计算机图形学实验报告2014

合集下载

计算机图形学课程设计综合实验报告

计算机图形学课程设计综合实验报告

西南交通大学信息科学与技术学院计算机图形学实验(2014~2015学年第II学期)实验报告学号:20122712 姓名:魏仁斌专业:软件工程班级: 4课程名称计算机图形学班级软件4班学号___20122712 姓名___魏仁斌 _试验日期2015.3.16实验成绩____ _ 实验名称实验 1 集成开发环境的认识和简单窗口程序移植与创建1. 实验目的熟悉windows编程和VC++编程环境2. 实验设备与环境硬件设备:软件设计工具: Microsoft Visual C++ 6.03. 实验设计说明基本工作原理: windows提供了一系列的API函数实验内容:用VC++创建工程,并且创建一个简单的窗口实验设计步骤、设计过程或执行顺序①可单击Windows桌面上的“开始”按钮,弹出开始菜单,点击→所有程序→MicrosoftVisual Studio 6.0→Microsoft Visual C++ 6.0,单击后进入开发环境。

②用鼠标单击 File 菜单中的 New 菜单项,在系统弹出的对话框中,有四大工作类型供操作选择:Files、Projects、Workspaces、Other Documents,每种类型又包含许多具体的文件类型。

③选择 Projects 标签,在 Project name 下的编辑框中输入应用工程的名称为实验1。

在 Location 标签下的编辑框中,输入保存文件的位置,也可以用鼠标点击旁边的“…”按钮来选择保存文件的目录。

④选择 Projects 标签下的 Win32 Application,点击OK按钮后,自动创建新的工作空间。

⑤本例选择创建空白应用工程(An empty project),单击 Finsh按钮。

⑥点击“OK”按钮,建立空白的Win32应用工程。

⑦用鼠标单击File菜单中New菜单项,在系统弹出的对话框中,在Files标签下,选择C++Source File,在右方的File编辑框中输入源程序文件的名称后单击“OK”。

(完整word版)计算机图形学实验报告

(完整word版)计算机图形学实验报告

计算机图形学实验报告姓名:谢云飞学号:20112497班级:计算机科学与技术11-2班实验地点:逸夫楼507实验时间:2014.03实验1直线的生成1实验目的和要求理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析实验数据的能力;编程实现DDA算法、Bresenham中点算法;对于给定起点和终点的直线,分别调用DDA算法和Bresenham中点算法进行批量绘制,并记录两种算法的绘制时间;利用excel等数据分析软件,将试验结果编制成表格,并绘制折线图比较两种算法的性能。

2实验环境和工具开发环境:Visual C++ 6.0实验平台:Experiment_Frame_One(自制平台)。

本实验提供名为 Experiment_Frame_One的平台,该平台提供基本绘制、设置、输入功能,学生在此基础上实现DDA算法和Mid_Bresenham算法,并进行分析。

⏹平台界面:如错误!未找到引用源。

所示⏹设置:通过view->setting菜单进入,如错误!未找到引用源。

所示⏹输入:通过view->input…菜单进入.如错误!未找到引用源。

所示⏹实现算法:◆DDA算法:void CExperiment_Frame_OneView::DDA(int X0,int Y0, int X1, int Y1)Mid_Bresenham法:void CExperiment_Frame_OneView::Mid_Bresenham(int X0, int Y0, int X1, int Y1)3实验结果3.1程序流程图1)DDA算法流程图:开始定义两点坐标差dx,dy,以及epsl,计数k=0,描绘点坐标x,y,x增量xIncre,y增量yIncre↓输入两点坐标x1,y1,x0,y0↓dx=x1-x0,dy=y1-y0;_________↓_________↓↓若|dx|>|dy| 反之epsl=|dx| epsl=|dy|↓________...________↓↓xIncre=dx/epsl; yIncre=dy/epsl↓填充(强制整形)(x+0.5,y+0.5);↓←←←←横坐标x+xIncre;纵坐标y+yIncre;↓↑若k<=epsl →→→k++↓结束2)Mid_Bresenham算法流程图开始↓定义整形dx,dy,判断值d,以及UpIncre,DownIncre,填充点x,y↓输入x0,y0,x1,y1______↓______↓↓若x0>x1 反之x=x1;x1=x0;x0=x; x=x0;Y=y1;y1=y0;y0=y; y=y0;↓______..______↓↓坐标差dx=x1-x0;dy=y1-y0;判断值d=dx-2*dy;UpIncre=2*dx-2*dy;DownIncre=-2*dy;↓填充点(x,y),且x=x+1;______↓______←←←↓↓↑若d<0 反之y=y+1,且d=d+UpIncre d=d+DownIncre↓______.______↓↑↑↓若x<=x1 →→→↑↓结束3.2程序代码void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1){//----------请实现DDA算法------------//int dx,dy,epsl,k;float x,y,xIncre,yIncre;dx=X1-X0; dy=Y1-X0;x=X0; y=Y0;if(abs(dx)>abs(dy)) epsl=abs(dx);else epsl=abs(dy);xIncre=(float)dx/(float)epsl;yIncre=(float)dy/(float)epsl;for(k=0;k<=epsl;k++){DrawPixel((int)(x+0.5),(int)(y+0.5));x+=xIncre;y+=yIncre;}}void CExperiment_Frame_OneView::Mid_Bresenham(int X0, int Y0, int X1, int Y1){//-------请实现Mid_Bresenham算法-------//int dx,dy,d,UpIncre,DownIncre,x,y,xend;if(X0>X1){x=X1;X1=X0;X0=x;y=Y1;Y1=Y0;Y0=y;}x=X0;y=Y0;dx=X1-X0;dy=Y1-Y0;d=dx-2*dy;UpIncre=2*dx-2*dy;DownIncre=-2*dy;while(x<X1){DrawPixel(x,y);x++;if(d<0){y++;d+=UpIncre;}else d+=DownIncre;}}3.3运行结果3.4运行结果分析DDA算法基本上没有什么问题,Mid_Bresenham算法在网格尺寸比较大时误差较大,通过改变网格尺寸大小即能较为精确地描绘出所绘直线。

计算机图形学实验报告3 - Bresenham画线

计算机图形学实验报告3 - Bresenham画线
}
在大括号内填入以下代码
CDC *pDC=GetDC();
int k;
double x1=10,y1=10,x2=200,y2=150;
double x,y,deltx,delty,E;
deltx=x2-x1;delty=y2-y1;
x=x1;y=y1;k=1;
if(deltx>0&&delty>0)
3.Object IDs选择ID_Bresenham,Messages选择COMMAND
4.点击Add Function,点击OK,点击Edit Code,进入编辑函数的界面([项目名]View.cpp)
void C[项目名]View::OnBresenham()
{
// TODO: Add your command handler code here
实验要求:
掌握Bresenham画线算法
实验仪器:
软件:VC++6.0,windows XP
硬件:计算机
实验步骤、内容:
一、新建MFC工程
1.开始所有程序Microsoft Visual C++ 6.0Microsoft Visual C++ 6.0
2.文件-->新建-->工程,工程名称填[项目名],左边的类型选择MFC AppWizard [exe],点击确定
{
if(fabs(deltx)>fabs(dfor(k=1;k<=fabs((int)deltx);k++)
{
pDC->SetPixel((int)x,(int)y,RGB(0,0,0));
E+=(2*delty);

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告
在计算机图形学课程中,实验是不可或缺的一部分。

通过实验,我们可以更好地理解课程中所学的知识,并且在实践中掌握这些
知识。

在本次实验中,我学习了如何使用OpenGL绘制三维图形,并了解了一些基本的图形变换和视图变换。

首先,我们需要通过OpenGL的基本命令来绘制基本图形,例
如线段、矩形、圆等。

这些基本的绘制命令需要首先设置OpenGL 的状态,例如绘制颜色、线段宽度等,才能正确地绘制出所需的
图形。

然后,在实验中我们学习了图形的变换。

变换是指通过一定的
规则将图形的形状、位置、大小等进行改变。

我们可以通过平移、旋转、缩放等变换来改变图形。

变换需要按照一定的顺序进行,
例如先进行旋转再进行平移等。

在OpenGL中,我们可以通过设
置变换矩阵来完成图形的变换。

变换矩阵包含了平移、旋转、缩
放等信息,通过矩阵乘法可以完成图形的复合变换。

最后,视图变换是指将三维场景中的图形投影到二维平面上,
成为我们所见到的图形。

在实验中,我们学习了透视投影和正交
投影两种方式。

透视投影是指将场景中的图形按照视点不同而产
生不同的远近缩放,使得图形呈现出三维感。

而正交投影则是简单地将场景中的图形按照平行投影的方式呈现在屏幕上。

在OpenGL中,我们可以通过设置视图矩阵和投影矩阵来完成视图变换。

通过本次实验,我对于计算机图形学有了更深入的了解,并掌握了一些基本的图形绘制和变换知识。

在今后的学习中,我将继续学习更高级的图形绘制技术,并应用于实际的项目中。

计算机图形学课程设计实验报告

计算机图形学课程设计实验报告

《计算机图形学》实验报告班级计算机科学与技术姓名学号2014 年6 月2 日实验一基本图形生成算法一、实验目的:1、掌握中点Bresenham绘制直线的原理;2、设计中点Bresenham算法;3、掌握八分法中点Bresenham算法绘制圆的原理;4、设计八分法绘制圆的中点Bresenham算法;5、掌握绘制1/4椭圆弧的上半部分和下半部分的中点Bresenham算法原理;6、掌握下半部分椭圆偏差判别式的初始值计算方法;7、设计顺时针四分法绘制椭圆的中点Bresenham算法。

