Reconstructing hv-Convex Polyominoes from Orthogonal Projections
紫外光致氯生水合电子对全氟辛酸的降解
紫外光致氯生水合电子对全氟辛酸的降解郭睿;张超杰;张庚;周琪【摘要】Based on the characteristic of perfluorooctanoic acid( PFOA) that it is vulnerable to be nucleophile attacked, we developed a new method for the degradation of PFOA in aqueous phase with chloride as a media-tor. In this study, 185 nm ultraviolet photolysis of chloride leads to the generation of hydrated electrons, which contribute to the defluorination of PFOA. Chloride, ultraviolet, and anaerobic environment are all the necessa-ry factors to ensure the effective degradation of PFOA. In this system, when the concentration of PFOA is 0. 03 mmol/L, the optimal reaction conditions are cCl-/cPFOA=10. 0, pH=10. 0, with temperature being 25 ℃. Under these conditions, the degradation and defluorination rates of PFOA after 23 h’ s reaction are 99. 6% and 65. 0%, respectively. Kinetic analysis indicated that the decomposition of PFOA fits the first order model with a rate constant of 6. 3 ×10-3 min-1 . The degradation products are fluorinion, perfluorinated carboxylic acid with short-carbon-chains, formic acid, and acetic acid. According to the degradation products, we proposed two major degradation pathways of PFOA: direct cleavage of C—F bonds and C—C bonds due to the attack by hydrated electrons;and decarboxylating by ultraviolet irradiation and defluorinate by hydrolysis. This method is of great significance to eliminate the PFOA in wastewater.%研究了185 nm紫外光激发氯离子生成的水合电子还原降解全氟辛酸( PFOA)的效果.结果表明,该体系中氯离子、紫外光和绝氧环境是保证PFOA高效降解的必要条件;当PFOA的浓度为0.03 mmol/L时,最佳反应条件为氯离子与PFOA摩尔浓度比(cCl-/cPFOA)为10.0,溶液初始pH值为10.0,体系温度为25℃.该条件下反应23 h后PFOA的降解率和脱氟率分别达到99.6%和65.0%. PFOA在该体系中0~8 h的降解符合一级反应动力学,反应速率常数为6.3×10-3 min-1. PFOA在该体系中降解的主要产物有氟离子、短链全氟羧酸、甲酸和乙酸. PFOA的降解有2种途径:(1)氯离子在紫外光照射下产生水合电子,水合电子进攻PFOA,造成C—F键及C—C键的断裂;(2)具有较高能量的185 nm紫外光光解PFOA,发生脱羧反应,并通过水解作用逐步脱氟.【期刊名称】《高等学校化学学报》【年(卷),期】2016(037)008【总页数】10页(P1499-1508)【关键词】全氟辛酸;水合电子;氯离子;185nm紫外光【作者】郭睿;张超杰;张庚;周琪【作者单位】污染控制与资源化研究国家重点实验室,同济大学环境科学与工程学院,上海200092;污染控制与资源化研究国家重点实验室,同济大学环境科学与工程学院,上海200092;污染控制与资源化研究国家重点实验室,同济大学环境科学与工程学院,上海200092;污染控制与资源化研究国家重点实验室,同济大学环境科学与工程学院,上海200092【正文语种】中文【中图分类】O644全氟辛酸[PFOA, CF3(CF2)6COOH]作为全氟有机酸的典型代表, 具有较好的表面活性, 已被广泛应用于制造抗污涂层、防水材料及泡沫灭火剂等[1]. 但PFOA在自然环境中很难降解, 在过去的10~15年间, 以3M公司为代表的许多工厂已停止PFOA的生产并开始积极寻找替代品[2,3]. 但是由于环境中PFOA的累积量过多,其排放仍在持续, 加之氟调醇等前驱物能被污水厂污泥、混合生物体系等降解成更稳定的PFOA[4], 故目前环境中PFOA的含量仍较高. 以发展中国家为例, 2013年PFOA的排放总量为25 t, 远高于20世纪80年代2 t的年均排放量[5]. Armitage 等[6]建立了全球分布模型, 估计1995~2005年间每年有8~23 t全氟辛酸及其盐流入北极圈, 到2030年北极圈中全氟辛酸及其盐有继续增加的趋势, 而且在以后的20年间不会有很大的减少. Prevedouros等[7]通过计算得出全球范围内每年通过水体向北冰洋传输的PFOA约为2~12 t.PFOA具有较强的稳定性及生物累积性, 在环境中很难自行降解, 在水环境中的半衰期长达92年之久[8]; PFOA还具有较好的水溶性, 能够在水相中累积且随水文过程转移, 所以水体是PFOA的重要存在环境. 水环境中PFOA的来源主要包括氟化工厂排放及城市污水处理厂出水等[9,10]. 常熟化工园区是国内较大的氟化工园区, 其中PFOA占该化工园区内工业污水处理厂中全氟羧酸总量的98.3%[11]; Xiao等[12]调研了美国密歇根州和明尼苏达州等地区地下水水样中PFOA的含量, 结果高达数十μg/L; Yao等[13]调研了中国天津和潍坊2个城市4条河流中全氟有机酸的污染状况, 结果表明, 全氟羧酸占全氟有机酸总量的70%, 其中PFOA是全氟羧酸中的主要物质; Guo等[14]、Liu等[15]和陈舒等[16]调研了中国东部地区地下水中全氟有机物的含量, 均发现PFOA为主要的全氟类污染物质.PFOA中C—F键键能高达4.61×105 kJ/mol[17], 共价键中氟原子外电子层中含有3对未成键电子, 能够有效保护全氟烷基链中的C—F键, 使其能够经受很强的酸、碱、热、光照和生物降解等. 目前常用的去除PFOA的方法有吸附、氧化降解、金属还原和水合电子还原等. 虽然采用吸附[18]和膜分离[19]等方法能够去除水中的PFOA, 但仅仅是进行了相转移, 并没有真正起到降解的作用, 且存在吸附剂再生困难等问题; 宋洲[20]采用过硫酸钾与紫外光降解PFOA, 但存在效率不高及脱氟率较低等问题. 光催化氧化技术急需与高效的催化剂结合以提高降解效果[21]. 零价铁的氧化还原电位(-0.447 V)高于C—F键(E<-2.7 V)[22], Hori等[23]在350 ℃超临界水中加入零价铁, Arvaniti等[24]采用氨基黏土镁涂层对其进行改性以增强还原性来降解PFOA, 但所需成本均很高, 且反应条件较苛刻, 不易控制.水合电子是一种很强的还原剂, 其标准还原电位为-2.9 V[25], 可通过氯离子在波长100~200 nm的紫外光照射下产生[26]. 自然水体中通常均含有氯离子, 而氯离子较为稳定, 容易保存, 且成本相对较低, 因此本文选用氯离子作为水合电子发生剂, 采用185 nm紫外光作为光源激发氯离子产生水合电子, 并利用其降解PFOA, 对反应条件、影响因素和机理进行了讨论, 为利用紫外光致氯生水合电子降解PFOA 提供了一定的理论支持.1.1 试剂PFOA(纯度≥90%)购自瑞士Fluka公司; 高效液相色谱(HPLC)级甲酸(纯度96%)、冰醋酸(纯度99.7%)和醋酸铵(纯度97%)均购自美国TEDIA公司; HPLC级甲醇(纯度≥99.9%)购自Merck公司; 氯化钠和氢氧化钠(分析纯)等均购自国药集团化学试剂有限公司; 去离子水由Milli-Q纯水机(美国Milli-pore公司)制得.1.2 实验方法所用光反应器(自制)的装置图如图1所示. 该反应器为不锈钢材质, 可防止酸碱及高温对反应器内壁的腐蚀, 也可排除因反应器本身不稳定而对反应结果的影响. 反应器内壁为光滑镜面, 能最大限度地反射紫外光, 提高光能利用率. 反应器主体结构和顶盖之间采用硅胶圈和封口膜进行密封, 紫外灯固定在反应器中心位置, 灯管外套为固定的石英材质套管, 可减少对紫外光吸收造成的能量衰减. 反应所用的紫外灯是发射波长为185 nm, 功率为14 W的低压汞灯(德国贺利氏特种光源有限公司). 反应器内置转子通过外置的电磁搅拌器驱动, 使反应溶液处于均匀混合状态. 反应装置为圆柱体, 内径60 mm, 外径100 mm, 主体容积约为900 mL.反应所用的PFOA水样为人工配制. 在反应器中加入一定体积的超纯水, 通入He 气30 min以驱除溶液中的溶解氧, 随后立即将740 mL含有PFOA(0.03 mmol/L)及NaCl(0~3.66 mmol/L)的水样加入反应器中, 并用NaOH调节初始pH值. 然后立即将反应器密封, 开启磁力搅拌器, 同时开启紫外灯进行光降解反应, 反应温度通过向夹套内通恒温水维持在25 ℃.在不同时间间隔取出水样, 放置于聚丙烯采样瓶中, 加盖密封后放入冰箱, 然后尽快测定反应后的产物. 样品经过预处理后, 分别送入超高压液相质谱联用仪测定PFOA 和短链全氟有机酸, 用离子色谱检测氟离子、乙酸根和甲酸根等阴离子. 为保证数据可信, 所有实验均进行两次平行实验.1.3 分析方法全氟有机酸的分离采用Accela高效液相色谱(HPLC, 美国ThermoFisher公司)系统, 色谱柱采用美国ThermoFisher公司Thermo Hypersil Gold C18柱(2.1 mm×150 mm, 填充粒径为3 μm). 进样量为10 μL, 流动相采用甲醇和2 mmol/L 醋酸铵溶液, 流速均设为250 μL/min, 采用梯度洗脱.全氟有机酸的定性定量分析采用Finnigan TSQTM Quantum AccessTM三重四级杆质谱仪(MS, 美国ThermoFisher公司). 质谱仪和高效液相色谱仪的接口采用电喷雾电离源(ESI), 并在负电离模式下运行. 对于所有目标分析物, 喷雾电压均为-3200 V; 鞘气压力、离子吹扫气压力和辅气压力分别设为35, 0和5 a.u.; 毛细管温度设为320 ℃. 三重四级杆质谱仪在选择反应监测(SRM)模式下运行, 并优化各种目标分析物和内标的质谱条件, 使其定量离子的强度达到最大.全氟有机酸降解产生的氟、乙酸和甲酸浓度采用ICS-3000阴离子色谱(美国DIONEX公司)测定, 分离柱为IonPacAS11-HC离子交换色谱柱(美国Dionex公司), 淋洗液为35 mmol/L的KOH, 流量为l.5 mL/min, 采用电导检测器(ED50). 体系的pH值采用3201P-01精密pH计(美国Hach公司)测定.2.1 反应条件及动力学2.1.1 反应条件设计了3组对照实验, 具体实验条件见表1, PFOA初始浓度为0.03 mmol/L.以PFOA的降解率和脱氟率为考量对象, 降解率和脱氟率定义如下: Degradation(1)Defluorination(2)式中: cPFOA, 0表示反应初始时PFOA的浓度; cPFOA, t表示反应t小时后PFOA 的浓度; cF, t代表反应t小时后反应器中氟离子的浓度.反应23 h后, PFOA的降解率和脱氟率见图2. 由图2可以看出,PFOA+He+NaCl+UV185体系中PFOA的降解率和脱氟率均明显高于其它两组. 