={-1},则a 的值是 ▲ 7.已知集合M={(x ,y)|4x +y=6},P={(x ,y)|3x +2y=7},则M ∩P 等于 ▲ 8.设集合A={x|x ∈Z 且-10≤x ≤-1},B={x|x ∈Z 且|x|≤5 },则A ∪B 中元素的个数为 ▲ 9.集合M={a|a-56∈N ,且a ∈Z},用列举法表示集合M= ▲ 10.设集合A={x|x 2+x -6=0},B={x|mx +1=0},且A ∪B=A ,则m 的取值范围是 ▲ 答案:1. 2.3. 4. 5. 6. 7. 8. 9. 10. 二、解答题:(共4题,11题10分,12题12分13、14题14分,共50分) 11.已知集合A ={x |-1<x <3},A ∩B =∅,A ∪B =R ,求集合B .12.已知集合A={-3,4},B={x|x2-2px+q=0},B≠φ,且B⊆A,求实数p,q的值.13.已知集合A={x∈R|x2-2x-8=0},B={x∈R|x2+ax+a2-12=0},B⊆A,求实数a的取值集合.14.集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若∅A∩B,A∩C=∅,求a的值.高一数学寒假作业(二)函 数(A )一、填空题:(本大题共10小题,每小题5分,共50分) 1.已知函数5)(-=ax x f ,f(-1)=1,则=)3(f ▲ 2.函数223)(-+=x x x g 的值域为 ▲ 3.把函数x x x f 2)(2-=的图象向左平移1个单位长度,再向下平移2个单位长度,得到函数图象对应解析式为 ▲4.一次函数)(x f ,满足 19))((+=x x f f ,则)(x f = ▲ 5.下列函数:①y=2x +1②y=3x 2+1③y=x2④y=2x 2+x +1,其中在区间(0,+∞)上不是增函数的函数是 ▲ (填序号)6.函数)(x f 的图像与函数g(x)=3-2x 关于坐标原点对称,则=)(x f ▲7. 函数2x x y -=)(R x ∈的递减区间为 ▲ 8.已知函数f(x)=a-121+x,若f(x)为奇函数,则a = ▲ 9.得到函数的图像只需把函数的图像上所有的点 ▲ 10.已知二次函数)()(2R x c bx ax x f ∈++=的部分对应值如下表:则函数)(x f 的最 ▲ 值为 ▲答案:1. 2.3. 4. 5. 6.3lg10x y +=lg y x =7. 8. 9. 10. 二、解答题:(共4题,11题10分12题12分,13、14题14分,共50分) 11.已知)1(11)(-≠+=x xx f ,)(,2)(2R x x x g ∈+=. (1)求)2(),2(g f 的值;(2)求)]2([g f 的值.12.函数f(x)在其定义域(-1,1)上单调递增,且f(a-1)<f(1-a 2), 求a 的取值范围。

寒假作业含答案

寒假作业含答案

高一寒假作业数学注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知集合{}1,2,3A =, ()(){}|120, B x x x x =+−<∈Z ,则A B 等于( )A . {}1B . {}1,2C . {}0,1,2,3D . {}1,0,1,2,3−2.点)在直线:10l ax y −+=上,则直线l 的倾斜角为( )A . 120°B . 60°C .45°D . 30°3.函数()f x =的定义域是( )A . {|23}x x <<B .{|23}x x x <>或C .{|23}x x x ≤≥或D .{|23}x x x <≥或4.一个球被两个平行平面截后所得几何体形如我国的一种民族打击乐器“鼓”,该“鼓”的三视图如图所示,则球的表面积为( ) A . 5π B . 10π C . 20πD .5.设,x y 为正数,且34x y =,当3x py =时,p 的值为( ) A . 3log 4 B . 4log 3 C . 36log 2 D . 3log 26.定义域为D 的奇函数()f x ,当0x >时,()()12f x f ≤=.给出下列命题:①[1,1]D −;②对任意, |()|2x D f x ∈≤;③存在0x D ∈,使得0()0f x =;④存在1x D ∈,使得1()1f x =.其中所有正确的命题的个数为( )A .0B .1C . 2D .37.如图,1111ABCD A B C D −为正方体,下列结论错误..的是( )A . 11BD CB D ∥平面 B . 1AC BD ⊥C . 111AC CBD ⊥平面 D . 异面直线AD 与1CB 所成角为60°8.定义在R 上的偶函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()21f x x =−+,设函数|1|1()(13)2x g x x − =−<<,则函数()f x 与()g x 的图象交点个数为( )A . 3B . 4C . 5D . 69.如图1,直线EEEE 将矩形纸AAAAAAAA 分为两个直角梯形AAAAEEEE 和AAAAEEEE ,将梯形AAAAEEEE 沿边EEEE 翻折,如图2,在翻折的过程中(平面AAAAEEEE 和平面AAAAEEEE 不重合),下面说法正确的是( )图1 图2A . 存在某一位置,使得AAAA ∥平面AAAAEEEEB . 在翻折的过程中,AAEE ∥平面AAAAEE 恒成立C . 存在某一位置,使得AAEE ⊥平面AAAAEEEE D.在翻折的过程中,AAEE ⊥平面AAAAEEEE 恒成立10.我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆222x y +=的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( )A .1)0x y +−−= B .1)0x y += C .1)0x y −+= D .1)0x y −−+=11.设集合{|48}x A x =>,集合2{|210,0}B x x ax a =−−≤>,若A B 中恰含有一个整数,则实数a 的取值范围是( )A .34,43B .41,3C .3,4 +∞D .(1,)+∞12.在直角坐标系内,已知(3,3)A 是C 上一点,折叠该圆两次使点A 分别与圆上不相同的两点(异于点A )重合,两次的折痕方程分别为xx −yy +1=0和xx +yy −7=0,若C 上存在点P ,使90MPN ∠=°,其中M 、N 的坐标分别为(,0)m −、(,0)m ,则m 的最大值为( )A . 4B . 5C . 6D . 7第II 卷(非选择题)二、填空题13.已知过点(1,)A m −和(,5)B m 的直线与310x y −−=平行,则m 的值为______. 14.给定下列四个命题:①过直线外一点可作无数条直线与已知直线平行;②如果一条直线不在这个平面内,那么这条直线就与这个平面平行; ③垂直于同一直线的两条直线可能相交、可能平行也可能异面; ④若两个平面分别经过两条垂直直线,则这两个平面互相垂直。

2022高一数学寒假作业及答案

2022高一数学寒假作业及答案
第3页 共9页
不同函数模型测试题二 1.某动物数量 y(只)与时间 x(年)的关系为 y=alog2(x+1), 设第一年有 101 只,那么到第七年它们开展到() A.300 只 B.400 只 C.500 只 D.600 只 解析:选 A.由确定第一年有 101 只,得 a=101,将 a=101, x=7 代入 y=alog2(x+1),得 y=300. 2.马先生于两年前购置了一部手机,此时此刻这款手机的价 格已降为 1010 元,设这种手机每年降价 20%,那么两年前这部手 机的价格为() A.1535.5 元 B.1440 元 C.1620 元 D.1562.5 元 解 析 : 选 D. 设 这 部 手 机 两 年 前 的 价 格 为 a , 那 么 有 a(1-0.2)2=1010,解得 a=1562.5 元,应选 D. 3.为了改善某地的生态环境,政府决心绿化荒山,打算第一 年先植树 0.5 万亩,以后每年比上年增加 1 万亩,结果第 x 年植 树亩数 y(万亩)是时间 x(年数)的一次函数,这个函数的图象是() 解析:选 A.当 x=1 时,y=0.5,且为递增函数. 4.某单位为鼓舞职工节约用水,作出了如下规定:每月用水 不超过 10m3,按每立方米 x 元收取水费;每月用水超过 10m3,超 过局部加倍收费,某职工某月缴费 16x 元,那么该职工这个月实
第6页 共9页
家发觉,两岁燕子的飞行速度可以表示为函数 v=5log2Q10,单位 是 m/s,其中 Q 表示燕子的耗氧量.
(1)试计算:燕子静止时的耗氧量是多少个单位? (2)当一只燕子的耗氧量是 80 个单位时,它的飞行速度是多 少? 解:(1)由题意知,当燕子静止时,它的速度为 0,代入题目 所给公式可得 0=5log2Q10,解得 Q=10, 即燕子静止时的耗氧量为 10 个单位. (2)将耗氧量 Q=80 代入公式得 v=5log28010=5log28=15(m/s), 即当一只燕子耗氧量为 80 个单位时,它的飞行速度为 15m/s. 高一数学寒假作业及答案 5 集合的含义与表示练习一 1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是 () A.{x|x 是小于 18 的正奇数} B.{x|x=4k+1,k∈Z,且 k0,所以 m<1. 答案:m<1 4. 用适当的方法表示以下集合: (1)全部被 3 整除的整数;

2022数学高一上学期寒假作业参考答案参考

2022数学高一上学期寒假作业参考答案参考

2022数学高一上学期寒假作业参考答案参考数学高一上学期寒假作业参考答案1一、1,5cabcb6,10cbbcc11,12bb二、13,14(1);(2){1,2,3}n;(3){1};(4)0;15-116或;;或。

三、17。

{0。

-1,1};18。

;19。

(1)a2-4b=0(2)a=-4,b=320。

高一数学寒假作业2参考答案:一。

1,5cdbbd6,10cccca11,12bb二。

13、(1,+∞)14、131516,三。

17。

略18、用定义证明即可。

f()的值为:,最小值为:19。

解:⑴设任取且即在上为增函数。

⑵20。

解:在上为偶函数,在上单调递减在上为增函数又,由得解集为。

高一数学寒假作业3参考答案一、选择题:1、b2、c3、c4、a5、c6。

a7。

a8。

d9。

a10。

b11、b12、c二、填空题:13、14、1215、;16。

4-a,三、解答题:17。

略18。

略19。

解:(1)开口向下;对称轴为;顶点坐标为;(2)函数的值为1;无最小值;(3)函数在上是增加的,在上是减少的。

20。

ⅰ、ⅱ、高一数学寒假作业4参考答案一、1~8cbcdaacc9-12bbcd二、13、[—,1]14、15、16、>2或0三、17、(1)如图所示:(2)单调区间为,。

(3)由图象可知:当时,函数取到最小值18。

(1)函数的定义域为(—1,1)(2)当a>1时,(0,1)当019。

解:若a>1,则在区间[1,7]上的值为,最小值为,依题意,有,解得a=16;若0,值为,依题意,有,解得a=综上,得a=16或a=20、解:(1)在是单调增函数,(2)令,原式变为:,,当时,此时,当时,此时,高一数学寒假作业5参考答案一、1~8cdbdadbb9~12bbcd13、19、614、15、16。

