参考答案(2013白云区数学一模)

合集下载

2013年广州中考数学一模试题及答案

2013年广州中考数学一模试题及答案

(第9题图)A B C D2013年中考数学一模试题第一部分(选择题 共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.3-的相反数是( )A .3B .3-C .13-D .132.广州市发改委最近发布2010-2011年《广州经济社会形势与展望》白皮书中指出:今年全年重点建设项目完成投资82 600 000 000元。

这个数用科学记数法表示为( ) A .9106.82⨯元B .101026.8⨯元C .1110826.0⨯ 元D .以上三种表示都正确 3.下列图案中既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.若∠A =34°,则∠A 的余角的度数为( )A .54°B .56°C .146°D .66°5.已知一次函数1+=kx y ,若y 随x 的增大而减小,则该函数的图象经过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限6.如图,DE 是ABC ∆的中位线,则ADE ∆与ABC ∆的面积之比是( ) A .1:2 B .1:4 C .1:3D .2:17.下列运算正确的是( ) A .24±= B .336a a a += C .9132=-D .222)(n m n m -=-8.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能...是( )9.如图,BD 是⊙O 的直径,CBD ∠=30,则∠A 的度数为( ) A .30B .45C .60D .7510.已知关于x 的方程xkx =+12有一个正的实数根, 则k 的取值范围是( ) A .k <0 B .k >0C .k ≤0D .k ≥0第二部分(非选择题 共120分)(第18题图)二、填空题(本大题共6小题,每小题3分,满分18分.)11.函数=y x 的取值范围是 .12.某班50名学生在一次考试中,分数段在90~100分的频率为0.1,•则该班在这个分数段的学生有_________人.13.已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是14.方程组⎩⎨⎧=+=-836032y x y x 的解是 .15.如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若ABC ∆与△111A B C 是位似图形, 且顶点都在格点上,则位似中心的坐标是 . 16.观察下列的等式:39211==-(即3×1)331089221111==-(即3×11) 333110889222111111==-(即3×111)由此猜想=-4434421L 444344421L2011402222211111 .三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解不等式x 23-≤12x+.18.(本小题满分9分)如图,已知平行四边形ABCD .(1)用直尺和圆规作出ADC ∠的平分线DE ,交AB 于点E ,(保留作图痕迹,不要求写作法); (2)求证:AD AE =.19.(本小题满分10分)已知0142=+-a a ,求代数式)2)(2(2)2(2-+-+a a a 的值.20.(本小题满分10分)如下图,小红袋子中有4张除数字外完全相同的卡片,小明袋子中有3张除数字外完全相同的卡片,若先从小红袋子中抽出一张数字为a 的卡片,再从小明袋子中抽出一张数字为b 的卡片,两张卡片中的数字,记为),(b a 。

中考数学一模试题带答案广州市

中考数学一模试题带答案广州市

2013年中考数学一模试题(带答案广州市)2013年真光实验学校初三一模数学科考试问卷(考试说明:共25题,考试时间120分钟,满分150分,请用黑色的圆珠笔或钢笔作答,试卷不允许使用涂改工具,请将答案写在答卷指定的区域内)第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.sin30°的值为(▲)A.B.C.D.2.计算的结果是(▲)A.B.C.D.3.⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是(▲)A.相交B.相切C.相离D.无法确定4.使分式有意义的x的取值范围是(▲)A.x=2B.x≠2C.x=-2D.x≠-25.不等式组的解集是(▲)A.x2B.x3C.2x3D.无解6.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于(▲)A.80°B.50°C.40°D.20°7.下列命题中,正确的是(▲)A.若,则B.若,则C.若,则且D.若,则或8.右图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是(▲)A.B.C.D.9.正方形中,是边上一点,以为圆心、为半径的半圆与以为圆心,为半径的圆弧外切,则的值为(▲)A.B.C.D.10.如图,正方形的顶点在坐标轴上,点在上,点在函数的图象上,则点的坐标是(▲)A.B.C.D.第二部分(非选择题共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.用科学记数法表示0.0000210,结果是___▲__ 12.圆柱的底面周长为2π,高为1,则圆柱的侧面展开图的面积为_______▲_____.13.已知正比例函数与反比例函数交A(-1,2),B(1,-2)两点,当正比例函数的值大于反比例函数值时,x的取值范围为______▲______第13题第16题14.通过平移把点A(2,-3)移到点A’(4,-2),按同样的平移方式,点B(3,1)移到点B′,则点B′的坐标是_____▲___15.⊙O的半径为5cm,弦AB∥CD,且AB=8cm,CD=6cm,则AB与CD的距离为▲16.如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论①△ABF≌△CAE,②∠AHC=1200,③AH+CH=DH,④AD2=ODDH中,正确的是__▲____三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)(1)、因式分解:(2)、解分式方程:18.(本小题满分9分)如图,AB∥ED,点F、点C在AD 上,AB=DE,AF=DC.求证:BC=EF.19.(本小题满分10分)已知一个等腰三角形的腰长为5,底边长为8,将该三角形沿底边上的高剪成两个三角形,用这个两个三角形能拼成几种平行四边形?请画出所拼的平行四边形,直接写出它们的对角线的长,并画出体现解法的辅助线20.(本小题满分10分)某校九年级有400名学生参加全国初中数学竞赛初赛,从中抽取了50名学生,他们的初赛成绩(得分为整数,满分为100分)都不低于40分,把成绩分成六组:第一组39.5~49.5,第二组49.5~59.5,第三组59.5~69.5,第四组69.5~79.5,第五组79.5~89.5,第六组89.5~100.5。

广东省广州市2013届高三数学毕业班综合测试试题 文(一)(广州一模)(含解析)

广东省广州市2013届高三数学毕业班综合测试试题 文(一)(广州一模)(含解析)

试卷类型:A2013年广州市普通高中毕业班综合测试(一)数学(文科)2013.3 本试卷共4页,21小题, 满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:线性回归方程y bx a =+中系数计算公式121ni i i ni i x x y y b a y bx x x ()(),()==--∑==--∑,其中y x ,表示样本均值.锥体的体积公式是13V Sh =,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 是虚数单位,则复数1-2i 的虚部为A .2B .1C .1-D .2- 【答案】D【解析】由复数的定义可知虚数单位i 的系数就是复数的虚部,因此选D 。

2.设全集{}123456U ,,,,,=,集合{}135A ,,=,{}24B ,=,则A .U AB = B .U =()U A BC .U A =()U BD .U=()U A ()U B【答案】D【解析】由{}2,4,6U C A =,{}1,3,5U C B =,则()()U U U C A C B =。

2013白云区中考模拟数学试题

2013白云区中考模拟数学试题

第6题图第5题图 贵阳市白云区2013年初中毕业生学业考试数学模拟试题卷(三)一、选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,每小题3分,共30分)1. 411-的倒数是( )A .45-B .45C .54- D .542.国家旅游中心——“水立方”是北京2008年奥运会场馆之一,它的外层膜展开面积为260000平方米,将260000用科学记数法表示应为( ) A .61026.0⨯B .4106.2⨯C .6106.2⨯D .5106.2⨯3.某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80,对这组数据表述错误的是( ) A .众数是80 B .极差是15 C .平均数是80 D .中位数是754.如图所示,直线a ∥b ,点B 在直线b 上,且AB ⊥BC , ∠1=55°,则∠2的度数为( ) A .35° B .45° C .55° D .125°5. 下图是某个几何体的三视图,该几何体是( ) A .长方体 B .正方体 C .圆柱 D .三棱柱6.从下列四个图案卡片中任取一张,只是中心对称而不是轴对称图形的概率为( )A . 41B .21C .43D .17.一次函数3--=x y 的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图所示,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 面积的( )A.51B. 41C. 31D.103 9.二次函数22--=x x y 的图象如图所示,则函数0<y 时,x 的取值范围( ) A .1-<x B .2>x C .21<<-x D .1-<x 或2>x10.如图所示,河堤横断面迎水坡AB 的坡比是3:1,堤高BC=5m ,则坡面AB 的长度是( ) A .10m B .310m C .15m D .35m二、填空题(每小题4分,共20分)11.已知y 是x 的一次函数,下表给出了部分对应值,则m 的值是 .x-1 2 5 y5-1m12.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是 .13.一元二次方程0322=--x x 的根是 .14.如图,已知∠OCB=20°,则∠A= 度.15.如图Rt ΔABC 中,∠ACB=90°,∠B=30°,AC=1,且AC 在直线L 上,将ΔABC 绕点A 顺时针旋转到位置①,可得到点1P ,此时21=AP ;将位置①的三角形绕点1P 顺时针旋转到位置②,可得到点2P ,此时322+=AP ;将位置②的三角形绕点2P顺时针旋转到位置③,可第8题图得到点3P ,此时333+=AP ;……按此规律继续旋转,直到点2013P为止,则=2013AP .三、解答题16.(本题满分8分)先化简112)11(22-+-÷-x x x x ,再选取一个你喜欢而又合适的数代入求值.17.(本题满分10分)对于处于我市初中生对待学习的态度一直是教育工整理关注的问题之一,为此我市教育局对我市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级),A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣,并将调查结果绘制成图①和图②的统计图(不完整),请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了 名学生;(2分) (2)将图①补充完整; (3分)(3)求出图②中C 级所占圆心角的度数; (2分)(4)根据抽样调查的结果,请你估计我市约 50000名八年级学生中大约有多少名学生学习 态度达标(达标包括A 级和B 级)?(3分)18.(本题满分10分)有3张扑克牌,分别是红桃3,红桃4和黑桃5,把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.(1)先后两次抽得的数字分别记为s 和t ,则1≥-t s 的概率.(5分)(2)甲、乙两人做游戏,现有两种方案,A 方案:若两次抽得相同花色甲胜,否则乙胜,B 方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率高?(5分)19.(本题满分10分)2013年4月20日,雅安市芦山县发生7.0级地震,为救助灾民,搭建了一批临时帐篷,平面图如图所示,其中AE 、CD 与水平地面垂直,帐篷宽DE=8m ,顶角∠CBA=140°,且BC=BA,拉线CG 、AF 长都为3m ,与地面所成角均为58°,求帐篷顶B 到地面的距离?(精确到0.1米)“六一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)求第一批玩具每套的进价是多少元?(5分)(2)如果这两套玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?(5分)21.(本题满分10分)如图,在ΔABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点. (5分)(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.(5分)直线2--=xy与反比例函数xky=的图像交于A、B两点,且与x,y轴交于C、D两点,A点的坐标为)4,3(+-k.(1)求反比例函数的解析式.(5分)(2)把直线AB绕着点M(-1,-1)顺时针旋转到MN,使直线xMN⊥轴,且与反比例函数的图像交于N,求旋转角大小及线段MN的长.(5分)23.(本题满分10分)如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,ACDE⊥交AC的延长线于点E,FB 是⊙O的切线交AD的延长线于点F.(1)求证:如图1,DE是⊙O的切线.(5分)(2)如图2,若半径R=2,∠BAF=30°,求阴影部分面积.(5分)FD CBA第21题图已知抛物线M: 2)2(-=x y 向左平移5个单位后再向下平移2个单位, 得到抛物线N ,移动前后的两个抛物线顶点分别为M 、N ,抛物线N 与y 轴交于P 点.(1)求抛物线N ;(4分)(2)已知直线b kx y +=与直线n mx y +=平行时,n b m k ≠=,; 在第一象限是否存在点Q ,使四边形PNMQ 为平行四边形, 若存在求出点Q 的坐标,若不存在,请说明理由.(6分)阅读理解顶点在圆上的多边形叫做圆的内接多边形,各边都相等,各角都相等的多边形叫做正多边形,圆内接正边形相邻两个顶点与半径组成的角叫做正多边形的中心角,由此填空:(1)n=3时,=∠α ;n=4时,=∠α ;n=5时,=∠α ;正n 边形时, =∠α ;(5分)(2)在相邻两边上顺次分别截取BM=CN ,此时对应的MON ∠是否发生改变;如果不改变分别写出各正边形所对应的MON ∠,如果改变请说明理由.不改变时:n=3时,MON ∠= ;n=4时,MON ∠= ;n=5时,MON ∠= ;正n 边形时,MON ∠= . ( 5分)(3)圆内接正72边形 ,相邻两边顺次截取BM =CN ,求MON ∠.(2分)。

(理数试题)广州市2013届普通高中毕业班综合测试(一)

(理数试题)广州市2013届普通高中毕业班综合测试(一)

广州市2013届普通高中毕业班综合测试(一)数学(理科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。

用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题 卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑; 如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域 内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔 和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:如果事件A ,B 相互独立,那么)()()(B P A P B A P ∙=∙.线性回归方程a x b yˆˆˆ+=中系数计算公式x b y axy y x xb ni ini i i-=---=∑∑==ˆ,)())((ˆ121, 其中y x ,表示样本均值。

一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集}6,5,4,3,2,1{=U ,集合}5,3,1{=A ,}4,2{=B ,则A.B A U ⋃=B.B A C U U ⋃=)(C.)(B C A U U ⋃=D.)()(B C A C U U U ⋃= 2.已知bi ia+=-11,其中a,b 是实数,i 是虚数单位,则a+bi= A.1+2i B.2+i C.2-i D.1-2i3.已知变量x,y 满足约束条件⎪⎩⎪⎨⎧≤-≤-≥+.01,1,12y y x y x ,则y x z 2-=的最大值为A.-3 B .0 C.1 D.3 4.直线03==y x 截圆4)2(22=+-y x 所得劣弧所对的圆心角是 A.6π B.3π C.2πD.32π5.某空间几何体的三视图及尺寸如图1,则该几何体的体积是A.2B.1C.32D.31 6.函数)cos )(sin cos (sin x x x x y -+=是A.奇函数且在]2,0[π上单调递增B.奇函数且在],2[ππ上单调递增C.偶函数且在]2,0[π上单调递增D.偶函数且在],2[ππ上单调递增7.已知e 是自然对数的底数,函数2)(-+=x e x f x 的零点为a ,函数2ln )(-+=x x x g 的零点为b ,则下列不等式中成立的是A.)()1()(b f f a f <<B.)1()()(f b f a f <<C.)()()1(b f a f f <<D.)()1()(a f f b f <<8.如图2,一条河的两岸平行,河的宽度d=600m ,一艘客船从码头A 出发匀速驶往 河对岸的码头B.已知km AB 1=,水流速度为2km/h ,若客船行驶完航程所用最短时 间为6分钟,则客船在静水中的速度大小为A.8km/hB.h km /26C.h km /342D.10km/h二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9-13题)9.不等式x x ≤-1的解集是_________.10.⎰=1._______cos xdx11.根据上表可得回归方程a x yˆ23.1ˆ+=,据此模型估计,该型号机器使用所限为10年维修费用约______万元(结果保留两位小数).12.已知1,0≠>a a ,函数⎩⎨⎧>+-≤=1,1,)(x a x x a x f x ,若函数)(x f 在区间[0,2]上的最大值比最小值大25,则a 的值为________. 13.已知经过同一点的)3*,(≥∈n N n n 个平面,任意三个平面不经过同一条直线,若这n 个平面将空间分成)(n f 个部分,则.________)(______,)3(n f f = (二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,定点)23,2(πA ,点B 在直线0sin 3cos =+θρθρ上 运动,当线段AB 最短时,点B 的极坐标为______.15.(几何证明选讲选做题)如图3,AB 是⊙O 的直径,BC 是⊙O 的切线,AC 与⊙O交于点D ,若BC=3,516=AD ,则AB 的长为______.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函)4sin()(πω+=x A x f (其中0,0,>>∈ωA R x )的最大值为2,最小正周期为8.(1)求函数)(x f 的解析式;(2)若函数)(x f 图象上的两点P ,Q 的横坐标依次为2,4,O 坐标原点,求POQ ∆的 面积.17.(本小题满分12分)甲、乙、丙三位学生独立地解同一道题,甲做对的概率为,21乙,丙做对的概率分别为m,n(m>n),且三位学生是否做对相互独立.记ξ为这三位学生中做对该题的人数,其分布列为:(1)求至少有一位学生做对该题的概率; (2)求m,n 的值; (3)求ξ的数学期望.18.(本小题满分14分)如图4,在三棱柱ABC-A 1B 1C 1中,ABC ∆是边长为2的等边三角形,⊥1AA 平面ABC ,D ,E 分别是CC 1,AB 的中点.(1)求证:CE//平面A 1BD ;(2)若H 为A 1B 上的动点,当CH 为平面A 1AB 所成最大角的正切值为215时,求平面A 1BD 与平面ABC 所成二面角(锐角)的余弦值.19.(本小题满分14分)已知数列}{n a 的前n 项和为S n ,且n na a a a ++++ 32132*)(2)1(N n n S n n ∈+-=.(1)求数列}{n a 的通项公式;(2)若p,q,r 是三个互不相等的正整数,且p,q,r 成等差数列,试判断1,1,1---r q p a a a 是否成等比数列?并说明理由.20.(本小题满分14分)已知椭圆C 1的中心在坐标原点,两个焦点分别为)0,2(),0,2(21F F -,点A (2,3)在椭圆C 1上,过点A 的直线L 与抛物线y x C 4:22=交于B ,C 两点,抛物线C 2在点B ,C 处的切线分别为21,l l ,且1l 与2l 交于点P.(1)求椭圆C 1的方程;(2)是否存在满足||2121AF AF PF PF +=+的点P ?若存在,指出这样的点P 有几个(不必求出点P 的坐标);若不存在,说明理由.21.(本小题满分14分)已知二次函数1)(2+++=m ax x x f ,关于x 的不等式21)12()(m x m x f -+-<的解集为)1,(+m m ,其中m 为非零常数.设1)()(-=x x f x g . (1)求a 的值;(2))(R k k ∈如何取值时,函数)1ln()()(--=x k x g x φ存在极值点,并求出极值点; (3)若m=1,且x>0,求证:*)(22)1()]1([N n x g x g nnn∈-≥+-+。