由图2(A)可知, 在反应初期, PFOA+He+NaCl+UV185体系中PFOA保持较快速的降解, 4 h时降解率已达80.2%, 随后降解反应继续进行, 23 h时降解率高达99.6%, PFOA几乎被完全降解; 而在PFOA+He+UV185体系中, 4 h时降解率为55.6%, 23 h时降解率仅增至61.0%, PFOA仅有部分被降解; 在PFOA+He+NaCl 体系中, 23 h时降解率仅为3.0%, PFOA几乎未被降解.由图2(B)可知, 反应期间, PFOA+He+NaCl+UV185体系中PFOA一直保持较快速的脱氟, 23 h时脱氟率已达65.0%, 且仍具有较快的脱氟速率, 脱氟反应仍有潜力; 而在PFOA+He+UV185体系中, 23 h时脱氟率仅为30.2%, 且脱氟趋势已经变缓; 在PFOA+He+NaCl体系中, 23 h时脱氟率仅为1.3%, PFOA几乎未能脱氟.由图2可见, 不启动紫外光, 单独存在氯离子对PFOA降解和脱氟并无任何作用, 说明185 nm紫外光是反应体系必要的能量来源; 不添加氯离子, 而仅仅依靠紫外光直接辐照PFOA降解, 降解及脱氟效率均较低, 这一实验结果与Chen等[27]对PFOA在185 nm紫外光辐照下分解的研究结果相吻合. 虽然水在紫外辐射下也能产生水合电子[28], 但根据实验结果其不足以将大部分PFOA降解. 因此, 能被紫外光激发产生大量水合电子的氯离子在实验中至关重要. 在PFOA+NaCl+He+UV185体系中, 既添加了氯离子, 又启动了紫外光, 使氯离子在185 nm紫外光激发下产生大量水合电子, 进攻C—C键及C—F键进而实现PFOA的高效降解和脱氟.将PFOA+He+NaCl+UV185体系中的氦气替换为空气, 进行有氧存在条件下PFOA脱氟率的实验. 结果表明, 反应2 h时绝氧条件下脱氟率为17.3%, 而有氧存在条件下脱氟率仅为8.1%; 反应4 h时绝氧与有氧条件下的脱氟率分别为34.3%和23.3%, 有氧条件下的脱氟效果明显比绝氧条件下的低. 这是由于在有氧条件下, 产生的水合电子会优先与氧气反应而猝灭[29], 使其与PFOA反应的几率大大降低, 从而C—C键及C—F键均不能发生有效断裂, 因此脱氟率较低.以上实验结果表明, 利用水合电子降解PFOA的反应体系必须具备3个条件: (1) 紫外光照, 波长为185 nm的紫外光是水合电子产生的能量来源; (2) 氯离子, 它是水合电子的发生剂; (3) 绝氧环境, 因为氧气是水合电子的猝灭剂, 溶解氧的存在将降低溶液中水合电子的浓度.2.1.2 反应动力学对PFOA在光致水合电子体系内的降解过程进行了动力学模拟, 结果见图3. 可见, 在0~8 h的反应时间内, ln(ct/c0)与降解时间呈线性关系, 相关系数R2=0.9974, 符合一级反应动力学模型. 且根据拟合结果, 其表观反应速率常数为kobs=6.3×10-3 min-1.由表2可以看出, 本文的反应体系有较高的反应速率常数, 比K2S2O8氧化体系和185 nm紫外光直接光解体系的反应速率均快, 与Qu等[30]所研究的光致碘生水合电子还原体系的反应速率相当. 尽管碘离子体系的反应速率较快, 半衰期较短, 但是碘离子易被氧化, 不易保存, 成本较高, 而本文体系对于降解PFOA具有较高的降解率和脱氟率且成本较低.2.2 紫外光致氯生水合电子降解PFOA的影响因素2.2.1 氯离子与PFOA摩尔浓度比(cCl-/cPFOA)的影响固定PFOA浓度为0.03 mmol/L, 调变cCl-/cPFOA分别为0, 1.0, 10.0, 122.0, 在不同时间点取出水样进行检测.经过23 h的反应, 不同cCl-/cPFOA条件下PFOA的降解率和脱氟率见图4. 由图4(A)可知, 经过23 h的反应, 不同cCl-/cPFOA条件下PFOA的降解率有显著差异, 随着cCl-/cPFOA的增加, PFOA的降解率呈现先上升后下降的趋势. 当cCl-/cPFOA为0, 1.0, 10.0时, 反应23 h后PFOA的降解率分别为61.1%, 69.8%, 99.6%; 而当cCl-/cPFOA继续增加至122.0时, PFOA降解率反而下降为67.4%. 由图4(B)可知, cCl-/cPFOA对PFOA脱氟率的影响与对降解率的影响一致.由于氯离子在185 nm紫外光照下可产生水合电子[26,32], 推测该反应中氯离子的形态变化如下:在185 nm紫外光照射下, 氯离子将会根据不同的环境条件发生一系列反应[式(3)~式(13)]. 首先, 氯离子被转化为水合化氯自由基[式(3)], 然后脱除掉水分子进一步反应生成氯自由基和水合电子[式(4)和式(5)], 该自由基可以与氯离子发生反应生成二氯根离子或三氯根离子[式(6)~式(8)]. 所以, 当体系内氯离子浓度升高时, 将会生成更多的三氯根离子[式(9)], 三氯根离子会作为猝灭剂与水合电子发生氧化还原反应[式(10)和式(11)]. 此外, 氯离子浓度的增大还会导致氢离子浓度的增大[式(12)], 氢离子也是水合电子的猝灭剂[式(13)], 所以造成可供PFOA利用的水合电子的浓度降低.综合以上分析可以发现, 氯离子作为水合电子的产生物质, 它的浓度变化影响了PFOA的降解和脱氟, PFOA浓度为0.03 mmol/L时, 在cCl-/cPFOA=10.0的条件下, PFOA的降解率和脱氟率均达到最大, 故0.3 mmol/L为本实验的最适氯离子浓度.2.2.2 初始pH值的影响固定PFOA的浓度为0.03 mmol/L, NaCl浓度为0.3 mmol/L, 将溶液的初始pH值用NaOH溶液调节为5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 经过8 h的反应, 不同初始pH条件下PFOA的降解率和脱氟率见图5.由图5(A)可知, 溶液初始pH值对该体系PFOA的降解率有影响, 降解率随溶液初始pH值的增加而增加. 在碱性条件下, 当pH=8.0, 9.0, 10.0时, PFOA的降解率分别为93.6%, 93.2%和94.9%, 明显高于酸性条件下的结果(pH=5.0, 6.0时, 降解率分别为80.6%, 83.5%), 说明碱性条件对PFOA的降解更有利.由图5(B)可知, 溶液初始pH值对PFOA的脱氟率影响很大, 随着溶液初始pH值的增加, PFOA的脱氟率也随之升高. 当溶液初始pH值为5.0, 反应8 h时脱氟率只有30.8%, 而对比图2可知, PFOA直接在185 nm紫外光下降解8 h时脱氟率也达到了29.6%, 可见在酸性条件下, 脱氟反应过程中起主要作用的为紫外光, 水合电子并没有参与反应. 在碱性条件下, 溶液初始pH值为8.0, 9.0, 10.0时, 反应进行8 h时脱氟率分别提升至为45.1%, 44.9%和51.8%.实验结果表明, 溶液初始pH值是光致水合电子体系降解PFOA的关键影响因素, 反应体系的降解率和脱氟率均随着溶液pH值的增加而增大. 当溶液为碱性时, Cl2能够发生歧化反应生成Cl-和ClO-[式(14)][33], 从而氯离子再生, 完成在本体系内的循环. 而当pH≤7.0时, 歧化反应不能发生, 氯离子的循环被打破, 且溶液中水合电子优先被氢离子消耗, 生成的氢自由基还原能力远低于水合电子, 不能有效轰击C—F键使其断裂, 只能造成C—C键的断裂. 因此当溶液体系pH值增加到10.0后, 降解率和脱氟率均能够达到较好的水平.综合以上分析, 溶液初始pH值明显影响水合电子的有效浓度, 进而影响到PFOA 的降解和脱氟. 本实验在PFOA浓度为0.03 mmol/L, NaCl浓度为0.3 mmol/L, 溶液初始pH值为10.0这一条件下反应体系达到了最高的降解率和脱氟率, 因此取pH=10.0为最佳初始pH值.2.3 紫外光致氯生水合电子降解PFOA的机理紫外光与氯离子协同作用降解PFOA的过程中会产生水合电子, 其能够破坏PFOA 中的C—C键和C—F键, 使PFOA降解. 为了更好地研究这一体系的降解机理, 对PFOA降解的中间产物和降解途径进行了探讨.2.3.1 中间产物分析紫外光致氯生水合电子体系可有效降解PFOA, 在PFOA浓度为0.03 mmol/L, 氯离子与PFOA摩尔浓度比为10.0, 溶液初始pH值为10.0的条件下, 反应23 h后PFOA的降解率达99.5%, 脱氟率达65.0%. PFOA降解后主要产物为甲酸、乙酸、氟离子和短链全氟羧酸类物质, 其变化趋势如图6所示. 由图6可知, 随着反应的进行, PFOA迅速被降解, 浓度快速下降. 水合电子不断进攻C—F键, 使其发生断裂产生氟离子, 氟离子不断积累, 浓度持续升高. 在23 h反应过程中, PFOA降解产生一定量的全氟戊酸(PFPeA)、全氟己酸(PFHxA)及全氟庚酸(PFHpA). 反应初始1 h内, PFHpA迅速生成, 大量累积, 到4 h时达到最大累积量后开始逐渐下降. PFHxA生成及累积趋势与PFHpA相似, 但与PFHpA相比, PFHxA的生成速率较慢, 累积量较小. PFPeA生成速率最慢, 并以较缓慢的速率不断累积. 氟离子及全氟羧酸类中间产物的生成趋势说明, 在反应初期, PFOA便发生C—C键及C—F键的断裂, 依次降解为碳链较短的PFHpA, PFHxA和PFPeA, 之后碳链较短的全氟羧酸类物质降解为碳链更短的全氟羧酸类物质. 研究结果表明, 随着碳链长度的减少, 全氟羧酸类物质的毒性显著降低[34], PFOA降解为碳链较短的同系物后, 毒性也随之降低.由图6还可知, 甲酸和乙酸的浓度随着反应的进行先积累到最大值后又逐渐降低.由于水合电子的作用, PFOA中C—F键及C—C键断裂, 并与H2O反应, 逐步生成甲酸和乙酸. 但反应2 h后, 由于185 nm紫外光能量较强, 能够直接攻击C—C, C—H及C—O键等[35,36], 破坏酸结构, 导致体系中甲酸和乙酸的浓度下降. 2.3.2 PFOA降解过程中的元素平衡虽然采用离子色谱和高效液相色谱-质谱联用技术对PFOA的降解产物进行了分析, 但是部分中间产物可能并未检测到, 包括一些不完全氟代的短链羧酸类物质, 因此本节采用对可检测到的中间产物进行计算碳元素和氟元素平衡的方式来探究PFOA在本文体系中的降解.碳元素和氟元素平衡的计算公式如下:式中: RC表示碳元素的回收率; RF表示氟元素的回收率; cPFOA(mmol/L)表示体系中未分解的PFOA浓度; cPFCAs(mmol/L)表示体系中生成的短链全氟羧酸(PFHpA, PFHxA和PFPeA)的浓度; cHCOOH(mmol/L)表示体系中生成的的甲酸浓度; cCH3COOH(mmol/L)表示体系中生成的乙酸浓度; cF-(mmol/L)表示体系中生成的氟离子浓度; cPFOA,0(mmol/L)表示体系中初始的PFOA浓度.根据上节的分析, 体系中能够准确测定的含碳物质主要有未分解的PFOA、生成的短链全氟羧酸(PFHpA, PFHxA和PFPeA)、甲酸和乙酸; 含氟物质主要有未分解的PFOA、生成的短链全氟羧酸和氟离子. 本实验中碳元素和氟元素平衡情况如图7所示.由图7(A)可知, 随着反应的进行, 碳元素的回收率逐渐降低. 反应2 h后碳回收率为99.0%, 之后便开始显著降低, 这与甲酸和乙酸累积量开始降低的时间相吻合, 到反应23 h时, 碳回收率只有55.5%. 推测是由于在185 nm紫外光下, 甲酸和乙酸结构被破坏, 从而影响了碳元素的回收率. 对比Qu等[30]在254 nm UV/KI体系中降解PFOA的结果发现, UV/KI体系14 h反应期间, 碳元素回收率呈先减少后增加趋势, 反应14 h时回收率达96.0%. 这是由于该体系反应14 h后, PFOA降解率达98%以上, 且降解产物主要为甲酸和乙酸; 由于254 nm紫外光能量较弱, 未破坏甲酸及乙酸的结构, 整个反应期间甲酸和乙酸的含量持续上升, 故14 h时碳回收率达93.3%, 验证了185 nm UV/NaCl体系中甲酸和乙酸被紫外光降解从而结构被破坏的推测.由图7(B)可知, 随着反应的进行, 氟元素回收率呈现出先减少后增加的趋势, 23 h 回收率达96.4%. 反应2 h时, 回收率最低, 仅为76.1%, 可能是由于该阶段生成的不完全氟取代产物较多却未被检测到; 之后PFOA降解率及脱氟率快速增加, 生成较多短链全氟羧酸类物质, 氟元素回收率也开始增加; 到反应23 h时, PFOA几乎被完全降解, 脱氟率达65.5%, 短链全氟羧酸类物质累积量也较大, 因此氟元素回收率高达96.4%.2.3.3 机理推测由以上分析可知, 体系中有氟离子、甲酸、乙酸和短链全氟羧酸生成, 说明PFOA在185 nm紫外光与水合电子作用下出现了C—F和C—C键的断裂, 推测PFOA的降解机理如下:在光致水合电子还原体系中, 氟原子很容易代替碳原子成为降解反应的中心, 造成在水合电子靠近PFOA时, 引起C—F键的断裂. 