人教版初三数学公式法解一元二次方程
人教版初三数学公式法解一元二次方程
一元二次方程
ax2 bx c 0
a 0, b
的求根公式
2
4ac 0
x
b
b 2 4ac 2a
a 0
用这种方法解一元二次方程的 方法叫做公式法.
三、用公式法解一元二次方程
例1、解方程
解:
2 x 5x 3 0
2
a 2, b 5, c 3
二、公式的推导
ax 2 bx c 0
解:
a 0
b c x 0 a a
a
2
a 0
x2
移项得: x 2 b x c
a
2
b b c b 2 配方得: x x a 2 a a 2 a
即:
2 x b b 4ac a 4a 2 2
例2解方程 12 x 2 3x 2 0
解:
a 2, b 3, c 2
b 4ac 3 4 2 2
2
2
3 25 3 5 x 4 22
1 即:x1 2, x2 2
9 16 注意符号 25
2 x b b 4ac a 4a 2
2
4a 2 0
2 b b 4ac 2 当b 4ac 0时, x 2a 4a 2
b b 2 4ac 即: x 2a 2a
b2 4ac 2a
b b 2 4ac x 2a 2a b b 2 4ac 即: x 2a
x1 x2
b b 2 4ac b b 2 4ac 2a 2a
九年级数学人教版第二十一章一元二次方程21.2.3公式法解方程(同步课本图文结合详解)
x-6.8
九年级数学上册第21章一元二次方程
通过本课时的学习,需要我们掌握: 1.由配方法解一般形式的一元二次方程 ax2+bx+c=0 (a≠0),若 b2-4ac≥0得求根公式:
x b b2 4ac 2a
2.会熟练应用公式法解一元二次方程.
x b b2 4ac (a≠0, b2-4ac≥0) 2a
否则原方程无解. 4、写出方程的解: x1=?, x2=?
九年级数学上册第21章一元二次方程
1.(无锡·中考)关于x的方程(a -5)x2-4x-1=0有实数 根,则a满足( ) A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 【解析】选A.当a-5=0时,有实数解x= 1 ,此时a=5;当
x2 2 3x 3 0
这里 a=1, b= 2 3 , c= 3.
∵b2 - 4ac=( 2 3 )2 - 4×1×3=0,x 2来自3 210
23 2
3,
即:x1= x2= 3
九年级数学上册第21章一元二次方程
2、解方程:(x-2)(1-3x)=6. 【解析】去括号:x-2-3x2+6x=6
4
a 5 0 时,应满足 b2 4ac 16 4(a 5) 0 ,解得a≥1,综上所
述a≥1.
九年级数学上册第21章一元二次方程
2.(烟台·中考)方程x2-2x-1=0的两个实数根分别为x1,x2, 则 (x1-1)(x2-1)=______. 【解析】由求根公式可得方程x2-2x-1=0的两个实数根 为 x1 1 2 ,x2 1 2 ,所以
2
2
(4)配方、用直接开平方法解方程.
(x+ p )2= p2 -q 24
人教版初三数学上册解一元二次方程——公式法
21.2解一元二次方程――公式法教学内容2122公式法教学目标1 •理解一元二次方程求根公式的推导过程. 2•了解公式法的概念.教学重点一元二次方程求根公式的推导. 教学难点一元二次方程求根公式的推导. 教学过程 一、导入新课总结用配方法解一元二次方程的步骤:1. 移项;2. 化二次项系数为1;3•方程两边都加上一次项系数的一半的平方; 4.原方程变形为(x + n)2= p 的形式;5•如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元 次方程无解.、新课教学如果这个一元二次方程是一般形式 ax 2 + bx + c = 0(0),能否也用配方法的步骤求出方程的解呢?教师引导学生分析、讨论,然后师生共同推导一元二次方程的求根公式. 已知 ax 2 + bx + c = 0 (0),移项,得2ax + bx = —c .二次项系数化为1,得2 Ibcx + x =——•aa配方,得2丄b「b 丫x +x +=—c + Ia 2aa 2a因为0,所以4a 2> 0,式子b 2— 4ac 的值有以下三种情况: (1) b 2— 4ac > 02ab 2 -4ac 4a 2b X 1 = x 2 =2a(3) b 2— 4ac v 0Z b >2不能使 x+—— v 0,因此方程无实数根.l 2a 丿一般地,式子b 2 — 4ac 叫做一元二次方程 ax 2 + bx + c = 0根的判别式,通常用希腊字母 "△” 表示它,即 △= b 2— 4ac .归纳:由上可知,当 △> 0时,方程ax 2 + bx + c = 0 (0)有两个不等的实数根;当 △ =0时,方程ax 2 + bx + c = 0 (0)有两个相等的实数根;当 △<0时,方程ax 2 + bx + c = 0 (a 丰0)无实数根.当0时,方程ax 2 + bx + c = 0 (0)的实数根可写为- b b 2 - 4acx =2a的形式,这个式子叫做一元二次方程 ax 2 + bx + c = 0的求根公式,利用求根公式解一元二次方程的方法叫做公式法.三、巩固练习教材第12页练习1第(1) (2)题.这时『-4ac4a 2b 2 -4ac 4a 2x 2+ 匕=±2a、b 2 4ac2a方程有两个不等的实数根-b . b 2 -4acX 1 =2aX 2=2-b- b -4ac2a(2) b 2— 4ac = 0这时b 2 -4ac 4a 2b 2 -4ac2a4a 2可知,方程有两个不等的实数根这时b 2-4ac 4a 2b 2-4ac2a4a 2可知b \2x茲v 。
人教版初三数学用公式解一元二次方程
x2 2 0 2 2 2
2
2
x1 x2 2
注意: 这个方程有两个相等的实数根.