二、实验过程:1、实验描述实验1:使用中点Bresenham算法绘制斜率为0<=k<=1的直线。

实验2:使用中点Bresenham算法绘制圆心位于屏幕客户区中心的圆。

实验3:使用中点Bresenham算法绘制圆心位于屏幕客户区中心的椭圆。

2、实验过程1)用MFC(exe)建立一个单文档工程;2)编写对话框,生成相应对象,设置相应变量;3)在类CLineView中声明相应函数,并在相关的cpp文件中实现;4)在OnDraw()函数里调用函数实现绘制直线、圆、椭圆;5)运行程序,输入相应值,绘制出图形。

三、源代码实验1:直线中点Bresenham算法1.// cline.cpp : implementation file// cline dialogcline::cline(CWnd* pParent /*=NULL*/): CDialog(cline::IDD, pParent){//{{AFX_DATA_INIT(cline)m_x0 = 0;m_y0 = 0;m_x1 = 0;m_y1 = 0;//}}AFX_DATA_INIT}void cline::DoDataExchange(CDataExchange* pDX){CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(cline)DDX_Text(pDX, IDC_x0, m_x0);DDX_Text(pDX, IDC_y0, m_y0);DDX_Text(pDX, IDC_x1, m_x1);DDX_Text(pDX, IDC_y1, m_y1);//}}AFX_DATA_MAP}BEGIN_MESSAGE_MAP(cline, CDialog)//{{AFX_MSG_MAP(cline)//}}AFX_MSG_MAPEND_MESSAGE_MAP()2、// LineView.hclass CLineView : public CView{public:CLineDoc* GetDocument();..........void Mbline(double,double,double,double); //直线中点Bresenham函数.......}3、// Line.cpp//*******************直线中点Bresenham函数*********************/void CLineView::Mbline(double x0, double y0, double x1, double y1) {CClientDC dc(this);COLORREF rgb=RGB(0,0,255); //定义直线颜色为蓝色double x,y,d,k;x=x0; y=y0; k=(y1-y0)/(x1-x0); d=0.5-k;for(x=x0;x<=x1;x++){dc.SetPixel((int)x,(int)y,rgb);if(d<0){y++;d+=1-k;}elsed-=k;}}4、//LineView.cppvoid CLineView::OnDraw(CDC* pDC){CLineDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data herecline a;a.DoModal();//初始化CLineView::Mbline(a.m_x0,a.m_y0,a.m_x1,a.m_y1); }实验2:圆中点Bresenham算法1、//cricle.cpp// Ccricle dialogCcricle::Ccricle(CWnd* pParent /*=NULL*/): CDialog(Ccricle::IDD, pParent){//{{AFX_DATA_INIT(Ccricle)m_r = 0;//}}AFX_DATA_INIT}void Ccricle::DoDataExchange(CDataExchange* pDX) {CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(Ccricle)DDX_Text(pDX, r_EDIT, m_r);//}}AFX_DATA_MAP}2、//CcircleView.hclass CCcircleView : public CView{.......public:CCcircleDoc* GetDocument();void CirclePoint(double,double); //八分法画圆函数void Mbcircle(double); //圆中点Bresenham函数........}3、//CcircleView.cppvoid CCcircleView::OnDraw(CDC* pDC){CCcircleDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data hereCcricle r;r.DoModal();CCcircleView::Mbcircle(r.m_r);//画圆}4、//CcircleView.cpp//*******************八分法画圆*************************************/ void CCcircleView::CirclePoint(double x,double y){CClientDC dc(this);COLORREF rgb=RGB(0,0,255);dc.SetPixel((int)(300+x),(int)(300+y),rgb);dc.SetPixel((int)(300-x),(int)(300+y),rgb);dc.SetPixel((int)(300+x),(int)(300-y),rgb);dc.SetPixel((int)(300-x),(int)(300-y),rgb);dc.SetPixel((int)(300+y),(int)(300+x),rgb);dc.SetPixel((int)(300-y),(int)(300+x),rgb);dc.SetPixel((int)(300+y),(int)(300-x),rgb);dc.SetPixel((int)(300-y),(int)(300-x),rgb);}//**************************圆中点Bresenham函数*********************/ void CCcircleView::Mbcircle(double r){double x,y,d;COLORREF rgb=RGB(0,0,255);d=1.25-r;x=0;y=r;for(x=0;x<y;x++){CirclePoint(x,y); //调用八分法画圆子函数if(d<0)d+=2*x+3;else{d+=2*(x-y)+5;y--;}}}实验3:椭圆中点Bresenham算法1、//ellipse1.cpp// Cellipse dialogCellipse::Cellipse(CWnd* pParent /*=NULL*/) : CDialog(Cellipse::IDD, pParent){//{{AFX_DATA_INIT(Cellipse)m_a = 0;m_b = 0;//}}AFX_DATA_INIT}void Cellipse::DoDataExchange(CDataExchange* pDX) {CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(Cellipse)DDX_Text(pDX, IDC_EDIT1, m_a);DDX_Text(pDX, IDC_EDIT2, m_b);//}}AFX_DATA_MAP}2、//EllipseView.hclass CEllipseView : public CView{......................public:CEllipseDoc* GetDocument();void EllipsePoint(double,double); //四分法画椭圆void Mbellipse(double a, double b); //椭圆中点Bresenham函数..................}3、//Ellipse.cpp//*****************四分法画椭圆********************************/void CEllipseView::EllipsePoint(double x,double y){CClientDC dc(this);COLORREF rgb=RGB(0,0,255);dc.SetPixel((int)(300+x),(int)(300+y),rgb);dc.SetPixel((int)(300-x),(int)(300+y),rgb);dc.SetPixel((int)(300+x),(int)(300-y),rgb);dc.SetPixel((int)(300-x),(int)(300-y),rgb);}//************************椭圆中点Bresenham函数*********************/ void CEllipseView::Mbellipse(double a, double b){double x,y,d1,d2;x=0;y=b;d1=b*b+a*a*(-b+0.25);EllipsePoint(x,y);while(b*b*(x+1)<a*a*(y-0.5))//椭圆AC弧段{if(d1<0)d1+=b*b*(2*x+3);else{d1+=b*b*(2*x+3)+a*a*(-2*y+2);y--;}x++;EllipsePoint(x,y);}d2=b*b*(x+0.5)*(x+0.5)+a*a*(y-1)*(y-1)-a*a*b*b;//椭圆CB弧段while(y>0){if(d2<0){d2+=b*b*(2*x+2)+a*a*(-2*y+3);x++;}elsed2+=a*a*(-2*y+3);y--;EllipsePoint(x,y);}}4、//EllipseView.cppvoid CEllipseView::OnDraw(CDC* pDC){CEllipseDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data hereCellipse el;el.DoModal();//初始化CEllipseView::Mbellipse(el.m_a, el.m_b);//画椭圆}四、实结果验实验1:直线中点Bresenham算法实验2:圆中点Bresenham算法实验3:椭圆中点Bresenham算法实验二有效边表填充算法一、实验目的:1、设计有效边表结点和边表结点数据结构;2、设计有效边表填充算法;3、编程实现有效边表填充算法。

图形学实验报告顾佳烽

图形学实验报告顾佳烽
Hale Waihona Puke 《计算机图形学课内实验》 实验报告
班级:计算机 22 班 姓名:顾佳烽 学号:2120505034 日期:2014.11.08
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

华电_计算机图形学实验报告

华电_计算机图形学实验报告

课程设计(综合实验)报告=实验名称 OpenGL基本图元绘制实验课程名称计算机图形学||专业班级:计算机11K1学生姓名:王粲学号:111909010118成绩:指导教师:姜丽梅实验日期:2014.4.20实验一、OpenGL基本图元绘制实验一、实验目的及要求1.掌握计算机图形学及交互式计算机图形学的定义,了解OpenGL的功能及工作流程,掌握基于OpenGL Glut库的程序框架。