17。

解:要使原函数有意义,须使:解:要使原函数有意义,须使:即得所以,原函数的定义域是:所以,原函数的定义域是:(-1,7)(7,)。

高一年级(必修一、二)寒假作业5Word版含答案

高一年级(必修一、二)寒假作业5Word版含答案

高一年级(必修一、二)寒假作业5一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是 A. 0与{}0的意义相同 B. 高一(1)班个子比较高的同学可以形成一个集合 C. 集合{}()32A x y x y x N =+=∈,,是有限集 D. 方程0122=++x x 的解集只有一个元素2. 若0m >,0n >,0a >且1a ≠,则下列等式中正确的是( ) A .()m nm na a+= B .11mm aa=C .log log log ()a a a m n m n ÷=-D 43()mn = 3.下列图形中,表示函数图象的个数是A .1个B .2个C .3个D .4个4.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是 ( )A .减少1.99%B .增加1.99%C .减少4%D .不增不减 5.如图,当参数12,λλλ=时,连续函数(0)1xy x xλ=≥+ 的图像分别对应曲线1C 和2C , 则 ( ) A. 210λλ<< B. 210λλ<< C. 120λλ<< D. 120λλ<<6.18.设()f x 是定义在R 上的函数,且对任意,x y R ∈,均有()()()2014f x y f x f y +=++成立,若函数()()20132014g x f x x =+有最大值M 和最小值m ,则M m + =( ) A .-4028 B .-2014 C .2014 D .4028 7.已知1()1xf x x -=+,则f (x )的表达式为 A .11x x -+ B .11x x +- C . 11x x -+ D .21x x -8. 关于x 的方程a a x 232+=,在(1]-∞,上有解,则实数a 的取值范围是 A .[)(]1,01,2 -- B.[)[]1,02,3 -- C .[)(]1,02,3 -- D .[)[]1,01,2 --9.已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .21010.设()f x 是R 上的偶函数,且在(0,+∞)上为增函数,若10x >,且120x x +<,则 A. 12()()f x f x >B. 12()()f x f x <C. 12()()f x f x =D.无法比较1()f x 与2()f x 的大小11. 三棱锥P ABC -的高为PH ,若三个侧面两两垂直,则H 一定为△ABC 的( ) A .垂心 B .外心 C.内心 D .重心12.有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是( )A .(0,6+2)B .(1,22)C .(6-2,6+2)D .(0,22)二、填空题:本大题共4小题,每小题5分,共20分.13. 已知集合{,},{1,01}P a b Q ==-,,则从集合P 到集合Q 的映射共有 种. 14.已知函数2()2([1,2])f x x x x =-∈-的值域为集合A ,()2[1,2]g x ax x =+∈-()的值域为集合B .若A B ⊆,则实数a 的取值范围是 .15. 设动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,记11D PD B=λ.当∠APC 为钝角时,λ的取值范围是________.16.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变;③棱11DA 始终与水面EFGH 平行;④当1AA E ∈时,BF AE +是定值.其中正确说法是 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.已知全集为实数集R ,集合}31|{x x y x A -+-==,{|24}x B x =>.(I)分别求,,()R A B A B B A ;ð(II)已知集合}1|{a x x C <<=,若A C ⊆,求实数a 的取值范围.18.(本小题满分12分)已知1,0()2,0x f x x <⎧=⎨≥⎩,3(1)(2)()2f x f x g x ---=.(1)当12()x g x ≤<时,求;(2)当()x R g x ∈时,求的解析式,并画出其图象;[来(3)求方程[()]2[()]f g x x g f x =的解.19.(本小题满分12分)如图,三棱柱ABC -A1B 1C 1中,AA 1⊥BC ,A 1B ⊥BB 1. (1)求证:A 1C ⊥CC 1;(2)若AB =2,AC =3,BC =7,问AA 1为何值时,三棱柱ABC -A 1B 1C 1体积最大,并求此最大值.20.(本小题满分12分)已知函数2211)(x x x f +-=. (I)判断)(x f 的奇偶性; (II)求证:)1()(x f x f +为定值; (III )求111()()()(1)(2015)(2016)(2017)201720162015f f f f f f f ++++++的值.我国的烟花名目繁多,花色品种繁杂.其中“菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂,通过研究,发现该型烟花爆裂时距地面的高度h (单位:米)与时间t (单位:秒)存在函数关系,并得到相关数据如下表:(I)根据上表数据,从下列函数中,选取一个函数描述该型烟花爆裂时距地面的高度h 与时间t 的变化关系:,b kt y +=122y at bt c =++,3t y ab =,确定此函数解析式,并简单说明理由; (II)利用你选取的函数,判断烟花爆裂的最佳时刻,并求出此时烟花距地面的高度. 22.(本题满分12分) 已知实数x,y 满足关系式2264120x y x y +--+=,点P(x,y),A(-1,0),,B(1,0). (1) 求yx的最大值和最小值 (2) 求x-y 的最大值和最小值 (3) 求22PA PB +的最大值和最小值高一年级(必修一、二)寒假作业5参考答案一、选择题 (本大题共12小题,每小题5分,共60分.)1-5 DDBAD 6-10 AACCB 11-12 AA 二、填空题(本大题共4个小题,每小题5分,共20分.)13. 9 14.][3,)∞+∞ 3(-,-2 15. (13,1) 16.①③④ 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)解:(I)}31|{≤≤=x x A ,}2|{}42|{>=>=x x x B x}1|{≥=⋃x x B A}32|{≤<=⋂x x B A(){|2}{|13}{|3}R C B A x x x x x x ⋃=≤⋃≤≤=≤(Ⅱ)①当1≤a 时,φ=C ,此时A C ⊆;②1>a 时,A C ⊆,则31≤<a综合①②,可得a 的取值范围是]3,(-∞……………10分 18. (本小题满分12分)解:(1) 当1≤x<2时,x-1≥0,x-2<0,∴g(x)=216-=25. (2)当x<1时,x-1<0,x-2<0,∴g(x)=213- =1. 当x ≥2时,x-1>0,x-2≥0,∴g(x)= 226-=2.故1,1,5(),12,22, 2.x y g x x x <⎧⎪⎪==≤<⎨⎪≥⎪⎩ 其图象如右图.(3)()0[()]2,g x f g x x R >∴=∈ 5(1),0[()],2(2)2,0g x g f x g x ⎧=<⎪=⎨⎪=≥⎩所以,方程[()]2[()]f g x x g f x = 为 25,0,4,0x x x <⎧=⎨≥⎩所以x=x=2.19.(本小题满分12分)解:(1)证明 由AA 1⊥BC ,知BB 1⊥BC .又BB 1⊥A 1B ,BC ⊂平面BCA 1,A 1B ⊂平面BCA 1, 故BB 1⊥平面BCA 1,所以BB 1⊥A 1C . 又BB 1∥CC 1,所以A 1C ⊥CC 1.(2)如图所示,过A 1作BC 的垂线,垂足为D ,连接AD . 由AA 1⊥BC ,A 1D ⊥BC ,故BC ⊥平面AA 1D ,BC ⊥AD . 又AB =2,AC =3,BC =7,所以AB 2+AC 2=BC 2,故∠BAC =90°,所以S △ABC =12AD ·BC =12AB ·AC ,所以AD =2217.设AA 1=x ,在Rt△AA 1D 中,A 1D =AD 2-AA 21=127-x 2,S △A 1BC =12A 1D ·BC =12-7x 22. 从而三棱柱ABC -A 1B 1C 1的体积V =S 直·l =S △A 1BC ·AA 1=x 12-7x 22.因为x 12-7x 2=12x 2-7x 4=-7 x 2-67 2+367,故当x =67=427, 即AA 1=427时,体积V 取到最大值377. 20. (本小题满分12分)解:(I))(x f 的定义域R ,所以定义域关于原点对称. …………1分又)(11)(1)(1)-(2222x f x x x x x f =+-=-+--=, ……… ………3分∴)(x f 是偶函数 ……… .…………4分(Ⅱ)∵)(111111)1(1)1(1)1(22222x f x x x x x x x f -=+-=+-=+-=, ………………6分∴0)1()(=+xf x f 为定值. …………………8分(III ) 由(II )知原式111[()(2017)][()(2016)][()(2015)](1)201720162015f f f f f f f =++++++++…………………………10分0)1(0=+=f . ……………… …………12分 21.(本小题满分12分)解:(I)由表中数据分析可知,烟花距地面的高度随时间的变化呈先上升再下降的趋势,则在给定的三类函数中,只有2y 可能满足,故选择取该函数. …………3分设,)(2c bt at t h ++=有11104422542,20.171641a b c a a b c b a b c c ⎧=++⎪=-⎧⎪⎪=++⇒=⎨⎨⎪⎪=++=⎩⎪⎩…………6分所以,01204)(2)(≥++-=t t t t h ……………8分(Ⅱ)26)25(41)5(41204)(222+--=+--=++-=t t t t t t h , …………10分∴当烟花冲出后2.5s 是爆裂的最佳时刻,此时距地面的高度为26米. …………12分 22(本题满分12分)根据题意,设圆心22:(x 3)(2)1C y -+-=圆心C(3,2)设y k x =,则当直线y=kx 与圆C 相切时,y x取的最小值。

高一上学期数学寒假作业(含答案)

高一上学期数学寒假作业(含答案)