例4 解方程 x2 x 1 0 (精确到0.01)
解 a 1,b 1,c 1
1 12 4 1 (1) x
九年义务教育三年制初级中学教科书
代数
DAISHU
第三册
用公式解 一元二次方程
人民教育出版社中学数学室 编著
1、使学生掌握一元二次方程求根公式的推导。 2、使学生能够熟练地运用求根公式解一元二次方程。
1. 用配方法解方程 x2 3x 2 0
x2 3x 2 0
解 移项,得 x2 3x 2
进行求值(或化简)运算.要注意计算不要出错, 特别是a,b, c 为负值时, 一定要带着符号计算.
2.这里的b2 4ac 0是作为公式的一部分处理的.这就是说, 运用求根公式求解前,先求b2 4ac. (1)当b2 4ac 0时,方程有实数解,可以继续把根求出; (2)当b2 4ac 0时,方程没有实数解,就不必再代入公 式了.
例1 解方程 x2 3x 2 0
解 a 1,b 3,c 2
b2 4ac (3)2 4 1 2 1 0
x (3) 1 3 1
2
2
x1 2, x2 1
注意 确定a,b,c 的值是,要注意符号,这里的b应为-3
例2 解方程 2x2 7x 4
移项 x2 b x c aa
x2 b x ( b )2 c ( b )2
a 2a
a 2a
(x
人教版初三数学上册解一元二次方程---公式法
x121,1 x221.1
结论:当 △ b24a> c0 时,一元二次方程有两个不 相等的实数根.
例.解下列方程.
(2)2x222x10;
解a: 2,b22,c1
Δ b 2 4 a c ( 22 )2 4 2 1 0
,
下列说法正确的是( )
A.方程有两个相等的实数根
B.方程有两个不相等的实数根
C.没有实数根
D.无法确定
1、关于x的一元二次方程 x22xm0
有两个实根,则m的取值范围是。
b 2 4 a (c 2 )2 4 1 m 4 4 m 0
∴ m1
注意:一元二次方程有实根,说明方程 可能有两个不等实根或两个相等实根的 两种情况。
因此方程无实数根 .
一般地,b式 2 4子 ac叫做方程 ax2 bxc0(a0)根的判别式, 通常用希腊Δ表 字示 母,Δ即 b2 4ac.
2.利用求根公式解一元二次方程的方 法叫做公式法.
例.解下列方程.
(1)x24x70;
解a : 1,b4,c7
Δ b 2 4 a (c 4 )2 4 1 ( 7 ) 4> 0 4
x (2 2)0 22
x1 x2
2. 2
结论:当 △ b24a c0时,一元二次方程有两个
相等的实数根.
例.解下列方程.
(3)5x23xx1;
解 5x: 24x10
a5,b4,c1
Δ b 2 4 a c ( 4 )2 4 5 ( 1 ) 36
1、这节课你获得了哪些知识与方法?
2、这节课你在解决问题的过程中,有 哪些易错点?
3、这节课你还有哪些疑惑未解决?
人教版数学九年级上册《解一元二次方程》(公式法)
解一个具体的一元二次方程时,把各系数直接代入求根公式,可以避免配方过 程而直接得出根,这种解一元二次方程的方法叫做公式法.