2013年广州中考白云区一模

2013年广州中考白云区一模

25. (本小题 14 分) 已知抛物线 y = x 2 + kx + 2k − 4
y 4
(1)当 k=2 时,求出此抛物线的顶点坐标; 2 (2)求证:无论 k 为任何实数,抛物线都与 x 轴有交点,且经过 x 轴一定点; (3)已知抛物线与 x 轴交于 A(x 1 ,0) 、 B (x2 ,0) 两点(A 在 BO的左边) , x1 <5 xx ,与 y 2 1

第二部分(非选择题 共 120 分)
二、填空题(本大题共 6 小题,每小题 3 分,满分 18 分.) 11.已知∠a=50°, 则∠a 的余角的度数为_______°. 12.不等式 - 2 x > 6 的解集为_______. 13.点 P(-2 ,1 )关于原点对称的 P’的坐标为_______. 14.在一次数学测验中,某学习小组的六位同学的分数分别是 54,85,92,73, 61, 85. 这组数的平均数是________, 众数是________, 中位数是________. 15.计算并化简式子 ⎜
A

A .50°
O
B .40°
C.45°
A O
D D. 100°
B 9.如图 3,梯形 ABCD 中,AB ∥BC ,AC 、BD 交于点 O,AD=1, BC=3 , 则 S△ AOD : S△ BOC 等
于( ) A .1:2
B 3 C 2
C
B .1:3
C.4:9
D.1:9
1/ 5
10.若一次函数 y = kx + b ,当 x 的值增大 1 时,y 值减小 3,则当 x 的值减小 3 时,y 值( A .增大 3 B .减小 3 C.增大 9 D.减小 9

2013年历年广州市初三数学中考一模考试题及答案

2013年历年广州市初三数学中考一模考试题及答案

2013年九年级一模试题数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必在答题卡第1面、第3面上用黑色字迹的钢笔或签字笔填写自己的班级、姓名、座位号;填写考号,再用2B 铅笔把对应号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题号的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.四个数﹣5,﹣0.1,213为无理数的是( ) A 、﹣5 B 、﹣0.1 C 、D 、2.下列运算正确的是( )A .236·a a a = B .34x x x =÷ C .532)(x x = D .a a a 632=⋅ 3.如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是( ).4.把抛物线2y x =向右平移1个单位,所得抛物线的函数表达式为( * )(A )21y x =+ (B )2(1)y x =+(C )21y x =- D )2(1)y x =-5.下列二次根式中,属于最简二次根式的是( ). A .15B .0.5C .5D .506.如图,BD 为⊙O 的直径,点A 、C 均在⊙O 上,∠CBD =60°,则∠A 的度数为( * ) (A )60° (B )30°(C )45° (D )20°7.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于 ( ) (A )2cm(B )4cm(C )6cm(D )8cm8.五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数和中位数分别为( ).A. 19和20B. 20和19C. 20和20D. 20和219. 把半径为10,面积为π60的扇形做成圆锥的侧面,则圆锥的高是( ) (A )10 (B )8 (C )6 (D )410.如图所示,已知在三角形纸片ABC 中,∠BCA =90°,∠BAC =30°,AB =6, 在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合, A 与BC 延长线上的点D 重合,则DE 的长度为( )A .6B .3C .32D .3第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,共18分.) 11.9的算术平方根是 .12.因式分解:=-92x . 13. 函数21-=x y 中x 的取值范围是14.如图,在ABC ∆中,AB 为⊙O 的直径,60,70B C ∠=∠=o o, (第14题) 则∠AOD 的度数是_____*_______度.15.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.16. 如图,每个图案都由若干个棋子摆成.依照此规律,第n 含n 的代数式表示为__________.ABCD O 第6题第7题DCABE第15题AB E第10题图基本了解不太了解2%18%三、解答题(本大题共9小题,共102 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解方程组.1123,12⎩⎨⎧=-=+y x y x18.(本小题满分9分)已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF.求证:BE=DF.19.(本小题满分10分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出111A B C △和222A B C △:(1)将ABC △先向右平移4个单位,再向上平移1个单位,得到111A B C △;(2)以图中的O 为位似中心,将111A B C △作位似变换且放大到原来的两倍,得到222A B C △20.(本小题满分10分)广州市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:等级 非常了解比较了解 基本了解不太了解频数 40 120 36 4 频率0.2m0.180.02(1)本次问卷调查取样的样本容量为_______,表中的m 值为_______. (2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图6所对应的扇形的圆心角的度数, 并补全扇形统计图.(3)若该校有学生1500人,请根据调查结果估计这些 学生中“比较了解”垃圾分类知识的人数约为多少?21.(本小题满分12分)已知反比例函数y =8m x-(m 为常数)的图象经过点A (-1,6). (1)求m 的值;ABCDEF 18题第22题图ED北BAC(2)如图9,过点A 作直线AC 与函数y =8m x-的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标.22.(本小题满分12分)如图,AB 是⊙O 的直径,点P 是AB 延长线上一点,PC 切⊙O 于点C , 连结AC ,过点O 作AC 的垂线交AC 于点D ,交⊙O 于点 E.已知AB ﹦8,∠P=30°.(1) 求线段PC 的长;(2)求阴影部分的面积.23.(本小题满分12分)广州市某楼盘准备以每平方米35000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米28350元的均价开盘销售. (1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套80平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月4元.请问哪种方案更优惠? 24.(本小题满分14分)如图,C 岛在A 岛的北偏东50°方向,B 岛在A 岛的北偏东80°,C 岛在B 岛的北偏西40°,A 、B 两岛相距100km . (1)求从C 岛看A 、B 两岛的视角∠ACB 的度数; (2)已知海洋保护区的范围设在以C 点为圆心,40km 为半径的圆形区域内.如果一艘轮船从A 岛直线航行到B 岛,那么它会不会穿越保护区.为什么?25.(本小题满分14分)如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D ,BAOCy x(第24题)第21题如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.x(第25题)答案一、选择题:DBACC BACBC 二、填空题11、____3____ 12、(x+3)(x-3) 13、x>2 14、80° 15、5516、n ²+n 17、 ⎩⎨⎧-==13y x18、证明:矩形ABCD 中AB=CD ,∠A=∠C ; 又AE=CF∴ △BAE ≌△DCF (SAS )∴ BE=CF (全等三角形对应边相等) 19、画一个图5分,没有总结性语言总共扣1分20: (1) 180、 、 0.6 4分 (2)360×20%=72° 5分 360×0.6=216° 6分 画图 8分 (3)1500×0.6=900 10分21、解:(1)把A(-1、6)代入xm y 8-=得 m=2 4分 (2) C (-4,0) 8分 22.(1)连结OC∵PC切⊙O 于点 C ∴………………1分∵∴………………2分∵∴………………4分(2)∵,∴,∵∴∴…7分∵∴∴…10分。

【精品解析】广东省广州市2013届高三毕业班综合测试数学理试题(一)2013广州一模

【精品解析】广东省广州市2013届高三毕业班综合测试数学理试题(一)2013广州一模

试卷类型:A2013年广州市普通高中毕业班综合测试(一)数学(理科)2013.3本试卷共4页,21小题, 满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:如果事件A B ,相互独立,那么()()()P A BP A P B ⋅=⋅.线性回归方程y bx a =+中系数计算公式121ni i i ni i x x y y b a y bx x x ()(),()==--∑==--∑,其中y x ,表示样本均值.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集{}123456U ,,,,,=,集合{}135A ,,=,{}24B ,=,则A .U AB = B .U =()U A ðBC .U A =()UB ð D .U =()UA ð()UB ð【答案】D【解析】由{}2,4,6U C A =,{}1,3,5U C B =,则()()U U U C A C B =。

2. 已知11abi i=+-,其中a b ,是实数,i 是虚数单位,则a b +i =图1俯视图侧视图正视图A .12+iB .2+iC .2-iD .12-i 【答案】B 【解析】由11a bi i =+-,即122a ai bi +=+,得2a =,1b =。

广东省广州六中2013年中考数学一模试卷

广东省广州六中2013年中考数学一模试卷

2013年广东省广州六中中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)2.(3分)(2009•宁夏)某班抽取6名同学参加体能测试,成绩如下:85,95,85,80,80,85.下列表.<,5.(3分)如图,△ABC中,AB=AC=15,D在BC边上,DE∥BA于点E,DF∥CA交AB于点F,那么四边形AFDE的周长是()6.(3分)如图是一个由若干个棱长为1的正方体组成的几何体的主视图和左视图,则俯视图不可能是()B.7.(3分)(2011•西藏)在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣3,﹣2),B(1,2),2﹣y=.10.(3分)(2013•河南模拟)如图,填在各方格中的三个数之间均具有相同的规律,根据此规律,n的值是()二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)当实数x的取值使得有意义时,函数y=3x﹣1中,y的取值范围是y≤5.先根据x=解:∵x=≤12.(3分)(2009•温州)如图,将△OAB绕点O按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=1cm,则A′B长是3cm.13.(3分)分解因式:6a3﹣54a=6a(a+3)(a﹣3).14.(3分)已知关于x的方程ax2﹣4x+4=0有两个相等的实根,则代数式的值为.代数式=,=,故答案为:.15.(3分)已知二次函数y=x2﹣mx﹣1,当x<4时,函数值y随x的增大而减小,则m的取值范围是m≥8.﹣≥,即﹣16.(3分)如图,已知正方形纸片ABCD的边长为8,⊙0的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使E A′恰好与⊙0相切于点A′(△EFA′与⊙0除切点外无重叠部分),延长FA′交CD边于点G,则A′G的长是.,=x=,=故答案为.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(9分)(2011•南京)解不等式组,并写出不等式组的整数解.解:18.(9分)如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=,BC=6,求切线BD的长.AE=DE=,AE=3.BE=6×BD=319.(10分)(2011•营口)附加题:某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?则:3=)×20.(10分)(2011•苏州)如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A 处的俯角为15°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于30度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).PB===20≈21.(12分)(2010•成都)某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若A馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平?∴小明获得门票的概率小华获得门票的概率.,注意本题是放回实验.解决本题的关键是得到相应的概率,概率相等就公平,22.(12分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每个月收取水费y(元)与用水量x(吨)之间的函数关系如图,按上述分段收费标准,小明家三、四月份分别交水费26元和18元,求小明家四月份比三月份少用水多少吨?得,解得23.(12分)(2011•上海)如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CF、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证:四边形ABFC是矩形.,24.(14分)(2009•江西)如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC 交CD于点F.AB=4,BC=6,∠B=60度.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.BE=AB=2BG=的距离为PM=EG=PM==PN==PM+PN+MN=,∠×,EG=MP=MN=MC=MN=MP=(如图,﹣25.(14分)(2011•芜湖)平面直角坐标系中,▱ABOC如图放置,点A、C的坐标分别为(0,3)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到▱A'B'OC'.(1)若抛物线过点C,A,A',求此抛物线的解析式;(2)▱ABOC和▱A'B'OC'重叠部分△OC'D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.,解得OB=,OA OA OA()﹣(﹣(﹣时,n='=,(,.。