高一数学寒假作业(必修1、必修2)高一寒假作业第1天 集合1.(2012湖南高考)设集合{1,0,1}M =-,2{}N x x x ==,则MN =( )A .{1,0,1}-B .{0,1}C .{1}D .{0}2.(2012广东高考)设集合{1,2,3,4,5,6}U =,{1,3,5}M =,则U M =ð( ) A .{2,4,6} B .{1,3,5} C .{1,2,4} D .U3.(2012门头沟一模)已知集合2{230}A x x x =--=,那么满足B A ⊆的集合B 有( )A . 1个B . 2个C . 3个D . 4个4.(2012江西高考)若集合{1,1}A =-,{0,2}B =,则集合{,,}z z x y x A y B =+∈∈中的元素的个数为( )A .5B .4C .3D .2 5.(2012四川高考)设集合{,}A a b =,{,,}B b c d =,则A B =( )A .{}bB .{,,}b c dC .{,,}a c dD .{,,,}a b c d 6.(2012顺义二模)已知集合{0,1,3}M =,{}|3,N x x a a M ==∈,则集合M N =( )A .{0}B .{0,1}C . {0,3}D . {1,3} 7.(2012广州二模)已知集合A 满足{1,2}A ⊆,则集合A 的个数为( ) A .4 B .3 C .2 D .18.(2012惠州调研)已知集合{(,)0,,}A x y x y x y R =+=∈,{(,)0,,}B x y x y x y R =-=∈,则集合A B =( )A .)0,0(B .{}0C .{})0,0(D .∅9.(2012汕头质检)已知全集R,U = 集合{}1,2,3,4,5A =,[2,)B =+∞,则图中阴影部分所表示的集合为( )A . {0,1,2}B . {0,1}C . {1,2}D . {1}10.已知集合1,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,若0x M ∈,则0x 与N 的关系是( )A .0x N ∈B .0x N ∉C . 0x N ∈ 或0x N ∉D .不能确定11.已知集合A ={|25}x x -<≤,}121|{-≤≤+=m x m x B 且A B A =,求实数m 的取值范围.12.设S 为满足下列两个条件的实数所构成的集合:①S 内不含1; ②若a S ∈,则11S a∈- 解答下列问题:(1)若2S ∈,则S 中必有其他两个元素,求出这两个元素; (2)求证:若a S ∈,则11S a-∈; (3)在集合S 中元素的个数能否只有一个?请说明理由.高一寒假作业第2天 函数的概念1.(2012广州一模)函数y =) A .(,1]-∞- B .(,1)-∞- C .[1,)-+∞D .(1,)-+∞2.(2012茂名一模)已知函数2y x x =-的定义域为{0,1,2},那么该函数的值域为( ) A .{0,1,2} B .{0,2}C .1{|2}4y y -≤≤ D .{|02}y y ≤≤3.(2012湛江一模)函数2log (1)y x =-的定义域为( ) A .{|1}x x >B .{|1}x x ≥C .{|12}x x x ≥≠且D .R4.函数222, [0,3],()6, [2,0)x x x f x x x x ⎧-∈⎪=⎨+∈-⎪⎩的值域是( )A .RB .[9,)-+∞C .[8,1]-D .[9,1]-5.(2012海淀二模)函数21,12<≤-+-=x x y 的值域是( )A .(3,0]-B . (3,1]-C . [0,1]D . [1,5)6.(2012江西高考)设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ( )A .15 B .3 C .23 D .1397.已知函数f (x )的图象如图所示,则此函数的定义域、值域分别是( )A .(3,3)-,(2,2)-B .[3,3]-,[2,2]-C .[2,2]-,[3,3]-D .(2,2)-,(3,3)-8.(2012朝阳质检)已知x ∈R ,用[]x 表示不超过x 的最大整数,记{}[]x x x =-,若(0, 1)a ∈,则{}a 与1{}2a +的大小关系是( )A .不确定(与a 的值有关)B .{}a <1{}2a +C .{}a =1{}2a +D .{}a >1{}2a +9.(2012广东高考)函数y =的定义域为 . 10.集合}4,3{=A ,}7,6,5{=B ,集合A 到集合B 的映射共有 个.11.已知()f x 是二次函数,若(0)0f =,且(1)()1f x f x x +=++,求函数()f x 的解析式.12.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.高一寒假作业第3天 函数的单调性1.函数2y x =+在区间[3,0]-上( )A .递减B .递增C .先减后增D .先增后减2.(2012广东高考)下列函数中,在区间(0,)+∞上为增函数的是( ) A .ln(2)y x =+ B.y = C .1()2xy = D .1y x x=+3.(2012肇庆二模)已知()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( )A . (,1)-∞B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 4.已知)(x f 在R 上是减函数,若0≤+b a ,则下列正确的是( ) A .)]()([)()(b f a f b f a f +-≤+ B .)()()()(b f a f b f a f -+-≤+ C .)]()([)()(b f a f b f a f +-≥+ D .)()()()(b f a f b f a f -+-≥+ 5.函数322-+=x x y 的单调减区间是( )A .]3,(--∞B .),1[+∞-C .]1,(--∞D .),1[+∞6.(2012烟台质检)定义在R 上的偶函数()f x 满足:对任意的正实数1x ,212()x x x ≠,恒有1212()()0f x f x x x -<-.则( )A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<- 7.函数21()1f x x x =-+的最大值是 ( )A .45B .54C .34D .438.(2012济宁质检)若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[9.(2012舟山调研)函数1()1f x x =-在[2,3]上的最小值为______,最大值为______. 10.(2012金华质检)函数1y x x =--的单调增区间为________.11.已知函数()y f x =在定义域为[1,1]-是减函数,且(1)(21)f a f a -<-,求a 的取值范围.12.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.高一寒假作业第4天 奇偶性1.(2012梅州一模)函数3()2f x x =的图象( ) A .关于y 轴对称 B .关于x 轴对称 C .关于直线y x =对称 D .关于原点对称 2.下列函数为偶函数的是( )A .2y x =B .3y x =C .x y e =D .lny =3.(2012广州二模)已知函数()1x x f x e e -=-+ (e 是自然对数的底数),若()2f a =,则()f a -=( )A .3B .2C .1D .04.(2012佛山二模)设函数0()(),0x f x g x x ≥=<⎪⎩ ,若()f x 是奇函数,则(4)g -的值是( )A .2-B .12-C .14- D .2 5.(2012陕西高考)下列函数中,既是奇函数又是增函数的为( )A .1y x =+B .3y x =-C .1y x=D .||y x x = 6.(2012揭阳质检)已知奇函数()f x 在R 上单调递增,且1(21)()02f x f -+<. 则x 的取值范围为( )A .1(,)4-∞B .1(,)4+∞C .3(,)4-∞D .3(,)4+∞7.(2012房山一模)已知函数2221,0()21,0x x x f x x x x ⎧+-≥=⎨--<⎩,则对任意12,x x R ∈,若120x x <<,下列不等式成立的是( ) A .12()()0f x f x +< B . 12()()0f x f x +>C .12()()0f x f x ->D .12()()0f x f x -<8.(2012潍坊联考)奇函数()f x 在(0,)+∞上单调递增,若(1)0f =,则不等式[()()]0x f x f x --<的解集是( )A .(1,0)(1,)-+∞B .(,1)(0,1)-∞-C .(,1)(1,)-∞-+∞D .(1,0)(0,1)-9.(2012重庆高考)函数)4)(()(-+=x a x x f 为偶函数,则实数a = .10.(2012上海高考)已知()y f x =是奇函数,若()()2g x f x =+且(1)1g =,则(1)g -= .11.已知函数2()(0,)af x x x a R x=+≠∈ (1)判断函数()f x 的奇偶性;(2)若()f x 在区间[)+∞,2是增函数,求实数a 的取值范围.12.(2012德州联考)已知函数)(x f 是定义在R 上的单调函数满足(3)2f -=,且对任意的实数R a ∈有0)()(=+-a f a f 恒成立.(1)试判断)(x f 在R 上的单调性,并说明理由; (2)解关于x 的不等式2)2(<-xxf .高一寒假作业第5天 指数与指数函数1.函数21(0,1)x y a a a -=+>≠的图象必经过点( ) A .(0,1) B .(2,1)C .(2,2)D .(1,2)2.(2012广州调研)已知函数1,0,(),0.x x x f x a x -≤⎧=⎨ >⎩若(1)(1)f f =-,则实数a =( )A .1B .2C .3D .43.(2012北京模拟)在同一坐标系中,函数2x y =与1()2xy =的图象之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y x =对称4.(2012四川高考)函数(0,1)x y a a a a =->≠的图象可能是( )A.C.D.5.(2012房山一模)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( ) A . 1y x=-B . e x y =C . 23y x =-+ D . cos y x = 6.(2012韶关二模)设 2.52a =,02.5b =, 2.51()2c =,则,,a b c 的大小关系是( )A .a c b >>B .c a b >>C . a b c >>D .b a c >>7. (2012济南质检)设函数2 0()() 0.x x f x g x x ⎧<=⎨>⎩,,,若()f x 是奇函数,则(2)g 的值是( )A. 14-B. 4-C. 14D. 4 8.定义运算, ,a ab a b ≤⎧⊕=⎨,则函数()12xf x =⊕的图象是( )A .B .C .D .9.(2011门头沟一模)已知函数221,0,()2,0.x x f x x x x ⎧-≥=⎨--<⎩,若1)(=a f ,则实数a 的值是 .10.(2012上海高考)已知函数()x af x e -=(a 为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 .11.函数()(0,1)x f x a a a =>≠在区间[1,2]上的最大值比最小值大2a,求a 的值.12.设a 是实数,2()()21x f x a x R =-∈+, (1)求a 的值,使函数()f x 为奇函数;(2)试证明:对于任意,()a f x 在R 上为增函数.高一寒假作业第6天 对数与对数函数1.(2012安徽高考)23(log 9)(log 4)⋅=( ) A .14 B . 12C .2D .42.(2012天津高考)已知 1.22a =,0.21()2b -=,52log 2c =,则( )A .c b a <<B .c a b <<C .b a c <<D .b c a <<3.(2012陕西高考)集合{|lg 0}M x x =>,2{|4}N x x =≤,则MN =( )A .(1,2)B .[1,2)C .(1,2]D .[1,2]4. (2012济南质检)若函数()log (1)(0,1)a f x x a a =->≠的图象恒过定点,则定点的坐标为( ) A .(1,0) B . (2,0) C .(1,1) D .(2,1)5.(2012丰台一模)设 4.20.6a =,0.67b =,0.6log 7c =,则a ,b ,c 的大小关系是( )A .c b a <<B .c a b <<C .a c b <<D .a b c <<6.(2012西城二模)已知集合2{|log 1}A x x =<,{|0B x x c =<<,其中0}c >.若AB B =,则c的取值范围是( )A .(0,1]B .[1,)+∞C .(0,2]D .[2,)+∞7.函数2()log (31)x f x =+的值域为( )A .(0,)+∞B .[0,)+∞C .(1,)+∞D .[1,)+∞8.(2012门头沟一模)函数log (0a y x a =>且1)a ≠的图象经过点)1,2(-,函数(0xy b b =>且1)b ≠的图象经过点)2,1(,则下列关系式中正确的是( ) A .22b a > B .ba 22>C . b a )21()21(> D .2121b a >9.(2012江苏高考)函数x x f 6log 21)(-=的定义域为 .10.(2012北京高考)已知函数x x f lg )(=,若1)(=ab f ,则=+)()(22b f a f .11.(2012石景山一模)设函数21,,2()1log ,2x a x f x x x ⎧-+<⎪⎪=⎨⎪≥⎪⎩的最小值为1-,求实数a 的取值范围.12.(2012济南质检)设函数)1ln()(2++=ax x x f 的定义域为A . (1)若1A ∈,3A -∉,求实数a 的范围;(2)若函数=y ()f x 的定义域为R ,求实数a 的取值范围.高一寒假作业第7天 幂函数1.(2012曲阜质检)幂函数()y f x =)的图象经过点1(4,)2,则1()4f =( ) A .1B .2C .3D .42.(2012广州一模)已知幂函数226(57)m y m m x -=-+在区间(0,)+∞上单调递增,则实数m =( ) A .3 B .2 C .2或3 D .2-或3- 3.(2012淄博模拟)若0a <,则下列不等式成立的是 ( ) A .12()(0.2)2a a a >> B .1(0.2)()22aaa >> C .1()(0.2)22a a a >> D .12(0.2)()2aaa >> 4.函数()(1)2f x x α=-+过定点( )A .(1,3)B .(1,2)C .(2,3)D .(0,1)5.(2012济宁质检)设1{1,,1,2,3}2n ∈-,则使得()n f x x =为奇函数,且在(0,)+∞上单调 递减的n 的个数是( )A .1B .2C .3D .46.(2012韶关一模)下列函数在其定义域内既是奇函数又是增函数的是( )A .1y x=- B .3xy = C .13y x = D .lg y x =78.(2012海淀质检)函数1()x f x x+=图象的对称中心为( ) A .(0,0) B .(0,1) C . (1,0) D . (1,1) 9.函数25()3x y x A x -=∈-的值域是[4,)+∞,则集合A = . 10.(2011北京高考)已知函数32,2,()(1), 2.x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是________.11.(2012淮北模拟)已知函数1()f x x -=,若(1)(102)f a f a +<-,求a 的取值范围.12.已知幂函数39* ()m y x m N -=∈的图象关于y 轴对称,且在()0,+∞上单调递减,求满足()()22132m m a a +<-的a 得取值范围.高一寒假作业第8天 函数与方程1.(2012北京高考)函数xx x f )21()(21-=的零点个数为( ) A .0 B .1 C .2 D .32.(2012东莞二模)方程 03log 3=-+x x 的解所在的区间是( ) A . (0,1) B . (1,2) C .(2,3) D . (3,4)3.(2011丰台二模)用max{}a b ,表示a ,b 两个数中的最大数,设22()max{84,log }f x x x x =-+-,若函数()()g x f x kx =-有2个零点,则k 的取值范围是( )A .(0,3)B . (0,3]C . (0,4)D . [0,4]4.函数()2ln f x x x =--在定义域内零点的个数为( )A .0B .1C .2D .35.(2012天津高考)函数22)(3-+=x x f x 在区间(0,1)内的零点个数是( )A .0B .1C .2D .36.(2013揭阳质检)函数()lg 3f x x x =+-的零点所在区间为( ) A .(3,)+∞B .(2,3))C .((1,2)D .(0,1)7.已知1()ln f x x x=-在区间(1,2)内有一个零点0x ,若用二分法求0x 的近似值(精确度0.1),则需要将区间等分的次数为( )A .3B .4C .5D .6 8.(2012汕头一模)已知a 是函数15()5log x f x x =-的零点,若00x a <<,则0()f x 的值( )A .0()0f x =B .0()0f x >C .0()0f x <D .0()f x 的符号不能确定9.