公式法解一元二次方程的步骤
①把方程化为一般形式,确定a、b、c的值(若系数是分数通常将其化为整数,方 便计算); ②求出b2-4ac的值,根据其值的情况确定一元二次方程是否有解; ③如果b2-4ac≥0, 将a、b、c的值代入求根公式:
x1 b
b2 2a
4ac
,
x2
b
b2 4ac ; 2a
探究
因为a≠0,4a2>0,式子b2-4ac的值不确定,需分情况讨论: (2)若b2﹣4ac=0
将①直接开平方,得
=0
此时,方程有两个相等的实数根
x1=x2=﹣
探究
因为a≠0,4a2>0,式子b2-4ac的值不确定,需分情况讨论: (3)若b2﹣4ac<0
探究
此时可以直接开平方吗?需要注意什么?
用配方法解一元二次方程: ax2+bx+c=0(a≠0) 解:移项,得
二次项系数化为1,得
配方,得
你还记得 配方法的步骤吗?
整理后,得
探究
因为a≠0,4a2>0,式子b2-4ac的值不确定,需分情况讨论: (1)若b2﹣4ac>0
将①直接开平方,得
=±
方程有两个不相等的实数根
④最后求出x1,x2
公式法的应用
解:(1)a=1,b=-4,c=-7 Δ=b2-4ac=(-4)2-4×1×(-7)=44>0
方程有两个不等的实数根
注意a,b,c的符号
公式法的应用
方程有两个相等的实数根
注意a,b,等的实数根
九年级数学人教版(上册)21.2.2公式法解一元二次方程
即
b
b2 4ac
x
2a
2a
特别提醒
b b2 4ac x
2a
一元二次方程 的求根公式
x1 b
b2 2a
4ac
,
x2
b
b2 4ac .
2a
由上可知,一元二次方程 ax2 bx c 0 (a 0).
b
x1
x2
; 2a
(3)当 b2 4ac 0 时,没有实数根。
用公式法解一元二次方程的一般步骤:
1、把方程化成一般形式,并写出 a、b、c 的值。
2、求出 b2 4ac 的值,
注意:当 b2 4ac 0 时,方程无解。 3、代入求根公式: x b b2 4ac
2a
4、写出方程的解: x1、x2
师生互动 巩固新知
1 3x2 6x 2 0
解: a 3,b 6, c 2.
b2 4ac 62 4 3 2 60.
x 6 60 6 2 15 3 15 ,
6
6
3
x1
3 3
15
,
x2
3 15 3
.
2 4x2 6x 0
解: a 4,b 6, c 0.
b2 4ac 62 4 4 0 36.
x 6 36 6 6 ,
24
8
x1
0,
x2
3. 2
3 x2 4x 8 4x 11
解:化为一般式 x2 3 0 . a 1,b 0, c 3.
b2 4ac 02 41 3 12.
x 0 12 2 3 ,
21
2
x1 3 x2 3
人教版九年级数学上《公式法解一元二次方程》知识全解
《公式法解一元二次方程》知识全解课标要求1.理解公式法,能用公式法解数字系数的一元二次方程.2.会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等.知识结构内容解析1.公式法:一元二次方程20ax bx c ++=(a ≠0)的求根公式为:242b b ac x a --=(240b ac -≥),其中公式中的a 、b 、c 分别是一元二次方程的二次项系数、一次项系数及常数项.我们用求根公式法求一元二次方程解的方法称为公式法.2.求根公式的推导:解:20ax bx c ++= 方程两边都除以a ,得:20b c x x a a++= 配方,得:222()()22b b c b x x a a a a ++=-+ 即:2224()24b b ac x a a-+= 当24b ac -≥0时,开平方得:242b b ac x a ±-+= 所以方程的解是:24b b ac x -±-= 当24b ac -<0时,方程无实数根.⑶用公式法解一元二次方程的一般步骤是:①首先把一元二次方程化为一般形式;②确定公式中a 、b 、c 的值;③求出24b ac -的值;④若24b ac -≥0,则把a 、b 、c 及24b ac -的值代入求根公式即可求解.当24b ac -<0时,此时方程无实数解.注意:⑴求根公式是专指一元二次方程的求根公式,只有方程为一元二次方程时,方可运用求根公式,即20ax bx c ++=中a ≠0.⑵公式中的“24b ac -≥0”是公式成立的一个前提条件.3.一元二次方程20ax bx c ++=(a ≠0)的根的情况由24b ac -来确定,我们把24b ac -叫做一元二次方程20ax bx c ++=(a ≠0)的根的判别式,通常用符号“△”表示,即△=24b ac -.一般地,方程20ax bx c ++=(a ≠0).