此外, 还由于PFOA中羧基具有诱导效应, 使α位的C—F键更容易被亲核试剂进攻, 如水合电子. 因此, 在水合电子作用下, PFOA被攻击而依次脱去2个氟离子, 转变为不完全氟代物C7F13H2COOH[式(17)~式(20)], 之后在紫外光照射下, C7F13H2COOH很容易被激发而断裂为自由基类物质, 生成C6F13自由基、COOH自由基和CH2[式(21)], C6F13自由基与COOH自由基结合生成PFHpA[式(22)]; 随后PFHpA再逐步脱去CF2单位成为碳链更短的全氟羧酸类物质[式(23)]; 这些物质再进一步反应生成甲酸和乙酸[式(24)~式(30)].另一方面, 由于185 nm紫外光的照射, PFOA处于较高能量的激发态, 光照促使C7H15与COOH间的C—C键断裂, 发生脱羧反应[式(31)], 之后水作为亲核物质与·C7H15发生反应, 脱去2个氟离子, 并生成PFHpA[式(32)~式(34)]. 其它短链全氟羧酸类物质的降解与PFOA类似, 逐步脱去氟离子, 并生成碳链更短的全氟羧酸类物质[27,37].在本研究体系中, 氯离子、紫外光照和绝氧环境是达到PFOA最佳降解率和脱氟率的必要条件, 185 nm紫外光照射氯离子可产生水合电子, 水合电子作为亲核试剂可有效进攻C—C键及C—F键, 使PFOA高效降解, 分解较完全. 当PFOA浓度为0.03 mmol/L时, 最佳反应条件为: 氯离子与PFOA摩尔浓度比为10.0, 溶液初始pH值为10.0, 体系温度25 ℃, 反应23 h后PFOA的降解率和脱氟率分别达到99.6%和65.0%. PFOA的降解途径主要有PFOA直接光解和PFOA在水合电子的作用下还原脱氟降解两种, 其最终产物主要有氟离子、甲酸、乙酸和短链羧酸等.† Supported by the National Natural Science Foundation ofChina(Nos.21177094, 41271465).【相关文献】[1] Sagiv S. K., Rifas-Shiman S. L., Webster T. F., Mora A. M., Harris M. H., Calafat A. M., Ye X. Y., Gillman M. W., Oken E., Environl. Sci. Technol., 2015, 49(19), 11849—11858[2] Miller A., Elliott J. E., Elliott K. H., Lee S., Cyr F., Environ. Toxicol. Chem., 2015, 34(8), 1799—1808[3] Zhu P., Duan X. M., Liu J. Y., Chem. J. Chinese Universities, 2016, 37(1), 79—87(朱鹏, 段雪梅, 刘靖尧. 高等学校化学学报, 2016, 37(1), 79—87)[4] Arvaniti O. S., Stasinakis A. S., Sci. Total. Environ., 2015, 524, 81—92[5] Wang T. Y., Wang P., Meng J., Liu S. J., Lu Y. L., Khim J. S., Giesy J. P., Chemosphere, 2015, 129, 87—99[6] Armitage J. M., Macleod M., Cousins I. T., Environl. Sci. Technol., 2009, 43(4), 1134—1140[7] Prevedouros K., Cousins I. T., Buck R. C., Korzeniowski S. H., Environl. Sci. Technol., 2006, 40(1), 32—44[8] Domingo J. L., Environ. Int., 2012, 40, 187—195[9] Li F., Zeng Q. L., Shen C. H., Zhao Z. L., Liu S. P., China Environ. Sci., 2012, (9), 1602—1612(李飞, 曾庆玲, 沈春花, 赵志领, 刘淑坡. 中国环境科学, 2012, (9), 1602—1612)[10] Wang P., Lu Y. L., Wang T. Y., Fu Y. N., Zhu Z. Y., Liu S. J., Xie S. W., Xiao Y., Giesy J. P., Environ. Pollut., 2014, 190, 115—122[11] Cui R. N., Zhang Y. T.,Wang J. S., Dai J. Y., Environ. Chem., 2013, (7), 1318—1327(崔瑞娜, 张亚婷, 王建设, 戴家银. 环境化学, 2013, (7), 1318—1327)[12] Xiao F., Simcik M. F., Halbach T. R., Gulliver J. S., Water Res., 2015, 72, 64—74[13] Yao Y. M., Zhu H. H., Li B., Hu H. W., Zhang T., Yamazaki E., Taniyasu S., Yamashita N., Sun H. W., Ecotoxicol. Environ. Saf., 2014, 108, 318—328[14] Guo C. S., Zhang Y., Zhao X., Du P., Liu S. S., Lv J. P., Xu F. X., Meng W., Xu J., Chemosphere, 2015, 127, 201—207[15] Liu W. X., He W., Qin N., Kong X. Z., He Q. S., Yang B., Yang C., Jorgensen S. E., Xu F. L., Environ. Pollut., 2015, 200, 24—34[16] Chen S., Jiao X. C., Gai N., Yin X. C., Piao H. T., Lu G. H., Li X. J., Rao Z., Yang Y. L., Rock and Mineral Analysis, 2015, 34, 579—585(陈舒, 焦杏春, 盖楠, 殷效彩, 朴海涛, 路国慧, 李小洁, 饶竹, 杨永亮. 岩矿测试, 2015, 34, 579—585)[17] Vaalgamaa S., Vahatalo A. V., Perkola N., Huhtala S., Sci. Total. Environ., 2011,409(16), 3043—3048[18] Senevirathna S., Tanaka S., Fujii S., Kunacheva C., Harada H., Shivakoti B. R., Okamoto R., Chemosphere, 2010, 80(6), 647—651[19] Steinle D. E., Reinhard M., Environ. Sci. Technol., 2008, 42(14), 5292—5297[20] Song Z., Photochemical Oxidation or Reduction Degradation of Perfluorooctanoic Acid Using UV Irradiation, Huazhong University of Science and Technology, Wuhan,2014(宋洲. 紫外光化学氧化/还原处理全氟辛酸的研究, 武汉: 华中科技大学, 2014)[21] Li X. X., Huang Z. Y., Fan G. C., Wu Y. N., Tan X. C., Chem. J. Chinese Universities, 2014, 35(7), 1480—1483(李星星, 黄在银, 范高超, 吴烨楠, 谭学才. 高等学校化学学报, 2014,35(7), 1480—1483)[22] Vecitis C. D., Park H., Cheng J., Mader B. T., Hoffmann M. R., Front Environ. Sci. Eng., 2009, 3(2), 129—151[23] Hori H., Nagaoka Y., Yamamoto A., Sano T., Yamashita N., Taniyasu S., Kutsuna S., Osaka I., Arakawa R., Environ Sci. Tech-nol., 2006, 40(3), 1049—1054[24] Arvaniti O. S., Hwang Y., Andersen H. R., Stasinakis A. S., Thomaidis N. S., Aloupi M., Chem. Eng. J., 2015, 262, 133—139[25] Zhang L. H., Zhu D., Nathanson G. M., Hamers R. J., Angew. Chem. Int. Ed., 2014,53(37), 9746—9751[26] Sauer M. C., Crowell R. A., Shkrob I. A., J. Phy. Chem., 2004, 108(25), 5490—5502[27] Chen J., Zhang P. Y., Liu J., J. Environ. Sci., 2007, 19(4), 387—390[28] Thomsen C. L., Madsen D., Keiding S. R., J. Phy. Chem., 1999, 110(7), 3453—3462[29] Lehr L., Zanni M. T., Frischkorn C., Science, 1999, 284(5414), 635—638[30] Qu Y., Zhang C. J., Li F., Chen J., Zhou Q., Water Res., 2010, 44(9), 2939—2947[31] Chen J., Zhang P. Y., Water Sci. Technol., 2006, 54(11/12), 317—325[32] Feng Y. G., Smith D. W., Bolton J. R., Water Environ. Res., 2010, 82(4), 328—334[33] Ma F. J., Journal of Minorities Teachers College of Qinghai Teachers University, 2007, 18, 65—66(马福军. 青海师范大学民族师范学院学报, 2007, 18, 65—66)[34] Ding G. H., Fromel T., Brandhof E. J., Environ. Toxicol. Chem., 2012, 31(3), 605—610[35] Yang S. W., Defluorination of Aqueous Perfluorooctanesulfonate(PFOS) by Combined Process of Vacuum Ultraviolet and High-frequency Ultrasound, South China University of Technology, Guangzhou, 2013(杨佘维. 真空紫外耦合高频超声对水中全氟辛基磺酸钾(PFOS)的脱氟研究, 广州: 华南理工大学, 2013 )[36] Thogersen J., Jensen S. K., Christiansen O., Keiding S. R., J. Phy. Chem., 2004, 108(37), 7483—7489[37] Chen J., Zhang P. Y., Liu J., Environ. Sci., 2007, 28, 772—776(陈静, 张彭义, 刘剑. 环境科学, 2007, 28, 772—776)。
Composite splitting algorithms for convex optimization
⇑ Corresponding author.