已知函数()24f x mx =+,在[2,1]-上存在0x ,使0()0f x =,则实数m 的取值范围是____________.10.(2012朝阳一模)已知函数213(),2,()24log ,0 2.x x f x x x ⎧+≥⎪=⎨⎪ <<⎩若函数()()g x f x k =-有两个不同的零点,则实数k 的取值范围是 .11.(2012西城一模)已知函数12,09,(),20.x x f x x x x ⎧≤≤⎪=⎨+-≤<⎪⎩(1)求()f x 的零点; (2)求()f x 的值域.12.证明方程24xx +=在区间(1,2)内有唯一一个实数解,并求出这个实数解(精确到0.2).高一寒假作业第9天 函数模型及应用1.资费调整后,市话费标准为:通话时间不超过3min 收费0.2元,超过3min 以后,每增加1min 收费0.1元,不足1min 按1min 付费,则通话费s (元)与通话时间(min)t 的函数图象可表示成图中的( )2.(2012浦东质检)某工厂从2006年开始,近八年以来生产某种产品的情况是:前四年年产量的增长速度越来越慢,后四年年产量的增长速度保持不变.则该厂这种产品的年产量y 与时间t 的函数图象可能是3.某商人将彩电先按原价提高40,然后在广告上写上"大酬宾,八折优惠"结果是每台彩电比原价多赚了270元,则每台彩电的原价为 元.4.某工厂12年来某产品总产量s 与时间t (年)的函数关系如图所示,下列四种说法:① 前三年总产量增长的速度越来越快.② 前三年总产量增长的速度越来越慢. ③ 第3年后至第8年这种产品停止生产了. ④ 第8年后至第12年间总产量匀速增加. 其中正确的说法是 .5.某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,求截取的矩形面积的最大值.6.(2012山东省实)某民营企业生产甲、乙两种产品,根据市场调查与预测,甲产品的利润与投资成正比,其关系如图①;乙产品的利润与投资的算术平方根成正比,其关系如图②.(1)分别将A、B两产品的利润表示为投资量的函数关系式;(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?高一寒假作业第10天空间几何体的结构1.下列命题正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点2.一个棱锥的侧面都是正三角形,那么这个棱锥底面多边形边数最多是()A.4B.5C.6D.73.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是()A.30B.45C.60D.904)A.B.C.6D5.(2012温州联考)下图是一个正方体的展开图,将其折叠起来,变成正方体后的图形可能是()6.如图,是一个无盖正方体盒子的表面展开图,A、B、C为其上三点,则在正方体盒子中,∠ABC等于()A.45°B.60°C.90°D.120°72,母线与轴的夹角为030,求圆锥的母线长以及圆锥的高.8.如图,已知三棱柱111ABC A B C 的所有棱长都相等,且侧棱垂直于底面,由B 沿棱柱侧面经过棱1CC到点1A 的最短路线长为1CC 的交点为D .求三棱柱的棱长.高一寒假作业第11天 三视图和直观图1.(2012梅州一模)一个几何体的三视图如图所示,则该几何体的体积为( )A .32aB .36aC .312aD .318a2.(2012浙江高考)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( )A .31cmB .32cmC .33cmD .36cm3.(2012汕头质检)如图,一个空间几何体的主视图和俯视图都是边长为1的正方形,侧视图是一个直径为1的圆,那么这个几何体的表面积为( )A .π4B .π3C .π2D .π234.(2012汕头一模)一个体积为( )A .12B .8 C. D.正视图侧视图俯视图侧视图正视图正视图侧视图俯视图主视图侧视图俯视图5.(2012新课标高考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B . 9C .12D .186.(2012东城二模)若一个三棱柱的底面是正三角形,其正(主)视图如图所示,则它的体积为 ( )AB .2C. D .47.(2012湛江一模)一个几何体的三视图如图所示,正视图是正方形, 俯视图为半圆,侧视图为矩形,则其表面积为( ) A .3π B .4π+ C .42π+ D .43π+8.(2012西城一模)已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则其侧视图的面积是( )A.2 B.2 C .28cm D .24cm侧视图正视图俯视图高一寒假作业第12天空间几何体的表面积与体积1.正三棱柱的高为3,底面边长为2,则它的体积为()A.2B.3CD.2)A.3πB.C.6πD.9π3.已知正方体的外接球的体积是43π,则这个正方体的棱长是()A.3BC.3D4.(2012新课标高考)平面α截球O的球面所得圆的半径为1,球心O到平面α体积为()AB.C.D.5.(2012上海高考)一个高为2的圆柱,底面周长为2π,该圆柱的表面积为______.6.(2012韶关一模)如图BD是边长为3的ABCD为正方形的对角线,将BCD∆绕直线AB旋转一周后形成的几何体的体积等于______.C7.(2012江苏高考)如图,在长方体1111ABCD A B C D -中,3AB AD ==,12AA =,求四棱锥11A BB D D -的体积.8.如图,三棱柱111ABC A B C -中,若E 、F 分别为AB 、AC 的中点,平面11EB C 将三棱柱分成体积为1V 、2V 的两部分,求1V :2V 的值.B 1D AB CC 1D 1A 1ABC A 1B 1C 1E F高一寒假作业第13天 空间点、线、面的位置关系1.如果两条直线,a b 没有公共点,那么,a b 的位置关系是( )A .共面B .平行C .异面D .平行或异面 2.下列说法正确的是( )A .空间中不同三点确定一个平面B .空间中两两相交的三条直线确定一个平面C .梯形确定一个平面D .一条直线和一个点确定一个平面3.已知E ,F ,G ,H 是空间四点,命题甲:E ,F ,G ,H 四点不共面,命题乙:直线EF 和GH 不相交,则甲是乙成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.(2012广州调研)在正四棱锥V ABCD -中,底面正方形ABCD 的边长为1,侧棱长为2,则异面直线VA 与BD 所成角的大小为( )A .6π B .4π C .3π D .2π 5.下列四个命题:①若直线a 、b 是异面直线,b 、c 是异面直线,则a 、c 是异面直线; ②若直线a 、b 相交,b 、c 相交,则a 、c 相交; ③若a ∥b ,则a 、b 与c 所成的角相等; ④若a ⊥b ,b ⊥c ,则a ∥c . 其中真命题的个数是( ) A .4B .3C .2D .16.(2012江门一模)如图是某个正方体的侧面展开图,1l 、2l 是两条侧面对角线,则在正方体中,1l 与2l ( )A .互相平行B .异面且互相垂直C .异面且夹角为3πD .相交且夹角为3πl 2l 17.如图,在正方体1111ABCD A BC D -中,E 是AB 的中点,F 是1A A 的中点,求证: (1)E 、C 、1D 、F 四点共面; (2)CE 、1D F 、DA 三线共点.8.如图所示,平面ABD 平面BCD =BD ,M 、N 、P 、Q 分别为线段AB 、BC 、CD 、DA 上的点,四边形MNPQ 是以PN 、QM 为腰的梯形.证明:三直线BD 、MQ 、NP 共点.D 1C 1B 1A 1FEDCBAQN PMD CBA高一寒假作业第14天 空间中的平行关系1.(2012湛江一模)对两条不相交的空间直线a 和b ,则( ) A .必定存在平面α,使得,a b αα⊂⊂B .必定存在平面α,使得a α⊂,b ∥αC .必定存在直线c ,使得a ∥c ,b ∥cD .必定存在直线c ,使得a ∥c ,b c ⊥2.(2012东莞二模)已知直线l m n ,,及平面α,下列命题中是假命题的是( ) A .若l ∥m ,m ∥n ,则l ∥n B .若l ∥α,n ∥α,则l ∥n C .若l m ⊥,m ∥n ,则l n ⊥ D .若,l n α⊥∥α,则l n ⊥3.(2012四川高考)下列命题正确的是( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行4.(2012全国高考)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为( )A .2BCD .15.(2012梅州一模)如图,在多面体ABCDEFG 中,平面ABC //平面DEFG ,AD ⊥平面DEFG ,AB AC ⊥,ED DG ⊥,EF ∥DG ,且1AC EF ==,2AB AD DE DG ====.(1)求证:BF //平面ACGD ; (2)求三棱锥A BCF -的体积.6.(2012湛江一模)在三棱锥P ABC -中,2PA AC BC ===,PA ⊥平面ABC ,BC AC ⊥,D 、E 分别是PC 、PB 的中点.(1)求证:DE //平面ABC ; (2)求证:AD ⊥平面PBC ; (3)求四棱锥A BCDE -的体积.ACPED EFGABCD高一寒假作业第15天 空间中的垂直关系1.(2012浙江高考)设l 是直线,α,β是两个不同的平面( ) A .若l ∥α,l ∥β,则α∥β B .若l ∥α,l ⊥β,则α⊥β C .若α⊥β,l ⊥α,则l ⊥β D .若α⊥β, l ∥α,则l ⊥β2.(2012东城二模)设n m ,是两条不同的直线,,αβ是两个不重合的平面,那么下面给出的条件中一定能推出m β⊥的是( )A .⊥αβ,且m ⊂αB .m ∥n ,且n ⊥βC .⊥αβ,且m ∥αD .m ⊥n ,且n ∥β3.(2012密云一模)已知α,β是平面,m ,n 是直线,给出下列命题 ①若α⊥m ,β⊂m ,则βα⊥.②若α⊂m ,α⊂n ,m ∥β,n ∥β,则α∥β.③如果,m n αα⊂⊄,m 、n 是异面直线,那么n 与α相交. ④若m αβ=,n ∥m ,且βα⊄⊄n n ,,则n ∥α且n ∥β.其中正确命题的有 .(填命题序号) 4.(2012惠州一模)给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中正确命题的有 .(填命题序号)5.(2012济南一模)如图,四棱锥S ABCD -中,M 是SB 的中点,//AB DC ,BC CD ⊥,SD ⊥平面SAB ,且22AB BC CD SD ===. (1)证明:CD SD ⊥;(2)证明:CM ∥平面SAD .6.(2012济宁质检)如图,四棱锥P ABCD -的底面ABCD 为矩形,且1PA AD ==,2AB =,120PAB ∠=,90PBC ∠=.(1)求证:平面PAD ⊥平面PAB ; (2)求三棱锥D PAC -的体积.ABCDPSABCDM高一寒假作业第16天 空间直角坐标系1.在空间直角坐标系中,P 点坐标为(1,2,3)-,则点P 到xOy 平面的距离为( ) A .1 B .2 C .3 D .142.到(1,0,0)A 的距离除以到(4,0,0)B 的距离的值为12的点(,,)P x y z 的坐标满足( ) A .2224x y z ++= B .22212x y z ++=C .2225()42x y z -++= D .2225()122x y z -++=3.已知点(1,2,11),(4,2,3),(6,1,4)A B C --,则ABC ∆的形状是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形4.已知ABC ∆的三个顶点坐标分别为(2,3,1),(4,1,2),(6,3,7)A B C -,则ABC ∆的重心坐标为( ) A .7(6,,3)2 B .7(4,,2)3 C .14(8,,4)3D .7(2,,1)65.在x 轴上与(4,1,7)A -和(3,5,2)B --等距离的点为 .6.已知(3,1,1)A -和(2,4,3)B -,则线段AB 在坐标平面yOz 上的射影长度为 .7.已知(,5,21),(1,2,2)A x x x B x x --+-,求AB 取最小值时x 的值.8.正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 和平面ABEF 互相垂直,点M 在AC 上移动,点N 在BF 上移动,若(0CM BN a a ==<<.(1)求MN 的长;(2)a 为何值时,MN 的长最小?高一寒假作业第17天 直线的方程1.(2012烟台质检)过两点(0,3),(2,1)的直线方程为( )A .30x y --=B .30x y +-=C .30x y ++=D .30x y -+=2.(2012潍坊质检)设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则a 、b 满足( ) A .1a b += B .1a b -= C .0a b += D .0a b -=3.过点(2,1)M 的直线与,x y 轴分别交于,P Q ,若M 为线段PQ 的中点,则这条直线的方程为( ) A .230x y --= B .250x y +-= C .240x y +-= D .230x y -+=4.若直线(23)60t x y -++=不经过第二象限,则t 的取值范围是( ) A .(23, +∞) B .3(,]2-∞ C .3[,)2+∞ D .3(,)2-∞5.倾斜角是直线30x -=的倾斜角的2倍,且过点P 的直线方程是______________.6.若经过点(1,1)P a a -+和(3,2)B a 的直线的倾斜角为锐角,则实数a 的取值范围是 .7.在ABC ∆中,已知点(5,2)A -、(7,3)B ,且边AC 的中点M 在y 轴上,边BC 的中点N 在x 轴上. (1)求点C 的坐标; (2)求直线MN 的方程.8.已知直线l :120()kx y k k R -++=∈. (1)证明直线l 过定点;(2)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,AOB ∆的面积为S ,求S 的最小值并求此时直线l 的方程.高一寒假作业第18天 两直线的位置关系1.与直线032=--y x 相交的直线的方程是( ) A .0624=--y x B .x y 2= C .52+=x y D .32+-=x y2.过点(1,0)且与直线220x y --=平行的直线方程是( ) A .210x y --= B .210x y -+= C .220x y +-= D .210x y +-=3.如果直线013=++y ax 与直线0322=-+y x 互相垂直,那么a 的值等于( ) A .3B .31-C .3-D .314.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( ) A .1133y x =-+ B .113y x =-+ C .33y x =- D .113y x =+5.过点(1,2)A ,且在两坐标轴上的截距相等的直线方程为 .6.若y x ,满足01332=--y x ,则22y x +的最小值为 .7.求经过直线1l :250x y +-=与直线2l :3210x y -+=的交点M ,且满足下列条件的方程:(1)与直线012=++y x 平行; (2)与直线012=++y x 垂直.8.已知点(2,1)P -,求:(1)过P 点与原点距离为2的直线l 的方程;(2)过P 点与原点距离最大的直线l 的方程,最大距离是多少?(3)是否存在过P 点与原点距离为3的直线?若存在,求出方程;若不存在,请说明理由. ∴ 过P 点不存在与原点距离为3的直线.高一寒假作业第19天 圆的方程1.圆心为(1,0)-,半径为2的圆的标准方程为( ) A .22(1)4x y ++= B .22(1)4x y +-= C .22(1)4x y ++= D .22(1)4x y -+=2.已知圆:C 22450x y x +--=,点(3,1)P 为弦AB 的中点,则直线AB 的方程是( )A .240x y --=B .40x y +-=C .240x y -+=D .20x y --=3.(2012辽宁高考)将圆222410x y x y +--+=平分的直线是( ) A .10x y +-= B .30x y ++= C .10x y -+= D .30x y -+=4.(2012银川一模)圆心在y 轴上且通过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .22100x y y ++= B .22100x y y +-= C .22100x y x ++= D .22100x y x +-=5.(2012西城一模)圆22430x y x +-+=的圆心到直线0x =的距离是_____.6.(2012肇庆一模)如果实数,x y 满足等式22(2)3x y -+=,那么xy的最大值是 .7.已知直线l 经过两点(2,1),(6,3).(1)求直线l 的方程;(2)圆C 的圆心在直线l 上,并且与x 轴相切于(2,0)点,求圆C 的方程.8.直角三角形ABC 的顶点坐标(2,0)A -,直角顶点(0,B -,顶点C 在x 轴上. (1)求BC 边所在的直线方程;(2)M 为ABC ∆的外接圆的圆心,求圆M 的方程.高一寒假作业第20天直线与圆的位置关系1.(2012湛江二模)过点(0,2)且与圆221x y +=相切的直线方程为( ) A .2y x =+ B .2y x =±+C .2y +D .2y =+ 2.(2012重庆高考)设,A B 为直线y x =与圆221x y += 的两个交点,则||AB =( )A .1 BC D .23.