当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.反过来,有 当方程有两个不相等的实数根时,△>0;当方程有两个相等的实数根时,△=0; 当方程没有实数根时, △<0.注意:一元二次方程根的判别式的应用:①不解方程判别根的情况;②根据方程解的情况确定系数的取值范围.重点难点教学重点:正确、熟练地使用一元二次方程的求根公式解一元二次方程,提高学生的综合运算能力.关键是由特殊的解法(配方法)引导探究一般形式一元二次方程的解的形式展开,利用学生已有的知识,让学生多交流,主动参与到教学活动中来,让学生处于主导地位.通过比较合理的问题设计、小组讨论形式让学生更好的掌握知识.教学难点:正确地推导出一元二次方程的求根公式,理解 b 2-4ac 判别式对一元二次方程根的影响和应用.关键是在教师的指导下,经历观察、推导、交流归纳等活动导出一元二次方程的求根公式和灵活运用根的判别式.教法导引采用启发式、自主探究式的教学方法.教学中力求体现“类比---探究-----归纳”的模式.有计划的逐步展示知识的产生过程,渗透数学思想方法.由于学生配平方的能力有限,所以,本节课借助多媒体辅助教学,由特殊到一般指导学生通过观察与演示,总结配方规律,从而突破难点.同时学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性、活动性和创造性.通过复习回顾,用配方法解一元二次方程的一般步骤,并通过纠正板演同学的解题过程,加深学生的印象;进而复习配方法解一元二次方程的步骤.为了解决“配方法、公式法”谁更好用?很多学生都明白公式法是在配方法上基础上的推导出来,并且有一个通用公式可算,所以学生潜意识已经认为公式法更简单.通过现场测试,很多同学又一次回到首先移项,接着只能用公式法的做法上.其实,在这里学生让没有抓住配方法的精髓.这两题依然是可以用配方法,而且很快就可以解出来.学法建议依照学生的认知规律引导学生从简单的问题中发现规律,在训练内容的选择上考虑到学生接受新旧知识结合的能力:一是以方法为主,采用层层递进的方式,由配方法过渡到公式法解一元二次方程.二是以基本技能为主,而不追求繁难的一元二次方程的解题特殊技巧.在运用不同的方法解一元二次方程时,要具体问题具体分析选择最佳方法合理解题.在精心设计的练习过程中抓住学生问题的症结,培养学生独立分析、理解能力和思考解决问题的能力,提高解题技巧.。
九年级数学人教版(上册)第2课时 用公式法解一元二次方程
(1)求证:关于 x 的“勾系一元二次方程”ax2+ 2cx+b=0 必有 实数根.
解:证明:由题意,得 Δ=( 2c)2-4ab=2c2-4ab.
∵a2+b2=c2, ∴2c2-4ab=2(a2+b2)-4ab=2(a-b)2
≥0,即 Δ≥0.
∴关于 x 的“勾系一元二次方程”ax2+ 2cx+b=0 必有实数 根.
Δ=b2-4ac=(-4)2-4×3×(-1)=28.
x=4±2×328,
x1=2+3
7,x2=2-3
7 .
(4)x(x-4)=2-8x. 解:x2+4x-2=0, a=1,b=4,c=-2,
Δ=b2-4ac=42-4×1×(-2)=24.
x=-42±×1 24, x1=-2+ 6,x2=-2- 6.
Δ=b2-4ac=(-13)2-4×6×6=25.
x=132±×625=131±25, x1=32,x2=23.
(3)3x2-(x+2)2+2x=0. 解:原方程可化为 2x2-2x-4=0, 即 x2-x-2=0. a=1,b=-1,c=-2,
Δ=b2-4ac=1-4×1×(-2)=9.
x=12±×19=1±23, x1=2,x2=-1.
(2)写出此题正确的解答过程.
解:方程化为一般形式,得 x2-5x-1=0. ∵a=1,b=-5,c=-1,
∴Δ=b2-4ac=(-5)2-4×1×(-1)=29.
∴x=5±2
29 .
∴x1=5+2
29,x2=5-2
29 .
5.已知 α 是一元二次方程 x2-x-1=0 较大的根,则下列对 α
的值估计正确的是( B )
1- 17 的值为 2 .
8.用公式法解下列方程: (1)2x(x+ 2)+1=0. 解:原方程可化为 2x2+2 2x+1=0. a=2,b=2 2,c=1,
人教版数学九上解一元二次方程——公式法课件
项有关吗?能否根据这个关系不解方程得出方程的解的情
况呢?
探究新知
【思考】不解方程,你能判断下列方程根的情况吗?
⑴ x2+2x-8 = 0
⑵ x2 = 4x-4
⑶ x2-3x = -3
答案:(1)有两个不相等的实数根;
(2)有两个相等的实数根;
(3)没有实数根.
方法点拨
(1)当 △ b 4ac>0时,一元二次方程有两个不
相等的实数根.