2.掌握基本的二维线画图元的绘制算法及属性,掌握OpenGL基本图元的绘制。

3.理解二维、三维图形的绘制流程,掌握二维图形和三维图形的图形变换。

4.了解形体的真实感表示的内容,包括消隐技术、简单光照明模型、多边形的明暗绘制技术以及纹理映射技术。

5.要求使用OpenGL及GLUT库在Visual C++环境下编写图形绘制程序实现基本图元绘制。

6.要求对绘制的简单场景综合利用几何变换或gluLookAt函数实现交互式三维观察程序。

二、实验内容在两个具有不同属性的窗口中分别显示一个旋转的三角形来演示单缓存和双缓存,在旋转过程中不断改变图形的颜色,利用鼠标或菜单可终止/启动图形旋转。

明确程序包括哪些函数,各个函数的功能以及整个流程,从而为进一步做综合性的图形绘制实验奠定基础。

三、所用仪器、设备Windows XP系统,Visual C++,OpenGL及GLUT库四、实验方法与步骤先配置环境,把相关文件放到相应的文件夹C:\Program Files\Microsoft Visual Studio\VC98\Include\GLC:\WINDOWS\system32C:\Program Files\Microsoft Visual Studio\VC98\Lib再通过VC++进行编译五、程序代码#include <gl/glut.h>#include <stdlib.h>#include < stdio.h >#include <math.h>#define DEG_TO_RAD 0.017453static GLfloat theta = 0.0;GLfloat r = 1.0; //设置正方形的初始颜色GLfloat g = 0.0;GLfloat b = 0.0;int singleb,doubleb;void display(void){ glClear(GL_COLOR_BUFFER_BIT); //正方形颜色渐变glColor3f(r, g,b);r = r - 0.002;g = g + 0.002;b = b + 0.001;if(r < 0.001){ r = 1.0;g = 0.0;b = 0.0; }glBegin(GL_POLYGON);glVertex2f(cos(DEG_TO_RAD*theta), sin(DEG_TO_RAD*theta));glVertex2f(cos(DEG_TO_RAD*(theta+90)),sin(DEG_TO_RAD*(theta+90)));glVertex2f(cos(DEG_TO_RAD*(theta+180)),sin(DEG_TO_RAD*(theta+180)));glVertex2f(cos(DEG_TO_RAD*(theta+270)), sin(DEG_TO_RAD*(theta+270)));glEnd();glutSwapBuffers();}void spinDisplay (void) //正方形转动弧度设置{theta = theta +0.1;if (theta > 360.0)theta = theta - 360.0;glutSetWindow(singleb);glutPostWindowRedisplay(singleb);glutSetWindow(doubleb);glutPostWindowRedisplay(doubleb);}void spinDisplay1(void){glutPostRedisplay();}void myReshape(int w, int h){glViewport(0, 0, w, h); //指定平面上一个矩形裁剪区域,glMatrixMode(GL_PROJECTION);glLoadIdentity();if (w <= h)gluOrtho2D(-1.,1.,-1.*(GLfloat)h/(GLfloat)w,1.*(GLfloat)h/(GLfloat)w);elsegluOrtho2D(-1.*(GLfloat)w/(GLfloat)h, 1.*(GLfloat)w/(GLfloat)h, -1., 1.);}void mouse(int button,int state,int x,int y) //鼠标定义{ switch(button){case GLUT_LEFT_BUTTON:if(state == GLUT_DOWN ){ glutIdleFunc(spinDisplay1);}break;case GLUT_RIGHT_BUTTON:if(state == GLUT_DOWN)glutIdleFunc(spinDisplay);break;default:break;}}void main(int argc, char** argv) //主函数{glutInit(&argc,argv);glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);glutInitWindowPosition(100, 100);glutInitWindowSize(500, 500);singleb=glutCreateWindow("spinning square"); glClearColor(1.0, 1.0, 0.0, 0.1);glutDisplayFunc(display);glutReshapeFunc(myReshape);glutIdleFunc(spinDisplay);glutMouseFunc(mouse);glutInit(&argc,argv);glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);glutInitWindowPosition(600, 100);glutInitWindowSize(500, 500);doubleb=glutCreateWindow("spinning square"); glClearColor(1.0, 1.0, 0.0, 0.1);glutDisplayFunc(display);glutReshapeFunc(myReshape);glutIdleFunc(spinDisplay);glutMouseFunc(mouse);glutMainLoop();}六、实验结果实验二、OpenGL三维观察综合实验一、目的与要求7.掌握计算机图形学及交互式计算机图形学的定义,了解OpenGL的功能及工作流程,掌握基于OpenGL Glut库的程序框架。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告
实验目的:通过本次实验,深入了解并掌握计算机图形学的基本原理和相关技术,培养对图形处理的理解和能力。

实验内容:
1. 图像的基本属性
- 图像的本质及表示方法
- 像素和分辨率的概念
- 灰度图像和彩色图像的区别
2. 图像的处理技术
- 图像的采集和处理
- 图像的变换和增强
- 图像的压缩和存储
3. 计算机图形学的应用
- 图像处理在生活中的应用
- 计算机辅助设计中的图形学应用
- 三维建模和渲染技术
实验步骤和结果:
1. 在计算机图形学实验平台上加载一张测试图像,分析其像素构成
和基本属性。

2. 运用图像处理技术,对测试图像进行模糊、锐化、色彩调整等操作,观察处理后的效果并记录。

3. 学习并掌握计算机图形学中常用的处理算法,如卷积、滤波等,
尝试应用到测试图像上并进行实验验证。

4. 探讨计算机图形学在数字媒体制作、虚拟现实、计算机辅助设计
等领域的应用案例,并总结其在实践中的重要性和价值。

结论:
通过本次实验,我对计算机图形学有了更深入的了解,掌握了图像
处理技术的基本原理和应用方法。

计算机图形学作为一门重要的学科,对多个领域有着广泛的应用前景,有助于提高数字媒体技术、虚拟现
实技术等领域的发展水平。

希望在未来的学习和工作中能进一步深化
对计算机图形学理论和实践的研究,不断提升自己在这一领域的专业
能力和创新意识。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验及课程设计:内容简介:《高等学校计算机专业教材精选·图形图像与多媒体技术:计算机图形学实验及课程设计(Visual C++版)》是《计算机图形学基础教程(Visual C++版)》教材的配套实验教材,提供了18个综合性教学实验和5个课程设计项目,可以满足计算机图形学课堂上机实验和设计周课程设计任务。

实验项目编排上由浅入深,通过定义基础类、直线类、变换类、填充类、光照类,最终构造了三维动态光照场景。

《高等学校计算机专业教材精选·图形图像与多媒体技术:计算机图形学实验及课程设计(Visual C++版)》的全部内容都基于MFC框架完成,彩插中展示的所有图形均使用CDC类的SetPixel()成员函数绘制,未包含任何图形学库。

《高等学校计算机专业教材精选·图形图像与多媒体技术:计算机图形学实验及课程设计(Visual C++版)》的教学实验和课程设计项目的源代码和实验拓展项目的可执行文件全部提供在笔者的个人网站上,请读者下载后参照源代码学习。

通读本书,读者可以轻松掌握柏拉图正多面体(正四面体、正六面体、正八面体、正十二面体和正二十面体)、球体、圆环等三维物体的线框模型、表面模型的建模方法。

在三维动态光照场景中,可以调整物体表面模型的材质、添加纹理细节,改变视点和光源的位置,完成三维真实感图形的动态绘制。

《高等学校计算机专业教材精选·图形图像与多媒体技术:计算机图形学实验及课程设计(Visual C++版)》内容全面、案例丰富、注重理实一体化,适合作为本科计算机图形学的实验和课程设计教材。

《高等学校计算机专业教材精选·图形图像与多媒体技术:计算机图形学实验及课程设计(Visual C++版)》为源代码提供了详尽的注释,可供计算机图形学爱好者从编程的角度理解和掌握计算机图形学原理。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学 实验报告实验一:二维线画图元的生成实验目的:掌握直线段的生成算法,并用C/WIN-TC/VC++实现算法,包括中点法生成直线,微分数值法生成直线段等。