(2012陕西高考)已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( ) A .l 与C 相交 B . l 与C 相切 C .l 与C 相离 D . 以上三个选项均有可能4.(2012石景山一模)直线5x y +=和圆O :2240x y y +-= 的位置关系是( ) A .相离 B .相切 C .相交不过圆心 D .相交过圆心5.(2012东莞一模)从圆22(1)(1)1x y -+-=外一点(2,3)P 向这个圆引切线,则切线长为________.6.(2012北京模拟)若点P 在直线03:1=++y x l 上,过点P 的直线2l 与曲线C :22(5)16x y -+=只有一个公共点M ,则PM 的最小值为________.7.(2012房山一模)直线3y kx =+与圆22(1)(2)4x y -++=相交于N M ,两点,若MN ≥求k 的取值范围.8.(2013珠海一模)已知圆C :012822=+-+y y x ,直线l :02=++a y ax .(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且22=AB 时,求直线l 的方程.高一寒假作业详细答案高一寒假作业第1天 集合1.B 【解析】∵{1,0,1}M =-,{0,1}N =,∴M N ={0,1}.2.A 【解析】U M =ð{2,4,6}.3.D 【解析】2{230}{1,3}A x x x =--==-,B 有∅,{1}-,{3},{1,3}-,共4个.4.C 【解析】∵B y A x ∈∈,,∴当1-=x 时,2,0=y ,此时1,1-=+=y x z , 当1=x 时,2,0=y ,此时3,1=+=y x z , ∴集合{1,1,3}{1,1,3}z z =-=-共三个元素. 5.D6.C 【解析】∵{0,3,9}N =,∴{0,3}M N =.7.A 【解析】集合A 有,{1},{2},{1,2}∅,共4个.8.C9.D 【解析】阴影部分表示()U A B ð,故选D . 10.A【解析】当2,k n n Z =∈时,1,22n N x x n Z ⎧⎫==+∈⎨⎬⎩⎭, 当21,k n n Z =-∈时,1,24n N x x n Z M ⎧⎫==+∈=⎨⎬⎩⎭, ∴M N ,∵0x M ∈,∴0x N ∈.11.【解析】 ∵ A B A =,∴ B A ⊆.(1)当B =∅时,则121m m +>-,解得2m <.(2)当B ≠∅时,则12121512m m m m +≤-⎧⎪-≤ ⎨⎪+>-⎩,解得23m ≤≤. ∴实数m 的取值范围是3m ≤. 12.【解析】(1) ∵2S ∈, ∴112S ∈-,即1S -∈, ∴()111S ∈--,即12S ∈; (2) 证明:∵a S ∈, ∴11S a∈-, ∴111111S a a=-∈--; (3) 集合S 中不能只有一个元素,用反证法证明如下:假设S 中只有一个元素,则有11a a=-,即210a a -+=,该方程没有实数解,∴集合S 中不能只有一个元素.1.D0≠,∴10x +>,解得1x >-.2.B 【解析】当0x =时,0y =;当1x =时,0y =;当2x =时,2y =. 3.A 【解析】由10x ->,解得1x >.4.C 【解析】∵22(1)+1, [0,3],()(3)9, [2,0).x x f x x x ⎧--∈⎪=⎨+-∈-⎪⎩, ∴当[0,3]x ∈时,()f x ∈[3,1]-;当[2,0)x ∈-时,()f x ∈[8,0)-; ∴()f x 的值域为[3,1][8,0)--=[8,1]-.5.B 【解析】∵21,12<≤-+-=x x y ,∴222101y -+<≤-+,即31y -<≤.6.D 【解析】∵32)3(=f ,∴9131941)32()32())3((2=+=+==f f f . 7.B 【解析】由图象可知,该函数的定义域为[3,3]-,值域为[2,2]-.8.A 【解析】当1(0,)2a ∈时,则{}0a a a =-=,111{}0222a a a +=+-=+,∴1{}{}2a a <+. 当1[,1)2a ∈时,则{}0a a a =-=,111{}1222a a a +=+-=-,∴1{}{}2a a >+.9.【答案】[)()1,00,-+∞【解析】由100x x +≥⎧⎨≠⎩,解得10x x ≥-≠且,∴定义域为[1,0)(0,)-+∞.10.9【解析】339⨯=.11.【解析】设2()(0)f x ax bx c a =++≠,∵(0)0f =,∴0c =,∴2()f x ax bx =+.又(1)()1f x f x x +=++.∴22(1)(1)1a x b x ax bx x +++=+++,∴21ax a b x ++=+,∴211a a b =⎧⎨+=⎩,解得1212a b ⎧=⎪⎪⎨⎪=⎪⎩.∴211()22f x x x =+.12.【解析】211()(1)22f x x a =--+的对称轴为1x =.∴[1,]b 为()f x 的单调递增区间. ∴min 1()(1)12f x f a ==-=①,2max 1()()2f x f b b b a b ==-+=② 由①②解得323a b ⎧=⎪⎨⎪=⎩.1.C 2.A 3.B4.D 【解析】∵)(x f 在R 上是减函数,若0≤+b a ,∴a b ≤-,∴()()f a f b ≥-,同理:()()f b f a ≥-, ∴()()()()f a f b f a f b +≥-+-. 5.A6.A 【解析】由1212()()0f x f x x x -<-,则()f x 在(0,)+∞上单调递减,又()f x 是偶函数,∴(2)(2)f f -=,∵03>21>>,∴(3)(2)(1)f f f <-<.7.D 【解析】∵ 221331()244x x x -+=-+≥,∴214()13f x x x =≤-+. 8.B 【解析】220,1()12(2)2a a -<⎧⎪⎨-≥-⎪⎩,解得138a ≤.9.12,1【解析】1()1f x x =-在(1,)+∞上是减函数,∴1()1f x x =-在[2,3]上是减函数, ∴min 1()(3)2f x f ==,max ()(2)1f x f ==.10. (,1]-∞【解析】1,1,121, 1.x y x x x x ≥⎧=--=⎨-<⎩ 作出该函数的图象如图所示.由图象可知,函数的单调增区间是(,1]-∞.11.【解析】∵()y f x =在定义域为[1,1]-是减函数, ∴由(1)(21)f a f a -<-得:1211111211a a a a ->-⎧⎪-≤-≤⎨⎪-≤-≤⎩,解得203a ≤<, ∴a 的取值范围是2[0,)3.12.【解析】 (1)证明:设210x x >>,则12()()f x f x -1212121111()()x x ax a x x x -=---=, 又∵ 210x x >>,∴12120,0x x x x -<>,∴12120x x x x -<,即 12()()f x f x <, ∴()f x 在(0,)+∞上是单调递增函数.(2)∵()f x 在1[,2]2上的值域是1[,2]2,又()f x 在1[,2]2上单调递增, ∴11()22f =,(2)2f =.∴解得25a =.高一寒假作业第4天 奇偶性1.D 2.D 3.D 4.A 5.D6.A 【解析】∵()f x 为奇函数,1(21)()0.2f x f -+<, ∴(21)f x -<1()2f -,∴1212x -<-,解得14x <. 7.D 【解析】∵设0x <,则0x ->,∴22()()2()121()f x x x x x f x -=-+--=--=, 同理:设0x >,()()f x f x -=,∴()f x 为偶函数,图象关于y 轴对称, ∵22()21(1)2f x x x x =+-=+-在[0,)+∞上递增,∵120x x <<,∴1200x x -<-,∴12()()f x f x <.8.D 【解析】∵()f x 为奇函数,∴[()()]0x f x f x --<可化为()0xf x <,如图,根据()f x 的性质可以画出()f x 的草图,因此()010xf x x <⇔-<<,或0x <9.4【解析】()f x 为偶函数,∴(1)(1)f f -=,∴5(1)3(1)a a --+=-+,即4a =. 10.3【解析】由12)1()1(=+=f g ,得1)1(-=f ,∴32)1(2)1()1(=+-=+-=-f f g . 11.【解析】(1)当0=a 时,()2x x f =为偶函数;当0≠a 时,()x f 既不是奇函数也不是偶函数.(2)设212≥>x x ,()()22212121x a x x a x x f x f --+=-[]12121212()x x x x x x a x x -=+-, 由212≥>x x 得()162121>+x x x x ,0,02121><-x x x x要使()x f 在区间[)+∞,2是增函数只需()()021<-x f x f ,即()02121>-+a x x x x 恒成立,则16≤a . 12.【解析】(1))(x f 是R 上的减函数,∵对任意的实数R a ∈有0)()(=+-a f a f 恒成立.∴)(x f 在R 上的奇函数,∴0)0(=f . ∵)(x f 在R 上是单调函数,且(3)(0)f f ->,∴)(x f 在R 上是减函数. (2)∵(3)2f -=,2)2(<-xx f ,∴)3()2(-<-f x xf ,∵)(x f 在R 上是减函数∴32->-x x ,即022>+xx ,解得:1x <-,或0x >, ∴不等式的解集为(,1)(0,)-∞-+∞.高一寒假作业第5天 指数与指数函数1.C 【解析】2x =时,2y =,故图象必经过点(2,2).2.B 【解析】∵(1)f a =,(1)2f -=,(1)(1)f f =-,∴2a =.3.A 【解析】∵1()22x xy -==,∴它与函数2x y =的图象关于y 轴对称.4.C【解析】∵(0,1)x y a a a a =->≠恒过点(1,0),故C 正确. 5.B6.C 【解析】∵1a >,1b =,01c <<,∴a b c >>. 7. A 【解析】21(2)(2)24g f -=--=-=-.8.A 【解析】∵2, 0()12 1 , 0x xx f x x ⎧<=⊕=⎨≥⎩,∴选项A 正确.9. 1±【解析】0211a a ≥⎧⎨-=⎩或2021a a a <⎧⎨--=⎩,解得1a =±.10.【解析】∵)(x f 在区间),1[+∞上是增函数,∴a x t -=在区间[1,)+∞上单调递增,∴1≤a . 11.【解析】当1a >时,()x f x a =在区间[1,2]上为增函数,∴2max ()(2)f x f a ==,min ()(1)f x f a ==.∴22a a a -=,解得0a =(舍去),或32a =. 当01a <<时,()x f x a =在区间[1,2]上为减函数,∴max ()(1)f x f a ==,2min ()(2)f x f a ==. ∴22a a a -=,解得0a =(舍去),或12a =. 综上可知,12a =,或32a =. 12.【解析】(1)∵222()2112xx xf x a a -⋅-=-=-++,由()f x 是奇函数,∴()()0f x f x +-=,即2(12)2012x xa +-=+,∴1a =. (2)证明:设1212,,x x R x x ∈<,则12()()f x f x -1222()()2121x x a a =---++21222121x x =-++12122(22)(21)(21)x x x x -=++, ∵2xy =在R 上是增函数,且12x x <,∴1222x x <即12220x x-<,又∵1210x +>,2210x+>,∴12()()0f x f x -<,即12()()f x f x <. ∵此结论与a 取值无关,∴对于a 取任意实数,()f x 在R 上为增函数.高一寒假作业第6天 对数与对数函数1.D 【解析】23lg9lg 42lg32lg 2log 9log 44lg 2lg3lg 2lg3⨯=⨯=⨯=. 2.A 【解析】∵0.20.2 1.21()222b -==<,∴a b <<1, ∵14log 2log 2log 25255<===c ,∴a b c <<. 3.C 【解析】∵{|lg 0}{|1}M x x x x =>=>,2{|4}{|22}N x x x x =≤=-≤≤,∴(1,2]MN =.4. B 【解析】令11x -=,得2,0x y ==.5.B 【解析】∵01a <<,1b >,0c <,∴c a b <<. 6.D 【解析】∵{|02}A x x =<<,A B B =,∴2c ≥. 7.A 【解析】∵311x+>,∴22()log (31)log 10x f x =+>=. 8.C 【解析】∵1log 21log a a a -=-=,∴12a =,∵12b =,∴2b =,∴b a )21()21(>.9.【解析】∵612log 0x -≥,∴61log 2x ≤,∴12666log log 6log x ≤=0<x10.2【解析】∵x x f lg )(=,∴1)(=ab f ,1lg =ab ,∴2222()()lg lg f a f b a b +=+2(lg lg )2lg 2a b ab =+==. 11.【解析】当12x <时,1()(,)2f x a ∈-+∞, 当12x ≥时,()[1,)f x ∈-+∞, ∵()f x 的最小值为1-,∴1(,)[1,)2a -+∞⊆-+∞∴112a -≥-,即12a ≥-.∴实数a 的取值范围是21-≥a .12.【解析】(1)由题意,得1109310a a ++>⎧⎨-+≤⎩,解得310≥a .∴实数a 的范围为),310[+∞. (2)由题意,得012>++ax x 在R 上恒成立,则042<-=∆a ,解得22<<-a .∴实数a 的范围为(22)-,.高一寒假作业第7天 幂函数1.C 【解析】设()f x x α=,则142α=,∴12α=-,∴12()f x x -=,∴12(2)22f -==.2.A 【解析】由2257160m m m ⎧-+=⎪⎨->⎪⎩,解得3m =.3.B 【解析】∵0a <,a y x =在(0,)+∞上是减函数,∴1(0.2)()22aa a >>.4.C 【解析】令11x -=,得2,3x y == , ∴函数()(1)2f x x α=-+过定点(2,3).5.A 6.C7.B 【解析】先由一个图象的位置特征确定α的大小, 再由此α值判断另一图象位置特征是否合适,可判定选B .8.B 【解析】∵11()1x f x x x+==+,∴对称中心为(0,1). 9.7(3,]2【解析】∵2543x y x -=≥-,∴7203x x -≤-,∴732x <≤. 10.(0,1)【解析】2()f x x=在[2,)+∞上递减,故()(0,1]f x ∈,3()(1)f x x =-在(,2)-∞上递增,故(,1))(f x -∞∈,∵()f x k =有两个不同的实根,∴实数k 的取值范围是(0,1). 11.【解析】由函数1()f x x -=的图象可得,101020a a +<⎧⎨->⎩,或1010201102a a a a +>⎧⎪->⎨⎪+>-⎩,或1010201102a a a a+<⎧⎪-<⎨⎪+>-⎩,∴1a <-或35a <<. 12.【解析】∵函数在()0,+∞上的单调递减,∴390m -<,解得3m <;∵*m N ∈,∴1,2m =.当1m =时,396m -=-,当2m =时,393m -=-, 又函数图象关于y 轴对称,∴39m -是偶数,∴1m =.∵ 12y x =在[0,)+∞上单调递增,∴ 10320321a a a a +≥⎧⎪->⎨⎪->+⎩,解得213a -<≤.∴a 的取值范围是213a -<≤.高一寒假作业第8天 函数与方程1.B 【解析】∵12y x =和1()2xy =的图象只有一个交点,∴零点只有一个,故选B .2.C 【解析】令3()log 3f x x x =+-,∵(2)0f <,(3)0f >,∴(2)(3)0f f ⋅<,故选 C . 3.C 【解析】依题意函数()y f x =与直线y kx =有两个交点.当0k =显然不成立,排除D .其次,二次函数的顶点是(4,12),与原点连线的斜率是3,显然成立,排除A ,B .4.C 【解析】画出函数2y x =-和函数ln y x =的图象有两个交点,则原函数有两个零点. 5.B 【解析】令()0f x =,得322xx =-,∵2x y =和32y x =-的图象的交点有1个, ∵(0)10f =-<,(1)10f =>,∴在区间)1,0(内函数的零点个数为1.6.B 【解析】∵(1)20f =-<,(2)1210f g =-<,(3)130f g =>,∴(2)(3)0f f ⋅<,故选B . 7.B 【解析】1()0.12n<,解得4n ≥.8.C 【解析】∵15()5log x f x x =-在(0,)+∞上为增函数,∵00x a <<,∴0()()0f x f a <=.9.(,2][1,)-∞-+∞【解析】(2)(1)(44)(24)0f f m m -⋅=-++≤,∴1m ≥,或2m ≤-. 10.3(,1)4【解析】当2x ≥时,3()(,1]4f x ∈,当02x <<时,()(,1)f x ∈-∞,∴3(,1)4k ∈.11.【解析】(1)由1209x x ≤≤⎧⎪⎨=⎪⎩,解得0x =;由2200x x x -≤<⎧⎨+=⎩,解得1x =-; ∴()f x 的零点是1-和0.(2)∵当[2,0)x ∈-时,1()[,2]4f x ∈-,当[0,9]x ∈时,()[0,3]f x ∈,∴()f x 的值域是1[,3]4-.12.【解析】设函数()24xf x x =+-,∵(1)10,(2)40f f =-<=>,又∵()f x 是增函数,∴函数()24xf x x =+-在区间[1,2]有唯一的零点,则方程24xx +=在区间(1,2)有唯一一个实数解. 取区间[]1,0作为起始区间,用二分法逐次计算如下由上表可知区间[]1.375,1.5的长度为0.1250.2<, ∴函数)(x f 零点的近似值可取1.375(或1.5).。