2013年广州市普通高中毕业班综合测试(一)理科数学试卷

2013年广州市普通高中毕业班综合测试(一)理科数学试卷

试卷类型:A2013年广州市普通高中毕业班综合测试(一)数学(理科)2013.3本试卷共4页,21小题, 满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:如果事件A B ,相互独立,那么()()()PA B P A P B ⋅=⋅.线性回归方程y bx a=+ 中系数计算公式121ni i i ni i x x y y b a y b xx x ()(),()==--∑==--∑ ,其中y x ,表示样本均值.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集{}123456U ,,,,,=,集合{}135A,,=,{}24B,=,则A .U AB = B .U =()UA ðBC .U A = ()UB ð D .U =()U A ð()U B ð2. 已知11abii=+-,其中a b ,是实数,i 是虚数单位,则a b +i =A .12+iB .2+iC .2-iD .12-i3.已知变量x y ,满足约束条件21110x y x y y ,,.⎧+≥⎪-≤⎨⎪-≤⎩则2z x y =-的最大值为A .3-B .0C .1D .3 4.直线0x -=截圆()2224xy-+=所得劣弧所对的圆心角是A .6πB .3πC .2πD .23π5. 某空间几何体的三视图及尺寸如图1,则该几何体的体积是A .2B .1C . 23 D . 136. 函数()()y x x x x sin cos sin cos =+-是A .奇函数且在02,π⎡⎤⎢⎥⎣⎦上单调递增 B .奇函数且在2,ππ⎡⎤⎢⎥⎣⎦上单调递增 C .偶函数且在02,π⎡⎤⎢⎥⎣⎦上单调递增 D .偶函数且在2,ππ⎡⎤⎢⎥⎣⎦上单调递增 7.已知e 是自然对数的底数,函数()fx =e 2x x +-的零点为a ,函数()ln 2g x x x =+-的零点为b ,则下列不等式中成立的是 A .()()()1f a f f b << B.()()()1f a f b f << C.()()()1f f a f b << D.()()()1f b f f a <<8.如图2,一条河的两岸平行,河的宽度600d =m ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知A B =1km ,水流速度为2km/h, 若客船行驶完航程所用最短时间为6分钟,则客船在静水中的速度大小为A .8 km/h B.km/h 图2 C.km/h D .10km/h二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题) 9. 不等式1x x-≤的解集是 .10.10x cos ⎰d x =.11.某工厂的某种型号的机器的使用年限x 和所支出的维修费用y (万元)有下表的统计资料:根据上表可得回归方程ˆˆ1.23y x a =+,据此模型估计,该型号机器使用年限为10年时维修费用约 万元(结果保留两位小数).12.已知01a a ,>≠,函数()()()11x a x fx x a x ,,⎧≤⎪=⎨-+>⎪⎩若函数()f x 在02,⎡⎤⎣⎦上的最大值比最小值大52,则a 的值为 .13. 已知经过同一点的n n (∈N 3n *,)≥个平面,任意三个平面不经过同一条直线.若这n图3C个平面将空间分成()fn 个部分,则()3f =,()fn =.(二)选做题(14~15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)在极坐标系中,定点32,2A π⎛⎫⎪⎝⎭,点B在直线cos sin 0ρθθ+=动,当线段AB 最短时,点B 的极坐标为 . 15.(几何证明选讲选做题)如图3,AB 是O 的直径,BC 是O 的切线,A C 与O 交于点D ,若3B C =,165AD =,则AB 的长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()sin()4f x A x πω=+(其中x ∈R ,0A >,0ω>)的最大值为2,最小正周 期为8.(1)求函数()f x 的解析式;(2)若函数()f x 图象上的两点,P Q 的横坐标依次为2,4,O 为坐标原点,求△P O Q 的面积.17.(本小题满分12分)甲,乙,丙三位学生独立地解同一道题,甲做对的概率为12,乙,丙做对的概率分别为m ,n (m >n ),且三位学生是否做对相互独立.记ξ为这三位学生中做对该题的人数,其分布列为:图4ABCA 1C 1B 1DE(1) 求至少有一位学生做对该题的概率; (2) 求m ,n 的值; (3) 求ξ的数学期望.18.(本小题满分14分)如图4,在三棱柱111ABC A B C -中,△ABC 是边长为2的等边三角形, 1AA ⊥平面ABC ,D ,E 分别是1C C ,A B 的中点.(1)求证:C E ∥平面1A BD;(2)若H 为1A B上的动点,当C H 与平面1A AB求平面1A BD与平面ABC 所成二面角(锐角)的余弦值.19.(本小题满分14分) 已知数列{}n a 的前n 项和为nS ,且12323(1)2(n n a a a na n S nn +++⋅⋅⋅+=-+∈N *).(1) 求数列{}n a 的通项公式;(2)若p q r ,,是三个互不相等的正整数,且p q r ,,成等差数列,试判断111p q r a a a ,,---是否成等比数列?并说明理由.20.(本小题满分14分) 已知椭圆1C 的中心在坐标原点,两个焦点分别为1(2,0)F -,2F ()20,,点(2,3)A 在椭圆1C 上,过点A 的直线L 与抛物线22:4C x y=交于B C ,两点,抛物线2C 在点B C ,处的切线分别为12l l ,,且1l 与2l交于点P .(1) 求椭圆1C 的方程;(2) 是否存在满足1212PF PF AF AF +=+的点P ? 若存在,指出这样的点P 有几个(不必求出点P 的坐标); 若不存在,说明理由.21.(本小题满分14分) 已知二次函数()21fx xa x m =+++,关于x的不等式()()2211fx m x m<-+-的解集为()1m m,+,其中m 为非零常数.设()()1fx gx x =-.(1)求a 的值;(2)k k (∈R )如何取值时,函数()x ϕ()gx =-()1k x ln -存在极值点,并求出极值点;(3)若1m =,且x 0>,求证:()()1122nnngx gxn (⎡⎤+-+≥-∈⎣⎦N *).2013年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,2⎡⎫+∞⎪⎢⎣⎭ 10.1sin 11.12.38 12.12或72 13.8,22n n -+14.1116,π⎛⎫ ⎪⎝⎭ 15.4说明:① 第13题第一个空填对给2分,第二个空填对给3分. ② 第14题的正确答案可以是:11126k k ,(ππ⎛⎫+∈⎪⎝⎭Z ).三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、诱导公式、余弦定理、正弦定理、两点间距离公式等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:∵()f x 的最大值为2,且0A >, ∴2A =. ……………1分∵()f x 的最小正周期为8, ∴28T πω==,得4πω=. (2)分∴()2sin()44f x x ππ=+. ……………3分(2)解法1:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭, (4)分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭, (5)分∴(4,P Q .∴O P PQ Q ===……………8分∴222cos 2O PO QPQPO Q O P O Q+-∠===. ………10分∴PO Q sin ∠==. ……………11分∴△P OQ的面积为1122S O P O Q P O Q sin =∠=⨯⨯⨯=.……………12分解法2:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭, (4)分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭, (5)分∴(4,P Q . (苏元高考吧: ) ∴(4,O P O Q ==. ……………8分∴cos cos ,O P O QPO Q O P O Q O P O Q⋅∠=<>===. ……………10分∴PO Q sin ∠==. ……………11分∴△P O Q的面积为1122S O P O Q PO Qsin=∠=⨯⨯⨯=.……………12分解法3:∵(2)2sin2cos244fπππ⎛⎫=+==⎪⎝⎭, (4)分(4)2sin2sin44fπππ⎛⎫=+=-=⎪⎝⎭, (5)分∴(4,P Q.∴直线O P的方程为y x=,即0x-=. (7)分∴点Q到直线O P的距离为d. ……………9分∵O P= (11)分∴△P O Q的面积为1122S O P d=⋅=⨯⨯=. ……………12分17.(本小题满分12分)(本小题主要考查相互独立事件的概率、离散型随机变量的均值等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想)解:设“甲做对”为事件A,“乙做对”为事件B,“丙做对”为事件C,由题意知,()()()12P A P B m P C n,,===. (1)分(1)由于事件“至少有一位学生做对该题”与事件“0ξ=”是对立的,所以至少有一位学生做对该题的概率是()1310144Pξ-==-=. (3)H FABC A 1C 1B 1DE分(2)由题意知()()()()1101124P PA B Cm n ξ===--=, ……………4分()()113224P P ABC m n ξ====, (5)分整理得112m n =,712m n +=. 由m n >,解得13m =,14n =. ……………7分 (3)由题意知()()()()1a P PA B C P AB C P A BC ξ===++()()()()11111111122224m n m n m n =--+-+-=, (9)分(2)1(0)(1)(3)b P P P P ξξξξ===-=-=-==14, ……………10分∴ξ的数学期望为0(0)1(1)2(2)3(3)E P P P P ξξξξξ=⨯=+⨯=+=+==1312.…………12分18.(本小题满分14分)(本小题主要考查空间线面位置关系、直线与平面所成的角、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) 解法一: (1)证明:延长1A D交AC 的延长线于点F ,连接B F .∵C D ∥1AA ,且C D12=1AA ,∴C 为A F 的中点. ……………2分∵E 为A B 的中点,∴C E ∥B F . ……………3分 ∵B F ⊂平面1A BD ,C E ⊄平面1A BD,∴C E ∥平面1A BD. (4)分(2)解:∵1AA ⊥平面ABC ,C E ⊂平面ABC ,∴1AA ⊥C E. (5)分∵△ABC 是边长为2的等边三角形,E 是A B 的中点,∴C E A B ⊥,C E AB ==∵A B ⊂平面1A AB ,1AA ⊂平面1A AB ,1AB AA A= ,∴C E ⊥平面1A AB. ……………6分∴EH C ∠为C H 与平面1A AB所成的角. ……………7分∵C E =在R t △C EH 中,tanC E EH C EH∠==,∴当EH 最短时,tan EH C ∠的值最大,则EH C ∠最大. (8)分∴当1EHA B⊥时,EH C ∠最大. 此时,tanC E EH C EH∠===∴EH =……………9分∵C E ∥B F ,C E ⊥平面1A AB ,∴BF ⊥平面1A AB . ……………A 10分∵A B ⊂平面1A AB ,1A B ⊂平面1A AB,∴BF ⊥A B ,BF ⊥1A B. (11)分∴1ABA ∠为平面1A BD与平面ABC 所成二面角(锐角). (12)分在R t △EH B中,B H ==,cos 1ABA∠BH EB== (13)分∴平面1A BD与平面ABC (14)分 解法二:(1)证明:取1A B的中点F ,连接D F 、E F .∵E 为A B 的中点,∴E F ∥1AA ,且112EF AA =. ……………1分∵C D ∥1AA ,且C D12=1AA ,∴E F ∥C D ,E F =C D . ……………2分 ∴四边形EFD C 是平行四边形.∴C E ∥D F . ……………3分 ∵D F ⊂平面1A BD ,C E ⊄平面1A BD ,∴C E ∥平面1A BD. (苏元高考吧: ) ……………4分(2)解:∵1AA ⊥平面ABC ,C E ⊂平面ABC ,∴1AA ⊥C E. (5)分∵△ABC 是边长为2的等边三角形,E 是A B 的中点,∴C E A B ⊥,C E AB ==∵A B ⊂平面1A AB ,1AA ⊂平面1A AB ,1AB AA A= ,∴C E ⊥平面1A AB. ……………6分∴EH C ∠为C H 与平面1A AB所成的角. ……………7分∵C E =在R t △C EH 中,tanC E EH C EH∠==,∴当EH 最短时,tan EH C ∠的值最大,则EH C ∠最大. (8)分∴当1EHA B⊥时,EH C ∠最大. 此时,tanC E EH C EH∠===∴EH =……………9分在R t △EH B中,BH ==∵R t △EH B ~R t △1A AB,∴1EHBH AA AB=,即1552A A =.∴14AA =. ……………10分以A 为原点,与AC 垂直的直线为x 轴,AC 所在的直线为y 轴,1AA所在的直线为z轴,建立空间直角坐标系A xyz -.则()000A ,,,1A ()004,,,B)10,,D ()02,,2.∴1AA =()004,,,1A B =)14,-,1A D =()02,,-2.设平面A BD1的法向量为n =()x y z ,,, 由n 10A B ?,n 10A D ?,得40220y z y z .ìï+-=ïíï-=ïî (苏元高考吧: )令1y =,则1z x ==,∴平面A BD1的一个法向量为n=)11,. (12)分∵1AA ⊥平面ABC , ∴1AA=()004,,是平面ABC 的一个法向量.∴cos 111,⋅==n A A n A A n AA . ……………13分∴平面1A BD与平面ABC (14)分19.(本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前n 项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力) (1) 解:12323(1)2n n a a a na n S n ++++=-+ ,∴ 当1n =时,有 11(11)2,a S =-+ 解得 12a =. (1)分 由12323(1)2n n a a a na n S n++++=-+ , ①得1231123(1)2(1)n n n a a a na n a nS n ++++++++=++ , ② ……………2分② - ①得:11(1)(1)2n n n n a nS n S +++=--+. ③ ……………3分以下提供两种方法:法1:由③式得:11(1)()(1)2n n n n n S S nS n S +++-=--+,即122n n S S +=+; ……………4分∴122(2)n n S S ++=+, ……………5分∵112240S a +=+=≠,∴数列{2}n S +是以4为首项,2为公比的等比数列.∴1242n n S -+=⨯,即1142222n n n S -+=⨯-=-. ……………6分当2n ≥时, 11(22)(22)2n n nnn n a S S +-=-=---=, (7)分又12a =也满足上式,∴2nn a =. (8)分法2:由③式得:()111(1)(1)22n n n n n n n a nS n S n S S S ++++=--+=-++,得12n n a S +=+. ④ (4)分当2n ≥时,12n n a S -=+, ⑤ ……………5分⑤-④得:12n na a +=. (6)分由12224a a S +=+,得24a =,∴212a a =. ……………7分∴数列{}n a 是以12a =为首项,2为公比的等比数列. ∴2nn a =. (8)分(2)解:∵p q r ,,成等差数列,∴2p r q +=. ……………9分假设111p q r a a a ,,---成等比数列, 则()()()2111prqaaa--=-, (10)分即()()()2212121prq--=-,化简得:2222prq+=⨯. (*) ……………11分∵p r ≠,∴2222prq+>=⨯,这与(*)式矛盾,故假设不成立.……13分∴111p q r a a a ,,---不是等比数列. ……………14分 20.(本小题满分14分)(本小题主要考查椭圆、抛物线、曲线的切线等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)(1) 解法1:设椭圆1C 的方程为22221xy ab+=()a b >>,依题意: 222222231,4.ab a b ⎧+=⎪⎨⎪=+⎩ 解得:2216,12.a b ⎧=⎪⎨=⎪⎩ ……………2分∴ 椭圆1C 的方程为2211612xy+=. ……………3分解法2:设椭圆1C 的方程为22221xy ab+=()0a b >>,根据椭圆的定义得1228a AF AF =+=,即4a =, (1)分∵2c =, ∴22212b a c =-=. ……………2分∴ 椭圆1C 的方程为2211612xy+=. ……………3分(2)解法1:设点)41,(211x x B ,)41,(222x x C ,则))(41,(212212x x x x BC --=,)413,2(211x x BA --=,∵C B A ,,三点共线, (苏元高考吧: )∴BC BA //. ……………4分∴()()()222211211113244xx x xx x ⎛⎫--=-- ⎪⎝⎭,化简得:1212212x x x x ()+-=. ① (5)分由24x y=,即214y x ,=得y '=12x. ……………6分∴抛物线2C 在点B 处的切线1l的方程为)(2411121x x x x y -=-,即211412x x x y -=. ②同理,抛物线2C 在点C 处的切线2l的方程为222412x x x y -=. ③ (8)分设点),(y x P ,由②③得:=-211412x x x 222412x x x -,而21x x ≠,则)(2121x x x +=. (9)分代入②得 2141x x y =, (10)分则212x x x +=,214x x y =代入 ① 得 1244=-y x ,即点P 的轨迹方程为3-=x y .……………11分 若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,而点P 又在直线3-=x y 上,……………12分∵直线3-=x y 经过椭圆1C内一点(3,0),∴直线3-=x y 与椭圆1C交于两点. ……………13分 ∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……………14分解法2:设点),(11y x B ,),(22y x C ,),(00y x P ,由24x y =,即214y x ,=得y '=12x. (4)分∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=. ……………5分∵21141x y =, ∴112y x x y -=.∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ① ……………6分同理, 20202y x x y -=. ② (7)分综合①、②得,点),(),,(2211y x C y x B 的坐标都满足方程yx x y -=002. (8)分∵经过),(),,(2211y x C y x B 的直线是唯一的,∴直线L 的方程为yx x y -=002, (9)分∵点)3,2(A 在直线L 上, ∴300-=x y . (10)分∴点P 的轨迹方程为3-=x y . ……………11分若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,又在直线3-=x y 上, (12)分∵直线3-=x y 经过椭圆1C内一点(3,0),∴直线3-=x y 与椭圆1C交于两点. ……………13分 ∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……………14分解法3:显然直线L 的斜率存在,设直线L 的方程为()23y kx =-+,由()2234y k x x y ,,⎧=-+⎪⎨=⎪⎩消去y ,得248120x kx k -+-=. (4)分 设()()1122Bx y C xy ,,,,则12124812x x k x x k ,+==-. ……………5分由24x y=,即214y x ,=得y '=12x. ……………6分∴抛物线2C 在点B 处的切线1l的方程为)(2111x x x y y -=-,即2111212x y x x y -+= (7)分∵21141xy =, ∴211124x y x x =-.同理,得抛物线2C 在点C 处的切线2l 的方程为222124x y x x =-. ……………8分由211222124124x y x x x y x x ,,⎧=-⎪⎪⎨⎪=-⎪⎩解得121222234x x x k x x y k ,.⎧+==⎪⎪⎨⎪==-⎪⎩∴()223P k k ,-. ……………10分 ∵1212PF PF AF AF +=+,∴点P 在椭圆22111612xyC :+=上. ……………11分∴()()2222311612k k -+=.化简得271230k k --=.(*) (12)分 由()2124732280Δ=-⨯⨯-=>, ……………13分可得方程(*)有两个不等的实数根. ∴满足条件的点P 有两个. ……………14分21.(本小题满分14分)(本小题主要考查二次函数、一元二次不等式、一元二次方程、函数应用、均值不等式等基础知识,考查数形结合、函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识) (1)解:∵关于x 的不等式()()2211fx mx m <-+-的解集为()1m m ,+,即不等式()22120xa m x mm ++-++<的解集为()1m m,+,∴()2212x a m x m m ++-++=()()1xm x m ---.∴()2212xam x mm ++-++=()()2211xm x m m -+++.∴()1221a m m +-=-+.∴2a =-. ……………2分(2)解法1:由(1)得()()1fx gx x =-()221111xx m m x x x -++==-+--.∴()()x gx ϕ=-()1k x ln -()11m x x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211mk x x ---()()22211xk x k m x -++-+=-. ……………3分方程()2210xk x k m -++-+=(*)的判别式()()222414Δk k m km=+--+=+. ……………4分①当0m >时,0Δ>,方程(*)的两个实根为11x ,=<21x ,=> ……………5分则()21x x ,∈时,()0x ϕ'<;()2x x,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x. ……………6分②当0m <时,由0Δ>,得k <-k >,若k <-,则11x ,=<21x ,=<故x ∈()1,+∞时,()0x ϕ'>,(苏元高考吧: )∴函数()x ϕ在()1,+∞上单调递增.∴函数()x ϕ没有极值点. ……………7分若k >时,11x ,=>21x ,=>则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x,+∞上单调递增.∴函数()x ϕ有极小值点2x,有极大值点1x . ……………8分综上所述, 当0m >时,k 取任意实数, 函数()x ϕ有极小值点2x;当0m <时,k >,函数()x ϕ有极小值点2x,有极大值点1x (9)分(其中1x =,2x =解法2:由(1)得()()1fx gx x =-()221111xx m m x x x -++==-+--.∴()()x gx ϕ=-()1k x ln -()11m x x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211mk x x ---()()22211xk x k m x -++-+=-. ……………3分若函数()()x gx ϕ=-()1k x ln -存在极值点等价于函数()x ϕ'有两个不等的零点,且至少有一个零点在()1,+∞上. ……………4分令()x ϕ'()()22211xk x k m x -++-+=-0=,得()221xk x k m -++-+0=, (*)则()()2224140Δk k m km =+--+=+>,(**) (5)分方程(*)的两个实根为1x =,2x =设()h x =()221xk x k m -++-+,①若1211x x ,<>,则()10h m =-<,得0m >,此时,k 取任意实数, (**)成立.则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x. ……………6分②若1211x x ,>>,则()10212h m k ,.⎧=->⎪⎨+>⎪⎩得00m k ,.⎧<⎨>⎩又由(**)解得k >或k <-故k >. ……………7分则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x,+∞上单调递增.∴函数()x ϕ有极小值点2x,有极大值点1x . ……………8分综上所述, 当0m >时,k 取任何实数, 函数()x ϕ有极小值点2x;当0m <时,k >,函数()x ϕ有极小值点2x,有极大值点1x (9)分(其中1x =,2x =(2)证法1:∵1m =, ∴()gx =()111xx -+-.∴()()1111nnnn n g x gxx x x x ⎛⎫⎛⎫⎡⎤+-+=+-+ ⎪⎪⎣⎦⎝⎭⎝⎭112212111111nn n n nn n n nnn nn xC xC xC x C x xxxxx ----⎛⎫=+⋅+⋅++⋅+-+ ⎪⎝⎭122412n n n nn n nC xC xC x----=+++ . ……………10分 令T 122412n n n nn n n C xC xC x----=+++ ,则T122412n nn nn nnn C xC xC x-----=+++122412nnn n n n nC xC xC x----=+++ .∵x 0>, ∴2T()()()122244122n nn nn nn nnnC xxC xxC xx-------=++++++ ……11分≥121n nn nC C C -⋅+⋅++⋅ …12分 ()1212n n n nC C C -=+++()012102n n nn n n n n n nC C C C C C C -=+++++--()222n=-. ……………13分 ∴22nT ≥-,即()()1122nnngx gx⎡⎤+-+≥-⎣⎦. (14)分证法2:下面用数学归纳法证明不等式11nn n x x x x ⎛⎫⎛⎫+-+ ⎪⎪⎝⎭⎝⎭22n ≥-. ① 当1n =时,左边110x x x x ⎛⎫⎛⎫=+-+= ⎪ ⎪⎝⎭⎝⎭,右边1220=-=,不等式成立;……………10分② 假设当n k =k (∈N *)时,不等式成立,即11kk k x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22k ≥-,则11111k k k x x x x +++⎛⎫⎛⎫+-+ ⎪⎪⎝⎭⎝⎭11111111kk k k k k k x x x x x x x x x x x x ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥=++-++++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111k k k x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111k k x x --⎛⎫+⎪⎝⎭ (11)分()22k≥⋅-+……………12分122k +=-. (13)分也就是说,当1n k =+时,不等式也成立. 由①②可得,对∀n ∈N *,()()1122nnng x gx⎡⎤+-+≥-⎣⎦都成立. ………14分。