E-mail address: jzhuang@ (J. Huang).
The operator-splitting algorithm searches for an x to make that the sum of the maximal-monotone operators equal to zero. Forward–Backward schemes are widely used in operator-splitting algorithms [4–6]. These algorithms have been applied in sparse learning [7] and compressive MR imaging [2]. The Iterative Shrinkage-Thresholding Algorithm (ISTA) and Fast ISTA (FISTA) [8] are two important Forward–Backward methods. They have been successfully used in signal processing [8,9], matrix completion [10] and multi-task learning [11]. To handle the case of m > 1, Spingarn [12] reduces the sum of multiple maximal monotone operators to the sum of two maximal monotone operators by defining new subspaces and operators, and then applies a Douglas-Rachford splitting algorithm to solve the new problem. The general projective splitting methods are used to search for a point in the extended solution set [13].
微晶纤维素的极限聚合度的英文单词
微晶纤维素的极限聚合度的英文单词全文共3篇示例,供读者参考篇1Title: The Limiting Degree of Polymerization of Microcrystalline CelluloseAbstract:Microcrystalline cellulose is a versatile material that has gained popularity in various industries due to its unique properties. One of the key characteristics of microcrystalline cellulose is its polymerization degree, which plays a crucial role in determining its physical and chemical properties. In this paper, we investigate the limiting degree of polymerization of microcrystalline cellulose and its implications on its performance in different applications.Introduction:Microcrystalline cellulose is a naturally occurring polymer that is derived from cellulose fibers through a series of chemical processes. It is known for its high surface area, porosity, and mechanical strength, making it an ideal material for use in pharmaceuticals, food products, and other industrialapplications. The polymerization degree of microcrystalline cellulose refers to the number of glucose units present in its molecular structure. It is a critical parameter that influences the viscosity, solubility, and reactivity of the material.Methods:To determine the limiting degree of polymerization of microcrystalline cellulose, we performed a series of experiments using different methods such as gel permeation chromatography, size exclusion chromatography, and nuclear magnetic resonance spectroscopy. These techniques allowed us to analyze the molecular weight distribution of microcrystalline cellulose and identify the average polymerization degree.Results:Our findings revealed that the limiting degree of polymerization of microcrystalline cellulose is around 2000 glucose units. Beyond this threshold, the material tends to lose its unique properties and becomes less effective in various applications. This limit is attributed to the increased difficulty in processing and handling high molecular weight polymers, as well as the decreased solubility and dispersibility of microcrystalline cellulose in aqueous solutions.Discussion:The limiting degree of polymerization of microcrystalline cellulose has significant implications for its use in different industries. In pharmaceuticals, for example, the polymerization degree affects the drug release rate, bioavailability, and stability of dosage forms. In food products, it influences the texture, mouthfeel, and shelf life of the final products. Therefore, it is essential for researchers and manufacturers to understand the polymerization degree of microcrystalline cellulose and its impact on performance to develop innovative and efficient applications.Conclusion:In conclusion, the limiting degree of polymerization of microcrystalline cellulose plays a critical role in determining its properties and performance in various applications. By studying this parameter, researchers can optimize the synthesis, processing, and utilization of microcrystalline cellulose to enhance its effectiveness and versatility. Further research is needed to explore the relationship between polymerization degree and other physical and chemical properties of microcrystalline cellulose to unlock its full potential in different industries.篇2Title: The Limiting Polymerization Degree of Microcrystalline CelluloseAbstract: Microcrystalline cellulose is a versatile and sustainable material with a high degree of polymerization. This article aims to explore the concept of the limiting polymerization degree of microcrystalline cellulose and its implications in various applications.Introduction: Microcrystalline cellulose, also known as MCC, is a term used to describe cellulose in its most refined form. It is typically derived from wood pulp and has a high degree of polymerization, which refers to the number of glucose units in a cellulose chain. The limiting polymerization degree is the point at which the cellulose chain cannot be further broken down into smaller units.Methods: The limiting polymerization degree of MCC can be determined through various analytical techniques, such as gel permeation chromatography and nuclear magnetic resonance spectroscopy. By analyzing the molecular weight distribution of MCC samples, researchers can identify the point at which polymerization ceases.Results: The limiting polymerization degree of microcrystalline cellulose is influenced by various factors, including the source of cellulose, the purification process, and the manufacturing method. Studies have shown that MCC from different sources may have different limiting polymerization degrees, which can impact its properties and applications.Discussion: The limiting polymerization degree of MCC is a crucial parameter in the development of cellulose-based materials. By understanding this concept, researchers can optimize the properties of MCC for specific applications, such as drug delivery, food additives, and bio-based composites.Conclusion: The limiting polymerization degree of microcrystalline cellulose plays a significant role in determining its structure and properties. Further research is needed to fully understand the implications of this parameter and its impact on the performance of MCC in various applications.篇3Title: The Limiting Degree of Polymerization of Microcrystalline CelluloseIntroductionMicrocrystalline cellulose (MCC) is a versatile material that is widely used in various industries such as pharmaceuticals, food, and cosmetics. One of the key parameters that determine the properties of MCC is its degree of polymerization (DP), which refers to the number of glucose units in a cellulose polymer chain. The DP of MCC can vary depending on the source of cellulose and the processing techniques used.In this study, we aim to investigate the limiting degree of polymerization of MCC. The limiting DP is the theoretical maximum number of glucose units that can be present in a cellulose chain, beyond which the polymer chain becomes unstable and prone to degradation. Understanding the limiting DP of MCC is important for optimizing its properties and performance in various applications.MethodsTo determine the limiting DP of MCC, we first isolated MCC from cellulose fibers using a combination of mechanical and chemical treatments. The MCC samples were then analyzed using techniques such as gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy to determine their DP.ResultsOur results show that the limiting DP of MCC is approximately 10,000 glucose units. Beyond this DP, the MCC chains start to exhibit signs of degradation, such as increased crystallinity and decreased thermal stability. These findings suggest that the limiting DP of MCC plays a crucial role in determining its mechanical and chemical properties.ConclusionIn conclusion, the limiting degree of polymerization of microcrystalline cellulose is an important parameter that affects its properties and performance in various applications. By understanding and optimizing the limiting DP of MCC, researchers and industries can develop new and improved products that harness the full potential of this versatile material. Further research is needed to explore the effects of processing techniques and source materials on the limiting DP of MCC.。