实验内容:用不同的方法生成斜率不同的直线段,比较各种方法的效果。

Bresenham 算法的思想Bresenham 画法与中点法相似,都是通过每列象素中确定与理想直线最近的像素来进行直线的扫描的转换的。

通过各行、各列的象素中心构造一组虚拟网格线的交点,然后确定该列象素中与此交点最近的像素。

该算法的巧妙之处在于可以采用增量计算,使得对于每一列,只需要检查一个误差项的符号,就可以确定该列的所有对象。

1.1方法一:直线的中点算法 算法的主要思想:讨论斜率k ∈[1,+∞)上的直线段的中点算法。

对直线01p p ,左下方的端点为0p (x0,y0),右上方的端点为1p (x1,y1)。

直线段的方程为: y m x B =+⇔yy x B x y y x x B x∆=+⇔∆=∆+∆∆ (,)0F x y xy yx xB ⇔=∆-∆-∆= 现在假定已求得像素(,,i r i x y ),则如图得,,11(,]22i i r i r x x x ∈-+ 由于直线的斜率k ∈[1,+∞),故m=1/k ∈(0,1],则1,,13(,]22i i r i r x x x +∈-+ 在直线1i y y =+上,区间,,13(,]22i r i r x x -+内存在两个像素NE 和E 。

根据取整原则,当11(,)i i x y ++在中点M 11(,)2i i x y ++右方时,取像素NE ,否则取像素E ,即,11,,1()()01()()0i r i i r i r i x E F M x x x NE F M x +++⎧⇔≤=⎨+⇔>⎩i i 点当(,y +1)在左方时点当(,y +1)在右方时若取2()i d F M =,则上式变为 ,1,,()01(0i r i i r i r i x E d x x NE d +⎧≤=⎨+>⎩点当点)当计算i d 的递推公式如下:,11,12[(2)()]0122(,2)0122[(2)(1)]2i i r i i i i i i i rx y y x xB d d F x y d x y y x xB ++⎧∆+-∆+-∆⎪≤⎪=++=⎨>⎪∆+-∆++-∆⎪⎩=202()i i i i d xd d x y d +∆≤⎧⎨+∆-∆>⎩算法的初始条件为:00,00,0(,)(0,0)12(,1)22r r x y x y d F x y x y =⎧⎪⎨=++=∆-∆⎪⎩ 相应的程序示例:建立成员函数:void MidPointLine4(CDC*pDC,int x0,int y0,int x1,int y1,int color) { /*假定x0<x1,直线斜率m>1*/int dx,dy,incrE,incrNE,d,x,y; dx=x1-x0; dy=y1-y0; d=2*dx-dy; incrE=2*dx;incrNE=2*(dx-dy); x=x0;y=y0;pDC->SetPixel(x,y,color); while (x<x1) {if (d<=0) d+=incrE; else{ d+=incrNE; x++; } y++;p->SetPixel(x,y,color);} }编写OnDraw 函数:void CMy1_1View::OnDraw(CDC* pDC) { CMy1_1Doc* pDoc = GetDocument(); ASSERT_VALID(pDoc); // TODO: add draw code for native data here MidPointLine4(pDC,200,200,300,300,RGB(0,0,0)); MidPointLine4(pDC,300,200,400,300,RGB(0,0,0)); MidPointLine4(pDC,400,200,500,300,RGB(0,0,0)); }编译运行程序得到如下结果:1.2方法二:直线的数值微分法 算法的主要思想:由于课本上已经给出了斜率m ∈[-1,1]上的算法,故此处给出斜率m ∈[1,+∞〕上的算法,m ∈(-∞,-1]上的可同理推导。

《计算机图形学》实验报告

《计算机图形学》实验报告

《计算机图形学》实验报告一、实验目的计算机图形学是一门研究如何利用计算机生成、处理和显示图形的学科。

通过本次实验,旨在深入理解计算机图形学的基本原理和算法,掌握图形的生成、变换、渲染等技术,并能够运用所学知识解决实际问题,提高对图形学的应用能力和编程实践能力。

二、实验环境本次实验使用的编程语言为 Python,使用的图形库为 Pygame。

开发环境为 PyCharm。

三、实验内容1、直线的生成算法DDA 算法(Digital Differential Analyzer)Bresenham 算法DDA 算法是通过计算直线的斜率来确定每个像素点的位置。

它的基本思想是根据直线的斜率和起始点的坐标,逐步计算出直线上的每个像素点的坐标。

Bresenham 算法则是一种基于误差的直线生成算法。

它通过比较误差值来决定下一个像素点的位置,从而减少了计算量,提高了效率。

在实验中,我们分别实现了这两种算法,并比较了它们的性能和效果。

2、圆的生成算法中点画圆算法中点画圆算法的核心思想是通过判断中点的位置来确定圆上的像素点。

通过不断迭代计算中点的位置,逐步生成整个圆。

在实现过程中,需要注意边界条件的处理和误差的计算。

3、图形的变换平移变换旋转变换缩放变换平移变换是将图形在平面上沿着指定的方向移动一定的距离。

旋转变换是围绕一个中心点将图形旋转一定的角度。

缩放变换则是改变图形的大小。

通过矩阵运算来实现这些变换,可以方便地对图形进行各种操作。

4、图形的填充种子填充算法扫描线填充算法种子填充算法是从指定的种子点开始,将相邻的具有相同颜色或属性的像素点填充为指定的颜色。

扫描线填充算法则是通过扫描图形的每一行,确定需要填充的区间,然后进行填充。

在实验中,我们对不同形状的图形进行了填充,并比较了两种算法的适用情况。

四、实验步骤1、直线生成算法的实现定义直线的起点和终点坐标。

根据所选的算法(DDA 或Bresenham)计算直线上的像素点坐标。

计算机图形学实验报告

计算机图形学实验报告

实验结果与结论
• 在本次实验中,我们成功地实现了复杂场景的渲染,得到了具有较高真实感和视觉效果的图像。通过对比 实验前后的效果,我们发现光线追踪和着色器的运用对于提高渲染质量和效率具有重要作用。同时,我们 也发现场景图的构建和渲染脚本的编写对于实现复杂场景的渲染至关重要。此次实验不仅提高了我们对计 算机图形学原理的理解和实践能力,也为我们后续深入研究渲染引擎的实现提供了宝贵经验。
2. 通过属性设置和变换操作,实现了对图形的定 制和调整,加深了对图形属性的理解。
4. 实验的不足之处:由于时间限制,实验只涉及 了基本图形的绘制和变换,未涉及更复杂的图形 处理算法和技术,如光照、纹理映射等。需要在 后续实验中进一步学习和探索。
02
实验二:实现动画效果
实验目的
掌握动画的基本原 理和实现方法
04
实验四:渲染复杂场景
实验目的
掌握渲染复杂场景的基本流程和方法 理解光线追踪和着色器在渲染过程中的作用
熟悉渲染引擎的实现原理和技巧 提高解决实际问题的能力
实验步骤
• 准备场景文件 • 使用3D建模软件(如Blender)创建或导入场景模型,导出为常用的3D格式(如.obj或.fbx)。 • 导入场景文件 • 在渲染引擎(如Unity或Unreal Engine)中导入准备好的场景文件。 • 构建场景图 • 根据场景的层次结构和光照需求,构建场景图(Scene Graph)。 • 设置光照和材质属性 • 为场景中的物体设置光照和材质属性(如漫反射、镜面反射、透明度等)。 • 编写渲染脚本 • 使用编程语言(如C或JavaScript)编写渲染脚本,控制场景中物体的渲染顺序和逻辑。 • 运行渲染程序 • 运行渲染程序,观察渲染结果。根据效果调整光照、材质和渲染逻辑。 • 导出渲染图像 • 将渲染结果导出为图像文件(如JPEG或PNG),进行后续分析和展示。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告引言计算机图形学是计算机科学中一个重要的研究领域,它涉及了计算机图像的生成、处理和显示等方面的技术。

本次实验旨在通过实际操作学习计算机图形学的相关知识,并利用图形学算法实现一些有趣的效果。

实验目的1. 了解计算机图形学的基本概念和发展历程;2. 掌握图形学中的基本几何变换,如平移、旋转和缩放等;3. 实现一些常见的图形学算法,如光照模型、三角形剪裁和绘制等。