2
(2)当 △ b 4ac 0时,一元二次方程有两个相
2
等的实数根.
(3)当 △ b 2 4ac<0 时,一元二次方程没有实
数根.
探究新知
用公式法解一元二次方程的一般步骤
1. 将方程化成一般情势,并写出a,b,c 的值.
46
2a
25
10
46
46
1
1, x2
10
10
5
探究新知
(4)x2+17=8x
解:原方程可化为x 2 8 x 17 0
a 1, b 8, c 17
△ b 2 4ac (8) 2 4 1 17 4<0
方程无实数根.
探究新知
探究新知
(2)2x2-2 2 x+1=0;
【思考】这里的a、b、c的值分别是什么?
解: a 2, b 2 2, c 1
△ b 2 4ac ( 2 2 ) 2 4 2 1 0
则方程有两个相等的实数根:
x1 x2
b
2 2
2
人教版九年级数学上册21.2解一元二次方程-21.2.2公式法教案
在课程总结时,我强调了理解和掌握一元二次方程的重要性,并鼓励学生们在课后继续思考和练习。从他们的反馈来看,大部分学生对今天的课程内容表示理解,但也有部分学生表示还需要进一步巩固。我计划在下一节课开始时,用一些简单的练习题来复习今天的知识点,确保学生们能够扎实掌握。
2.教学难点
-理解并运用求根公式中根的判别式,判断方程的根的性质;
-在解题过程中,对公式法解一元二次方程的步骤进行熟练操作;
-在应用一元二次方程解决实际问题时,如何将问题抽象成一元二次方程。
举例解释:
-难点一:学生对判别式的理解,包括何时方程有两个不同实数根、何时有两个相同实数根、何时无实数根;
-难点二:在应用求根公式解题时,学生可能会在计算过程中出现错误,如符号错误、计算次序错误等;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元二次方程的基本概念、求根公式、根的判别式以及在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对一元二次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的基本概念。一元二次方程是形如ax^2 + bx + c = 0(a≠0)的方程。它在数学和生活中有着广泛的应用,能够帮助我们解决很多实际问题。
解一元二次方程(公式法4种题型)-2023年新九年级数学核心知识点与常见题型(人教版)(解析版)
解一元二次方程(公式法4种题型)【知识梳理】一、公式引入一元二次方程20ax bx c ++=(0a ≠),可用配方法进行求解:得:2224()24b b acx a a −+=.对上面这个方程进行讨论:因为0a ≠,所以240a >①当240b ac −≥时,22404b aca −≥利用开平方法,得:2b x a += 即:x = ②当240b ac −<时,22404b aca −< 这时,在实数范围内,x 取任何值都不能使方程2224()24b b acx a a−+=左右两边的值相等,所以原方程没有实数根. 二、求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac −≥时,有两个实数根:1x 2x =20ax bx c ++=(0a ≠)的求根公式. 三、用公式法解一元二次方程一般步骤①把一元二次方程化成一般形式20ax bx c ++=(0a ≠); ②确定a 、b 、c 的值;③求出24b ac −的值(或代数式);④若240b ac −≥,则把a 、b 、c 及24b ac −的值代入求根公式,求出1x 、2x ;若240b ac −<,则方程无解.四、 根的判别式1.一元二次方程根的判别式:我们把24b ac −叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆−.2.一元二次方程20(0)ax bx c a ++=≠,当2=40b ac ∆−>时,方程有两个不相等的实数根; 当2=40b ac ∆−=时,方程有两个相等的实数根;当2=40b ac ∆−<时,方程没有实数根.五、根的判别式的应用(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根的范围; (3)解与根有关的证明题.【考点剖析】题型1用公式法解一元二次方程例1.用公式法解下列方程: (1)2270x x −+=;(2)211042x x −=.【答案】(1)27,021==x x ;(2)2,021==x x .【解析】(1)0,7,2==−=c b a ,则4942=−ac b ,则477−±−=x ,∴27,021==x x ;(2)0,21,41=−==c b a ,则4142=ac b ,则212121±=x ,∴2,021==x x .【总结】本题主要考查一元二次方程求根公式x 的运用.例2.用公式法解下列方程:(1)2320x x +−=;(2)25610x x −++=.【答案】(1)12x x ==;(2)12x x ==.【解析】(1)132a b c ===−,,,则1742=−ac b ,则2173±−=x ,∴12x x ==;(2)561a b c =−==,,,则5642=−ac b ,则101426−±−=x ,∴12x x ==.