本征正交分解 代理模型
本征正交分解代理模型
本征正交分解(Empirical Orthogonal Function,EOF)是一种常用的数据分析方法,主要用于分解和提取数据集中的主要变动模式和空间结构。
它通过计算数据集的协方差或相关矩阵的特征值和特征向量,得到一组正交的模态函数,称为本征函数或主成分,每个本征函数代表数据集中的一种主要的模式或结构。
本征正交分解在气候学、地球物理学、海洋学等领域广泛应用。
它可以帮助识别数据集中的主要模态,如气候领域的海气振荡、海洋环流等。
利用本征函数可以对数据集进行降维处理,保留最重要的信息,并进行数据重构和分析。
代理模型(Proxy Model)是一种简化模型或替代模型,用于近似复杂的现实系统或过程。
代理模型通常根据已知的输入与输出数据建立,通过建立输入与输出之间的关系函数来模拟真实系统。
代理模型的优点是计算速度快且易于理解和解释,缺点是对于复杂系统可能会有一定的误差和损失精度。
代理模型在科学和工程领域中经常用于优化问题、模型拟合、参数估计、系统建模等。
它可以用于替代复杂模型的运算过程,加速计算,同时还可以用于模型预测和敏感性分析等应用。
代理模型基于已有数据的建模,因此对于数据的准确性和代表性要求较高。
convergent genes会聚型基因
convergent genes会聚型基因Convergent Genes: An Insight into the World of Convergent EvolutionIntroduction:Convergent evolution is a captivating phenomenon wherein organisms from different lineages develop similar traits or characteristics due to similar ecological pressures. At the molecular level, convergent evolution can be observed through the emergence of convergent genes. These genes, also known as "convergent genes" or "convergent sequences," play a significant role in shaping the biological diversity we observe today. In this article, we will delve into the concept of convergent genes, exploring their mechanisms, significance, and examples that showcase the remarkable adaptive potential of living organisms.1. The Mechanisms of Convergent Genes:1.1. Structural Convergence:Structural convergence refers to the acquisition of similar functional elements or structures through different genetic pathways. Despite having different genetic origins, these gene sequences converge to perform similar functions. Structural convergence often occurs when multiple organisms face similar selection pressures.1.2. Regulatory Convergence:Regulatory convergence involves the convergent evolution of regulatory elements within genes. These regulatory elements control gene expression and play a crucial role in shaping an organism's phenotype. Similarenvironmental demands can result in the independent evolution of similar regulatory sequences in different lineages.2. The Significance of Convergent Genes:2.1. Adaptation to Specific Environments:Convergent genes facilitate adaptation to specific environments by providing adaptive advantages. Organisms that face similar selective pressures, such as temperature extremes, limited food resources, or predators, may independently develop genes that enhance their survival chances within these particular habitats.2.2. Evolutionary Relationships:Convergent genes can shed light on the evolutionary relationships between different species. By examining the genetic sequences and similarities between organisms with convergent traits, scientists can better understand how different lineages have evolved and diverged over time.3. Examples of Convergent Genes:3.1. Echolocation in Bats and Dolphins:Bats and dolphins, despite belonging to different taxonomic groups, both exhibit echolocation capabilities. The convergent evolution of genes associated with auditory and neural structures has enabled these two groups to independently develop and utilize echolocation as a navigation mechanism.3.2. Flight in Birds and Bats:Birds and bats have both evolved the ability to fly, even though they last shared a common ancestor hundreds of millions of years ago. Convergent genes associated with wing development and muscle structure have played a crucial role in the emergence of flight in these two distinct lineages.4. Future Implications and Research Directions:4.1. Molecular Basis of Convergent Evolution:With advancements in genetic sequencing technologies, researchers are unraveling the molecular basis of convergent evolution. Understanding the specific genetic changes that give rise to convergent genes can provide valuable insights into the underlying mechanisms driving the adaptation of organisms to specific environments.4.2. Biotechnological Applications:The study of convergent genes can have significant implications in various fields, such as medicine and agriculture. By harnessing convergent genes, scientists may develop novel therapeutic approaches, enhance crop resilience to environmental stressors, and engineer organisms with desired traits.Conclusion:Convergent genes are a testament to the remarkable adaptive potential of living organisms. Through the independent evolution of similar genetic sequences, organisms can adapt to similar ecological pressures, resulting in the emergence of convergent traits. The study of convergent genes not only enhances our understanding of evolution but also holds promise for future applications in various fields. By unraveling the molecular mechanismsbehind convergent evolution, we gain valuable insights into the intricate processes that shape the incredible diversity of life on Earth.。
吉林大学分子酶学工程教育部重点实验室
目录目录第一章单链抗体的表达、复性及分离纯化 (1)1 材料与方法 (1)1.1 材料 (1)1.1.1 主要试剂 (1)1.1.2 细胞株与质粒 (1)1.1.3 主要仪器 (2)1.2 方法 (2)1.2.1单链抗体的表达 (2)1.2.2表达产物的鉴定(Western Blotting) (2)1.2.3 单链抗体的发酵罐生产 (3)1.2.4 菌体的破碎及包涵体的洗涤 (3)1.2.5包涵体的溶解 (3)1.2.6 scFv的固定金属螯合层析(IMAC) (4)1.2.7 scFv的复性 (4)1.2.7.1稀释复性 (4)1.2.7.2 透析复性 (4)1.2.7.3 稀释复性结合透析复性 (5)1.2.7.4 柱复性 (5)1.2.8 蛋白质浓度测定 (5)2 结果 (6)2.1单链抗体的表达及表达产物的鉴定(Western Blotting) (5)2.2 表达产物包涵体的洗涤 (6)2.3 包涵体的溶解和包涵体中重组蛋白的纯化 (8)2.3.1 包涵体的溶解 (8)2.3.2 ScFv蛋白的固定金属螯合层析 (10)2.4 重组ScFv的复性研究 (11)2.4.1稀释复性 (13)2.4.2透析复性 (14)吉林大学分子酶学工程教育部重点实验室i吉林大学硕士学位论文 苏 丹吉林大学分子酶学工程教育部重点实验室ii 2.4.3 稀释复性结合透析复性 (14)2.4.4 凝胶过滤柱复性 (14)3 讨论 (17)4 参考文献 (19)第二章 单链抗体酶的获得及其酶学性质 (22)1 材料与方法 (22)1.1 材料 (22)1.1. 1试剂与耗材 (22)1.1.2 主要仪器 (22)1.2 方法 (22)1.2.1 硒氢化钠的制备 (23)1.2. 2单链抗体的化学突变 (23)1.2.3 GPX 活力测定 (23)1.2.4 结和常数测定 (23)1.2.5 硒含量的测定 (23)1.2.6 蛋白质浓度测定 (23)2 结果 (23)2.1单链抗体的化学突变 (23)2.2 诱变后scFv 的GPX 活性 (24)2.3 含硒单链抗体酶与GSH 结合常数的测定 (24)2.4 含硒单链抗体酶的消光系数 (25)2.5 含硒单链抗体酶的最适pH 和最适温度 (26)3 讨论 (29)3.1 单链抗体的诱变 (29)3.2 单链抗体的活力测定 (29)3.3 单链抗体浓度的测定 (29)3.4 单链抗体酶的最适温度和最适pH (28)4 参考文献 (28)目录第三章单链抗体酶及全抗体酶的动力学研究 (29)1 材料与方法 (29)1.1 材料 (29)1.1.1 试剂 (29)1.1.2 主要仪器 (29)1.2 方法 (29)1.2.1 过氧化氢浓度的测定 (29)1.2.2 酶反应动力学的研究 (30)2 结果 (30)2.1 单链抗体酶2F3的动力学数据 (30)2.2 抗体酶2F3的动力学数据 (32)2.3 抗体酶1C5的动力学数据 (34)3 讨论 (37)4 参考文献 (40)第四章文献综述 (41)1 人工酶 (41)2 抗体酶 (42)2.1抗体酶的理论基础 (42)2.2 抗体酶的制备方法 (43)2.3 抗体Fv片段 (43)2.4 单链抗体和单链抗体酶 (44)3 谷胱甘肽过氧化物酶 (44)3.1 GPX的生物学作用 (45)3.2 GPX的结构 (46)3.2.1 GPX的二级结构 (46)3.2.2 GPX活性中心的结构 (46)3. 3 GPX的催化机制 (47)3.3.1 乒乓机制 (48)吉林大学分子酶学工程教育部重点实验室iii吉林大学硕士学位论文 苏 丹吉林大学分子酶学工程教育部重点实验室iv 3.3.2 顺序机制 (49)4 谷胱甘肽过氧化物酶的人工模拟 (50)4.1 Ebselen 及其衍生物 (50)4.2硒代枯草杆菌蛋白酶 (51)4.3 含硒抗体酶和含硒单链抗体酶 (52)5 包涵体蛋白的复性 (53)6 参考文献······················································54 致谢 (58)摘要 (i)ABSTRACT (iii)附录····························································A附录一 单链抗体2F3表达产物的核苷酸序列及氨基酸序列··············A附录二 Swiss-Prot 预测的单链抗体的性质·····························B附录三 攻读硕士期间发表论文······································E目录第一章单链抗体的表达、复性及分离纯化1 材料与方法1.1 材料1.1.1 主要试剂Chelating Sepharose Fast Flow Pharmacia公司Superose 12 Pharmacia公司Sephacryl S-200 Pharmacia公司Tryptone OxiodYeast Extract Oxiod苯甲基磺酰氟(PMSF) SigmaIPTG Sigma抗(His)6单克隆抗体 Clontech公司HRP-羊抗鼠IgG 武汉博士德公司尿素(分析纯)天津市化学试剂一厂四氨基联苯胺(TMB) 上海生物工程公司2-巯基乙醇(2-Mercaptoethanol) AMRESCO 进口分装Tris base 上海生物工程公司磷酸氢二钠(分析纯)沈阳市试剂三厂磷酸二氢钠(分析纯)沈阳市试剂三厂N,N-亚甲基双丙烯酰胺 Sigma丙烯酰胺上海生物工程公司十二烷基硫酸钠(SDS) 上海生物工程公司甘氨酸上海生物工程公司脱氧胆酸钠上海生物工程公司还原型谷胱甘肽(GSH) 上海生物工程公司氧化型谷胱甘肽(GSSG) 上海生物工程公司其它均为国产分析纯1.1.2 细胞株与质粒吉林大学分子酶学工程教育部重点实验室v吉林大学硕士学位论文 苏 丹吉林大学分子酶学工程教育部重点实验室vi 大肠杆菌菌株DH5?、BL21(DE3)及质粒pTMF 、pTHA90和pGEM-T 由中科院遗传所提供。
Abstract Precise Widening Operators for Convex Polyhedra
This work has been partly supported by MURST projects “Aggregate- and Number-Reasoning for Computing: from Decision Algorithms to Constraint Programming with Multisets, Sets, and Maps” and “Constraint Based Verification of Reactive Systems.” Email addresses: bagnara@cs.unipr.it (Roberto Bagnara), hill@ (Patricia M. Hill), zaffanella@cs.unipr.it (Enea
Precise Widening Operators for Convex Polyhedra
Roberto Bagnara a , Patricia M. Hill b , Elisa Ricci a , Enea Zaffanella a
a Department b School
of Mathematics, University of Parma, Italy of Computing, University of Leeds, UK
Zaffanella).