高一数学寒假作业答案

高一数学寒假作业答案

高一数学寒假作业答案一、填空题(本题满分42分,每小题3分)1.{0,π2 }2.-123.-124.25.y=ln(2x-2)6.07.(-∞,1]8.310 9.1 10.(12 ,-32 ),(-12 ,32 ) 11.②③12.(3,5) 13.19 14.[-1-π , 1+π]二、解答题15.(本题满分10)(1) log189=a,log185=b,log3645=a+b2-a ;(2) tan(∠A+∠B)=12+131-12×13 =1,△ABC中∠A+∠B = π4 ,∠C =3π4 .16.(本题满分8)tanα2 =sinα2 cosα2= sinα22cosα2 cosα2 2cosα2=sinα 1+cosα=sin2α (1+cosα)sinα=1-cosα sinα= 1+sinα-cosα1+sinα+cosα .17. (本题满分10(1) =(2 , 3), =(3 , k).若∠BAC是锐角,则 =6+3k>0,且k≠92 ;若∠ABC是锐角,则 =7-3k>0;若∠BCA是锐角,则 =k2-3k+3>0;k的取值范围是(-2 , 73 ).(2) 若∠BAC是直角,则 =6+3k =0,k=-2,这时| |=| |=13 ,△ABC的面积是132 ;若∠ABC是直角,则 =7-3k =0,k=73 ,这时△ABC不是等腰直角三角形;又∠BCA一定是锐角,所以,仅存在实数k=-2,使得△ABC是等腰直角三角形,这时△ABC的面积是132 .18.(本题满分10分)(1)h=3 sinθ+cosθ =2sin(θ+π6 ),因为0<θ<π2 ,所以π6 <θ+π6 <2π3 ,h的最大值是2,相应的θ值为π3 ;(2)h>3时,sin(θ+π6 )>32 ,所以π3 <θ+π6 <2π3 ,即π6<θ<π2 ,θ取值范围是(π6 ,π2 ).19.(本题满分10分)(1)f (x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<π)的最大值是2 ,周期是π,∴所以A=2 ,ω=2,∵f (x)图象过点(-π8 ,-2 ),∴sin(-π4 +φ)=-1,∵-π<φ<π,∴φ=-π4 ,f (x) =2 sin(2x-π4 ).(2)令2 sin(2x-π4 )=0,得2x-π4 =kπ,即x=kπ2 +π8,k是整数,f (x)图象的对称中心是(kπ2 +π8 ,0),k是整数.(3)x∈[0 , π2 ]时,2x-π4 ∈[-π4 , 3π4 ],sin(2x-π4 )∈[-22 , 1],f (x)的取值范围是[-1 , 2 ] ,若函数y=f (x)-m在[0 , π2 ]上有零点,则实数m的.取值范围是[-1 , 2 ].20.(本题满分10分)(1) f (x)的定义域是{x|x∈R , x≠kπ2 , k∈Z};(2) sinx+3sinx+2 =1+1sinx+2 最大值为1+1-1+2 =2;(3) 设t=sinx+cosx,则1sinx +1cosx = sinx+cosxsinxcosx = 2tt2-1 ,x∈(0 , π2 )时,t的取值范围是(1 , 2 ].用函数单调性定义可证明s(t) = 2tt2-1 (t∈(1 , 2 ])是减函数,所以x∈(0 , π2 )时,2tt2-1 最小值为22 ,又α∈R时,2g(α)最大值为22 ;所以f (x)≥2g(α)恒成立.注:部分试题有变动,第2题原题是求sin2010°的值,答案一样;第15题去了第1小题,第2小题将求角C改为证明;第16题原来是证明:tanα2 = sinα1+cosα = 1+sinα-cosα1+sinα+cosα ;第17题锐角三角形改为角BAC为锐角,等腰直角三角形改为直角三角形。

高一数学必修3寒假作业全册练习及答案汇编

高一数学必修3寒假作业全册练习及答案汇编

高中数学必修3寒假必做作业目录1、1、1 算法的概念练习一1、1、2 程序框图练习一1、1、2 程序框图练习二1、2、1 输入语句、输出语句和赋值语句练习二1、2、1输入语句、输出语句和赋值语句练习一1、2、2 条件语句练习一1、2、2 条件语句练习二1、2、3 循环语句练习一1、2、3 循环语句练习一7671、3 算法案例练习一1、3 算法案例练习二第一章算法初步练习一第一章算法初步练习二2、1、1随机抽样练习一2、1、1随机抽样练习二2、1、2系统抽样练习一2、1、2系统抽样练习二2、1、3分层抽样练习一2、1、3分层抽样练习二2、3、1变量之间的相关关系练习二2、3、2两个变量的线性相关练习一2、3、2两个变量的线性相关练习二2.2.1用样本的频率分布估计总体分布练习一2.2.1用样本的频率分布估计总体分布练习二2.3.1变量之间的相关关系练习一第二章统计练习一第二章统计练习二3、1、3概率的基本性质练习一3、1、3概率的基本性质练习二3、2、2用样本的数字特征估计总体的数字特征练习一3、2、2用样本的数字特征估计总体的数字特征练习二3.1.1随机事件的概率练习一3.1.1随机事件的概率练习二3.1.2概率的意义练习一3.1.2概率的意义练习二3.2.1古典概型练习一3.2.1古典概型练习二3.2.2随机数的产生练习一3.2.2随机数的产生练习二3.3.1几何概型练习一3.3.1几何概型练习二3.3.2均匀随机数的产生练习一3.3.2均匀随机数的产生练习二第三章概率练习一第三章概率练习二1、1、1 算法的概念练习一一、选择题1、看下面的四段话,其中不是解决问题的算法的是( ) A 、从济南到北京旅游,先坐火车,再坐飞机抵达B 、解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C 、方程x 2-1=0有两个实根D 、求1+2+3+4+5的值,先计算1+2=3,再由于3+3=6,6+4=10,10+5=15,最终结果为152、下面的问题中必须用条件结构才能实现的个数是( ) (1)已知三角形三边长,求三角形的面积; (2)求方程ax+b=0(a,b 为常数)的根; (3)求三个实数a,b,c 中的最大者; (4)求1+2+3+…+100的值。