2013年广州市白云区中考一模数学试题及答案

2013年广州市白云区中考一模数学试题及答案

2013年白云区初中毕业班综合测试(一)第一部分 选择题(共30分)一、选择题(每小题3分,满分30分) 1.计算(π-3)0的结果为()(A )0.14 (B )1 (C )π (D )0 2.地球与太阳之间的距离约为149600000千米,用科学计数法表示是()千米 (A )1496×105 (B )149.6×106 (C )14.96×107 (D )1.496×108 3.下列多项式为平方差是()(A )a 2-b 2 (B )a 2+b 2 (C )a 2-2b (D )2a-b 2 4.点A (-2,3)关于原点对称的点的坐标为()(A )(-2,-3) (B )(3,-2) (C )(2,3) (D )(2,-3) 5.梯形ABCD 中,AB ∥CD ,AD=BC ,∠C=115o ,则∠D=()(A )55 o (B )65 o (C )115 o (D )165 o6.锐角∠α的余弦值等于12 ,的度数为∠α()(A )30 o (B )45 o (C )60 o (D )90 o7.某市三月连续七天的日最高气温分别为21、18、22、24、22、20、19(单位:o C ),这组数据的中位数、众数分别是()(A )22、21 (B )21、22 (C )21、20 (D )22、22 8.如图1,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=6cm ,OD=4cm ,则⊙O 的半径为()(A )3cm (B )4cm (C )5cm (D )6cm 9.一个立方体的体积为64,则这个立方体的棱长的算术平方根为() (A )±4 (B )4 (C )±2 (D )210.将一张边长分别为8、6的矩形纸片ABCD 折叠,使点C 与A 重合,则折痕的长为() (A )6 (B )6.5 (C )7.5 (D )10图1 图2第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分) 11. ∠A=32o ,则∠A 的补角等于 。

2013年贵州省贵阳市白云区中考数学模拟试卷(word解析版)

2013年贵州省贵阳市白云区中考数学模拟试卷(word解析版)

2013年贵州省贵阳市白云区中考数学模拟试卷参考答案与试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.第1~8小题选对每小题得3分,第9~12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分..2.(3分)(2012•日照)如图,DE∥AB,若∠ACD=55°,则∠A等于()3.(3分)(2013•自贡)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为4.(3分)(2012•日照)如图,是由两个相同的圆柱组成的图形,它的俯视图是( )B.5.(3分)(2012•日照)洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y (升)与浆洗一遍的时间x (分)之间函数关系B .6.(3分)(2012•日照)如图,在4×4的正方形网格中,若将△ABC 绕着点A逆时针旋转得到△AB ′C ′,则的长为( )l=求得的长为:==若.依次连接菱形各边中点得到的四边形是矩形的算术平方根是9)==﹣=a=98.(3分)(2012•日照)在菱形ABCD中,E是BC边上的点,连接AE交BD于点F,若EC=2BE,则B.得出==,==,9.(4分)(2012•日照)已知关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,≥且且>>10.(4分)(2012•日照)某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛,,11.(4分)(2012•日照)二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2﹣4ac>0;②2a+b<0;③4a﹣2b+c=0;④a:b:c=﹣1:2:3.其中正确的是(),即﹣=112.(4分)(2012•日照)如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作内接正方形A3B3C3D3;…;依次作下去,则第n个正方形A n B n C n D n的边长是()B.OM=AB=,ON=A=MN=OM=×=ON=×=的边长二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2012•日照)已知x1、x2是方程2x2+14x﹣16=0的两实数根,那么的值为﹣.=.故答案是:﹣14.(4分)(2012•日照)下图是根据今年某校九年级学生体育考试跳绳的成绩绘制成的统计图.如果该校九年级共有200名学生参加了这项跳绳考试,根据该统计图给出的信息可得这些同学跳绳考试的平均成绩为175.5.此题主要考查了加权平均数,关键是掌握加权平均数计算公式:=15.(4分)(2012•日照)如图1,正方形OCDE的边长为1,阴影部分的面积记作S1;如图2,最大圆半径r=1,阴影部分的面积记作S2,则S1<S2(用“>”、“<”或“=”填空).,,AO=OD=,CO=(﹣π﹣<16.(4分)(2012•日照)如图,点A在双曲线y=上,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于点B,当OA=4时,则△ABC周长为.的方程组,解之即可求出y=b=则:,=OC+AC=2217.(4分)(2012•日照)如图,过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=63°,那么∠B=18°.三、解答题:本大题共7小题,共60分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(2012•日照)解不等式组:,并把解集在数轴上表示出来.解:19.(8分)(2012•日照)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?可得每个文具包的花费是:元,根据可得每个文具包的花费是:,根据题意可得方程,解方程即可.×0.8=20.(8分)(2012•日照)周日里,我和爸爸、妈妈在家都想使用电脑上网,可是家里只有一台电脑啊,怎么办?为了公平起见我设计了下面的两种游戏规则,确定谁使用电脑上网.(1)任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,妈妈使用电脑;若一枚正面朝上一枚反面朝上,则我使用电脑.(2)任意投掷两枚骰子,若点数之和被3整除,则爸爸使用电脑;若点数之和被3除余数为1,则妈妈使用电脑;若点数之和被3除余数为2,则我使用电脑.请你来评判,这两种游戏规则哪种公平,并说明理由噢!∵两枚硬币都是正面朝上的概率为:;两枚硬币都是反面朝上的概率为:两枚硬币一正面朝上一反面朝上的概率为:整除的概率为:;的概率为:=的概率为:=21.(9分)(2012•日照)如图,在正方形ABCD中,E是BC上的一点,连接AE,作BF⊥AE,垂足为H,交CD于F,作CG∥AE,交BF于G.求证:(1)CG=BH;(2)FC2=BF•GF;(3)=.=,===.22.(9分)(2012•日照)如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.PBy=﹣+≤23.(10分)(2012•日照)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,且A点坐标为(﹣3,0),经过B点的直线交抛物线于点D(﹣2,﹣3).(1)求抛物线的解析式和直线BD解析式;(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.,解得:,则解得:,得24.(10分)(2012•日照)在Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5.(Ⅰ)探究新知如图①,⊙O是△ABC的内切圆,与三边分别相切于点E、F、G.(1)求证:内切圆的半径r1=1;(2)求tan∠OAG的值;(Ⅱ)结论应用(1)如图②,若半径为r2的两个等圆⊙O1、⊙O2外切,且⊙O1与AC、AB相切,⊙O2与BC、AB相切,求r2的值;(2)如图③,若半径为r n的n个等圆⊙O1、⊙O2、…、⊙O n依次外切,且⊙O1与AC、AB相切,⊙O n 与BC、AB相切,⊙O1、⊙O2、…、⊙O n均与AB相切,求r n的值.OAG=,同理可得:BE==,进而得出==;OAG=AD=BE==;,BM=.,BE=是解题关键.。

广东省广州市高三数学毕业班综合测试试题 理(一)(广州一模)(含解析)

广东省广州市高三数学毕业班综合测试试题 理(一)(广州一模)(含解析)

试卷类型:A2013年广州市普通高中毕业班综合测试(一)数学(理科)2013.3本试卷共4页,21小题, 满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:如果事件A B ,相互独立,那么()()()P A BP A P B ⋅=⋅.线性回归方程y bx a =+中系数计算公式121ni i i ni i x x y y b a y bx x x ()(),()==--∑==--∑,其中y x ,表示样本均值.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集{}123456U ,,,,,=,集合{}135A ,,=,{}24B ,=,则A .U AB = B .U =()U A BC .U A =()UB D .U =()U A ()UB【答案】D【解析】由{}2,4,6U C A =,{}1,3,5U C B =,则()()U U U C A C B =。

2. 已知11abi i=+-,其中a b ,是实数,i 是虚数单位,则a b +i =侧视图正视图A.12+i B.2+i C.2-i D.12-i【答案】B【解析】由11abii=+-,即122a ai bi+=+,得2a=,1b=。