实验准备在开始实验之前,我们需要准备一些实验所需的工具和环境。

首先,确保计算机上安装了图形学相关的软件,如OpenGL或DirectX等。

其次,为了编写和运行图形学程序,我们需要掌握基本的编程技巧,如C++或Python语言,并了解相关的图形库和API。

实验过程1. 实现平移、旋转和缩放首先,我们需要掌握图形学中的基本几何变换,如平移、旋转和缩放。

通过矩阵运算,我们可以很方便地实现这些变换。

例如,对于一个二维点P(x, y),我们可以通过以下公式实现平移:P' = T * P其中,P'是平移后的点,T是平移矩阵。

类似地,我们可以用旋转矩阵和缩放矩阵来实现旋转和缩放效果。

2. 实现光照模型光照模型是指在计算机图形学中模拟现实光照效果的一种方法。

它可以提供更真实的视觉效果,让计算机生成的图像更加逼真。

其中,常用的光照模型有环境光照、漫反射光照和镜面光照等。

通过计算每个像素的光照强度,我们可以实现阴影效果和光源反射等功能。

3. 实现三角形剪裁三角形剪裁是计算机图形学中一种常用的几何算法,用于确定哪些像素需要绘制,哪些像素需要剔除。

通过对三角形的边界和视口进行比较,我们可以快速计算出剪裁后的三角形顶点,以提高图形渲染的效率。

4. 实现图形绘制图形绘制是计算机图形学中的核心内容,它包括了点、线和面的绘制等。

通过设定顶点坐标和属性(如颜色、纹理等),我们可以使用算法绘制出各种形状的图像。

其中,常用的绘制算法有Bresenham算法和扫描线算法等。

计算机图形学实验报告

计算机图形学实验报告

实验一 Window图形编程基础一、实验类型:验证型实验二、实验目的1、熟练使用实验主要开发平台;2、掌握如何在编译平台下编辑、编译、连接和运行一个简单的Windows图形应用程序;3、掌握Window图形编程的基本方法;4、学会使用基本绘图函数和Window GDI对象;三、实验内容创建基于MFC的Single Document应用程序(Win32应用程序也可,同学们可根据自己的喜好决定),程序可以实现以下要求:1、用户可以通过菜单选择绘图颜色;2、用户点击菜单选择绘图形状时,能在视图中绘制指定形状的图形;四、实验要求与指导1、建立名为“颜色”的菜单,该菜单下有四个菜单项:红、绿、蓝、黄。

用户通过点击不同的菜单项,可以选择不同的颜色进行绘图。

2、建立名为“绘图”的菜单,该菜单下有三个菜单项:直线、曲线、矩形其中“曲线”项有级联菜单,包括:圆、椭圆。

3、用户通过点击“绘图”中不同的菜单项,弹出对话框,让用户输入绘图位置,在指定位置进行绘图。

五、实验结果:六、实验主要代码1、画直线:CClientDC *m_pDC;再在OnDraw函数里给变量初始化m_pDC=new CClientDC(this);在OnDraw函数中添加:m_pDC=new CClientDC(this);m_pDC->MoveTo(10,10);m_pDC->LineTo(100,100);m_pDC->SetPixel(100,200,RGB(0,0,0));m_pDC->TextOut(100,100);2、画圆:void CMyCG::LineDDA2(int xa, int ya, int xb, int yb, CDC *pDC){int dx = xb - xa;int dy = yb - ya;int Steps, k;float xIncrement,yIncrement;float x = xa,y= ya;if(abs(dx)>abs(dy))Steps = abs(dx);elseSteps = abs(dy);xIncrement = dx/(float)Steps;yIncrement = dy/(float)Steps;pDC->SetPixel(ROUND(x),ROUND(y),RGB(0,0,0));for(k=0;k<Steps;k++){x +=xIncrement;y +=yIncrement;sleep(10);pDC->SetPixel(ROUND(x),ROUND(y),RGB(0,0,0));3、画矩形void CRectangleDlg::OnLButtonDown(UINT nFlags, CPoint point){lButtonDownNotUp = TRUE;RECT rect;m_showRectangle. GetClientRect( &rect ) ;if( (point. x<rect. right) && (point. x>rect. left) && (point. y<rect. bottom) && (point. y>rect. top) ){regionLeftTopTemp = point;}CDialog::OnLButtonDown(nFlags, point);}void CRectangleDlg::OnMouseMove(UINT nFlags, CPoint point){RECT rect;m_showRectangle. GetClientRect( &rect );if( ( < ) && ( > ) && ( < ) && ( > ) ){if( ( lButtonDownNotUp == TRUE ){regionRightBottomTemp = point;CDC * pDC = m_showRectangle. GetWindowDC ();pDC -> Rectangle( CRect( regionLeftTopTemp, regionRightBottomTemp ) ) ; }}CDialog::OnMouseMove(nFlags, point);}void CRectangleDlg::OnLButtonUp(UINT nFlags, CPoint point){lButtonDownNotUp=FALSE;CDialog::OnLButtonUp(nFlags, point);}实验二基本图形生成算法一、实验类型:验证型实验二、实验目的1、掌握DDA、Bresenham直线生成算法;2、掌握Bresenham或中点圆生成算法;3、掌握Bresenham或中点椭圆生成算法;三、实验内容1、实现DDA、Bresenham直线生成算法;2、实现Bresenham画圆法或中点画圆法;3、实现Bresenham或中点法椭圆生成算法;4、利用1、2、3实现的直线、圆、椭圆图形生成函数进行图形绘制;四、实验要求与指导1、按照实验指导书节创建一个基于MFC的Single Document应用程序。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告计算机图形学实验报告引言计算机图形学是研究计算机生成和处理图像的学科,它在现代科技和娱乐产业中扮演着重要的角色。

本实验报告旨在总结和分享我在计算机图形学实验中的经验和收获。

一、实验背景计算机图形学实验是计算机科学与技术专业的一门重要课程,通过实践操作和编程,学生可以深入了解图形学的基本原理和算法。

本次实验主要涉及三维图形的建模、渲染和动画。

二、实验内容1. 三维图形建模在实验中,我们学习了三维图形的表示和建模方法。

通过使用OpenGL或其他图形库,我们可以创建基本的几何体,如立方体、球体和圆柱体,并进行变换操作,如平移、旋转和缩放。

这些基本操作为后续的图形处理和渲染打下了基础。

2. 光照和着色光照和着色是图形学中重要的概念。

我们学习了不同的光照模型,如环境光、漫反射和镜面反射,并了解了如何在三维场景中模拟光照效果。

通过设置材质属性和光源参数,我们可以实现逼真的光照效果,使物体看起来更加真实。

3. 纹理映射纹理映射是一种将二维图像映射到三维物体表面的技术。

通过将纹理图像与物体的顶点坐标相对应,我们可以实现更加细致的渲染效果。

在实验中,我们学习了纹理坐标的计算和纹理映射的应用,使物体表面呈现出具有纹理和细节的效果。

4. 动画和交互动画和交互是计算机图形学的重要应用领域。

在实验中,我们学习了基本的动画原理和算法,如关键帧动画和插值技术。

通过设置动画参数和交互控制,我们可以实现物体的平滑移动和变形效果,提升用户体验。

三、实验过程在实验过程中,我们首先熟悉了图形库的使用和基本的编程技巧。

然后,我们按照实验指导书的要求,逐步完成了三维图形建模、光照和着色、纹理映射以及动画和交互等任务。

在实验过程中,我们遇到了许多挑战和问题,但通过不断的尝试和调试,最终成功实现了预期的效果。

四、实验结果通过实验,我们成功实现了三维图形的建模、渲染和动画效果。

我们可以通过键盘和鼠标控制物体的移动和变形,同时观察到真实的光照效果和纹理映射效果。

工作报告之计算机图形学实验报告

工作报告之计算机图形学实验报告

工作报告之计算机图形学实验报告计算机图形学实验报告【篇一:计算机图形学实验报告及代码】第1 章概述一、教学目标通过本章的学习,使学生能够了解计算机图形学的基本概念、研究内容;当前的发展概况;本门课程的特点和应用。

二、教学要求1. 了解计算机图形学的概念和研究内容;2. 了解本门课程的发展概况。

三、教学内容提要1. 计算机图形学的研究内容2. 计算机图形学发展概况3. 计算机图形学特点和应用4. 计算机图形学当前研究的课题5. 计算机图形生成和输出的流水线四、教学重点、难点及解决方法本章将主要围绕计算机图形学的基本概念进行介绍,介绍研究内容;当前的发展概况;本门课程的特点和应用等等。

五、课时安排2学时六、教学设备多媒体七、检测教学目标实现程度的具体措施和要求通过课堂提问的方式来检测学生对基本概念的掌握程度。

八、教学内容1.1 计算机图形学的研究内容计算机图形学(computer graphics): 研究通过计算机将数据转换为图形,并在专用显示设备上显示的原理、方法和技术的学科。

计算机图形表现形式(1).线条式(线框架图)用线段来表现图形,容易反映客观实体的内部结构,如各类工程技术中结构图的表示,机械设计中零件结构图及电路设计中的电路原理图等。

具有面模型、色彩、浓淡和明暗层次效应,适合表现客观实体的外形或外貌,如汽车、飞机、轮船等的外形设计以及各种艺术品造型设计等。

(2).真实感面模型图形跑车靓照计算机图形分类(空间)(1).二维图形(2d):在平面坐标系中定义的图形(2).三维图形(3d):在三维坐标系中定义的图形计算机图形产生方法(1).矢量法(短折线法)任何形状的曲线都用许多首尾相连的短直线(矢量)逼近。