【总结】本题主要考查一元二次方程求根公式x 的运用.例3.用公式法解下列方程:(1)(24)58x x x −=−;(2)2(53)(1)(1)5x x x −+=++.【答案】(1)122222x x −+−==;(2)123322x x ==−,. 【解析】(1)方程可化为:05422=−+x x ,245a b c ===−,,,则5642=−ac b ,则41424±−=x ,∴122222x x −−==;(2)方程可化为:2490x −=,则123322x x ==−,.【总结】本题主要考查一元二次方程求根公式的运用,(2)也可以用直接开平方法求解. 例4.用公式法解下列方程:(1)20.2 2.5 1.30.1x x x +−=;(2)22(3)(31)(23)1552x x x x +−−+−=.【答案】(1)12x x ==;(2)12122x x ==−,. 【解析】(1)方程可化为2224130x x +−=,13,24,2−===c b a ,则68042=−ac b ,则4170224±−=x ,∴12x x =(2)两边同时乘以10,方程可化为02322=−−x x ,2,3,2−=−==c b a ,则2542=−ac b , 则453±=x ,∴12122x x ==−,.【总结】本题主要考查一元二次方程求根公式的运用,(2)也可以用因式分解法求解. 例5.用公式法解下列方程:(1)291x +=;(220+−=.【答案】(1)12x x =;(2)12x x ==【解析】(1)1,66,9=−==c b a ,则18042=−ac b ,则185666±=x ,∴原方程的解为:12x x =;(2)22,34,2−===c b a ,则6442=−ac b ,则22834±−=x ,∴原方程的解为:12x x ==【总结】本题主要考查一元二次方程求根公式的运用.题型2解系数中有字母的一元二次方程例6.用配方法解下列关于x 的方程:220ax x ++=(0a ≠).【解析】220ax x ++=(0a ≠),则22−=+x ax ,整理得:a x a x 212−=+,配方可得:22248141221a a a a a x −=+−=⎪⎭⎫ ⎝⎛+, 当81≤a 时,a a x 21811−−=,a a x 21812−−−=,当81>a 时,方程无实数根.【总结】注意配方时方程两边同加一次项系数一半的平方,另此题系数中含有字母,要注意分类讨论. 例7.用公式法解下列关于x 的方程:(1)20x bx c −−=;(2)2100.1ax a −−=. 【解析】(1)∵c b 42+=∆,∴当042≥+c b 时,2421c b b x ++=,2422c b b x +−=;当042<+c b 时,原方程无实数根;原方程可化为:22100x a −=,∵2222400a b a ∆=+≥,∴原方程的解为:12x +=,22x a=.【总结】本题主要考查利用公式法求解一元二次方程的根,注意分类讨论.题型3根的判别式例8.选择:(1) 下列关于的一元二次方程中,有两个不.相等的实数根的方程是( )(A )(B ) (C )(D )(2) 不解方程,判别方程25750x x −+=的根的情况是()(A )有两个相等的实数根 (B )有两个不相等的实数根 (C )只有一个实数根(D )没有实数根(3)方程2510x x −−=的根的情况是()(A )有两个相等实根 (B )有两个不等实根 (C )没有实根(D )无法确定(4)一元二次方程2310x x +−=的根的情况为()(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根(D )没有实数根【答案】(1)D ;(2)D ;(3)B ;(4)A .【答案】【答案】【解析】(1)A :1a =,0b =,1c =,2440b ac ∆=−=−<,方程无实根; B :1a =,2b =,1c =,240b ac ∆=−=,方程有两个相等实根; C :1a =,2b =,3c =,2480b ac ∆=−=−<,方程无实根;D :1a =,2b =,3c =−,24160b ac ∆=−=>,方程有两不等实根实根,故选D ; (2)5a =,7b =−,5c =,24510b ac ∆=−=−<,方程无实根,故选D ; (3)1a =,5b =−,1c =−,24290b ac ∆=−=>,方程有两不等实根,故选B ; (4)1a =,3b =,1c =−,24130b ac ∆=−=>,方程有两个相等实根,故选A .【总结】考查一元二次方程根的判别式判定方程根的情况,先列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根. 例9.不解方程,判别下列方程的根的情况: (1)24530x x −−=;(2)22430x x ++=;x 012=+x 0122=++x x 0322=++x x0322=−+x x(3)223x +=; (4)22340x x +−=.【答案】(1)方程有两不等实根;(2)方程无实数根;(3)方程有两相等实根; (4)方程有两不等实根.