广东省广州六中2013年中考数学一模试卷(解析版) 新人教版

广东省广州六中2013年中考数学一模试卷(解析版) 新人教版

2013年某某省某某六中中考数学一模试卷一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2011•某某)下列各选项中,既不是正数也不是负数的是()A.﹣1 B.0C.D.π考点:实数.专题:分类讨论.分析:根据实数中正负数的定义即可解答.解答:解:由正负数的定义可知,A是负数,C、D是正数,B既不是正数也不是负数.故选B.点评:本题主要考查了实数的定义,要求掌握实数的X围以及分类方法.2.(3分)(2009•某某)某班抽取6名同学参加体能测试,成绩如下:85,95,85,80,80,85.下列表述错误的是()A.众数是85 B.平均数是85 C.中位数是80 D.极差是15考点:中位数;算术平均数;众数;极差.专题:应用题.分析:本题考查统计的有关知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.利用平均数和极差的定义可分别求出.解答:解:这组数据中85出现了3次,出现的次数最多,所以这组数据的众数位85;由平均数公式求得这组数据的平均数位85,极差为95﹣80=15;将这组数据按从大到校的顺序排列,第3,4个数是85,故中位数为85.所以选项C错误.故选C.点评:本题考查了统计学中的平均数,众数,中位数与极差的定义.解答这类题学生常常对中位数的计算方法掌握不好而错选.3.(3分)(2011•某某)如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.a c>bc D.考点:不等式的性质.专题:计算题.分析:根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一个个筛选即可得到答案.解答:解:A,∵a>b,∴a+c>b+c,故此选项正确;B,∵a>b,∴﹣a<﹣b,∴﹣a+c<﹣b+c,故此选项错误;C,∵a>b,c<0,∴ac<bc,故此选项错误;D,∵a>b,c<0,∴<,故此选项错误;故选:A.点评:此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱,准确把握不等式的性质是做题的关键.4.(3分)下列各式中计算正确的是()A.(x+y)2=x2+y2B.(3x)2=6x2C.(x3)2=x6D.a2+a2=a4考点:完全平方公式;合并同类项;幂的乘方与积的乘方.专题:计算题.分析:根据完全平方公式对A进行判断;根据幂的乘方与积的乘方对B、C进行判断;根据合并同类项对D 进行判断.解答:解:A、(x+y)2=x2+2xy+y2,所以A选项错误;B、(3x)2=9x2,所以B选项错误;C、(x3)2=x6,所以B选项正确;D、a2+a2=2a2,所以D选项错误.故选C.点评:本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了合并同类项以及幂的乘方与积的乘方.5.(3分)如图,△ABC中,AB=AC=15,D在BC边上,DE∥BA于点E,DF∥CA交AB于点F,那么四边形AFDE 的周长是()A.30 B.25 C.20 D.15考点:平行四边形的判定与性质.分析:因为AB=AC,所以△ABC为等腰三角形,由DE∥AB,可证△CDE为等腰三角形,同理△BDF也为等腰三角形,根据腰长相等,将线段长转化,求周长.解答:解:∵AB=AC=15,∴∠B=∠C,由DF∥AC,得∠FDB=∠C=∠B,∴FD=FB,同理,得DE=EC.∴四边形AFDE的周长=AF+AE+FD+DE=AF+FB+AE+EC=AB+AC=15+15=30.故选A .点评:本题利用了两直线平行,同位角相等和等边对等角及等角对等边来把四边形的周长转移到AB和ACH 上求解的.(3分)如图是一个由若干个棱长为1的正方体组成的几何体的主视图和左视图,则俯视图不可能是()6.A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图.分析:根据给出的几何体,通过动手操作,观察可得答案选择D,也可以根据画三视图的方法,发挥空间想象能力,结合主视图和左视图,从上面看,几何体的第二行有正方体,而D选项没有.解答:解:结合主视图和左视图,从上面看,几何体的第二行有正方体,而D选项没有.故选D.点评:本题考查了由三视图判断几何体和简单组合体的三视图,关键是掌握几何体的三视图及空间想象能力.7.(3分)(2011•某某)在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣3,﹣2),B(1,2),将线段AB平移后得到线段A′B′,若点A′坐标为(﹣2,2),则点B′的坐标为()A.(2,6)B.(3,5)C.(6,2)D.(5,3)考点:坐标与图形变化-平移.专题:压轴题.分析:各对应点之间的关系是横坐标加1,纵坐标加4,那么让点B的横坐标加1,纵坐标加4即为点B′的坐标.解答:解:由A(﹣3,﹣2)的对应点A′的坐标为(﹣2,2 ),坐标的变化规律可知:各对应点之间的关系是横坐标加1,纵坐标加4,∴点B′的横坐标为1+1=2;纵坐标为2+4=6;即所求点B′的坐标为(2,6).故选:A.点评:此题主要考查了坐标与图形的变化﹣平移,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.8.(3分)(2010•某某区二模)已知一个圆锥的底面半径是5cm,侧面积是65πcm2,则圆锥的母线长是()A.B.13cm C.15cm D.26cm考点:圆锥的计算.分析:圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.解答:解:设圆锥的母线长为R,则:65π=π×5×R,解得R=13cm,故选B.点评:本题考查圆锥侧面积公式的灵活运用,掌握公式是关键.9.(3分)下列函数的图象关于y轴成轴对称的函数是()A.y=2x B.y=﹣3x﹣1 C.D.y=x2+1考点:二次函数的图象;一次函数的图象;正比例函数的图象;反比例函数的图象.专题:计算题.分析:根据一次函数图象为直线可对A、B进行判断;根据反比例函数的图象为双曲线,且发布在第一、三象限或第二、四象限可对C进行判断;根据二次函数y=ax2+bx+c(a≠0)的图象为抛物线,对称轴为直线x=﹣可对D进行判断.解答:解:A、正比例函数y=2x的图象是过原点的直线,但不与y轴垂直,其图象不是关于y轴成轴对称,所以A选项错误;B、一次函数y=﹣3x﹣1的图象是一条直线,但不与y轴垂直,其图象不是关于y轴成轴对称,所以B选项错误;C、反比例函数y=的图象为双曲线,发布在第一、三象限,则其图象不是关于y轴成轴对称,所以C选项错误;D、二次函数y=x2+1的图象为抛物线,其对称轴为y轴,所以D选项正确.故选D.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,对称轴为直线x=﹣.也考查了一次函数的图象和反比例函数图象.10.(3分)(2013•某某模拟)如图,填在各方格中的三个数之间均具有相同的规律,根据此规律,n的值是()A.48 B.56 C.63 D.74考点:规律型:数字的变化类.专题:压轴题.分析:首先根据上面的数值变化规律求出m的值为7,然后根据每隔方格中数的规律求n即可,规律为:每个方格中的上面的数乘以下面左侧的数再加上上面的数得下面右侧的数.解答:解:从方格上方的数的数1、3、5、可以推出m=7,第一个方格中:3=1×2+1,第二个方格中:15=3×4+3,第三个方格中:35=5×6+5,∴第四个方格中:n=7×8+7=63.故选C.点评:本题主要考查了通过数值的变化总结规律,解题的关键在于通过每个方格上面的数的变化规律求m.二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)当实数x的取值使得有意义时,函数y=3x﹣1中,y的取值X围是y≤5.考点:一次函数的性质;二次根式有意义的条件.专题:探究型.分析:先根据有意义得出关于x的不等式,求出x的取值X围,再把函数y=3x﹣1化为x=的形式,求出y的取值X围即可.解答:解:∵有意义,∴2﹣x≥0,解得x≤2,∵函数y=3x﹣1化为x=的形式,∴≤2,解得y≤5.故答案为:y≤5.点评:本题考查的是一次函数的性质及二次根式有意义的条件,根据题意求出x的取值X围是解答此题的关键.12.(3分)(2009•某某)如图,将△OAB绕点O按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=1cm,则A′B长是3 cm.考点:旋转的性质.分析:根据旋转的性质,旋转前后图形的大小和形状没有改变,进行分析.AB的对应边是A′B′,AB=4cm.解答:解:根据旋转的性质,得:A′B′=AB=4cm.∴A′B=A′B′﹣BB′=4﹣1=3(cm).点评:考查了旋转的性质,解题的关键是正确找出对应边.13.(3分)分解因式:6a3﹣54a=6a(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.分析:先提取公因式6a,再对余下的多项式利用平方差公式进行二次因式分解.解答:解:6a3﹣54a,=6a(a2﹣9),=6a(a+3)(a﹣3).点评:本题考查了提公因式法与公式法分解因式,提取公因式后利用平方差公式进行二次因式分解是解题的关键,分解因式一定要彻底.14.(3分)已知关于x的方程ax2﹣4x+4=0有两个相等的实根,则代数式的值为.考点:根的判别式.分析:根据方程有两个相等的实数根可得△=b2﹣4ac=0,代入相应数值即可算出a的值,再把a的值代入代数式即可算出答案.解答:解:∵关于x的方程ax2﹣4x+4=0有两个相等的实根,∴△=b2﹣4ac=(﹣4)2﹣4×a×4=16﹣16a=0,解得:a=1,==,把a=1代入得:原式==,故答案为:.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac,以及分式的化简求值,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.(3分)已知二次函数y=x2﹣mx﹣1,当x<4时,函数值y随x的增大而减小,则m的取值X围是m≥8.15.考点:二次函数的性质.专题:探究型.分析:先根据二次函数的解析式判断出函数的开口方向,再由当x<4时,函数值y随x的增大而减小可知二次函数的对称轴x=﹣≥4,故可得出关于m的不等式,求出m的取值X围即可.解答:解:∵二次函数y=x2﹣mx﹣1中,a=1>0,∴此函数开口向上,∵当x<4时,函数值y随x的增大而减小,∴二次函数的对称轴x=﹣≥4,即﹣≥4,解得m≥8.故答案为:m≥8.点评:本题考查的是二次函数的性质,熟知二次函数的增减性是解答此题的关键.16.(3分)如图,已知正方形纸片ABCD的边长为8,⊙0的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使E A′恰好与⊙0相切于点A′(△EFA′与⊙0除切点外无重叠部分),延长FA′交CD 边于点G,则A′G的长是.考点:切线的性质;正方形的性质;翻折变换(折叠问题).专题:计算题;压轴题.分析:连AC,过F作FH⊥DC于H,根据折叠的性质得∠EA′F=∠EAF=90°,FA′=FA,由E A′恰好与⊙0相切于点A′,根据切线的性质得OA′⊥EA′,则点F、A′、O共线,即FG过圆心O;再根据正方形的性质得到AC经过点O,且OA=OC,易证得△OAF≌△OCG,则OF=OG,AF=CG,易得FA′=GN,设FA=x,DC=8,ON=2,则FA′=DH=CG=GN=x,FG=FA′+A′N+NG=2x+4,HG=DC﹣DH﹣CG=8﹣2x,在Rt△FGH中,利用勾股定理得到FG2=FH2+HG2,即(2x+4)2=82+(8﹣2x)2,解出x=,则可计算出A′G=A′N+NG=4+=.解答:解:连AC,过F作FH⊥DC于H,如图.∵△AEF沿EF折叠得到△A′EF,∴∠EA′F=∠EAF=90°,FA′=FA,∵E A′恰好与⊙0相切于点A′,∴OA′⊥EA′,∴点F、A′、O共线,即FG过圆心O,又∵点O为正方形的中心,∴AC经过点O,∴OA=OC,易证得△OAF≌△OCG,∴OF=OG,AF=CG,∵OA′=ON,∴FA′=GN,设FA=x,DC=8,ON=2,则FA′=DH=CG=GN=x,FG=FA′+A′N+NG=2x+4,HG=DC﹣DH﹣CG=8﹣2x,在Rt△FGH中,FG2=FH2+HG2,∴(2x+4)2=82+(8﹣2x)2,解得x=,∴A′G=A′N+NG=4+=.故答案为.点评:本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了折叠和正方形的性质以及勾股定理.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(9分)(2011•某某)解不等式组,并写出不等式组的整数解.考点:一元一次不等式组的整数解;解一元一次不等式组.分析:首先解出两个不等式的解集,然后求出公共解集,找出符合条件的整数解即可.解答:解:,由①得:x≥﹣1,由②得:x<2,∴不等式组的解集为:﹣1≤x<2,∴不等式组的整数解是:﹣1,0,1,点评:此题主要考查了不等式组的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.(9分)如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=,BC=6,求切线BD的长.考点:切线的判定与性质.分析:(1)如图,连接OD,欲证明直线BD与⊙O相切,只需证明OD⊥BD即可;(2)连接DE.利用圆周角定理和三角形中位线定理易求DE的长度,而AD:AE=,在直角△ADE中,利用勾股定理即可求得AE的长度;最后利用切割线定理来求切线BD的长度.解答:(1)证明:∵OA=OD,∴∠A=∠ADO(等边对等角).又∵∠A+∠CDB=90°(已知),∴∠ADO+∠CDB=90°(等量代换),∴∠ODB=180°﹣(∠ADO+∠CDB)=90°,即BD⊥OD.又∵OD是圆O的半径.∴BD是⊙O切线;(2)解:连接DE,则∠ADE=90°(圆周角定理).∵∠C=90°,∴∠ADE=∠C,∴DE∥BC,又∵D是AC中点,∴DE是△ABC的中位线,∴DE=BC=3,AE=BE.∵AD:AE=,在直角△ADE中,利用勾股定理求得AE=3,则AB=6.∴BD2=AB•BE=6×3=54,∴BD=3.点评:本题主要考查了切线的判定与性质.其中要证某直线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.19.(10分)(2011•某某)附加题:某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?考点:分式方程的应用.专题:销售问题;压轴题.分析:(1)求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“数量是第一批购进数量的3倍”;等量关系为:6300元购买的数量=2000元购买的数量×3.(2)盈利=总售价﹣总进价.解答:解:(1)设第一批购进书包的单价是x元.则:×3=.解得:x=80.经检验:x=80是原方程的根.答:第一批购进书包的单价是80元.(2)×(120﹣80)+×(120﹣84)=3700(元).答:商店共盈利3700元.点评:应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.20.(10分)(2011•某某)如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A 处的俯角为15°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于30 度;(2)求A、B两点间的距离(结果精确到,参考数据:≈1.732).考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:(1)根据俯角以及坡度的定义即可求解;(2)在直角△PHB中,根据三角函数即可求得PB的长,然后在直角△PBA中利用三角函数即可求解.解答:解:(1)30;(2)由题意得:∠PBH=60°,∵∠ABC=30°,∴∠ABP=90°,又∠APB=45°,∴△PAB为等腰直角三角形,在直角△PHB中,PB===20.在直角△PBA中,AB=PB=20≈.答:A,B两点间的距离是.点评:本题主要考查了俯角的问题以及坡度的定义,正确利用三角函数是解题的关键.21.(12分)(2010•某某)某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若A馆门票仅剩下一X,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四X牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一X;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平?考点:游戏公平性;扇形统计图;条形统计图;列表法与树状图法.专题:图表型.分析:(1)A展馆的门票数除以它所占的百分比,算出门票总数,乘以B展馆门票所占的百分比即为B展馆门票数;C所占的百分比等于整体1减去其余百分比;(2)列举出所有情况,看小明抽得的数字比小华抽得的数字大的情况占所有情况的多少即可求得小明赢的概率,进而求得小明赢的概率,比较即可.解答:解:(1)B展馆门票的数量=20÷10%×25%=50(X);C所占的百分比=1﹣10%﹣25%﹣10%﹣40%=15%.(2)画树状图或列表格法.小华抽到的数字1 2 3 4小明抽到的数字1 (1,1)(1,2)(1,3)(1,4)2 (2,1)(2,2)(2,3)(2,4)3 (3,1)(3,2)(3,3)(3,4)4 (4,1)(4,2)(4,3)(4,4)共有16种可能的结果,且每种结果的可能性相同,其中小明可能获得门票的结果有6种,分别是(2,1),(3,1),(3,2),(4,1),(4,2),(4,3).∴小明获得门票的概率,小华获得门票的概率.∵P1<P2∴这个规则对双方不公平.点评:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验.解决本题的关键是得到相应的概率,概率相等就公平,否则就不公平.22.(12分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每个月收取水费y(元)与用水量x(吨)之间的函数关系如图,按上述分段收费标准,小明家三、四月份分别交水费26元和18元,求小明家四月份比三月份少用水多少吨?考点:一次函数的应用.专题:应用题.分析:分别利用待定系数法求出y=2x(0≤x<10),y=3x﹣10(x>10),然后把y=26和y=18代入对应的函数关系式中求出对应的自变量x的值,再求差即可.解答:解:设0≤x<10的函数解析式为y=mx,把(10,20)代入y=kx得20=10m,解得m=2,所以y=2x(0≤x<10),把y=18代入y=2x得x=9(吨)设x>10的函数解析式为y=kx+b,把(10,20)和(20,50)代入y=kx+b得,解得,所以y=3x﹣10(x>10),当y=26时,把y=26代入y=3x﹣10得3x﹣10=26,解得x=12,即三月份用了12吨水,12﹣9=3(吨)把y=18代入y=2x得x=9,即四月份用了9吨水,所以 12﹣9=3(吨).答:小明家四月份比三月份少用水3吨.点评:本题考查了一次函数的应用:利用待定系数法求出一次函数的解析式,然后运用一次函数的性质解决实际问题.也考查了观察函数图象的能力.23.(12分)(2011•某某)如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CF、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证:四边形ABFC是矩形.考点:等腰梯形的性质;全等三角形的判定与性质;平行四边形的判定与性质;矩形的性质;相似三角形的判定与性质.专题:证明题;压轴题.分析:(1)连接BD,利用等腰梯形的性质得到AC=BD,再根据垂直平分线的性质得到DB=FB,从而得到AC=BF,然后证得AC∥BF,利用一组对边平行且相等判定平行四边形;(2)利用题目提供的等积式和两直角相等可以证得两直角三角形相似,得到对应角相等,从而得到直角来证明有一个角是直角的平行四边形是矩形.解答:证明:(1)连接BD∵梯形ABCD中,AD∥BC,AB=CD∴AC=BD∵DE⊥BC,EF=DE∴BD=BF,CD=CF∴AC=BF,AB=CF∴四边形ABCF是平行四边形;(2)∵DE2=BE•CE∴,∵∠DEB=∠DEC=90°,∴△BDE∽△DEC,∴∠CDE=∠DBE,∴∠BFC=∠BDC=∠BDE+∠CDE=∠BDE+∠DBE=90°,∴四边形ABFC是矩形.点评:本题考查了等腰梯形的性质、全等及相似三角形的判定及性质等,是一道集合了好几个知识点的综合题,但题目的难度不算大.24.(14分)(2009•某某)如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD 于点F.AB=4,BC=6,∠B=60度.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.考点:等腰梯形的性质;等腰三角形的判定;勾股定理;三角形中位线定理.专题:压轴题.分析:(1)可通过构建直角三角形然后运用勾股定理求解.(2)①△PMN的形状不会变化,可通过做EG⊥BC于G,不难得出PM=EG,这样就能在三角形BEG中求出EG的值,也就求出了PM的值,如果做PH⊥MN于H,PH是三角形PMH和PHN的公共边,在直角三角形PHM中,有PM的值,∠PMN的度数也不难求出,那么就能求出MH和PH的值,也就求出HN 和PN的值了,有了PN,PM,MN的值,就能求出三角形MPN的周长了.②本题分两种情况进行讨论:1、N在CD的DF段时,PM=PN.这种情况同①的计算方法.2、N在CD的CF段时,又分两种情况进行讨论MP=MN时,MC=MN=MP,这样有了MC的值,x也就能求出来了NP=NM时,我们不难得出∠PMN=120°,又因为∠MNC=60°因此∠PNM+∠MNC=180度.这样点P与F 就重合了,△PMC即这是个直角三角形,然后根据三角函数求出MC的值,然后就能求出x了.综合上面的分析把△PMC是等腰三角形的情况找出来就行了.解答:解:(1)如图1,过点E作EG⊥BC于点G.∵E为AB的中点,∴BE=AB=2在Rt△EBG中,∠B=60°,∴∠BEG=30度.∴BG=BE=1,EG=即点E到BC的距离为(2)①当点N在线段AD上运动时,△PMN的形状不发生改变.∵PM⊥EF,EG⊥EF,∴PM∥EG,又EF∥BC,∴四边形EPMG为矩形,∴EP=GM,PM=EG=同理MN=AB=4.如图2,过点P作PH⊥MN于H,∵MN∥AB,∴∠NMC=∠B=60°,又∠PMC=90°,∴∠PMH=∠PMC﹣∠NMC=30°.∴PH=PM=∴MH=PM•cos30°=则NH=MN﹣MH=4﹣在Rt△PNH中,PN=∴△PMN的周长=PM+PN+MN=②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形.当PM=PN时,如图3,作PR⊥MN于R,则MR=NR.类似①,PM=,∠PMR=30°,MR=PMcos30°=×=,∴MN=2MR=3.∵△MNC是等边三角形,∴MC=MN=3.此时,x=EP=GM=BC﹣BG﹣MC=6﹣1﹣3=2.当MP=MN时,∵EG=,∴MP=MN=,∵∠B=∠C=60°,∴△MNC是等边三角形,∴MC=MN=MP=(如图4),此时,x=EP=GM=6﹣1﹣,当NP=NM时,如图5,∠NPM=∠PMN=30度.则∠PNM=120°,又∠MNC=60°,∴∠PNM+∠MNC=180度.因此点P与F重合,△PMC为直角三角形.∴MC=PM•tan30°=1.此时,x=EP=GM=6﹣1﹣1=4.综上所述,当x=2或4或(5﹣)时,△PMN为等腰三角形.点评:本题综合考查了等腰梯形,等腰直角三角形的性质,中位线定理,勾股定理等知识点的应用.25.(14分)(2011•某某)平面直角坐标系中,▱ABOC如图放置,点A、C的坐标分别为(0,3)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到▱A'B'OC'.(1)若抛物线过点C,A,A',求此抛物线的解析式;(2)▱ABOC和▱A'B'OC'重叠部分△OC'D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.考点:二次函数综合题.专题:压轴题;函数思想.分析:(1)根据旋转的性质求出点A′的坐标,再用待定系数法求出抛物线的解析式;(2)先证明△C′OD∽△BOA,由相似三角形的性质即可得出重叠部分△OC'D的周长;(3)根据三角形面积求出,配方即可得到△AMA'的最大面积和M的坐标.解答:解:(1)∵▱ABOC绕点O顺时针旋转90°,得到▱A'B'OC',点A的坐标为(0,3),∴点A′的坐标为(3,0).∵抛物线过点A、C、A′.设抛物线的函数表达式为y=ax2+bx+c(a≠0),可得,解得.故此抛物线的解析式为y=﹣x2+2x+3.(2)∵AB∥CO,∴∠OAB=90°,∵AB=OC=1,AO=3.∴OB=.可证△C′OD∽△BOA,△C′OD的周长与△BOA的周长比=OC′:OB=1:△BOA的周长=4+,△C′OD的周长=.(3)连接A′A,OM,设M点的坐标为:(m,n),∵点M在抛物线上,∴n=﹣m2+2m+3,∴S△AMA′=S△AMO+S△OMA′﹣S△AOA′=OA•m+OA′•n﹣OA•OA′=(m+n)﹣=(m+n﹣3),将n=﹣m2+2m+3代入,原式=﹣(m2﹣3m)=﹣(m﹣)2+,∵0<m<3,∵m=时,n=,△AMA'的面积最大S△AMA'=,∴M(,),△AMA'的面积最大S△AMA'=.点评:本题着重考查了待定系数法求二次函数解析式、相似三角形的判定和性质等知识点,二次函数的最值问题,综合性强,有一定的难度.。

2013广州一模数学及答案解析

2013广州一模数学及答案解析

广州市2013届普通高中毕业班综合测试(一)数学(理科)参考公式:如果事件A ,B 相互独立,那么)()()(B P A P B A P ∙=∙.线性回归方程a x b yˆˆˆ+=中系数计算公式x b y ax xy y x xb ni ini i i-=---=∑∑==ˆ,)())((ˆ121, 其中y x ,表示样本均值。