2
intended application. The application will also affect the required trade-off between precision and efficiency: when speeding up convergence of an (perhaps intrinsically finite) iteration sequence, precision is more willingly given away; in other cases, the objective is to ensure termination without compromising precision too much. As a consequence, it is meaningful to have two or more widening operators, each one tuned with a different compromise between precision and efficiency. The different widenings can be used in different applications or even in the same application, with the system (carefully) switching from one to another during the analysis [16]. For the domain of convex polyhedra, the first widening operator was proposed by Cousot and Halbwachs in [1] and further refined in [17]. It amply deserves the name of standard widening since most analysis and verification tools that employ convex polyhedra also employ that operator. There are a number of applications of convex polyhedra in the field of system analysis and verification that are particularly sensitive to the precision of the deduced numerical information. The importance of precision in the field of automated verification has led to the use of extrapolation operators, that is, binary operators satisfying condition 1 in the definition of widening but not condition 2 (i.e., without convergence guarantee). For instance, in [18], Henzinger and Ho propose a new extrapolation operator for use in the HyTech model checker since “Halbwachs’s widening operator [...] is sometimes too coarse for [their] purposes” (symbolic model checking of linear hybrid systems). An even more precise extrapolation operator, also used in the HyTech system, is presented in [19]: “This operator is tighter than (and therefore less aggressive than) both the widening operator of [4] and the extrapolation operator of [18], which is not monotone in its second argument.” Other extrapolation operators based on similar approaches have been sketched in [3]. Still in the field of automatic verification, the need for more precision than warranted by the standard widening is remarked in both [20] and [21]; and a new extrapolation operator on sets of convex polyhedra is defined in each of these papers. If giving up convergence guarantees is acceptable (though not desirable) for semi-automatic, human-operated verifiers, this is certainly not the case for fully-automatic program analyzers. In this field, the request for more precision has been partly satisfied by delaying the application of the widening operator k times for some fixed parameter k ∈ N [16]. A study of the effect of alternative values for k in the automatic determination of linear size relations between the arguments of logic programs has been conducted in [8,9]. One application of this idea is in termination inference [22]. In order to achieve reasonable precision, the cTI analyzer runs with k = 3 as a default, but there are simple programs (such as mergesort ) whose termination can only be established with k > 3. On the other hand, setting k = 4 as the default can have a sensible impact on performance of cTI [F. Mesnard, personal communication, 2003]. 3
透射电子学中的一些术语的翻译-推荐下载
透射电子学中的一些术语的翻译ACF absorption correction factor 吸收校正因子A/D analog to digital (converter)模拟数字化ADF annular dark field 环形暗场AEM analytical electron microscope/microscopy 分析电子显微镜/学AES Auger electron spectrometer/spectroscopy 俄歇电子光谱仪/学AFF aberration-free focus 无像差焦点ALCHEMI atom location by channeling-enhanced microanalysis APB anti-phase domain boundary 反相畴界ATW atmospheric thin window BF bright field 明场BFP back focal plane 后焦面BSE backscattered electron 背散射电子BSED backscattered-electron diffraction 背散射电子衍射 BZB Brillouin-zone boundary C(1,2,etc..)condenser (l, 2, etc.) lens 第1,2...聚光镜 CB coherent bremsstrahlung CBED convergent-beam electron diffraction 会聚束电子衍射CBIM convergent-beam imaging 会聚束成像CCD charge-coupled device 电荷耦合装置CCF cross-correlation function 互相关函数CCM charge-collection microscopy CDF centered dark field 中心暗场像CF coherent Fennel/FoucaultCFEG cold field-emission gun 冷场发射枪CL cathodeluminescence阴极发光CRT cathode-ray tube 阴极射线管CS crystallographic shear 晶体学切变CSL coincident-site lattice DF dark field 暗场DOS density of states 态密度DP diffraction pattern 衍射花样DQE detection of quantum efficiency 量子探测效率DSTEM dedicated scanning transmission electron microscope 专业扫描透射电子显微镜DTSA desktop spectrum analyzerEBIC electron beam-induced current/conductivity EELS electron energy-loss spectrometry 电子能量损失谱EFI energy-filtered imaging 能量过滤成像ELNES energy-loss near-edge structure 能量损失近边结构 ELP energy-loss program (Gatan) EMMA electron microscope microanalyzerEMS electron microscopy image simulation 电子显微学图像模拟EPMA electron probe microanalyzerESCA electron spectroscopy for chemical analysis ESI electron spectroscopic imaging EXAFS extended X-ray absorption fine structure 扩展X射线吸收精细结构EXELFS extended energy-loss fine structure 扩展能量损失精细结构FCF fluorescence correction factor 荧光校正因子FEG field-emission gun 场发射枪FET field-effect transistor 场效晶体管FFT fast Fourier transform 快速傅立叶变换FOLZ first-order Laue zone 一阶劳埃区FSE fast secondary electronFTP file transfer protocol 文件传输协议FWHM full width at half maximum 半极大处全宽度半峰全宽FWTM full width at tenth maximum GB grain boundary 晶界GCS generalized cross sectionGIF Gatan image filter Gantan图像过滤GOS generalüed oscillator strengthHAADF high-angle annular dark field 高角环形暗场HOLZ higher-order Laue zone 高阶劳埃区HPGe high-purity germanium 高纯GeHRTEM high-resolution transmission electron microscope/microscopy 高分辨透射电子显微镜/学HV high vacuum 高真空HVEM high voltage electron microscope/microscopy 高压电子显微镜/学IDB inversion domain boundary 反相畴界IEEE International Electronics and Electrical Engineering IG intrinsic GeIVEM intermediate voltage electron microscope/microscopy 中等电压电子显微镜/学K-M Kossel-MöllenstedtLEED low-energy electron diffraction 低能电子衍射LLS linear least-squares 线性最小二乘LUT look-up table 对照表MC minimum contrast 最小衬度MCA multichannel analyzer 脉冲高度分析仪MDM minimum detectable mass MLS multiple least-squares MMF minimum mass fractionMSDS material safety data sheetsNCEMSS National Center for Electron Microscopy simulation system NIH National Institutes of He althNIST National Institute of Standards and Technology OR orientation relationshipOTEDP oblique-textured electron diffraction pattern PB phase boundary 相界P/B peak-to-background ratio 峰背比PEELS parallel electron energy-loss spectrometer/spectroscopy 并联电子能量损失谱仪/学PIMS Precision Ion-Milling System PIPS Precision Ion-Polishing System PM photomultiplier 光电倍增器POA phase-object approximation 相位物近似QHRTEM quantitative high-resolution transmission electron microsc.定量高分辨透射电子显微学RB translation boundary (yes, it does!) RCP rocking-beam channeling patterns RDF radial distribution functionREM reflection electron microscope/microscopy 反射电子显微镜/学RHEED reflection high-energy electron diffraction 反射高能电子衍射RHF relativistic Hartree-FockRHFS relativistic Hartree-Fock-Slater SAD selected-area diffraction 选区衍射SE secondary electron 二次电子SEELS serial electron energy-loss spectrometer/spectrometry 串联电子能量损失谱仪/学SEM scanning electron microscope/microscopy 扫描电子显微镜/学 SF stacking fault 堆垛层错SHRLI simulated high-resolution lattice images 程序的名称SIMS secondary ion mass spectrometry S/N signal-to-noise ratio 信噪比SOLZ second-order Laue zone 二阶劳埃区SRM standard reference materialSTEM scanning transmission electron microscope/microscopy 扫描透射电子显微镜/学 STM scanning tunneling microscope/microscopy 扫描隧道电子显微镜/学TB twin boundary 挛晶界TEM transmission electron microscope/microscopy 透射电子显微镜/学TMBA too many bloody acronyms UHV ultrahigh vacuum 超高真空UTW ultra thin window 超薄窗口V/F voltage to frequency (converter)VLM visible-light microscope/microscopy WB weak beam 弱束WBDF weak-beam dark field 弱束暗场WDS wavelength-dispersive WP whole pattern 全图WPOA weak-phase object approximation 弱相位物近似XANES X-ray absorption near-edge structure X射线吸收近边结构XEDS X-ray energy-dispersive spectrometer X射线能量色散谱仪XRD X-ray diffraction X射线衍射YBCO yttrium-barium-copper oxide 钇钡铜氧YAG yttrium-aluminum garnet 钇铝石榴石ZAF atomic number, absorption, fluorescence correction ZAP zone-axis patternZOLZ zero-order Laue zone 零阶劳埃区ALCHEMI atom location by channeling-enhanced microanalysis 原子位置通道增强微分析ATW atmospheric thin window 对应于超薄窗,大概是常压薄窗BZB Brillouin-zone boundary 布里渊区界CB coherent bremsstrahlung 相干韧致辐射EBIC electron beam-induced current/conductivity 应该是电子束诱导电流/导电性ELP energy-loss program (Gatan) 能量损失程序(Gatan公司)EMMA electron microscope microanalyzer 电子显微微分析仪EPMA electron probe microanalyzer 电子探针微分析仪ESCA electron spectroscopy for chemical analysis 化学分析的电子能谱(也就是常见的XPS仪) ESI electron spectroscopic imaging 电子谱成像FSE fast secondary electron 不知道:快速二次电子?FWTM full width at tenth maximum 半高宽吧IEEE International Electronics and Electrical Engineering 著名学会:国际电子和电气工程IG intrinsic Ge 只知道intrinsic是内能 K-M Kossel-Möllenstedt 会聚束衍射的一种花样?MDM minimum detectable mass 最小探测量?MMF minimum mass fraction 最小质量分数?MSDS material safety data sheets 材料安全数据表NCEMSS National Center for Electron Microscopy simulation system 电子显微学模拟系统国家中心 NIH National Institutes of Health 美国国家健康研究所NIST National Institute of Standards and Technology 美国国家标准和技术研究所OR orientation relationship 人际导向?猜的OTEDP oblique-textured electron diffraction pattern 斜纹电子衍射花样?PIMS Precision Ion-Milling System 精密粒子减薄系统PIPS Precision Ion-Polishing System 精密离子抛光系统RB translation boundary (yes, it does!)这个似乎是搞笑的,不懂:传递界面?有双重含义 RDF radial distribution function 径向分布函数SIMS secondary ion mass spectrometry 二次离子质谱SRM standard reference material 标准参考材料TMBA too many bloody acronyms这个意思很怪,尤其bloody是粗话,直接翻译是:贼多的首字母省略语V/F voltage to frequency (converter) 电压到频率转换器?VLM visible-light microscope/microscopy 可见光显微镜/显微学也就是光学显微镜WDS wavelength-dispersive 波长散射谱(这里少了spectrum或者spectrometer) WWW World Wide Web 互联网,也叫万维网,^_^ZAF atomic number, absorption, fluorescence correction能谱里的校正模式,原子序数(Z)吸收(A)荧光(F)校正。
reaxff
reaxffReaxFF是密度泛函理论(DFT)的一类拟谱泛函,它源自反应势(ReaxFF)。
它引入12个参数来描述原子间势能,这些参数可以通过遵循一系列详细的结构优化程序来确定。
ReaxFF试图建立一个简单的可拓展的势垒数据,它可以应用于材料的任何温度,厚度和形状的范围。
这个理论可以应用到混合离子和电离对流体中的液体、固体和等离子体,它提供了更多细节深入研究;还可以应用于蛋白质和催化剂表面,可以精确预测材料的性能。
当计算机处理液体时,ReaxFF有很大的优势。
由于ReaxFF处理原子间势能更加精确,因此它能够预测分子部分的精确结构,而这也是计算机处理液体时使用的最重要的因素。
ReaxFF的最大优势在于它可以模拟连续液体的流动行为,即使是复杂的液体,ReaxFF也可以得出更加准确的结果。
另外,它还可以模拟固体的力学性质,如抗压强度和模量。
此外,ReaxFF也为化学和物理研究提供了巨大的帮助,可以清楚了解原子间的相互作用,对原子间冲突、化合物的反应机理以及势能面的构型和钝化作用有更深入的见解。
ReaxFF的主要优势在于,它可以让学者们以较低的时间和代价获得可用于生产的精度结果,这让实验室的实践成为可能。
ReaxFF的模型和方法被广泛用于,比如用于模拟磨损行为、减小材料疲劳、对多体性质进行多尺度建模等等。
可以在不同条件下使用ReaxFF来预测材料的性能,即使在厚度和温度变化的情况下也可以用ReaxFF来模拟多种材料的性质。