高一数学寒假作业答案

高一数学寒假作业答案

高一数学寒假作业答案高一数学寒假作业答案高一数学寒假作业答案一、选择题1.对于集合A,B,AB不成立的含义是A.B是A的子集B.A中的元素都不是B的元素C.A中至少有一个元素不属于BD.B中至少有一个元素不属于A[答案] C[解析] AB成立的含义是集合A中的任何一个元素都是B的元素.不成立的含义是A中至少有一个元素不属于B,应选C.A.{a}?MB.a?MC.{a}MD.aM[答案] A[解析] ∵a=3536=6,aM,{a}?M.3.以下四个集合中,是空集的是[答案] B[解析] 选项A、C、D都含有元素.而选项B无元素,应选B.A.A=BB.A?BC.B?AD.以上都不对[答案] A[解析] A、B中的元素显然都是奇数,A、B都是有所有等数构成的集合.故A=B.选A.[探究] 假设在此题的根底上演变为kN.又如何呢?答案选B你知道吗?A.1B.-1C.0,1D.-1,0,1[答案] D[解析] ∵集合A有且仅有2个子集,A仅有一个元素,即方程ax2+2x+a=0(aR)仅有一个根.当a=0时,方程化为2x=0,x=0,此时A={0},符合题意.当a0时,=22-4aa=0,即a2=1,a=1.此时A={-1},或A={1},符合题意.a=0或a=1.A.PQB.PQC.P=QD.以上都不对[答案] D[解析] 因为集合P、Q代表元素不同,集合P为数集,集合Q为点集,应选D.二、填空题[答案] m1[解析] ∵M=,2mm+1,m1.8.集合x,yy=-x+2,y=12x+2{(x,y)}y=3x+b},那么b=________.[答案] 2[解析] 解方程组y=-x+2y=12x+2得x=0y=2代入y=3x+b得b=2.[答案] M=P[解析] ∵xy0,x,y同号,又x+y0,x0,y0,即集合M 表示第三象限内的点.而集合P表示第三象限内的点,故M=P.三、解答题10.判断以下表示是否正确:(1)a(2){a}{a,b};(3)?{-1,1};(4){0,1}={(0,1)};[解析] (1)错误.a是集合{a}的元素,应表示为a{a}.(2)错误.集合{a}与{a,b}之间的关系应用?表示.(3)正确.空集是任何一个非空集合的真子集.(4)错误.{0,1}是一个数集,含有两个元素0,1,{(0,1)}是一个以有序实数对(0,1)为元素的集合,所以{0,1}{(0,1)}.[解析] 由AB.(1)当A=时,应有2a-2a+24.得2a-212.设S是非空集合,且满足两个条件:①S{1,2,3,4,5};②假设aS,那么6-aS.那么满足条件的S有多少个?[分析^p ] 此题主要考察子集的有关问题,解决此题的关键是正确理解题意.非空集合S所满足的第一个条件:S是集合{1,2,3,4,5}的任何一个子集,第二个条件:假设aS,那么6-aS,即a和6-a都是S中的元素,且它们允许的取值范围都是1,2,3,4,5.[解析] 用列举法表示出符合题意的全部S:{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5}.共有7个.[点评] 从此题可以看出,S中的元素在取值方面应满足的条件是:1,5同时选,2,4同时选,3单独选.。

【优质】高一数学的寒假作业答案word版本 (3页)

【优质】高一数学的寒假作业答案word版本 (3页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==高一数学的寒假作业答案同学们的寒假作业做得怎么样了,下面是小编为您整理高一数学的寒假作业答案,同学们做完可以参考。

高一数学寒假作业答案参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D D D A D D B C A C B C13. ; 14. 4 ; 15. 0.4; 16. ②③17.(1)∵A中有两个元素,∴关于的方程有两个不等的实数根,∴ ,且,即所求的范围是,且;……6分(2)当时,方程为,∴集合A= ;当时,若关于的方程有两个相等的实数根,则A也只有一个元素,此时 ;若关于的方程没有实数根,则A没有元素,此时,综合知此时所求的范围是,或.………13分18 解:(1) ,得(2) ,得此时,所以方向相反19.解:⑴由题义整理得 ,解方程得即的不动点为-1和2. …………6分⑵由 = 得如此方程有两解,则有△=把看作是关于的二次函数,则有解得即为所求. …………12分20.解: (1)常数m=1…………………4分(2)当k<0时,直线y=k与函数的图象无交点,即方程无解; 当k=0或k 1时, 直线y=k与函数的图象有唯一的交点,所以方程有一解;当0所以方程有两解.…………………12分21.解:(1)设,有, 2取,则有是奇函数 4(2)设,则,由条件得在R上是减函数,在[-3,3]上也是减函数。