一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集}6,5,4,3,2,1{=U ,集合}5,3,1{=A ,}4,2{=B ,则 A.B A U ⋃= B.B A C U U ⋃=)( C.)(B C A U U ⋃= D.)()(B C A C U U U ⋃=2.已知bi ia+=-11,其中a,b 是实数,i 是虚数单位,则a+bi= A.1+2i B.2+i C.2-i D.1-2i3.已知变量x,y 满足约束条件⎪⎩⎪⎨⎧≤-≤-≥+.01,1,12y y x y x ,则y x z 2-=的最大值为A.-3 B .0 C.1 D.3 4.直线03==y x 截圆4)2(22=+-y x 所得劣弧所对的圆心角是A.6π B.3π C.2πD.32π5.某空间几何体的三视图及尺寸如图1,则该几何体的体积是A.2B.1C.32 D.316.函数)cos )(sin cos (sin x x x x y -+=是A.奇函数且在]2,0[π上单调递增B.奇函数且在],2[ππ上单调递增C.偶函数且在]2,0[π上单调递增D.偶函数且在],2[ππ上单调递增7.已知e 是自然对数的底数,函数2)(-+=x e x f x的零点为a ,函数2ln )(-+=x x x g 的零点为b ,则下列不等式中成立的是A.)()1()(b f f a f <<B.)1()()(f b f a f <<C.)()()1(b f a f f <<D.)()1()(a f f b f <<8.如图2,一条河的两岸平行,河的宽度d=600m ,一艘客船从码头A 出发匀速驶往 河对岸的码头B.已知km AB 1=,水流速度为2km/h ,若客船行驶完航程所用最短时 间为6分钟,则客船在静水中的速度大小为A.8km/hB.h km /26C.h km /342D.10km/h二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9-13题)9.不等式x x ≤-1的解集是_________.10.⎰=1._______cos xdx 11.根据上表可得回归方程a x yˆ23.1ˆ+=,据此模型估计,该型号机器使用所限为10年维修费用约______万元(结果保留两位小数).12.已知1,0≠>a a ,函数⎩⎨⎧>+-≤=1,1,)(x a x x a x f x ,若函数)(x f 在区间[0,2]上的最大值比最小值大25,则a 的值为________. 13.已知经过同一点的)3*,(≥∈n N n n 个平面,任意三个平面不经过同一条直线,若这n 个平面将空间分成)(n f 个部分,则.________)(______,)3(n f f = (二)选做题(14-15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)在极坐标系中,定点)23,2(πA ,点B 在直线0sin 3cos =+θρθρ上 运动,当线段AB 最短时,点B 的极坐标为______.15.(几何证明选讲选做题)如图3,AB 是⊙O 的直径,BC 是⊙O 的切线,AC 与⊙O交于点D ,若BC=3,516=AD ,则AB 的长为______.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函)4sin()(πω+=x A x f (其中0,0,>>∈ωA R x )的最大值为2,最小正周期为8. (1)求函数)(x f 的解析式;(2)若函数)(x f 图象上的两点P ,Q 的横坐标依次为2,4,O 坐标原点,求POQ ∆的 面积.17.(本小题满分12分)甲、乙、丙三位学生独立地解同一道题,甲做对的概率为,21乙,丙做对的概率分别为m,n(m>n),且三位学生是否做对相互独立.记ξ为这三位学生中做对该题的人数,其分布列为:(1)求至少有一位学生做对该题的概率; (2)求m,n 的值; (3)求ξ的数学期望. 18.(本小题满分14分)如图4,在三棱柱ABC-A 1B 1C 1中,ABC ∆是边长为2的等边三角形,⊥1AA 平面ABC ,D ,E 分别是CC 1,AB 的中点.(1)求证:CE//平面A 1BD ;(2)若H 为A 1B 上的动点,当CH 为平面A 1AB 所成最大角的正切值为215时,求平面A 1BD 与平面ABC 所成二面角(锐角)的余弦值.19.(本小题满分14分)已知数列}{n a 的前n 项和为S n ,且n na a a a ++++ 32132*)(2)1(N n n S n n ∈+-=.(1)求数列}{n a 的通项公式;(2)若p,q,r 是三个互不相等的正整数,且p,q,r 成等差数列,试判断1,1,1---r q p a a a是否成等比数列?并说明理由.20.(本小题满分14分)已知椭圆C 1的中心在坐标原点,两个焦点分别为)0,2(),0,2(21F F -,点A (2,3)在椭圆C 1上,过点A 的直线L 与抛物线y x C 4:22=交于B ,C 两点,抛物线C 2在点B ,C 处的切线分别为21,l l ,且1l 与2l 交于点P.(1)求椭圆C 1的方程;(2)是否存在满足||2121AF AF PF PF +=+的点P ?若存在,指出这样的点P 有几个(不必求出点P 的坐标);若不存在,说明理由.21.(本小题满分14分)已知二次函数1)(2+++=m ax x x f ,关于x 的不等式21)12()(m x m x f -+-<的解集为)1,(+m m ,其中m 为非零常数.设1)()(-=x x f x g . (1)求a 的值;(2))(R k k ∈如何取值时,函数)1ln()()(--=x k x g x φ存在极值点,并求出极值点; (3)若m=1,且x>0,求证:*)(22)1()]1([N n x g x g nnn∈-≥+-+参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 9.1,2⎡⎫+∞⎪⎢⎣⎭10.1sin 11.12.38 12.12或27 13.8,22n n -+ 14.1116,π⎛⎫⎪⎝⎭15.4 说明:① 第13题第一个空填对给2分,第二个空填对给3分. ② 第14题的正确答案可以是:11126k k ,(ππ⎛⎫+∈ ⎪⎝⎭Z ). 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、诱导公式、余弦定理、正弦定理、两点间距离公式等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:∵()f x 的最大值为2,且0A >, ∴2A =. ……………1分∵()f x 的最小正周期为8, ∴28T πω==,得4πω=. ……………2分∴()2sin()44f x x ππ=+. ……………3分(2)解法1:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭ …………5分∴(4,P Q .∴OP PQ OQ ===……………8分∴222222cos 23OP OQ PQPOQ OP OQ+-+-∠===.…10分 ∴POQ sin ∠==. (11)分 ∴△POQ的面积为1122S OP OQ POQ sin =∠=⨯⨯⨯=. ………12分解法2:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭……………5分∴(4,P Q .∴(4,OP OQ ==. ……………8分∴cos cos ,3OP OQ POQ OP OQ OP OQ⋅∠=<>===.……………10分 ∴POQ sin ∠==. (11)分 ∴△POQ的面积为1122S OP OQ POQ sin =∠=⨯⨯⨯=………12分解法3:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭……………5分∴(4,P Q .∴直线OP 的方程为y x =,即0x -=. ……………7分∴点Q 到直线OP 的距离为d ==……………9分∵OP = ……………11分∴△POQ 的面积为1122S OP d =⋅=⨯⨯=……………12分17.(本小题满分12分)(本小题主要考查相互独立事件的概率、离散型随机变量的均值等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想)解:设“甲做对”为事件A ,“乙做对”为事件B ,“丙做对”为事件C ,由题意知, ()()()12PA PB m PC n ,,===. ……………1分 (1)由于事件“至少有一位学生做对该题”与事件“0ξ=”是对立的,所以至少有一位学生做对该题的概率是()1310144P ξ-==-=.…………3分 (2)由题意知()()()()1101124PP ABC m n ξ===--=, ……………4分 ()()113224P P ABC mn ξ====, ……………5分 整理得 112mn =,712m n +=.由m n >,解得13m =,14n =. ……………7分 (3)由题意知()()()()1aP P ABC P ABC P ABC ξ===++()()()()11111111122224m n m n m n =--+-+-=, …9分 (2)1(0)(1)(3)b P P P P ξξξξ===-=-=-==14, ……………10分 ∴ξ的数学期望为0(0)1(1)2(2)3(3)E P P P P ξξξξξ=⨯=+⨯=+=+==1312. …………12分H FABCA 1C 1B 1DE18.(本小题满分14分)(本小题主要考查空间线面位置关系、直线与平面所成的角、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) 解法一:(1)证明:延长1A D 交AC 的延长线于点F ,连接BF .∵CD ∥1AA ,且CD 12=1AA ,∴C 为AF 的中点. ……………2分 ∵E 为AB 的中点,∴CE ∥BF . ……………3分 ∵BF ⊂平面1A BD ,CE⊄平面1A BD ,∴CE ∥平面1A BD . ……………4分(2)解:∵1AA ⊥平面ABC ,CE ⊂平面ABC ,∴1AA ⊥CE . ……………5分∵△ABC 是边长为2的等边三角形,E 是AB 的中点, ∴CE AB ⊥,2CEAB ==∵AB ⊂平面1A AB ,1AA ⊂平面1A AB ,1AB AA A = ,∴CE⊥平面1A AB . ……………6分∴EHC ∠为CH 与平面1A AB 所成的角. ……………7分∵CE =在R t △CEH 中,tan CE EHC EH EH∠==, ∴当EH 最短时,tanEHC ∠的值最大,则EHC ∠最大. ……………8分∴当1EH A B ⊥时,EHC ∠最大. 此时,tanCE EHC EH EH∠===2.∴5EH =. ……………9分 ∵CE ∥BF ,CE⊥平面1A AB ,z yxH ABCA 1C 1B 1DE F∴BF ⊥平面1A AB . ……………10分 ∵AB ⊂平面1A AB ,1A B ⊂平面1A AB ,∴BF ⊥AB ,BF ⊥1A B . ……………11分 ∴1ABA ∠为平面1A BD 与平面ABC 所成二面角(锐角). ……………12分在R t △EHB中,BH ==,cos 1ABA∠BH EB ==…13分 ∴平面1A BD 与平面ABC所成二面角(锐角)的余弦值为5. ……………14分 解法二:(1)证明:取1A B 的中点F ,连接DF 、EF .∵E 为AB 的中点, ∴EF ∥1AA ,且112EFAA =. ……………1分 ∵CD ∥1AA ,且CD 12=1AA , ∴EF ∥CD ,EF=CD . ……………2分∴四边形EFDC 是平行四边形.∴CE ∥DF . ……………3分 ∵DF ⊂平面1A BD ,CE⊄平面1A BD ,∴CE ∥平面1A BD . ……………4分(2)解:∵1AA ⊥平面ABC ,CE ⊂平面ABC ,∴1AA ⊥CE . ……………5分∵△ABC 是边长为2的等边三角形,E 是AB 的中点, ∴CE AB ⊥,2CEAB ==∵AB ⊂平面1A AB ,1AA ⊂平面1A AB ,1AB AA A = ,∴CE⊥平面1A AB . ……………6分∴EHC ∠为CH 与平面1A AB 所成的角. ……………7分∵CE =在R t △CEH 中,tan CE EHC EH EH∠==, ∴当EH 最短时,tanEHC ∠的值最大,则EHC ∠最大. ……………8分∴当1EH A B ⊥时,EHC ∠最大. 此时,tanCE EHC EH EH∠===2.∴5EH =. ……………9分 在R t △EHB中,BH==∵R t △EHB ~R t △1A AB ,∴1EH BH AA AB =,即1552AA =. ∴14AA =. ……………10分 以A 为原点,与AC 垂直的直线为x 轴,AC 所在的直线为y 轴,1AA 所在的直线为z 轴, 建立空间直角坐标系A xyz -. 则()000A,,,1A ()004,,,B )10,,D ()02,,2.∴1AA = ()004,,,1A B =)14,-,1A D =()02,,-2.设平面A BD 1的法向量为n =()x y z ,,,由n A 1⋅,n 01=⋅A ,得40220y z y z .ìï+-=ïíï-=ïî 令1y =,则1zx ==,∴平面A BD 1的一个法向量为n=)11,. ……………12分∵1AA ⊥平面ABC , ∴1AA=()004,,是平面ABC 的一个法向量.∴cos 111,⋅==n AA n AA nAA 5. ……………13分 ∴平面1A BD 与平面ABC所成二面角(锐角)的余弦值为5. ……………14分 19.(本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前n 项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力) (1) 解:12323(1)2n n a a a na n S n ++++=-+ ,∴ 当1n=时,有 11(11)2,a S =-+ 解得 12a =. ……………1分由12323(1)2n n a a a na n S n ++++=-+ , ①得1231123(1)2(1)n n n a a a na n a nS n ++++++++=++ , ② ……………2分 ② - ①得: 11(1)(1)2n n n n a nS n S +++=--+. ③ ……………3分 以下提供两种方法:法1:由③式得:11(1)()(1)2n n n n n S S nS n S +++-=--+,即122n n S S +=+; ……………4分∴122(2)n n S S ++=+, ……………5分∵112240S a +=+=≠,∴数列{2}n S +是以4为首项,2为公比的等比数列. ∴1242n n S -+=⨯,即1142222n n n S -+=⨯-=-. ……………6分当2n≥时, 11(22)(22)2n n n n n n a S S +-=-=---=, ……………7分又12a =也满足上式,∴2nn a =. ……………8分 法2:由③式得:()111(1)(1)22n n n n n n n a nS n S n S S S ++++=--+=-++,得12n n a S +=+. ④ ……………4分当2n≥时,12n n a S -=+, ⑤ ……………5分⑤-④得:12n n a a +=. ……………6分 由12224a a S +=+,得24a =,∴212a a =. ……………7分 ∴数列{}n a 是以12a =为首项,2为公比的等比数列. ∴2nn a =. …………8分 (2)解:∵p q r ,,成等差数列,∴2p r q +=. …………9分假设111p q r a a a ,,---成等比数列, 则()()()2111p r q a a a --=-, …………10分即()()()2212121prq--=-,化简得:2222pr q +=⨯. (*) ……………11分∵p r ≠,∴2222pr q +>=⨯,这与(*)式矛盾,故假设不成立.…13分∴111p q r a a a ,,---不是等比数列. ……………14分20.(本小题满分14分)(本小题主要考查椭圆、抛物线、曲线的切线等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)(1) 解法1:设椭圆1C 的方程为22221x y a b+=()0a b >>,依题意: 222222231,4.a b a b ⎧+=⎪⎨⎪=+⎩解得:2216,12.a b ⎧=⎪⎨=⎪⎩ ……………2分 ∴ 椭圆1C 的方程为2211612x y +=. ……………3分 解法2:设椭圆1C 的方程为22221x y a b+=()0a b >>,根据椭圆的定义得1228a AF AF =+=,即4a =, ……………1分∵2c =, ∴22212b a c =-=. ……………2分∴ 椭圆1C 的方程为2211612x y +=. ……………3分(2)解法1:设点)41,(211x x B ,)41,(222x x C ,则))(41,(212212x x x x --=, )413,2(211x x --=,∵C B A ,,三点共线,∴BC BA //. ……………4分∴()()()222211211113244x x x x x x ⎛⎫--=-- ⎪⎝⎭,化简得:1212212x x x x ()+-=. ① ……………5分 由24xy =,即214y x ,=得y '=12x . ……………6分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2411121x x x x y -=-,即211412x x x y -=. ② 同理,抛物线2C 在点C 处的切线2l 的方程为222412x x x y -=. ③ ………8分 设点),(y x P ,由②③得:=-211412x x x 222412x x x -, 而21x x ≠,则 )(2121x x x +=. ……………9分 代入②得 2141x x y =, ……………10分 则212x x x+=,214x x y =代入 ① 得 1244=-y x ,即点P 的轨迹方程为3-=x y .……………11分若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,而点P 又在直线3-=x y 上,……………12分∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点. ……………13分 ∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……………14分解法2:设点),(11y x B ,),(22y x C ,),(00y x P ,由24x y =,即214y x ,=得y '=12x . ……………4分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-, 即2111212x y x x y -+=. ……………5分 ∵21141x y =, ∴112y x x y -= .∵点),(00y x P 在切线1l 上, ∴1012y x x y -=. ① ……………6分 同理,20202y x x y -=. ② ……………7分 综合①、②得,点),(),,(2211y x C y x B 的坐标都满足方程y x xy -=002. ………8分 ∵经过),(),,(2211y x C y x B 的直线是唯一的, ∴直线L 的方程为y x xy -=002, ……………9分 ∵点)3,2(A 在直线L 上, ∴300-=x y . ……………10分 ∴点P 的轨迹方程为3-=x y . ……………11分 若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,又在直线3-=x y 上,…12分∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点. ……………13分 ∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……………14分解法3:显然直线L 的斜率存在,设直线L 的方程为()23y k x =-+,由()2234y k x x y ,,⎧=-+⎪⎨=⎪⎩消去y ,得248120xkx k -+-=. ……………4分设()()1122B x y C x y ,,,,则12124812x x k x x k ,+==-. ……………5分由24xy =,即214y x ,=得y '=12x . ……………6分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=.…7分 ∵21141x y =, ∴211124x y x x =-.同理,得抛物线2C 在点C 处的切线2l 的方程为222124x y x x =-. ……………8分 由211222124124x y x x x y x x ,,⎧=-⎪⎪⎨⎪=-⎪⎩解得121222234x x x k x x y k ,.⎧+==⎪⎪⎨⎪==-⎪⎩∴()223P k k ,-. ……………10分 ∵1212PF PF AF AF +=+,∴点P 在椭圆22111612x y C :+=上. ……………11分∴()()2222311612k k -+=.化简得271230k k --=.(*) ……………12分由()2124732280Δ=-⨯⨯-=>, ……………13分 可得方程(*)有两个不等的实数根. ∴满足条件的点P 有两个. ……………14分 21.(本小题满分14分)(本小题主要考查二次函数、一元二次不等式、一元二次方程、函数应用、均值不等式等基础知识,考查数形结合、函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识) (1)解:∵关于x 的不等式()()2211f x m x m <-+-的解集为()1m m ,+,即不等式()22120x a m x m m ++-++<的解集为()1m m ,+,∴()2212x a m x m m ++-++=()()1x m x m ---.∴()2212xa m x m m ++-++=()()2211x m x m m -+++.∴()1221a m m +-=-+.∴2a =-. ……………2分(2)解法1:由(1)得()()1f x g x x =-()221111x x m mx x x -++==-+--. ∴()()x g x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211mkx x ---()()22211x k x k m x -++-+=-. ……………3分 方程()2210x k x k m -++-+=(*)的判别式()()222414Δk k m k m =+--+=+. ……………4分①当0m>时,0Δ>,方程(*)的两个实根为11x ,=<2212k x ,++=> ……………5分则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x . ……………6分 ②当0m<时,由0Δ>,得k <-k >若k <-,则1212k x ,+-=<2212k x ,++=<故x∈()1,+∞时,()0x ϕ'>,∴函数()x ϕ在()1,+∞上单调递增.∴函数()x ϕ没有极值点. ……………7分若k >1212k x ,+-=>2212k x ,++=>则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x . ……………8分 综上所述, 当0m >时,k 取任意实数, 函数()x ϕ有极小值点2x ;当0m<时,k >()x ϕ有极小值点2x ,有极大值点1x .…9分(其中1x =, 2x =解法2:由(1)得()()1f x g x x =-()221111x x m mx x x -++==-+--. ∴()()xg x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞. ∴()1x ϕ'=-()211mkx x ---()()22211x k x k m x -++-+=-. ……………3分 若函数()()xg x ϕ=-()1k x ln -存在极值点等价于函数()x ϕ'有两个不等的零点,且至少有一个零点在()1,+∞上. ……………4分 令()x ϕ'()()22211x k x k m x -++-+=-0=,得()221xk x k m -++-+0=, (*)则()()2224140Δk k m k m =+--+=+>,(**) ……………5分方程(*)的两个实根为122k x +-=, 222k x ++=.设()h x=()221x k x k m -++-+,①若1211x x ,<>,则()10h m =-<,得0m >,此时,k 取任意实数, (**)成立.则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x . ……………6分②若1211x x ,>>,则()10212h m k ,.⎧=->⎪⎨+>⎪⎩得00m k ,.⎧<⎨>⎩又由(**)解得k >k <-故k > ……………7分 则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x . ……………8分 综上所述, 当0m >时,k 取任何实数, 函数()x ϕ有极小值点2x ;当0m<时,k >()x ϕ有极小值点2x ,有极大值点1x .…9分(其中1x =2x =(2)证法1:∵1m=, ∴()g x =()111x x -+-. ∴()()1111nnnn n g x g x x x x x ⎛⎫⎛⎫⎡⎤+-+=+-+ ⎪ ⎪⎣⎦⎝⎭⎝⎭112212111111n n n n n n n n n n n n n x C x C x C x C x x x x x x ----⎛⎫=+⋅+⋅++⋅+-+ ⎪⎝⎭ 122412n n n nn n n C x C x C x ----=+++ . ……………10分令T 122412n n n n n n n C x C x C x ----=+++ , 则T122412n n n n n n n n C x C x C x -----=+++ 122412n n n n n n n C x C x C x ----=+++ .∵x0>,∴2T ()()()122244122n n n n n n n n n n C x x C x x C x x -------=++++++ …11分≥121n n n n C C C -⋅+⋅++⋅ …12分()1212n n n nC C C -=+++()012102n n n n n n n n n n C C C C C C C -=+++++--()222n=-. ……………13分∴22nT ≥-,即()()1122nn n gx g x ⎡⎤+-+≥-⎣⎦. ……………14分 证法2:下面用数学归纳法证明不等式11nn n x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22n≥-.① 当1n=时,左边110x x x x ⎛⎫⎛⎫=+-+= ⎪ ⎪⎝⎭⎝⎭,右边1220=-=,不等式成立;……………10分② 假设当n k =k (∈N *)时,不等式成立,即11kk k x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22k≥-,则 11111k k k x x x x +++⎛⎫⎛⎫+-+ ⎪⎪⎝⎭⎝⎭11111111kk k k k k k x x x x x x x x x x x x ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥=++-++++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111k k k x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111k k x x --⎛⎫+ ⎪⎝⎭ ……………11分()22k ≥⋅-+……………12分 122k +=-. ……………13分也就是说,当1n k =+时,不等式也成立.由①②可得,对∀n ∈N *,()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦都成立. ………14分。