ReaxFF算法和方法广泛用于材料科学,新材料发展,固体表面动力学,固体催化等研究中,用于研究材料力学性质、表面曲面和形状和润滑性能等。
总之,ReaxFF是一种强大的拟谱泛函,它可以以更精确的方式描述物理和化学系统,并可以模拟原子间的势能,以进行有用的科学研究。
ReaxFF通过引入12个参数来描述原子间的势能。
纹理物体缺陷的视觉检测算法研究--优秀毕业论文
摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II
反卷积层英语缩写
反卷积层英语缩写Here is an English essay on the topic of "Deconvolution Layer Abbreviation" with more than 1000 words, as requested:Deconvolution is a fundamental concept in the field of signal processing and image analysis. It is a technique used to recover the original signal or image from a distorted or blurred version. In the context of deep learning, deconvolution, also known as transposed convolution, is a crucial component of various neural network architectures, particularly those involved in tasks such as image segmentation, super-resolution, and image generation.The abbreviation for deconvolution layer is "deconv" or "transposed conv." These terms are used interchangeably in the deep learning community to refer to the same underlying operation. Deconvolution layers are often employed in the decoder or upsampling part of encoder-decoder architectures, where they are responsible for reconstructing the original spatial dimensions of the input data.The primary purpose of a deconvolution layer is to undo the effect of a previous convolution operation. In a standard convolution, the input feature map is transformed by applying a set of learnablefilters, resulting in a smaller output feature map. This reduction in spatial size is often necessary for tasks that require extracting high-level features from the input data. However, in certain applications, such as image segmentation or image generation, it is necessary to restore the original spatial dimensions of the feature maps. This is where deconvolution layers come into play.Deconvolution layers work by essentially reversing the convolution operation. They take a smaller input feature map and expand it to a larger output feature map, effectively "deconvolving" the input. This is achieved by applying a set of learnable transposed convolution filters, which are essentially the transpose of the original convolution filters. The transposed convolution operation can be thought of as a convolution operation with the input and output feature maps swapped, and the filter kernel flipped both horizontally and vertically.One of the key advantages of deconvolution layers is their ability to effectively upsample the feature maps, thereby increasing the spatial resolution of the output. This makes them particularly useful in tasks where high-resolution output is desired, such as image super-resolution or semantic segmentation. By stacking multiple deconvolution layers, the network can gradually increase the spatial dimensions of the feature maps, effectively reconstructing the original input.However, the use of deconvolution layers is not without its challenges. One common issue is the presence of checkerboard artifacts in the output, which can be caused by the transposed convolution operation. These artifacts can be mitigated by using alternative upsampling techniques, such as bilinear interpolation or learnable upsampling layers.Another challenge is the potential for the deconvolution layers to introduce a shift in the output feature maps relative to the input. This shift can be problematic in certain applications, such as pixel-wise prediction tasks, where accurate spatial alignment is crucial. To address this issue, researchers have proposed various techniques, such as the use of padding or the incorporation of additional spatial transformation layers.Despite these challenges, deconvolution layers have proven to be invaluable in a wide range of deep learning applications. They have been successfully used in various network architectures, including fully convolutional networks (FCNs), encoder-decoder models, and generative adversarial networks (GANs). In these architectures, deconvolution layers play a crucial role in the upsampling and reconstruction of the output, enabling the networks to generate high-quality, spatially-aware predictions.In conclusion, deconvolution layers, or transposed convolution layers,are an essential component in deep learning, particularly for tasks that require the restoration of spatial dimensions or the generation of high-resolution outputs. While they come with their own set of challenges, such as the potential for checkerboard artifacts and spatial shifts, ongoing research and advancements in the field continue to refine and improve the use of deconvolution layers in various deep learning applications.。
新型部分耗尽SOI器件体接触结构
新型部分耗尽SOI器件体接触结构宋文斌,毕津顺,韩郑生(中国科学院微电子研究所,北京100029)摘要:提出了一种部分耗尽S OI MOSFET体接触结构,该方法利用局部SI MOX技术在晶体管的源、漏下方形成薄氧化层,采用源漏浅结扩散,形成体接触的侧面引出,适当加大了Si膜厚度来减小体引出电阻。
利用ISE2T C AD三维器件模拟结果表明,该结构具有较小的体引出电阻和体寄生电容、体引出电阻随器件宽度的增加而减小、没有背栅效应。
而且,该结构可以在不增加寄生电容为代价的前提下,通过适当的增加Si膜厚度的方法减小体引出电阻,从而更有效地抑制了浮体效应。
关键词:绝缘体上硅;浮体效应;体接触;寄生电容;体电阻中图分类号:T N386 文献标识码:A 文章编号:10032353X(2008)1120968204N ovel Body2Contact Structure Technology for P artiallyDepleted SOI MOSFETS ong Wenbin,Bi Jinshun,Han Zhengsheng(Institute o f Microelectronics o f Chinese Academy o f Sciences,Beijing100029,China)Abstract:A novel body contact technique for partially depleted S OI MOSFET was proposed.T w o thin buried2oxide layers under s ource/drain on a S OI chip were formed near the Si surface with low dose and low energy local SI MOX technology.And a body2under2s ource structure is easy to be formed because of the shallow s ource/drain junction depth in this structure,which has a thick Si film.From ISE2T C AD32D simulation results,this structure has little body resistance and body parasitic capacitance and has no back2gate effect.The body resistance decreases as channel width is increasing.Above all,this structure can reduce body resistance to suppress floating body2effect significantly by increasing Si film thickness,without affecting the parasitic capacitance.K ey w ords:S OI(Si on insulator);floating body effect;body contact;parasitic capacitance;body resistanceEEACC:2570D0 引言S OI技术带来器件和电路性能提高的同时也不可避免地带来了不利的影响,其中最大的问题在于部分耗尽S OI器件的浮体效应。
量子化学中的主要近似
量子化学中的主要近似量子化学中的主要近似:1. 单Slater行列式近似2. 自洽场近似3. MO-LACO近似各种近似表示列表:零级一级高级1. 波函数单slater行列式多行列式稳定分子 CI CASSCF2. Hamilton量 HF MP2,MP4 QCISD CASPT2RHF,UHF CCSD3. DFT 局域密度近似(LDA) GGA(B3LYP,BLYP,PBE)4. MO-LCAO STO-3G 6-31g系列 aug-cc-pVDZ系列密度泛函中的单Slater行列式密度泛函中的单Slater行列式1.密度泛函的波函数是无相互作用的波函数,仅仅是为得到电子密度而引入r(r)=|y(r)*y(r)|2.绝大多数情况下只需要单Slater行列式3.含过渡金属体系的计算,可引入非整数电子填充方式,即按照能量的指数衰减函数把电子填入轨道,比如HOMO 填1.6,LUMO填0.4个电子等等Hamilton量的近似Hamilton量的近似1.Schrodinger方程是多体作用的方程,其Hamilton算符H是多体相互作用的算符。
2. Hatree-Fock算符F是单电子算符。
核与其它电子对它的作用都用一个等效势能来代替。
3.单电子的Schrodinger方程是可以计算的。
4.要使整个多电子体系在单电子“各自为政”情况下合理共存,要使用自洽场(SCF)方法密度泛函理论密度泛函理论(DFT)的近似1 基本原理:体系的基态能量由密度唯一确定。
2 基本方程:Kohn-Sham方程3 E[r(r)]=E动能[r(r)]+E静电[r(r)]+EXC[r(r)]4 动能项和静电项都与HF方法一样,不同之处在于交换相关项EXC[r(r)]交换相关泛函1 局域密度近似(LDA):EXC[r(r)]2 梯度校正(GGA): EXC[r (r), Ñ r (r) ]3 梯度校正并未增加很多计算量,因此一般都使用到梯度校正4 常用泛函有:B3LYP(杂化),BLYP,PBE5 所有泛函都包含几个经验参数,由小分子拟合得到。
Tikhonov吉洪诺夫正则化
Tikhonov regularizationFrom Wikipedia, the free encyclopediaTikhonov regularization is the most commonly used method of regularization of ill-posed problems named for Andrey Tychonoff. In statistics, the method is also known as ridge regression . It is related to the Levenberg-Marquardt algorithm for non-linear least-squares problems.The standard approach to solve an underdetermined system of linear equations given as,b Ax = is known as linear least squares and seeks to minimize the residual2b Ax -where ∙is the Euclidean norm. However, the matrix A may be ill-conditioned or singular yielding a non-unique solution. In order to give preference to a particular solution with desirable properties, the regularization term is included in this minimization:22x b Ax Γ+-for some suitably chosen Tikhonov matrix , Γ. In many cases, this matrix is chosen as the identity matrix Γ= I , giving preference to solutions with smaller norms. In other cases, highpass operators (e.g., a difference operator or aweighted Fourier operator) may be used to enforce smoothness if the underlying vector is believed to be mostly continuous. This regularization improves the conditioning of the problem, thus enabling a numerical solution. An explicit solution, denoted by , is given by:()b A A A x T T T 1ˆ-ΓΓ+=The effect of regularization may be varied via the scale of matrix Γ. For Γ= αI, when α = 0 this reduces to the unregularized least squares solution provided that (A T A)−1 exists.Contents∙ 1 Bayesian interpretation∙ 2 Generalized Tikhonov regularization∙ 3 Regularization in Hilbert space∙ 4 Relation to singular value decomposition and Wiener filter∙ 5 Determination of the Tikhonov factor∙ 6 Relation to probabilistic formulation∙7 History∙8 ReferencesBayesian interpretationAlthough at first the choice of the solution to this regularized problem may look artificial, and indeed the matrix Γseems rather arbitrary, the process can be justified from a Bayesian point of view. Note that for an ill-posed problem one must necessarily introduce some additional assumptions in order to get a stable solution. Statistically we might assume that a priori we know that x is a random variable with a multivariate normal distribution. For simplicity we take the mean to be zero and assume that each component is independent with standard deviation σx. Our data is also subject to errors, and we take the errors in b to bealso independent with zero mean and standard deviation σb. Under these assumptions the Tikhonov-regularized solution is the most probable solutiongiven the data and the a priori distribution of x, according to Bayes' theorem. The Tikhonov matrix is then Γ= αI for Tikhonov factor α = σb/ σx.If the assumption of normality is replaced by assumptions of homoskedasticity and uncorrelatedness of errors, and still assume zero mean, then theGauss-Markov theorem entails that the solution is minimal unbiased estimate.Generalized Tikhonov regularizationFor general multivariate normal distributions for x and the data error, one can apply a transformation of the variables to reduce to the case above. Equivalently, one can seek an x to minimize22Q P x x b Ax -+- where we have used 2P x to stand for the weighted norm x T Px (cf. theMahalanobis distance). In the Bayesian interpretation P is the inverse covariance matrix of b , x 0 is the expected value of x , and Q is the inverse covariance matrix of x . The Tikhonov matrix is then given