6当x=-3时有最大值 ;当x=3时有最小值,由,,当x=-3时有最大值6;当x=3时有最小值-6. 8(3)由,是奇函数原不等式就是 10由(2)知在[-2,2]上是减函数原不等式的解集是 1222.解:(1)由数据表知,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常州市高一数学寒假作业-习题精编5一、选择题(本大题共12小题,共60.0分)1.已知集合A={(x,y)|y=x},B={(x,y)|(x-1)2+(y-1)2=5},则集合A∩B的元素个数为()A. 0B. 1C. 2D. 32.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为()A. B. 2 C. 2π D. 4π3.下列命题中,正确的命题是()A. 任意三点确定一个平面B. 三条平行直线最多确定一个平面C. 不同的两条直线均垂直于同一个平面,则这两条直线平行D. 一个平面中的两条直线与另一个平面都平行,则这两个平面平行4.若幂函数f(x)的图象过点,则函数g(x)=f(x)-3的零点是()A. B. 9 C. D. (9,0)5.已知直线l过点(1,1)且平行于直线4x+y-8=0,则直线l的方程是()A. x-4y+3=0B. x-4y-5=0C. 4x+y+5=0D. 4x+y-5=06.已知函数f(x)=ln(4-x),则的定义域为()A. (-∞,1)∪(1,8)B. (-∞,1)∪(1,2)C. (0,1)∪(1,8)D. (0,1)∪(1,2)7.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.8.已知点P与点Q(1,-2)关于直线x+y-1=0对称,则点P的坐标为()A. (3,0)B. (-3,2)C. (-3,0)D. (-1,2)9.在平面直角坐标系xOy中,圆C与圆O:相切,且与直线x-2y+5=0 相切,则圆C的面积的最小值为()A. B. C. D.10.已知函数f(x)在[3,+∞)上单调递减,且f(x+3)是偶函数,则a=f(log32),b=f(30.5),c=f(log264)的大小关系是()A. a>b>cB. b>c>aC. c>b>aD. b>a>c11.已知函数,记f(2)+f(3)+f(4)+…+f(10)=m,,则m+n=()A. -9B. 9C. 10D. -1012.如图,已知一个八面体的各条棱长为1,四边形ABCD为正方形,下列说法①该八面体的体积为;②该八面体的外接球的表面积为2π;③E到平面ADF的距离为;④EC与BF所成角为60°;其中不正确的个数为()A. 0B. 1C. 2D. 3二、填空题(本大题共4小题,共20.0分)13.=______.14.已知正方体的体积为64,则这个正方体的内切球的体积为______.15.已知函数在R上存在最小值,则m的取值范围是______.16.已知实数x,y满足x2-4x+3+y2=0,则的取值范围是______.三、解答题(本大题共6小题,共70.0分)17.已知集合A={x|-3<x<2},B={x|0≤x<5},C={x|x<m},全集为R.(1)求A∩(∁R B);(2)若(A∪B)⊆C,求实数m的取值范围.18.已知直线l1的方程为x+2y-4=0,若l2在x轴上的截距为,且l1⊥l2.(1)求直线l1和l2的交点坐标;(2)已知直线l3经过l1与l2的交点,且在y轴上截距是在x轴上的截距的2倍,求l3的方程.19.已知圆C的圆心坐标为(a,0),且圆C与y轴相切.(1)已知a=1,M(4,4),点N是圆C上的任意一点,求|MN|的最小值.(2)已知a<0,直线l的斜率为,且与y轴交于点.若直线l与圆C相离,求a的取值范围.20.已知函数f(x)=log a(ax-1)(a>0且a≠1).(1)当a=3时,f(x)<1,求实数x的取值范围.(2)若f(x)在[3,6]上的最大值大于0,求a的取值范围.21.如图,四棱锥P-ABCD的底面ABCD是正方形,△PAD为等边三角形,M,N分别是AB,AD的中点,且平面PAD⊥平面ABCD.(1)证明:CM⊥平面PNB;(2)设点E是棱PA上一点,若PC∥平面DEM,求.22.已知f(x)是定义在[-5,5]上的奇函数,且f(-5)=-2,若对任意的m,n∈[-5,5],m+n≠0,都有.(1)若f(2a-1)<f(3a-3),求a的取值范围.(2)若不等式f(x)≤(a-2)t+5对任意x∈[-5,5]和a∈[-3,0]都恒成立,求t的取值范围.答案和解析1.【答案】C【解析】解:∵集合A={(x,y)|y=x},B={(x,y)|(x-1)2+(y-1)2=5},∴A∩B={(x,y)|}={(-+1,-+1),(+1,+1)},∴集合A∩B的元素个数为2.故选:C.利用交集定义直接求解.本题考查交集中元素个数的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.2.【答案】A【解析】解:设圆锥的底面圆半径为r,高为h,母线长为l,由题意知,r=h=l,则轴截面的面积为•=1,解得r=1,所以l=;所以该圆锥的侧面积为S圆锥侧=πrl=π.故选:A.设圆锥的底面圆半径、高和母线长,根据直角三角形的边角关系和面积公式列方程求出r和l的值,再计算圆锥的侧面积公式.本题考查了圆锥的结构特征与应用问题,是基础题.3.【答案】C【解析】【分析】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.在A中,不共线的三点确定一个平面;在B中,三条平行直线最多确定三个平面;在C 中,由线面垂直的性质定理得这两条直线平行;在D中,一个平面中的两条相交直线与另一个平面都平行,则这两个平面平行.【解答】解:在A中,不共线的三点确定一个平面,故A错误;在B中,三条平行直线最多确定三个平面,故B错误;在C中,不同的两条直线均垂直于同一个平面,则由线面垂直的性质定理得这两条直线平行,故C正确;在D中,一个平面中的两条相交直线与另一个平面都平行,则这两个平面平行,故D错误.故选:C.4.【答案】B【解析】解:∵幂函数f(x)=xα的图象过点,∴f(2)=2α=,解得,∴f(x)=,∴函数g(x)=f(x)-3=-3,由g(x)=f(x)-3=-3=0,得x=9.∴函数g(x)=f(x)-3的零点是9.故选:B.由幂函数f(x)=xα的图象过点,求出f(x)=,由g(x)=f(x)-3=-3=0,能求出函数g(x)=f(x)-3的零点.本题考查函数的零点的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.【答案】D【解析】【分析】本题考查直线的一般式方程,直线平行的求解,利用平行直线系是解决本题的关键.设与直线4x+y-8=0平行的直线l的方程为4x+y+c=0,代入点的坐标求出c即可.【解答】解:设与直线4x+y-8=0平行的直线l的方程为4x+y+c=0,∵直线l:4x+y+c=0过点(1,1),∴4+1+c=0,即c=-5,则直线方程为4x+y-5=0,故选:D.6.【答案】B【解析】解:要使f(x)有意义,则4-x>0;∴x<4;∴f(x)的定义域为(-∞,4);∴函数g(x)满足:;∴x<2,且x≠1;∴g(x)的定义域为(-∞,1)∪(1,2).故选:B.容易求出f(x)的定义域为(-∞,4),从而得出,函数g(x)需满足,解出x的范围即可.考查函数定义域的概念及求法,已知f(x)定义域求f[g(x)]定义域的方法.7.【答案】D【解析】解:根据几何体的三视图:该几何体是由左边是由一个半径为1的半球,右边是由一个底面为腰长为的等腰直角三角形,高为2的三棱柱构成.故:V=,=.故选:D.首先利用几何体的三视图转换为几何体,进一步利用几何体的体积公式求出结果.本题考查的知识要点:三视图和几何体的转换,主要考察几何体的体积公式的应用和相关的运算问题的应用,属于基础题型.8.【答案】A【解析】解:设P的坐标为(a,b),则PQ的中点坐标为(,),若点P与Q(1,-2)关于x+y-1=0对称,则,解得:a=3,b=0,则点P的坐标为(3,0).故选:A.根据题意,设P的坐标为(a,b),分析可得,解得a、b的值,即可得答案.本题考查求一个点关于某直线的对称点的坐标的方法,涉及直线与直线的位置关系,属于基础题.9.【答案】C【解析】解:如图,圆心O到直线x-2y+5=0的距离d=,则所求圆的半径r=,圆C面积的最小值为S=.故选:C.由题意画出图形,求出最小圆的半径,代入圆的面积公式即可.本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法,是基础题.10.【答案】D【解析】解:根据题意,函数f(x+3)是偶函数,则函数f(x)的图象关于直线x=3对称,则f(6)=f(0),又由函数f(x)在[3,+∞)上单调递减,则f(x)在(-∞,3]上为增函数,又由0<log32<1<30.5,则f(0)<f(log32)<f(30.5),则b>a>c;故选:D.根据题意,由f(x+3)是偶函数可得函数f(x)的图象关于直线x=3对称,进而可得f (x)在(-∞,3]上为增函数,又由又由0<log32<1<30.5,分析可得答案.本题考查函数的单调性与对称性综合应用,注意分析函数f(x)的对称轴.11.【答案】A【解析】解:∵函数,∴=+=-1,∵f(2)+f(3)+f(4)+…+f(10)=m,,∴m+n=9×(-1)=-9.故选:A.推导出=-1,再由f(2)+f(3)+f(4)+…+f(10)=m,,能求出m+n的值.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.12.【答案】C【解析】解:因为八面体的各条棱长均为1,四边形ABCD为正方形,可得该八面体为正八面体,E到平面ABCD的距离为=,即有八面体的体积为2××1×=,故①错误;由正方形ABCD的中心到点A,B,C,D,E,F的距离相等,且为,可得该八面体的外接球的球心为正方形ABCD的中心,半径为,表面积为4π×=2π,故②正确;由正八面体的特点可得四边形EDFB为正方形,由EB∥DF,可得EB∥平面ADF,B到平面ADF的距离,设为d,即为E到平面ADF的距离,由V B-ADF=V F-ABD,可得h•=××,可得h=,故③错误;由四边形EDFB为正方形,可得BF∥ED,DE与EC所成角即为EC与BF所成角,可得三角形CDE为等边三角形,可得EC与BF所成角为60°,故④正确.其中错误的个数为2.故选:C.由题意可得该八面体为正八面体,即底面为正方形的两个正四棱锥连接而成,由棱锥的体积个数,可判断①;推得球心即为正方形的中心,求得半径,由球的表面积公式,计算可判断②;由体积转化法,即V B-ADF=V F-ABD,计算可判断③;由异面直线所成角的定义,即可判断④.本题考查正八面体的性质,以及异面直线所成角和棱锥的体积、球的表面积和点到平面的距离,考查运算能力,属于中档题.13.【答案】6【解析】解:=lg10+5=6.故答案为:6.利用对数的性质、运算法则直接求解.本题考查指数式、对数式化简求值,考查对数的性质、运算法则等基础知识,考查运算求解能力,是基础题.14.【答案】【解析】解:设正方体的内切球的半径为r,则正方体的棱长为2r,则正方体的体积为(2r)3=64,得r=2,因此,这个正方体的内切球的体积为.故答案为:.设正方体的内切球的半径为r,得出正方体棱长为2r,利用正方体体积公式可得出r的值,再利用球体的体积公式可得出答案.本题考查球体的体积的计算,解决本题的关键在于弄清球体半径与正方体棱长之间的关系,考查计算能力,属于中等题.15.【答案】[-3,+∞)【解析】解:当x≤0时,f(x)=x2+2x-1=(x+1)2-2≥-2,即有x=-1时,取得最小值-2,当x>0时,f(x)=3x+m递增,可得f(x)>1+m,由题意可得1+m≥-2,解得m≥-3,故答案为:[-3,+∞).讨论当x≤0时,当x>0时,运用二次函数的单调性和指数函数的单调性,可得f(x)的范围,由题意即可得到所求m的范围.本题考查函数的最值求法,注意运用分类讨论思想方法和指数函数和指数函数的单调性,考查运算能力,属于中档题.16.【答案】[,+∞)【解析】解:∵实数x,y满足x2-4x+3+y2=0,即(x-2)2+y2=1,表示以C(2,0)为圆心,半径等于1的圆.则==1+,表示圆上的点M(x,y)与定点A(1,-3)连线的斜率k加上1,如图.当切线位于AB这个位置时,k最小,k+1最小.当切线位于AE这个位置时,k不存在,k+1不存在.设AB的方程为y+3=k(x-1),即kx-y-k-3=0,由CB=1,可得=1,求得k=.而AE的方程为x=1,故k+1的范围为[,+∞),故答案为:[,+∞).变形可得,所求式子表示圆上的点M(x,y)与定点A(1,-3)连线的斜率k加上1,利用直线和圆相切的性质求得k的范围,可得结论.本题猪腰考查直线和圆相切的性质,斜率公式,直线和圆的位置关系,属于中档题.17.【答案】解:(1)∁R B={x|x<0,或x≥5};∴A∩(∁R B)={x|-3<x<0};(2)A∪B={x|-3<x<5};∴(A∪B)⊆C;∴m≥5;∴实数m的取值范围为[5,+∞).【解析】(1)进行补集、交集的运算即可;(2)可求出A∪B={x|-3<x<5},根据(A∪B)⊆C即可得出m≥5,即得出m的范围.考查描述法的定义,以及交集、并集和补集的运算,子集的定义.18.【答案】解:(1)∵l1⊥l2,∴==2.∴直线l2的方程为:y-0=2(x-),化为:y=2x-3.联立,解得.∴直线l1和l2的交点坐标为(2,1).(2)当直线l3经过原点时,可得方程:y=x.当直线l3不经过过原点时,设在x轴上截距为a≠0,则在y轴上的截距的2a倍,其方程为:+=1,把交点坐标(2,1)代入可得:+=1,解得a=.可得方程:2x+y=5.综上可得直线l3的方程为:x-2y=0,2x+y-5=0.【解析】(1)利用l1⊥l2,可得斜率.利用点斜式可得直线l2的方程,与直线l1和l2的交点坐标为(2,1).(2)当直线l3经过原点时,可得方程.当直线l3不经过过原点时,设在x轴上截距为a≠0,则在y轴上的截距的2a倍,其方程为:+=1,把交点坐标(2,1)代入可得a.本题考查了相互垂直的直线斜率之间的关系、截距式,考查了推理能力与计算能力,属于基础题.19.【答案】解:(1)当a=1时,圆C的方程为(x-1)2+y2=1,又|MC|=,∴|MN|的最小值为5-1=4;(2)∵直线l的斜率为,且与y轴交于点,∴直线l的方程为,即4x-3y-2=0.∵直线l与圆C相离,∴>|a|,又a<0,则2-4a>-5a,解得a>-2.∴a的取值范围为(-2,0).【解析】(1)求出圆的方程,再求出M到圆心的距离,减去半径得答案;(2)写出直线方程,利用圆心到直线的距离大于半径求解.本题考查直线与圆位置关系的应用,考查数学转化思想方法,是基础题.20.【答案】解:(1)当a=3时,f(x)<1可化为:log3(3x-1)<1即0<3x-1<3,解得:x∈(,).(2)∵a>0且a≠1,故y=ax-1在[3,6]上单调递增,当a>1时,函数f(x)=log a(ax-1)在[3,6]上单调递增,则log a(6a-1)>0,即6a-1>1,解得a>.∴a>1,当0<a<1时,函数f(x)=log a(ax-1)在[3,6]上单调递减,则log a(3a-1)>0,即0<3a-1<1,解得<a<,∴<a<,综上可得:a的取值范围为(,)∪(1,+∞).【解析】(1)当a=3时,f(x)<1可化为:log3(3x-1)<1,即0<3x-1<3,解得答案;(2)对a进行分类讨论,结合f(x)在[3,6]上的最大值大于0,可得答案.本题考查的知识点是对数函数的图象和性质,难度中档.21.【答案】证明:(1)在正方形ABCD中,M,N分别是AB,AD的中点,∴BM=AN,BC=AB,∠MBC=∠NAB=90°,∴△MBC≌△NAB,∴∠BCM=∠NAB,又∠NBA+∠BMC=90°,∴∠NBA+∠BMC=90°,∴CM⊥BN,∵△PAD为等边三角形,N是AD的中点,∴PN⊥AD,又平面PAD⊥平面ABCD,PN⊂平面PAD,平面PAD∩平面ABCD=AD,∴PN⊥平面ABCD,又CM⊂平面ABCD,∴CM⊥PN,∵BN,PN⊂平面PNB,BN∩PN=N,∴CM⊥平面PNB.解:(2)连结AC,交DM于点Q,连结EQ,∵PC∥平面DEM,PC⊂平面PAC,平面PAC∩平面DEM=EQ,∴PC∥EQ,∴PE:EA=CQ:QA,在正方形ABCD中,AM∥CD,且CD=2AM,∴CQ:QA=CD:AM=2,∴=2.【解析】(1)推导出BM=AN,CM⊥BN,PN⊥AD,从而PN⊥平面ABCD,进而CM⊥PN,由此能证明CM⊥平面PNB.(2)连结AC,交DM于点Q,连结EQ,推导出PC∥EQ,从而PE:EA=CQ:QA,由此能求出的值.本题考查线面垂直的证明,考查两线段的比值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.22.【答案】解:设任意x1,x2满足-5≤x1<x2≤5,由题意可得:f(x1)-f(x2)=即f(x1)<f(x2).所以f(x)在定义域[-5,5],上是增函数,由f(2a-1)<f(3a-3),得,解得2<a ≤,故a的取值范围为(2,];(2)由以上知f(x)是定义在[-5,5]上的单调递增的奇函数,且f(-5)=-2,得在[-5,5]上f(x)max=f(5)=-f(-5)=2.在[-5,5]上不等式f(x)≤(a-2)t+5对a∈[-3,0]都恒成立,所以2≤(a-2)t+5即at-2t+3≥0,对a∈[-3,0]都恒成立,令g(a)=at-2t+3,a∈[-3,0],则只需,即.解得t ≤故t的取值范围(-∞,].【解析】(1)由函数的单调性的定义,构造出f(x)在定义域[-5,5],上是增函数,通过增函数性质解不等式得a的取值范围.(2)由f(x)单调递增且奇函数,利用其最大值整理得关于a,t的不等式,由a∈[-3,0]都恒成立,根据单调性可以求t的取值范围.本题主要考察函数单调性知识的应用,解题中主要利用了单调性的定义法,最值法.第11页,共11页。

相关文档
最新文档