【解析】(1)4a =,5b =−,3c =−,24730b ac ∆=−=>,方程有两不等实根; (2)2a =,4b =,3c =,2480b ac ∆=−=−<,方程无实数根;(3)2a =,b =−,3c =,240b ac ∆=−=,方程有两相等实根; (4)2a =,3b =,4c =−,24410b ac ∆=−=>,方程有两不等实根.【总结】考查一元二次方程根的判别式判定方程根的情况,先将方程整理成一般形式,列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根.例10.关于x 的方程2(1)0x m x m +−−=(其中m 是实数)一定有实数根吗?为什么? 【答案】一定有.【解析】∵1a =,1b m =−,c m =−,∴()()()22241410b ac m m m ∆=−=−−⨯−=+≥恒成立,可知方程一定有实数根.【总结】考查一元二次方程根的判别式判定方程根的情况,对于含有字母系数的一元二次方程,只需要对最终的∆的值与0的大小关系,进而确定方程根的情况. 例11.已知关于x 的一元二次方程2(1)210m x mx −++=根的判别式的值为4,求m 的值. 【答案】0.【解析】∵1a m =−,2b m =,1c =,∴()()()2224241414b ac m m m m ∆=−=−⨯−=−+=,整理即得20m m −=,解得:11m =,20m =,同时方程是一元二次方程,知10a m =−≠,故1m ≠, 由此得0m =.【总结】考查一元二次方程根的判别式判定方程根的情况,对于含有字母系数的一元二次方程,尤其是二次项系数中含有字母的情况,一定要注意字母所隐含的取值范围,即二次项系数不能为0. 例12.已知方程组18ax y x by −=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,试判断关于x 的方程20x ax b ++=的根的情况.【答案】方程无实数根.【解析】方程组18ax y x by −=⎧⎨+=⎩的解是23x y =⎧⎨=⎩,代入即得:231238a b −=⎧⎨+=⎩,可解得:22a b =⎧⎨=⎩,此时方程即为2220x x ++=,其中1a =,2b =,2c =,2480b ac ∆=−=−<,可知方程无实数根.【总结】考查一元二次方程根的判别式判定方程根的情况,对于系数含有字母的情况,根据题目条件确定字母取值,再确定其∆值,判定方程解的情况.例13.当m 取何值时,关于x 的方程221(2)104x m x m +−+−=,(1)有两个不相等的实数根? (2)有两个相等的实数根?(3)没有实数根? 【答案】(1)2m <;(2)2m =;(3)2m >. 【解析】对此方程,1a =,2b m =−,2114c m =−,则()22214241484b ac m m m ⎛⎫∆=−=−−−=−+ ⎪⎝⎭,由此可知,(1)当480m ∆=−+>,即2m <时,方程有两个不相等的实数根; (2)当480m ∆=−+=,即2m =时,方程有两两个相等的实数根; (3)当480m ∆=−+<,即2m >时,方程无实数根.∆值,方程可由∆值判定其根的情况,同样地,可由方程根的情况确定其∆值与0的大小关系,可在此基础上进行分类讨论.例14.当k 为何值时,关于x 的方程224(21)0x kx k −+−=有实数根?并求出这时方程的根(用含k 的代数式表示).【答案】14k ≥时,方程有实数根;方程的根为2x k =± 【解析】对此方程,1a =,4b k =−,()221c k =−,则()()22244421164b ac k k k ∆=−=−−−=−,因为方程有实数根,则有1640k ∆=−≥,即14k ≥时,方程有实数根;根据一元二次方程求根公式,可知方程解为()4222k b x k a −−−===【总结】考查一元二次方程根的判别式判定方程根的情况,对于系数含有字母的情况,先确定其∆值,方程可由∆值判定其根的情况,同样地,可由方程根的情况确定其∆值与0的大题型5根的判别式的应用例15.证明:方程()()212x x k −−=有两个不相等的实数根. 【解析】证明:对原方程进行整理,即为:22320x x k −+−= 其中1a =,3b =−,22c k =−,则()()22224342410b ac k k ∆=−=−−−=+>恒成立, 由此可证得方程有两个不相等的实数根.【总结】将方程整理成一元二次方程的一般形式,方程的根的情况,只需要根据方程的∆值即可以确定下来.例16.当k 为何值时,方程()()222210kx k x x k k −−=−−≠,(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根. 【答案】(1)54k <且1k ≠;(2)54k =;(3)54k >. 