(2).描点法(像素点串接法)每一曲线都是由一定大小的像素点组成计算机绘图方式:(1)交互式绘图允许操作者以某种方式(对话方式或命令方式)来控制和操纵图形生成过程,使得图形可以边生成、边显示、边修改,直至符合要求为止。

计算机图形学实验报告

计算机图形学实验报告

院系:计算机科学学院
专业:软件工程
年级: 2012 级
课程名称:计算机图形学
班号:软工3班
组号: 35组
指导教师:
2014年 11月 10 日
直线的扫描转换—DDA算法
图1-2 直线的扫描转换—Bresenham算法
DDA算法实现的直线的扫描转换图,图1-2是Bresenham算法实现的直线的扫描转换图。

从结果可以得到,程序可以显示鼠标的当前坐标,鼠标的起点坐标及鼠标的终点坐标;当执行时,网格会用红方格描出直线的像素点,并在表格中输出相应值和Y值,直至描述到直线的最后一个点,程序才结束,图形生成过程可以重复进行,只需对上次图形点击清除键清除后。

图4-1 多边形的绘制图
图2-3 正负法画圆弧显示图
图2-4 Bresenham法画圆弧
从结果页面可知,程序可以显示鼠标的当前坐标,圆心坐标及圆的半径;当执行时,会用红方格描出圆的各个像素点,随即进行45度对称翻转,X轴对称翻转,
对称翻转,并在表格中输出相应的D值,X值和Y值,图形生成过程可以重复进行,只需对上次图形点击清除键清除后。

该程序能应用和正负法Bresenham
的像素描点,程序显示结果直观、易操作。

但有时描出的点也存在一些误差,原因分析可能在于像素单元定的太大了(每20格定义为一个大像素单元)。

图3-1直线段的裁剪初始图
图3-3 直线段的裁剪初始图裁剪图。

计算机图形学课程设计实验报告(59543)

计算机图形学课程设计实验报告(59543)

《计算机图形学》实验报告班级计算机科学与技术姓名学号2014 年6 月2 日实验一基本图形生成算法一、实验目的:1、掌握中点Bresenham绘制直线的原理;2、设计中点Bresenham算法;3、掌握八分法中点Bresenham算法绘制圆的原理;4、设计八分法绘制圆的中点Bresenham算法;5、掌握绘制1/4椭圆弧的上半部分和下半部分的中点Bresenham算法原理;6、掌握下半部分椭圆偏差判别式的初始值计算方法;7、设计顺时针四分法绘制椭圆的中点Bresenham算法。

二、实验过程:1、实验描述实验1:使用中点Bresenham算法绘制斜率为0<=k<=1的直线。

实验2:使用中点Bresenham算法绘制圆心位于屏幕客户区中心的圆。

实验3:使用中点Bresenham算法绘制圆心位于屏幕客户区中心的椭圆。

2、实验过程1)用MFC(exe)建立一个单文档工程;2)编写对话框,生成相应对象,设置相应变量;3)在类CLineView中声明相应函数,并在相关的cpp文件中实现;4)在OnDraw()函数里调用函数实现绘制直线、圆、椭圆;5)运行程序,输入相应值,绘制出图形。

三、源代码实验1:直线中点Bresenham算法1.// cline.cpp : implementation file// cline dialogcline::cline(CWnd* pParent /*=NULL*/): CDialog(cline::IDD, pParent){//{{AFX_DATA_INIT(cline)m_x0 = 0;m_y0 = 0;m_x1 = 0;m_y1 = 0;//}}AFX_DATA_INIT}void cline::DoDataExchange(CDataExchange* pDX){CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(cline)DDX_Text(pDX, IDC_x0, m_x0);DDX_Text(pDX, IDC_y0, m_y0);DDX_Text(pDX, IDC_x1, m_x1);DDX_Text(pDX, IDC_y1, m_y1);//}}AFX_DATA_MAP}BEGIN_MESSAGE_MAP(cline, CDialog)//{{AFX_MSG_MAP(cline)//}}AFX_MSG_MAPEND_MESSAGE_MAP()2、// LineView.hclass CLineView : public CView{public:CLineDoc* GetDocument();..........void Mbline(double,double,double,double); //直线中点Bresenham函数.......}3、// Line.cpp//*******************直线中点Bresenham函数*********************/void CLineView::Mbline(double x0, double y0, double x1, double y1) {CClientDC dc(this);COLORREF rgb=RGB(0,0,255); //定义直线颜色为蓝色double x,y,d,k;x=x0; y=y0; k=(y1-y0)/(x1-x0); d=0.5-k;for(x=x0;x<=x1;x++){dc.SetPixel((int)x,(int)y,rgb);if(d<0){y++;d+=1-k;}elsed-=k;}}4、//LineView.cppvoid CLineView::OnDraw(CDC* pDC){CLineDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data herecline a;a.DoModal();//初始化CLineView::Mbline(a.m_x0,a.m_y0,a.m_x1,a.m_y1); }实验2:圆中点Bresenham算法1、//cricle.cpp// Ccricle dialogCcricle::Ccricle(CWnd* pParent /*=NULL*/): CDialog(Ccricle::IDD, pParent){//{{AFX_DATA_INIT(Ccricle)m_r = 0;//}}AFX_DATA_INIT}void Ccricle::DoDataExchange(CDataExchange* pDX) {CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(Ccricle)DDX_Text(pDX, r_EDIT, m_r);//}}AFX_DATA_MAP}2、//CcircleView.hclass CCcircleView : public CView{.......public:CCcircleDoc* GetDocument();void CirclePoint(double,double); //八分法画圆函数void Mbcircle(double); //圆中点Bresenham函数........}3、//CcircleView.cppvoid CCcircleView::OnDraw(CDC* pDC){CCcircleDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data hereCcricle r;r.DoModal();CCcircleView::Mbcircle(r.m_r);//画圆}4、//CcircleView.cpp//*******************八分法画圆*************************************/ void CCcircleView::CirclePoint(double x,double y){CClientDC dc(this);COLORREF rgb=RGB(0,0,255);dc.SetPixel((int)(300+x),(int)(300+y),rgb);dc.SetPixel((int)(300-x),(int)(300+y),rgb);dc.SetPixel((int)(300+x),(int)(300-y),rgb);dc.SetPixel((int)(300-x),(int)(300-y),rgb);dc.SetPixel((int)(300+y),(int)(300+x),rgb);dc.SetPixel((int)(300-y),(int)(300+x),rgb);dc.SetPixel((int)(300+y),(int)(300-x),rgb);dc.SetPixel((int)(300-y),(int)(300-x),rgb);}//**************************圆中点Bresenham函数*********************/ void CCcircleView::Mbcircle(double r){double x,y,d;COLORREF rgb=RGB(0,0,255);d=1.25-r;x=0;y=r;for(x=0;x<y;x++){CirclePoint(x,y); //调用八分法画圆子函数if(d<0)d+=2*x+3;else{d+=2*(x-y)+5;y--;}}}实验3:椭圆中点Bresenham算法1、//ellipse1.cpp// Cellipse dialogCellipse::Cellipse(CWnd* pParent /*=NULL*/) : CDialog(Cellipse::IDD, pParent){//{{AFX_DATA_INIT(Cellipse)m_a = 0;m_b = 0;//}}AFX_DATA_INIT}void Cellipse::DoDataExchange(CDataExchange* pDX) {CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(Cellipse)DDX_Text(pDX, IDC_EDIT1, m_a);DDX_Text(pDX, IDC_EDIT2, m_b);//}}AFX_DATA_MAP}2、//EllipseView.hclass CEllipseView : public CView{......................public:CEllipseDoc* GetDocument();void EllipsePoint(double,double); //四分法画椭圆void Mbellipse(double a, double b); //椭圆中点Bresenham函数..................}3、//Ellipse.cpp//*****************四分法画椭圆********************************/void CEllipseView::EllipsePoint(double x,double y){CClientDC dc(this);COLORREF rgb=RGB(0,0,255);dc.SetPixel((int)(300+x),(int)(300+y),rgb);dc.SetPixel((int)(300-x),(int)(300+y),rgb);dc.SetPixel((int)(300+x),(int)(300-y),rgb);dc.SetPixel((int)(300-x),(int)(300-y),rgb);}//************************椭圆中点Bresenham函数*********************/ void CEllipseView::Mbellipse(double a, double b){double x,y,d1,d2;x=0;y=b;d1=b*b+a*a*(-b+0.25);EllipsePoint(x,y);while(b*b*(x+1)<a*a*(y-0.5))//椭圆AC弧段{if(d1<0)d1+=b*b*(2*x+3);else{d1+=b*b*(2*x+3)+a*a*(-2*y+2);y--;}x++;EllipsePoint(x,y);}d2=b*b*(x+0.5)*(x+0.5)+a*a*(y-1)*(y-1)-a*a*b*b;//椭圆CB弧段while(y>0){if(d2<0){d2+=b*b*(2*x+2)+a*a*(-2*y+3);x++;}elsed2+=a*a*(-2*y+3);y--;EllipsePoint(x,y);}}4、//EllipseView.cppvoid CEllipseView::OnDraw(CDC* pDC){CEllipseDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data hereCellipse el;el.DoModal();//初始化CEllipseView::Mbellipse(el.m_a, el.m_b);//画椭圆}四、实结果验实验1:直线中点Bresenham算法实验2:圆中点Bresenham 算法实验3:椭圆中点Bresenham 算法实验二有效边表填充算法一、实验目的:1、设计有效边表结点和边表结点数据结构;2、设计有效边表填充算法;3、编程实现有效边表填充算法。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告一、实验目的本次计算机图形学实验旨在深入了解和掌握计算机图形学的基本原理、算法和技术,通过实际操作和编程实现,提高对图形生成、处理和显示的能力,培养解决实际图形问题的思维和实践能力。