2013年广东省广州市普通高中毕业班综合测试理科数学试题广州一测及参考答案

2013年广东省广州市普通高中毕业班综合测试理科数学试题广州一测及参考答案

广州市2013届普通高中毕业班综合测试(一)数学(理科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。

用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题 卡上。

用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑; 如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域 内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔 和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:如果事件A,B 相互独立,那么)()()(B P A P B A P ∙=∙.线性回归方程a x b yˆˆˆ+=中系数计算公式x b y axy y x xb ni ini i i-=---=∑∑==ˆ,)())((ˆ121, 其中y x ,表示样本均值。

一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集}6,5,4,3,2,1{=U ,集合}5,3,1{=A ,}4,2{=B ,则A.B A U ⋃=B.B A C U U ⋃=)(C.)(B C A U U ⋃=D.)()(B C A C U U U ⋃= 2.已知bi ia+=-11,其中a,b 是实数,i 是虚数单位,则a+bi= A.1+2i B.2+i C.2-i D.1-2i3.已知变量x,y 满足约束条件⎪⎩⎪⎨⎧≤-≤-≥+.01,1,12y y x y x ,则y x z 2-=的最大值为A.-3 B .0 C.1 D.3 4.直线03==y x 截圆4)2(22=+-y x 所得劣弧所对的圆心角是 A.6π B.3π C.2πD.32π5.某空间几何体的三视图及尺寸如图1,则该几何体的体积是A.2B.1C.32D.31 6.函数)cos )(sin cos (sin x x x x y -+=是A.奇函数且在]2,0[π上单调递增B.奇函数且在],2[ππ上单调递增C.偶函数且在]2,0[π上单调递增D.偶函数且在],2[ππ上单调递增7.已知e 是自然对数的底数,函数2)(-+=x e x f x 的零点为a,函数2ln )(-+=x x x g 的零点为b,则下列不等式中成立的是A.)()1()(b f f a f <<B.)1()()(f b f a f <<C.)()()1(b f a f f <<D.)()1()(a f f b f <<8.如图2,一条河的两岸平行,河的宽度d=600m,一艘客船从码头A 出发匀速驶往 河对岸的码头B.已知km AB 1=,水流速度为2km/h,若客船行驶完航程所用最短时 间为6分钟,则客船在静水中的速度大小为A.8km/hB.h km /26C.h km /342D.10km/h二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9-13题)9.不等式x x ≤-1的解集是_________.10.⎰=1._______cos xdx11.根据上表可得回归方程a x yˆ23.1ˆ+=,据此模型估计,该型号机器使用所限为10年维修费用约______万元(结果保留两位小数).12.已知1,0≠>a a ,函数⎩⎨⎧>+-≤=1,1,)(x a x x a x f x ,若函数)(x f 在区间[0,2]上的最大值比最小值大25,则a 的值为________. 13.已知经过同一点的)3*,(≥∈n N n n 个平面,任意三个平面不经过同一条直线,若这n 个平面将空间分成)(n f 个部分,则.________)(______,)3(n f f = (二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,定点)23,2(πA ,点B 在直线0sin 3cos =+θρθρ上 运动,当线段AB 最短时,点B 的极坐标为______.15.(几何证明选讲选做题)如图3,AB 是⊙O 的直径,BC 是⊙O 的切线,AC 与⊙O交于点D,若BC=3,516=AD ,则AB 的长为______.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函)4sin()(πω+=x A x f (其中0,0,>>∈ωA R x )的最大值为2,最小正周期为8.(1)求函数)(x f 的解析式;(2)若函数)(x f 图象上的两点P,Q 的横坐标依次为2,4,O 坐标原点,求POQ ∆的 面积.17.(本小题满分12分)甲、乙、丙三位学生独立地解同一道题,甲做对的概率为,21乙,丙做对的概率分别为m,n(m>n),且三位学生是否做对相互独立.记ξ为这三位学生中做对该题的人数,其分布列为:(1)求至少有一位学生做对该题的概率; (2)求m,n 的值; (3)求ξ的数学期望.18.(本小题满分14分)如图4,在三棱柱ABC-A 1B 1C 1中,ABC ∆是边长为2的等边三角形,⊥1AA 平面ABC,D,E 分别是CC 1,AB 的中点.(1)求证:CE//平面A 1BD ;(2)若H 为A 1B 上的动点,当CH 为平面A 1AB 所成最大角的正切值为215时,求平面A 1BD 与平面ABC 所成二面角(锐角)的余弦值.19.(本小题满分14分)已知数列}{n a 的前n 项和为S n ,且n na a a a ++++ 32132*)(2)1(N n n S n n ∈+-=.(1)求数列}{n a 的通项公式;(2)若p,q,r 是三个互不相等的正整数,且p,q,r 成等差数列,试判断1,1,1---r q p a a a 是否成等比数列?并说明理由.20.(本小题满分14分)已知椭圆C 1的中心在坐标原点,两个焦点分别为)0,2(),0,2(21F F -,点A(2,3)在椭圆C 1上,过点A 的直线L 与抛物线y x C 4:22=交于B,C 两点,抛物线C 2在点B,C 处的切线分别为21,l l ,且1l 与2l 交于点P.(1)求椭圆C 1的方程;(2)是否存在满足||2121AF AF PF PF +=+的点P ?若存在,指出这样的点P 有几个(不必求出点P 的坐标);若不存在,说明理由.21.(本小题满分14分)已知二次函数1)(2+++=m ax x x f ,关于x 的不等式21)12()(m x m x f -+-<的解集为)1,(+m m ,其中m 为非零常数.设1)()(-=x x f x g . (1)求a 的值;(2))(R k k ∈如何取值时,函数)1ln()()(--=x k x g x φ存在极值点,并求出极值点; (3)若m=1,且x>0,求证:*)(22)1()]1([N n x g x g nnn∈-≥+-+参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,2⎡⎫+∞⎪⎢⎣⎭10.1sin 11.12.38 12.12或27 13.8,22n n -+ 14.1116,π⎛⎫⎪⎝⎭15.4 说明:① 第13题第一个空填对给2分,第二个空填对给3分. ② 第14题的正确答案可以是:11126k k ,(ππ⎛⎫+∈ ⎪⎝⎭Z ). 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、诱导公式、余弦定理、正弦定理、两点间距离公式等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:∵()f x 的最大值为2,且0A >, ∴2A =. ……………1分∵()f x 的最小正周期为8, ∴28T πω==,得4πω=. ……………2分∴()2sin()44f x x ππ=+. ……………3分(2)解法1:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭ …………5分∴(4,P Q .∴OP PQ OQ ===……………8分∴222222cos 23OP OQ PQPOQ OP OQ+-+-∠===…10分 ∴POQ sin ∠==……………11分 ∴△POQ的面积为1122S OP OQ POQ sin =∠=⨯⨯⨯=………12分解法2:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭……………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭……………5分∴(4,P Q .∴(2,2),(4,OP OQ ==.……………8分 ∴cos cos ,6OP OQ POQOP OQ OP OQ⋅∠=<>===.……………10分 ∴POQ sin ∠== (11)分 ∴△POQ的面积为1122S OP OQ POQ sin =∠=⨯⨯⨯=………12分解法3:∵(2)2sin 2cos 244f πππ⎛⎫=+==⎪⎝⎭………4分(4)2sin 2sin 44f πππ⎛⎫=+=-= ⎪⎝⎭……………5分∴(4,P Q .∴直线OP 的方程为y x =,即0x -=. ……………7分∴点Q 到直线OP 的距离为d ==……………9分∵OP =……………11分∴△POQ 的面积为1122S OP d =⋅=⨯⨯=……………12分17.(本小题满分12分)(本小题主要考查相互独立事件的概率、离散型随机变量的均值等基础知识,考查数据处理、推理论证、运算求解能力和应用意识,以及或然与必然的数学思想)解:设“甲做对”为事件A ,“乙做对”为事件B ,“丙做对”为事件C ,由题意知, ()()()12P A P B m P C n ,,===. ……………1分 (1)由于事件“至少有一位学生做对该题”与事件“0ξ=”是对立的,所以至少有一位学生做对该题的概率是()1310144Pξ-==-=.…………3分 (2)由题意知()()()()1101124PP ABC m n ξ===--=, ……………4分 ()()113224P P ABC mn ξ====, ……………5分 整理得 112mn =,712m n +=.由mn >,解得13m =,14n =. ……………7分 (3)由题意知()()()()1a PP ABC P ABC P ABC ξ===++()()()()11111111122224m n m n m n =--+-+-=, …9分 (2)1(0)(1)(3)b P P P P ξξξξ===-=-=-==14, ……………10分 ∴ξ的数学期望为0(0)1(1)2(2)3(3)E P P P P ξξξξξ=⨯=+⨯=+=+==1312. …………12分H FABCA 1C 1B 1DE18.(本小题满分14分)(本小题主要考查空间线面位置关系、直线与平面所成的角、二面角等基础知识,考查空间想象、推理论证、抽象概括和运算求解能力,以及化归与转化的数学思想方法) 解法一:(1)证明:延长1A D 交AC 的延长线于点F ,连接BF . ∵CD ∥1AA ,且CD 12=1AA ,∴C 为AF 的中点. ……………2分 ∵E 为AB 的中点,∴CE ∥BF . ……………3分 ∵BF ⊂平面1A BD ,CE ⊄平面1A BD , ∴CE ∥平面1A BD . ……………4分 (2)解:∵1AA ⊥平面ABC ,CE ⊂平面ABC ,∴1AA ⊥CE . ……………5分 ∵△ABC 是边长为2的等边三角形,E 是AB 的中点, ∴CE AB ⊥,CE AB ==∵AB ⊂平面1A AB ,1AA ⊂平面1A AB ,1AB AA A =,∴CE ⊥平面1A AB . ……………6分 ∴EHC ∠为CH 与平面1A AB 所成的角. ……………7分∵CE =在R t △CEH 中,tan CE EHC EH ∠==, ∴当EH 最短时,tan EHC ∠的值最大,则EHC ∠最大. ……………8分 ∴当1EH A B ⊥时,EHC ∠最大. 此时,tan CE EHC EH EH∠===.∴EH =. ……………9分 ∵CE ∥BF ,CE ⊥平面1A AB ,z yxH ABCA 1C 1B 1DE F∴BF ⊥平面1A AB . ……………10分 ∵AB ⊂平面1A AB ,1A B ⊂平面1A AB , ∴BF ⊥AB ,BF ⊥1A B . ……………11分 ∴1ABA ∠为平面1A BD 与平面ABC 所成二面角(锐角). ……………12分 在R t △EHB 中,BH ==cos 1ABA∠BH EB ==…13分 ∴平面1A BD 与平面ABC 所成二面角(锐角)的余弦值为5. ……………14分 解法二:(1)证明:取1A B 的中点F ,连接DF 、EF . ∵E 为AB 的中点, ∴EF ∥1AA ,且112EF AA =. ……………1分 ∵CD ∥1AA ,且CD 12=1AA ,∴EF ∥CD ,EF =CD . ……………2分 ∴四边形EFDC 是平行四边形.∴CE ∥DF . ……………3分 ∵DF ⊂平面1A BD ,CE ⊄平面1A BD , ∴CE ∥平面1A BD . ……………4分 (2)解:∵1AA ⊥平面ABC ,CE ⊂平面ABC ,∴1AA ⊥CE . ……………5分 ∵△ABC 是边长为2的等边三角形,E 是AB 的中点, ∴CE AB ⊥,CE AB ==∵AB ⊂平面1A AB ,1AA ⊂平面1A AB ,1AB AA A =,∴CE ⊥平面1A AB . ……………6分 ∴EHC ∠为CH 与平面1A AB 所成的角. ……………7分∵CE =在R t △CEH 中,tan CE EHC EH ∠==, ∴当EH 最短时,tan EHC ∠的值最大,则EHC ∠最大. ……………8分 ∴当1EH A B ⊥时,EHC ∠最大. 此时,tan CE EHC EH EH∠===.∴EH =. ……………9分 在R t △EHB 中,BH ==∵R t △EHB ~R t △1A AB , ∴1EH BHAA AB =,即1552AA =. ∴14AA =. ……………10分 以A 为原点,与AC 垂直的直线为x 轴,AC 所在的直线为y 轴,1AA 所在的直线为z 轴,建立空间直角坐标系A xyz -. 则()000A ,,,1A ()004,,,B )10,,D ()02,,2.∴1AA =()004,,,1A B=)14,-,1A D =()02,,-2.设平面A BD 1的法向量为n =()x y z ,,,由n A 1⋅,n 01=⋅A ,得40220y z y z .ìï+-=ïíï-=ïî 令1y =,则1z x ==,∴平面A BD 1的一个法向量为n=)11,. ……………12分∵1AA ⊥平面ABC , ∴1AA =()004,,是平面ABC 的一个法向量.∴cos 111,⋅==n AA n AA n AA 5. ……………13分 ∴平面1A BD 与平面ABC 所成二面角(锐角) ……………14分 19.(本小题满分14分)(本小题主要考查等比数列的通项公式、数列的前n 项和等基础知识,考查合情推理、化归与转化、特殊与一般的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力) (1) 解:12323(1)2n n a a a na n S n ++++=-+,∴ 当1n =时,有 11(11)2,a S =-+ 解得 12a =. ……………1分 由12323(1)2n n a a a na n S n ++++=-+, ①得1231123(1)2(1)n n n a a a na n a nS n ++++++++=++, ② ……………2分② - ①得: 11(1)(1)2n n n n a nS n S +++=--+. ③ ……………3分 以下提供两种方法:法1:由③式得:11(1)()(1)2n n n n n S S nS n S +++-=--+,即122n n S S +=+; ……………4分∴122(2)n n S S ++=+, ……………5分∵112240S a +=+=≠,∴数列{2}n S +是以4为首项,2为公比的等比数列. ∴1242n n S -+=⨯,即1142222n n n S -+=⨯-=-. ……………6分 当2n ≥时, 11(22)(22)2n n n n n n a S S +-=-=---=, ……………7分 又12a =也满足上式,∴2n n a =. ……………8分 法2:由③式得:()111(1)(1)22n n n n n n n a nS n S n S S S ++++=--+=-++,得12n n a S +=+. ④ ……………4分当2n ≥时,12n n a S -=+, ⑤ ……………5分⑤-④得:12n n a a +=. ……………6分 由12224a a S +=+,得24a =,∴212a a =. ……………7分 ∴数列{}n a 是以12a =为首项,2为公比的等比数列. ∴2n n a =. …………8分 (2)解:∵p q r ,,成等差数列,∴2p r q +=. …………9分假设111p q r a a a ,,---成等比数列, 则()()()2111p r q a a a --=-, …………10分即()()()2212121prq--=-,化简得:2222p r q +=⨯. (*) ……………11分 ∵p r ≠,∴2222p r q +>=⨯,这与(*)式矛盾,故假设不成立.…13分 ∴111p q r a a a ,,---不是等比数列. ……………14分20.(本小题满分14分)(本小题主要考查椭圆、抛物线、曲线的切线等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)(1) 解法1:设椭圆1C 的方程为22221x y a b+=()0a b >>,依题意: 222222231,4.a b a b ⎧+=⎪⎨⎪=+⎩解得:2216,12.a b ⎧=⎪⎨=⎪⎩ ……………2分 ∴ 椭圆1C 的方程为2211612x y +=. ……………3分 解法2:设椭圆1C 的方程为22221x y a b+=()0a b >>,根据椭圆的定义得1228a AF AF =+=,即4a =, ……………1分 ∵2c =, ∴22212b a c =-=. ……………2分∴ 椭圆1C 的方程为2211612x y +=. ……………3分 (2)解法1:设点)41,(211x x B ,)41,(222x x C ,则))(41,(212212x x x x --=, )413,2(211x x BA --=,∵C B A ,,三点共线,∴BC BA //. ……………4分 ∴()()()222211211113244x x x x x x ⎛⎫--=-- ⎪⎝⎭,化简得:1212212x x x x ()+-=. ① ……………5分 由24x y =,即214y x ,=得y '=12x . ……………6分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2411121x x x x y -=-,即211412x x x y -=. ② 同理,抛物线2C 在点C 处的切线2l 的方程为 222412x x x y -=. ③ ………8分 设点),(y x P ,由②③得:=-211412x x x 222412x x x -, 而21x x ≠,则 )(2121x x x +=. ……………9分 代入②得 2141x x y =, ……………10分 则212x x x +=,214x x y =代入 ① 得 1244=-y x ,即点P 的轨迹方程为3-=x y .……………11分若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,而点P 又在直线3-=x y 上, ……………12分∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点. ……………13分∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……………14分解法2:设点),(11y x B ,),(22y x C ,),(00y x P , 由24x y =,即214y x ,=得y '=12x . ……………4分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-, 即2111212x y x x y -+=. ……………5分 ∵21141x y =, ∴112y x x y -= . ∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ① ……………6分 同理, 20202y x x y -=. ② ……………7分 综合①、②得,点),(),,(2211y x C y x B 的坐标都满足方程y x xy -=002. ………8分 ∵经过),(),,(2211y x C y x B 的直线是唯一的, ∴直线L 的方程为y x xy -=002, ……………9分 ∵点)3,2(A 在直线L 上, ∴300-=x y . ……………10分 ∴点P 的轨迹方程为3-=x y . ……………11分若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,又在直线3-=x y 上,…12分 ∵直线3-=x y 经过椭圆1C 内一点(3,0),∴直线3-=x y 与椭圆1C 交于两点. ……………13分∴满足条件1212PF PF AF AF +=+ 的点P 有两个. ……………14分 解法3:显然直线L 的斜率存在,设直线L 的方程为()23y k x =-+,由()2234y k x x y ,,⎧=-+⎪⎨=⎪⎩消去y ,得248120x kx k -+-=. ……………4分设()()1122B x y C x y ,,,,则12124812x x k x x k ,+==-. ……………5分由24x y =,即214y x ,=得y '=12x . ……………6分 ∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=.