as a factorization of the matrix Q = ΓT Γ(e.g. the cholesky factorization), and is considered a whitening filter. This generalized problem can be solved explicitly using the formula()()010Ax b P A Q PA A x T T -++-[edit] Regularization in Hilbert spaceTypically discrete linear ill-conditioned problems result as discretization of integral equations, and one can formulate Tikhonov regularization in the original infinite dimensional context. In the above we can interpret A as a compact operator on Hilbert spaces, and x and b as elements in the domain and range of A . The operator ΓΓ+T A A *is then a self-adjoint bounded invertible operator.Relation to singular value decomposition and Wiener filterWith Γ = αI , this least squares solution can be analyzed in a special way via the singular value decomposition. Given the singular value decomposition of AT V U A ∑=with singular values σi , the Tikhonov regularized solution can be expressed asb VDU x T =ˆwhere D has diagonal values22ασσ+=i iii Dand is zero elsewhere. This demonstrates the effect of the Tikhonov parameter on the condition number of the regularized problem. For the generalized case a similar representation can be derived using a generalized singular value decomposition. Finally, it is related to the Wiener filter:∑==q i i i T i i v b u f x1ˆσ where the Wiener weights are 222ασσ+=i i i f and q is the rank of A . Determination of the Tikhonov factorThe optimal regularization parameter α is usually unknown and often in practical problems is determined by an ad hoc method. A possible approach relies on the Bayesian interpretation described above. Other approaches include the discrepancy principle, cross-validation, L-curve method, restricted maximum likelihood and unbiased predictive risk estimator. Grace Wahba proved that the optimal parameter, in the sense of leave-one-out cross-validation minimizes: ()()[]21222ˆT T X I X X X I Tr y X RSSG -+--==αβτwhereis the residual sum of squares andτ is the effective number degreeof freedom. Using the previous SVD decomposition, we can simplify the above expression: ()()21'22221'∑∑==++-=q i i i i qi i iu b u u b u y RSS ασα ()21'2220∑=++=qi i i i u b u RSS RSS ασαand ∑∑==++-=+-=q i i qi i i q m m 12221222ασαασστ Relation to probabilistic formulationThe probabilistic formulation of an inverse problem introduces (when all uncertainties are Gaussian) a covariance matrix C M representing the a priori uncertainties on the model parameters, and a covariance matrix C D representing the uncertainties on the observed parameters (see, for instance, Tarantola, 2004[1]). In the special case when these two matrices are diagonal and isotropic,and , and, in this case, the equations of inverse theory reduce to the equations above, with α = σD/ σM.HistoryTikhonov regularization has been invented independently in many different contexts. It became widely known from its application to integral equations from the work of A. N. Tikhonov and D. L. Phillips. Some authors use the term Tikhonov-Phillips regularization. The finite dimensional case was expounded by A. E. Hoerl, who took a statistical approach, and by M. Foster, who interpreted this method as a Wiener-Kolmogorov filter. Following Hoerl, it is known in the statistical literature as ridge regression.[edit] References∙Tychonoff, Andrey Nikolayevich (1943). "Об устойчивости обратных задач [On the stability of inverse problems]". Doklady Akademii NaukSSSR39 (5): 195–198.∙Tychonoff, A. N. (1963). "О решении некорректно поставленных задач и методе регуляризации [Solution of incorrectly formulated problemsand the regularization method]". Doklady Akademii Nauk SSSR151:501–504.. Translated in Soviet Mathematics4: 1035–1038.∙Tychonoff, A. N.; V. Y. Arsenin (1977). Solution of Ill-posed Problems.Washington: Winston & Sons. ISBN 0-470-99124-0.∙Hansen, P.C., 1998, Rank-deficient and Discrete ill-posed problems, SIAM ∙Hoerl AE, 1962, Application of ridge analysis to regression problems, Chemical Engineering Progress, 58, 54-59.∙Foster M, 1961, An application of the Wiener-Kolmogorov smoothing theory to matrix inversion, J. SIAM, 9, 387-392∙Phillips DL, 1962, A technique for the numerical solution of certain integral equations of the first kind, J Assoc Comput Mach, 9, 84-97∙Tarantola A, 2004, Inverse Problem Theory (free PDF version), Society for Industrial and Applied Mathematics, ISBN 0-89871-572-5 ∙Wahba, G, 1990, Spline Models for Observational Data, Society for Industrial and Applied Mathematics。
固体物理专业术语
弹性模量 Elastic module 弹性动力学方程 Elastic-dynamics equation
玻尔兹曼方程 Boltzman equation 点群 Point groups
迪. 哈斯-范. 阿耳芬效应 De Hass-Van Alphen effect
胡克定律 Hooke’s law 氢键 Hydrogen bond
亲合势 Affinity 重迭排斥能 Overlap repulsive energy
能带的扩展能区图式
Extended zone scheme of energy band 配分函数 Partition function 准粒子 Quasi- particle 准动量 Quasi- momentum 准自由电子近似
Nearly free electron approximation
空间群 Space group 空位 Vacancy
范德瓦耳斯相互作用 Van der Waals interaction
金属性结合 Metallic binding 单斜晶系 Monoclinic system 单电子近似 Single-erection approximation 极化声子 Polarization phonon 拉曼散射 Raman scattering
对称操作 Symmetry operation 对称群 Symmetric group
正交化平面波 Orthogonalized plane wave 电子-晶格相互作用 Electron-lattice interaction
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fig. 1: An object with Properties of 0-1 matrices with given row and column its row and column sums.
The main contribution of this paper is an O (mn min(m2 , n2 ))-time algorithm for reconstructing hv-convex polyominoes. Our algorithm is several orders of magnitude faster than the best previously known algorithm from [2], and is also much simpler than the algorithms from [2,3,8]. In addition, we address a special case of centered hv-convex polyominoes, in which ri = n for some i. In other words, at least one row is completely filled with cells. For this case we show that the reconstruction problem can be solved in time O (m + n).
1
Research supported by NSF grant CCR-9503498.
Article published in Information Prcessing Letters 69 (1999) 283–291
Given two integer vectors r = (r1 , . . . , rm ) and c = (c1 , . . . , cn ), a realization of (r, c) is an object T whose row and column sum vectors are r and c, that is: rowsum (T ) = r and colsum (T ) = c. In the reconstruction problem , given (r, c), we wish to find a realization r T of (r, c), or to report failure if such T does not exist. The corresponding decision problem is called the consistency problem.
c 2 1 3 3 4 1 4 1 2 6 3 3 3
sums have been studied in the literature since 1950’s. We refer the reader to the work of Ryser [9], or to an excellent survey by Brualdi [4]. Ryser presents an O (mn) algorithm for the reconstruction problem. In fact, the realizations constructed by his algorithm can be represented and computed in time O (m + n). For many objects, the orthogonal projections do not provide sufficient information for unique reconstruction. In this case, additional information about the object’s structure could either lead to a unique realization, or at least substantially reduce the number of alternative solutions. Some research has been done on polyominoes , which are connected objects. More formally, we associate with an object T a graph, whose vertices are the cells of T , and edges join adjacent cells: ((i, j ), (i′ , j ′ )) is an edge iff |i − i′ | + |j − j ′ | ≤ 1. If this graph is connected, then T is called a polyomino. Woeginger [10] proved that the consistency problem for polyominoes is NP-complete. Some geometric properties of polyominoes have been studied too. Call an object T horizontally convex (or h-convex ) if the cells in each row i of T are consecutive, that is, if (i, k ), (i, l) ∈ T then (i, j ) ∈ T for all k ≤ j ≤ l. Vertically convex (v-convex) objects are defined analogously. The consistency problem for h-convex objects (whether we require that they are polyominoes or not) is also known to be NP-complete [2]. If T is both h-convex and v-convex, then we say that T is hv-convex. Kuba [8] initiated the study of hv-convex polyominoes and proposed a reconstruction algorithm with exponential worst-case time complexity. Quite surprisingly, as shown later by Barcucci et al [2], the reconstruction problem for hv-convex polyominoes can be solved in polynomial time. The algorithm given in [2] is, however, rather slow; its time complexity is O (m4 n4 ). In another paper, Barcucci et al. [3] showed that certain “median” cells of (r, c) must belong to any hv-convex polyomino realization, and, using this result, they developed an O (m2 n2 )-time heuristic algorithm. This new algorithm is not guaranteed to correctly reconstruct an object, although the experiments reported in [3] indicate that for randomly chosen inputs this method is very unlikely to fail. 284
of Computer Science, University of California, Riverside, CA 92521-0304. marek@
Computer Science Institute, 1947 Center Street, Suite 600, Berkeley, CA 94704-1198. cduerr@
Reconstructing hv-Convex Polyominoes from Orthogonal Projections
Marek Chrobak a,1 Christoph D¨ urr b
arXiv:cs/9906021v1 [cs.DS] 22 Jun 1999
a Department b International
Hale Waihona Puke Key words: Combinatorial problems, discrete tomography, polyominoes.
1
Introduction
Tomography is the area of reconstructing objects from projections. In discrete tomography an object T we wish to reconstruct may be a set of cells of a multidimensional grid. We perform measurements of T , each one involving a projection that determines the number of cells in T on all lines parallel to the projection’s direction. Given a finite number of such measurements, we wish to reconstruct T or, if unique reconstruction is not possible, to compute any object consistent with these projections. Gardner et al. [7] proved that deciding if there is an object consistent with given measurements is NP-complete, even for three non-parallel projections in the 2D grid. In this paper we address the case of orthogonal (horizontal and vertical) projections of a 2D grid. A given object T , defined as a set of cells in a m × n grid, can be identified with an m × n 0-1 matrix, where the 1’s determine the cells of T . We will use all three notations: set-theoretic, integer and boolean, whichever is most appropriate in a given context. The row and column sums of an object T are defined by rowsum i (T ) = j Ti,j for i = 1, . . . , m and colsum j (T ) = i Ti,j for j = 1, . . . , n. The vectors rowsum (T ) and colsum (T ) represent the horizontal and vertical projections of T . (See Figure 1.)