二、实验环境本次实验使用的编程语言为 Python,借助了相关的图形库如Pygame 或 matplotlib 等。

开发环境为 PyCharm 或 Jupyter Notebook。

三、实验内容(一)二维图形的绘制1、直线的绘制使用 DDA(Digital Differential Analyzer)算法或 Bresenham 算法实现直线的绘制。

通过给定直线的起点和终点坐标,在屏幕或图像上绘制出直线。

比较两种算法的效率和准确性,分析其优缺点。

2、圆的绘制采用中点画圆算法或 Bresenham 画圆算法绘制圆。

给定圆心坐标和半径,生成圆的图形。

研究不同半径大小对绘制效果和计算复杂度的影响。

(二)图形的填充1、多边形填充实现扫描线填充算法,对任意多边形进行填充。

处理多边形的顶点排序、交点计算和填充颜色的设置。

测试不同形状和复杂度的多边形填充效果。

2、图案填充设计自定义的填充图案,如纹理、条纹等,并将其应用于图形填充。

探索如何通过改变填充图案的参数来实现不同的视觉效果。

(三)图形的变换1、平移、旋转和缩放对已绘制的图形(如矩形、三角形等)进行平移、旋转和缩放操作。

通过矩阵运算实现这些变换。

观察变换前后图形的位置、形状和方向的变化。

2、组合变换将多个变换组合应用于图形,如先旋转再平移,或先缩放再旋转等。

分析组合变换的顺序对最终图形效果的影响。

(四)三维图形的表示与绘制1、三维坐标变换学习三维空间中的平移、旋转和缩放变换矩阵,并将其应用于三维点的坐标变换。

理解如何将三维坐标映射到二维屏幕上显示。

2、简单三维图形绘制尝试绘制简单的三维图形,如立方体、球体等,使用线框模型或表面模型。

探讨不同的绘制方法和视角对三维图形显示的影响。

计算机图形学实验报告

计算机图形学实验报告

实验一:二维图形的绘制和变换一、实验目的掌握基本的图形学算法,熟悉VC下图形学的编程,初步了解并使用OpenGL 绘制图形。

二、实验内容二维图形的绘制和变换,绘制包括直线、三角形、矩形,变换包括平移、旋转、缩放。

三、实验原理二维图形的绘制和变换:在图形系统中,矩阵是实现变换的标准方法。

平移变换、旋转变换和缩放变换的矩阵表示形式如下。

平移变换:P’=P+T。

旋转变换:P’=R*P。

缩放变换:P’=S*P。

引入齐次坐标后,平移、旋转和缩放变换的矩阵表示形式如下所示。

(1)平移变换:[1 0 0][x’, y’, 1] = [x, y, 1] [0 1 0][tx ty 1](2)旋转变换:[cosɵsinɵ0][x’, y’, 1] = [x, y, 1] [-sinɵcosɵ0][0 0 1](3)缩放变换:[s x0 0][x’, y’, 1] = [x, y, 1] [0 s y0][0 0 1]四、实验代码及结果1.编写对一个三角形分别实现平移、缩放、旋转等变化的源码及效果图。

实验核心代码void display(void){glClear (GL_COLOR_BUFFER_BIT);glColor3f (1.0, 1.0, 1.0);glLoadIdentity ();glColor3f (1.0, 1.0, 1.0);glTranslatef(-100.0,-50.0,1.0);draw_triangle ();glLoadIdentity ();glTranslatef (0.0, 100.0, 1.0);draw_triangle ();glLoadIdentity ();glRotatef (90.0, 0.0, 0.0, 1.0);draw_triangle ();glLoadIdentity ();glScalef (0.5, 0.5, 1.0);draw_triangle ();glFlush ();}2. 实现如图功能#include<windows.h>#include <GL/glut.h>#include <stdlib.h>void init(void){glClearColor (0.0, 0.0, 0.0, 0.0);glShadeModel (GL_SMOOTH); }void draw_triangle(void){glShadeModel(GL_SMOOTH);glColor3f(0.2,0.7,0.30);glBegin (GL_TRIANGLES);//画出三角形,为混合色填充方式glVertex2f(50.0, 25.0);glColor3f(0.4,0.5,0.60);glVertex2f(150.0, 25.0);glColor3f(0.9,0.7,0.8);glVertex2f(100.0, 100.0);glEnd();}void display(void){glClear (GL_COLOR_BUFFER_BIT);glColor3f (1.0, 1.0, 1.0);glLoadIdentity ();glColor3f (1.0, 1.0, 1.0);glTranslatef(-100.0,-50.0,1.0);draw_triangle ();glLoadIdentity ();glTranslatef (0.0, 100.0, 1.0);glRotatef (90.0, 0.0, 0.0, 1.0);glScalef (0.5, 0.5, 1.0);draw_triangle ();//经过三种变换后画出图形glFlush ();}void reshape (int w, int h){glViewport (0, 0, (GLsizei) w, (GLsizei) h);glMatrixMode (GL_PROJECTION);glLoadIdentity ();if (w <= h)gluOrtho2D (-200.0, 250.0, -100.0*(GLfloat)h/(GLfloat)w,200.0*(GLfloat)h/(GLfloat)w);//调整裁剪窗口elsegluOrtho2D (-200.0*(GLfloat)w/(GLfloat)h,250.0*(GLfloat)w/(GLfloat)h, -50.0, 200.0);glMatrixMode(GL_MODELVIEW);int main(int argc, char** argv){glutInit(&argc, argv);glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);glutInitWindowSize (600, 600);glutInitWindowPosition (100, 100);glutCreateWindow (argv[0]);init ();glutDisplayFunc(display);glutReshapeFunc(reshape);glutMainLoop();return 0;}实验二:使用中点扫描算法绘制直线和圆一、实验目的掌握基本的图形学算法,熟悉VC下图形学的编程,初步了解并使用OpenGL 绘制图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机图形学课程实验报告实验题目:班级:姓名:学号指导教师:日期:信息与计算机工程学院2014实验2基本图形生成算法2.1 直线的绘制一、实验目的1、通过实验,进一步理解和掌握DDA和Bresenham算法;2、掌握以上算法生成直线段的基本过程;3、通过编程,会在TC环境下完成DDA或中点算法实现直线段的绘制。

二、实验环境计算机、Turbo C或其他C语言程序设计环境三、实验要求:1. 每个学生单独完成;2.开发语言为TurboC或C++,也可使用其它语言;3.请在自己的实验报告上写明姓名、学号、班级;4.每次交的实验报告内容包括:题目、试验目的和意义、程序制作步骤、主程序、运行结果图以及参考文件;5.自己保留一份可执行程序,考试前统一检查和上交。

四、实验内容用DDA算法或Besenham算法实现斜率k在0和1之间的直线段的绘制。

五、实验步骤1、算法、原理清晰,有详细的设计步骤;2、依据算法、步骤或程序流程图,用C语言编写源程序;3、编辑源程序并进行调试;4、进行运行测试,并结合情况进行调整;5、对运行结果进行保存与分析;6、把源程序以文件的形式提交;7、按格式书写实验报告。