…7分 ∵21141x y =, ∴211124x y x x =-. 同理,得抛物线2C 在点C 处的切线2l 的方程为222124x y x x =-. ……………8分 由211222124124x y x x x y x x ,,⎧=-⎪⎪⎨⎪=-⎪⎩解得121222234x x x k x x y k ,.⎧+==⎪⎪⎨⎪==-⎪⎩ ∴()223P k k ,-. ……………10分 ∵1212PF PF AF AF +=+,∴点P 在椭圆22111612x y C :+=上. ……………11分 ∴()()2222311612k k -+=.化简得271230k k --=.(*) ……………12分由()2124732280Δ=-⨯⨯-=>, ……………13分可得方程(*)有两个不等的实数根. ∴满足条件的点P 有两个. ……………14分 21.(本小题满分14分)(本小题主要考查二次函数、一元二次不等式、一元二次方程、函数应用、均值不等式等基础知识,考查数形结合、函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识) (1)解:∵关于x 的不等式()()2211fx m x m <-+-的解集为()1m m ,+,即不等式()22120x a m x m m ++-++<的解集为()1m m ,+,∴()2212x a m x m m ++-++=()()1x mx m ---.∴()2212x a m x m m ++-++=()()2211x m x m m -+++.∴()1221a m m +-=-+.∴2a =-. ……………2分(2)解法1:由(1)得()()1f xg x x =-()221111x x m m x x x -++==-+--.∴()()xg x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞.∴()1x ϕ'=-()211mkx x ---()()22211x k x k m x -++-+=-. ……………3分 方程()2210x k x k m -++-+=(*)的判别式()()222414Δk k m k m =+--+=+. ……………4分①当0m >时,0Δ>,方程(*)的两个实根为1212k x ,+-=<2212k x ,++=> ……………5分则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x . ……………6分 ②当0m <时,由0Δ>,得k <-k >若k <-则11x ,=<21x ,=<故x ∈()1,+∞时,()0x ϕ'>, ∴函数()x ϕ在()1,+∞上单调递增.∴函数()x ϕ没有极值点. ……………7分若k >,1212k x ,+-=>2212k x ,++=>则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>.∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x . ……………8分 综上所述, 当0m >时,k 取任意实数, 函数()x ϕ有极小值点2x ;当0m <时,k >函数()x ϕ有极小值点2x ,有极大值点1x .…9分(其中122k x +-=, 222k x ++=解法2:由(1)得()()1f xg x x =-()221111x x m m x x x -++==-+--.∴()()x g x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞. ∴()1x ϕ'=-()211mkx x ---()()22211x k x k m x -++-+=-. ……………3分 若函数()()xg x ϕ=-()1k x ln -存在极值点等价于函数()x ϕ'有两个不等的零点,且至少有一个零点在()1,+∞上. ……………4分 令()x ϕ'()()22211x k x k m x -++-+=-0=,得()221x k x k m -++-+0=, (*)则()()2224140Δkk m k m =+--+=+>,(**) ……………5分方程(*)的两个实根为1x =2x =设()h x=()221x k x k m -++-+,①若1211x x ,<>,则()10h m =-<,得0m >,此时,k 取任意实数, (**)成立. 则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增.∴函数()x ϕ有极小值点2x . ……………6分②若1211x x ,>>,则()10212h m k ,.⎧=->⎪⎨+>⎪⎩得00m k ,.⎧<⎨>⎩又由(**)解得k >k <-故k > ……………7分 则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x . ……………8分 综上所述, 当0m >时,k 取任何实数, 函数()x ϕ有极小值点2x ;当0m <时,k >函数()x ϕ有极小值点2x ,有极大值点1x .…9分 (其中122k x +-=, 222k x ++=(2)证法1:∵1m =, ∴()g x=()111x x -+-. ∴()()1111nnnn n g x g x x x x x ⎛⎫⎛⎫⎡⎤+-+=+-+ ⎪ ⎪⎣⎦⎝⎭⎝⎭112212111111n n n n nn n n n nn n n x C x C x C x C x x xx x x ----⎛⎫=+⋅+⋅++⋅+-+ ⎪⎝⎭ 122412n n n nn n n C xC x C x ----=+++. ……………10分 令T 122412n n n n n n n C xC x C x ----=+++,则T 122412n nn n n n n n C x C x C x -----=+++ 122412nnn n n n n C x C x C x ----=+++.∵x 0>,∴2T ()()()122244122n n n n n n n n n n C xx C x x C x x -------=++++++…11分≥121n nn n C C C -⋅+⋅++⋅…12分()1212n n n n C C C -=+++ ()012102n n nn n n n n n n C C C C C C C -=+++++--()222n=-. ……………13分 ∴22n T ≥-,即()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦. ……………14分证法2:下面用数学归纳法证明不等式11nn n x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22n ≥-.① 当1n =时,左边110x x x x ⎛⎫⎛⎫=+-+= ⎪ ⎪⎝⎭⎝⎭,右边1220=-=,不等式成立;……………10分② 假设当n k =k (∈N *)时,不等式成立,即11kk k x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22k ≥-,则 11111k k k x x x x +++⎛⎫⎛⎫+-+ ⎪⎪⎝⎭⎝⎭11111111kk k k k k k x x x x x x x x x x x x ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥=++-++++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111k k k x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111k k x x --⎛⎫+ ⎪⎝⎭ ……………11分()22k ≥⋅-+ ……………12分 122k +=-. ……………13分也就是说,当1n k =+时,不等式也成立. 由①②可得,对∀n ∈N *,()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦都成立. ………14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参考答案及评分建议(2013一模)一、选择题二、填空题三、解答题17.(本小题满分10分)解:110 232 1 x x ⎧-≥⎪⎨⎪+>-⎩解①得 x ≤2,…………………………………………………………3分 解②得 x >-1,………………………………………………………6分 ∴不等式组的解集为:-1<x ≤2,…………………………………8分数轴表示为:18.(本小题满分10分)证法一:∵ABCD为菱形,∴AD=BC,∠A=∠C.………………4分 在△ADE和△CBF中,∵AD C B A C AE C F =⎧⎪∠=∠⎨⎪=⎩,…………………………………………………………………7分 ∴△ADE≌△CBF(SAS)……………………………………………9分 ∴DE=BF.………………………………………………………………10分 证法二:∵ABCD为菱形,∴AB=CD且AB∥CD.………………4分 由AE=CF,得AB-AE=CD-CF,………………………………6分 即BE=DF,又BE∥DF,………………………………………………8分 ∴四边形EBFD为平行四边形,……………………………………………9分 ∴DE=BF.………………………………………………………………10分19.(本小题满分9分) 解: 原方程可化为:21x --1(1)(1)x x +-=3(1)(1)x x +-………………2分………10分 12 3 1 3 2 0 图1方程两边同乘以(x +1)(x -1),…………………………………………3分 得:2(x +1)-1=3………………………………………………………5分 解得x =1…………………………………………………………………………7分 检验:当x =1时,(x +1)(x -1)=0,………………………………8分 ∴x =1是增根,原方程无解.…………………………………………………9分20.(本小题满分10分)解:(1) 50 ;…………………………………………………………2分 (2)50-14-16-10-4=6(人)………………………………5分 ∴该班参加铅球考试的人数为6人.(图略);…………………………………6分 (3)16÷50=0.32=32%,…………………………………………8分 360°³32%=115.2°,………………………………………………9分 ∴参加跳绳考试部分所对应的圆心角的度数为115.2°.………………10分21.(本小题满分10分) 解:(1)树形图如图2:∴所有可能的结果有6种;………………………………………………………7分 (2)设郑浩从入口A进入展览厅并从北面出口离开的概率是P, 则P=26……………………………………………………………………………9分 =13.………………………………………………………………………10分22.(本小题满分12分) 解:(1)n = -1 ;……………………………………………………1分 (2)∵函数y =m x的图象经过点A,∴x =3时,y =-2,∴m =3³(-2)=-6,………………………3分 ∴反比例函数的解析式为:y =-6x;…………………………………………4分∵函数y =-6x图象经过B(n ,6),当x =n 时,y =6,从而得n =-1,…………………………………………5分即点B的坐标为B(-1,6).…………………………………………………6分 由一次函数y =kx +b 的图象经过A、B两点,可得:入口A出 口E 出 口C 出 口D 入口B出 口E出 口 C 出 口 D 图2 ………6分326k b k b +=-⎧⎨-+=⎩,……………………………………………………………………8分 解得24k b =-⎧⎨=⎩.……………………………………………………………………9分∴一次函数的解析式为:y =-2x +4;…………………………………10分 (3)0<x <3或x <-1.………………………………………………12分23.(本小题满分13分) 解:(1)线段AB=DB.……………………………………………………1分 证明如下:连结BC(如图3).∵AB是⊙O的直径,∴∠ACB=90°,即BC⊥AD.…………………………………………2分 又∵AC=CD,∴BC垂直平分线段AD,…………………………………3分 ∴AB=DB;(2)CE是⊙O的切线.………………………………………………………4分 证明如下:连结OC(如图4). ∵点O为AB的中点,点C为AD的中点,∴OC为△ABD的中位线,∴OC∥BD.…………………………………6分 又∵CE⊥BD,∴CE⊥OC,∴CE是⊙O的切线;……………………8分 (3)△ABD为等边三角形.…………………………………………………9分 证明如下: 由AC EBC EDS S ∆四边形=71,得C EDAC EB C EDS S S ∆∆+四边形=711+,………………………………………………10分∴ABD C ED S S ∆∆=81,…………………………………………………………………11分即C ED S S ∆∆ABD=18,∴2C E D S S ∆∆BCD=18,C ED S S ∆∆BCD=14,∵∠D=∠D,∠CED=∠BCD=90°,∴△CED∽△BCD, ∴2()C D B D=C ED S S ∆∆BCD,即2()C D B D=14,∴C D B D=12,………………………12分在Rt △BCD中,∵CD=12BD,∴∠CBD=30°,∴∠D=60°,又∵AB=DB,………………13分∴△ABD为等边三角形.24.(本小题满分14分) 解:(1)把B(0,-1)坐标代入y =2ax +bx +c 中,得c =-1.……………………………………1分 由b =-4ac ,得b =4a .∵A为抛物线的顶点,∴其横坐标为x =-2b a,…………………………2分∴x =-2,即点A的坐标为A(-2,0);……………………………3分 (2)把点A的坐标(-2,0)代入抛物线解析式中,可得4a -2b -1=0,……………………………………………………4分 把b =4a 代入上式,得a =-14,…………………………………………5分∴b =-1.∴抛物线的解析式为:y =-214x -x -1;…………………………………………………………6分(3)点C 存在.………………………………………………………………7分 设符合题意的点C坐标为(x ,y ),如图5. 方法一:过点C作CD⊥x 轴于点D.连结AB、AC,∵A在以BC为直径的圆上,∴∠BAC=90°. ∴Rt △AOB∽Rt △CDA,…………………………………………………8分 ∴得O B A D A OC D=,从而OB²CD=AO²AD,…………………………9分∴1²(-y )=2²(2)x --,-y =22x +,-y =2[-(x +2)],得y =2x +4,……………………………10分 又y =-214x -x -1,得-214x -x -1=2x +4,整理得:212x x ++20=0,解得1x =-10,2x =-2; 从而得1y =-16,2y =0.即点C的坐标为(-10,-16)或(-2,0).……………………12分 方法二:过点C作CD⊥x 轴于点D.D图3图4连结AB、AC,过点B作BE⊥CD于点E.……………………………8分 则E点坐标为E(x ,-1).在Rt △AOB中,AB2=AO2+BO2=5,在Rt △ACD中,AC2=AD2+CD2=2(2)x ++2y , 在Rt △BCE中,BC2=BE2+CE2=2x +2(1)y +, 在Rt △ABC中,BC2=AB2+AC2,∴得2x +2(1)y +=5+2(2)x ++2y ,…………………………………10分 化简整理得y =2x +4, 又y =-214x -x -1,得-214x -x -1=2x +4,整理得:212x x ++20=0,解得1x =-10,2x =-2; 从而得1y =-16,2y =0.即点C的坐标为(-10,-16)或(-2,0).……………………12分 ∵P为圆心,∴P为直径BC的中点.当点C坐标为(-10,-16)时,取OD的中点P1,则P1的坐标为(-5,0),连结PP1;过点B作BE⊥CD,垂足为点E, 交PP1为于点F,则四边形BODE为矩形, 点E的坐标为E(-10,-1),F点的坐标为F(-5,-1), PF为△BCE的中位线,∴PF=12CE=1216(1)---=152,∴PP1=PF+FP1=172,∴P(-5,-172);………………………13分当点C坐标为(-2,0)时,取OA的中点P2,则P2的坐标为(-1,0), 连结PP2,则PP2为△OAB的中位线, ∴PP2=12OB=12,∴P(-1,-12),………………………………14分故点P的坐标为(-5,-172)或(-1,-12).yxA BO P 2CDPP 1 P F EyxABO ECD25.(本小题满分14分) 证明:(1)作DF∥BC,CF∥BD(如图7),……………………1分 得□BCFD,从而∠DFC=∠B, DF=BC,CF=BD.又BD=CE,∴CF=CE,∴∠1=∠2.………………………………………………………………2分 ∵AB=AC,∴∠ACB=∠B.而∠DFE=∠DFC+∠1=∠B+∠1=∠ACB+∠2>∠AED+∠2=∠DEF,………………………3分 即在△DEF中,∵∠DFE>∠DEF,∴DE>DF,即DE>BC.……………………………………………5分(2)当AB≠AC时,DE与BC的大小关系如下:当AB>AC但AB=AE时,DE=BC;………………………………6分 当AB>AC但AB<AE时,DE>BC;………………………………7分 当AB>AC且AB>AE时,DE<BC;………………………………8分 当AB<AC时,DE>BC.………………………………………………9分 证明如下:①当AB>AC但AB=AE时(如图8),∵BD=CE,∴AB-BD=AE-CE,即AD=AC. 在△ABC和△AED中,∵AB=AE,∠A=∠A,AC=AD, ∴△ABC≌△AED(SAS),∴BC=ED;…………………………10分②AB>AC但AB<AE时,延长AB到F,使AF=AE, 在AE上截取AP=AD(如图9),连结PF. 在△AFP和△AED中,∵AF=AE,∠A=∠A,AP=AD, ∴△AFP≌△AED(SAS), ∴∠F=∠AED,即∠F=∠4.∵∠ABC>∠F,∴∠ABC>∠4.过D点作DQ∥BC,且DQ=BC,连结CQ、EQ, 则四边形DBCQ为平行四边形, ∴∠3=∠ABC,CQ=BD.∵BD=CE,∴CQ=CE,∴∠1=∠2.ABDCFE12图7∵∠3=∠ABC>∠4,∴∠3+∠1>∠2+∠4,即∠DQE>∠DEQ,………………………………………………………………12分∴DE>DQ,∴DE>BC;③当AB>AC且AB>AE时,延长AE到F,使AF=AB,在AB上截取AP=AC(如图10),连结PF.在△ABC和△AFP中,∵AB=AF,∠A=∠A,AC=AP,∴△ABC≌△AFP(SAS),∴∠B=∠F.∵∠4>∠F,∴∠4>∠B.过D点作DQ∥BC,且DQ=BC,连结CQ、EQ,则四边形DBCQ为平行四边形,∴∠3=∠B,CQ=BD.∵BD=CE,∴CQ=CE,∴∠1=∠2.∵∠3=∠B<∠4,∴∠3+∠1<∠4+∠2,即∠DQE<∠DEQ,∴DE<DQ,∴DE<BC.…………………………13分④当AB<AC时,此时,AB必小于AE,即AB<AE延长AB到F,使AF=AE,在AE上截取AP=AD(如图11).连结PF.在△AFP和△AED中,∵AF=AE,∠A=∠A,AP=AD,∴△AFP≌△AED(SAS),∴∠F=∠AED,即∠F=∠4.∵∠ABC>∠F,∴∠ABC>∠4.过D点作DQ∥BC,且DQ=BC,连结CQ、EQ,则四边形DBCQ为平行四边形,∴∠3=∠ABC,CQ=BD.∵BD=CE,∴CQ=CE,∴∠1=∠2.∵∠3=∠ABC>∠4,∴∠3+∠1>∠2+∠4,即∠DQE>∠DEQ,∴DE>DQ,∴DE>BC;………………………………………………………14分AB DCE图84321QPFEDCBA图94321QPFED CBA图10图114321Q PFE DCBA。

相关文档
最新文档