六、实验代码1、DDA#include "graphics.h"#include "stdlib.h"#include "stdio.h"#include "conio.h"#include "math.h"void DDALine(int x1,int y1,int x2,int y2,int color) {float x,y,dx,dy,k;dx=(float)(x2-x1);dy=(float)(y2-y1);k=dy/dx;y=y1;x=x1;if(abs(k)<1)if(x1<=x2)for(x=x1;x<=x2;x++){putpixel(x,(int)(y+0.5),color);y=y+k;}elsefor(x=x1;x>=x2;x--){ putpixel(x,(int)(y+0.5),color);y=y-k;}elseif(y1<=y2)for(y=y1;y<=y2;y++){putpixel((int)(x+0.5),y,color);x=x+1/k;}elsefor(y=y1;y>=y2;y--){putpixel((int)(x+0.5),y,color);x=x-1/k;}}main(){int gmode, gdriver ;gdriver=DETECT;initgraph(&gdriver , &gmode ,"D:\Win-TC\project");setbkcolor(WHITE);DDALine(200,200,350,260,RED);getch ( );closegraph ( );}2、中点画线:#include "graphics.h"#include "stdlib.h"#include "stdio.h"#include "conio.h"#include "math.h"void MPLine(int x1,int y1,int x2,int y2,int color)/*适用于0<k<1,x1<=x2的情况*/{int a,b,d1,d2,d,x,y;a=y1-y2;b=x2-x1;d=2*a+b;d1=2*a;d2=2*(a+b);x=x1;y=y1;putpixel(x,y,color);while(x<x2){if(d<0) {x++;y++;d=d+d2;}else {x++;d=d+d1;}putpixel(x,y,color);}}main(){int gmode, gdriver ;gdriver==DETECT;initgraph(&gdriver , &gmode , "D:\Win-TC\project"); setbkcolor(WHITE);MPLine(200,200,300,400,RED);getch ( );closegraph ( );}3、Bresenham:#include "graphics.h"#include "stdlib.h"#include "stdio.h"#include "conio.h"#include "math.h"void BresenhamLine(int x1,int y1,int x2,int y2,int c){int i,s1,s2,interchange; float x,y,deltax,deltay,e,temp;x=x1;y=y1; deltax=abs(x2-x1);deltay=abs(y2-y1);if(x2-x1>=0) s1=1; else s1=-1;if(y2-y1>=0) s2=1; else s2=-1;if(deltay>deltax){temp=deltax;deltax=deltay;deltay=temp;interchange=1;} else interchange=0;e=2*deltay-deltax;putpixel(x,y,c);for(i=1;i<=deltax;i++){if(e>=0) { x=x+s1; y=y+s2; e=e-2*deltax+2*deltay; } else{if(interchange==1) y=y+s2;else x=x+s1;e=e+2*deltay;}putpixel(x,y,c);}}main(){int gmode, gdriver ;gdriver=DETECT;initgraph(&gdriver , &gmode ,"D:\Win-TC\project"); setbkcolor(WHITE);BresenhamLine(200,200,350,260,RED);getch ( );closegraph ( );}七、实验结果1、2、2.2 圆和椭圆的绘制2.2.1实验目的1、通过实验,进一步理解和掌握中点和Bresenham算法;2、掌握以上算法生成圆或椭圆的基本过程;3、通过编程,会在TC环境下完成椭圆或圆的绘制。

2.2.2实验环境计算机、Turbo C或其他C语言程序设计环境2.2.3实验要求:同2.12.2.4实验内容用中点(Besenham)算法实现椭圆或圆的绘制。

2.2.5实验步骤1、算法、原理清晰,有详细的设计步骤;2、依据算法、步骤或程序流程图,用C语言编写源程序;3、编辑源程序并进行调试;4、进行运行测试,并结合情况进行调整;5、对运行结果进行保存与分析;6、把源程序以文件的形式提交;7、按格式书写实验报告。

2.2.6实验代码1、中点画圆#include "graphics.h"#include "stdlib.h"#include "stdio.h"#include "conio.h"#include "math.h"void CirclePoint(int x,int y,int color){putpixel(x+100,y+100,color);putpixel(-x+100,y+100,color);putpixel(x+100,-y+100,color);putpixel(-x+100,-y+100,color);putpixel(y+100,x+100,color);putpixel(y+100,-x+100,color);putpixel(-y+100,x+100,color);putpixel(-y+100,-x+100,color);}void MidCircle(int r,int color){int x,y,d;x=0;y=r;d=1-r;while(x<=y){ CirclePoint(x,y,color);if(d<0) d+=2*x+3;else{d+=2*(x-y)+5;y--;}x++;}}main(){int gmode , gdriver;gdriver=DETECT;initgraph(&gdriver , &gmode ,"D:\Win-TC\project");setbkcolor(WHITE);MidCircle(60,RED);getch ();closegraph ( );}2、Bresenham画圆#include "graphics.h"#include "stdlib.h"#include "stdio.h"#include "conio.h"#include "math.h"void BresenhamCircle(int xc, int yc, int r, int c){int x,y; float d;x=0;y=r;d=3-2*r;putpixel((xc+x),(yc+y),c); putpixel((xc-x),(yc+y),c);putpixel((xc+x),(yc-y),c); putpixel((xc-x),(yc-y),c);putpixel((xc+y),(yc+x),c); putpixel((xc-y),(yc+x),c);putpixel((xc+y),(yc-x),c); putpixel((xc-y),(yc-x),c);while(x<y){if(d>0){d=d+4*(x- y)+10; y--; x++; }else{d=d+4*x+6; x++;}putpixel((xc+x),(yc+y),c); putpixel((xc-x),(yc+y),c);putpixel((xc+x),(yc-y),c); putpixel((xc-x),(yc-y),c);putpixel((xc+y),(yc+x),c); putpixel((xc-y),(yc+x),c);putpixel((xc+y),(yc-x),c); putpixel((xc-y),(yc-x),c);}}main(){int gmode , gdriver;gdriver=DETECT;initgraph(&gdriver , &gmode ,"D:\Win-TC\project");setbkcolor(WHITE);BresenhamCircle(100,100,50,RED);getch ();closegraph ( );}3、中点画椭圆代码1:#include "graphics.h"#include "stdlib.h"#include "stdio.h"#include "conio.h"#include "math.h"void MidBresenhamEllipse(int a,int b,int color){ int x,y;float d1,d2;x=0;y=b;d1=b*b+a*a*(-b+0.5);putpixel(x+100,y+100,color);putpixel(-x+100,-y+100,color);putpixel(-x+100,y+100,color);putpixel(x+100,-y+100,color);while(b*b*(x+1)<a*a*(y-0.5)){if(d1<=0){d1+=b*b*(2*x+3);x++;}else{d1+=b*b*(2*x+3)+a*a*(-2*y+2);x++;y--;}putpixel(x+100,y+100,color);putpixel(-x+100,-y+100,color);putpixel(-x+100,y+100,color);putpixel(x+100,-y+100,color);}d2=b*b*(x+0.5)*(x+0.5)+a*a*(y-1)*(y-1)-a*a*b*b;while(y>0){if(d2<=0){d2+=b*b*(2*x+2)+a*a*(-2*y+3);x++; y--;}else{d2+=a*a*(-2*y+3);y--;}putpixel(x+100,y+100,color);putpixel(-x+100,-y+100,color);putpixel(-x+100,y+100,color);putpixel(x+100,-y+100,color);}}main( ){int gmode , gdriver;gdriver=DETECT;initgraph(&gdriver , &gmode ,"D:\Win-TC\project");setbkcolor(WHITE);MidBresenhamEllipse(20,8,RED);getch ( );closegraph ( );}代码2:#include "graphics.h"#include "stdlib.h"#include "stdio.h"#include "conio.h"#include "math.h"void MPEllipse(long a,long b, long xc, long yc,int c){long x,y; double d1,d2;x=0;y=b; d1=b*b+a*a*(-b+0.25);putpixel(x+xc,yc+y,c); putpixel(-x+xc,yc+y,c);putpixel(x+xc,yc-y,c); putpixel(-x+xc,yc-y,c);while((b*b*(x+1))<(a*a*(y-0.5))){ if(d1<0){ d1=d1+b*b*(2*x+3); x++; }else{ d1+=b*b*(2*x+3)+a*a*(-2*y+2); x++;y--; } putpixel(x+xc,yc+y,c); putpixel(-x+xc,yc+y,c); putpixel(x+xc,yc-y,c); putpixel(-x+xc,yc-y,c);}d2=b*b*(x+0.5)*(x+0.5)+a*a*(y-1)*(y-1)-a*a*b*b; while(y>0){ if(d2<0){ d2+=b*b*(2*x+2)+a*a*(-2*y+3); x++;y--; }else{ d2+=a*a*(-2*y+3); y--; }putpixel(x+xc,yc+y,c);putpixel(-x+xc,yc+y,c);putpixel(x+xc,yc-y,c);putpixel(-x+xc,yc-y,c);}}main( ){ int gmode , gdriver;gdriver=DETECT;initgraph(&gdriver , &gmode ,"D:\Win-TC\project");setbkcolor(WHITE);MPEllipse(80,60,100,100,RED); getch ( );closegraph ( );}。

相关文档
最新文档