【解析】将方程整理成关于x 的一元二次方程的一般形式,即得:()()()212210k x k x k −−−++=,此时,1a k =−,()22b k =−−,1c k =+,由方程为一元二次方程,可知10a k =−≠,故1k ≠;()()()224424111620b ac k k k k ∆=−=−−−+=−+,由此可知,(1)当16200k ∆=−+>,即54k <且1k ≠时,方程有两不等实根; (2)当16200k ∆=−+=,即54k =时,方程有两相等实根;(3)当16200k ∆=−+<,即54k >时,方程无实根.【总结】考查一元二次方程根的判别式判定方程根的情况,首先将方程整理成一元二次方程的一般形式,然后确定二次项系数不能为0的情况,然后确定其∆值,可由方程根的情况确定其∆值与0的大小关系,可在此基础上进行分类讨论.例17.已知关于x 的一元二次方程()21230m x mx m +++−=有实数根,求m 的取值范围. 【答案】32m ≥−且1m ≠−.【解析】由原方程是一元二次方程,可知10m +≠,即1m ≠−;对此方程, 其中1a m =+,2b m =,3c m =−,方程有实根,则必有:()()()22424138120b ac m m m m ∆=−=−+−=+≥,可解得32m ≥−;即m 的取值范围为32m ≥−且1m ≠−.【总结】对于形如20ax bx c ++=的方程,首先要根据题意确定相关隐含条件,既要保证一元二次方程的二次项系数不能为0,然后在此基础上进行解题和计算.例18.如果m 是实数,且不等式(1)1m x m +>+的解集是1x <,那么关于x 的一元二次方程21(1)04mx m x m −++=的根的情况如何?【答案】方程无实根.【解析】由(1)1m x m +>+的解集是1x <,可知10m +<,即1m <−,对一元二次方程21(1)04mx m x m −++=而言,其中a m =,()1b m =−+,14c m =,则()221414214b ac m m m m ∆=−=+−⋅=+,1m <−时,0∆<恒成立, 由此可知方程无实数根.【总结】探求含有字母的一元二次方程根的情况,需要根据题目条件确定相关字母取值范围,再根据其∆值确定相关方程根的情况.例19.已知关于x 的方程()21230m x mx m +++−=总有实数根,求m 的取值范围. 【答案】32m ≥−. 【解析】(1)当10m +=,即1m =−时,方程为一元一次方程240x −−=,方程有实根; (2)当10m +≠,即1m ≠−时,方程为一元二次方程, 其中1a m =+,2b m =,3c m =−,方程有实根,则必有:()()()22424138120b ac m m m m ∆=−=−+−=+≥,可解得32m ≥−且1m ≠−;综上所述,m 的取值范围为32m ≥−.【总结】对于形如20ax bx c ++=的方程,首先要根据题意确定二次项系数能否为0,在此基础上进行相关分类讨论和计算.【过关检测】一、单选题【答案】B【分析】根据关于x 的一元二次方程20x x k −−=有实数根得到140k ∆=+≥,解不等式即可得到答案.【详解】解:∵关于x 的一元二次方程20x x k −−=有实数根,∴()()2141140k k ∆=−−⨯⨯−=+≥,解得14k ≥−,故选:B【点睛】此题考查了一元二次方程根的判别式,熟练掌握一元二次方程0∆≥时有实数根是解题的关键. 2.(2023春·广东潮州·九年级潮州市金山实验学校校考期末)如果关于x 的一元二次方程2(5)410a x x −−−=有两个不相等的实数根,则a 满足条件是( )A .5a ≠B .1a >且5a ≠C .1a ≥且5a ≠D .1a ≥【答案】B【分析】由二次项系数非零及根的判别式0∆>,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围.【详解】解:∵关于x 的一元二次方程2(5)410a x x −−−=有两个不相等的实数根,∴()()()25044510a a −≠⎧⎪⎨−−⨯−⨯−>⎪⎩,解得:1a >且5a ≠, 故选B .【点睛】本题考查了一元二次方程的定义以及根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键.3.(2023·浙江温州·统考三模)若关于x 的一元二次方程2160x bx ++=,有两个相等的实数根,则正数b 的值是( ) A .8B .8−C .4D .4−【答案】A【分析】根据一元二次方程有两个相等的实数根,运用根的判别式进行解答即可.【详解】解:∵关于x 的一元二次方程2160x bx ++=,有两个相等的实数根,∴22441160b ac b ∆=−=−⨯⨯=,∴264b =,∴8b =±, ∵b 是正数, ∴8b =, 故选:A .【点睛】本题考查了一元二次方程根的判别式,熟知关于x 的一元二次方程20(0)ax bx c a ++=≠,若240b ac ∆=−>,则原方程有两个不相等的实数根;若240b ac ∆=−=,则原方程有两个相等的实数根;若240b ac ∆=−<,则原方程没有实数根.【答案】C【分析】分别代入数值解方程,逐一判断即可解题.【详解】解:当12a =时,方程为28120x x −−=,解得4x =±A 选项不符合题意;当16a =时,方程为28160x x −−=,解得4x =±B 选项不符合题意;当20a =时,方程为28200x x −−=,解得10x =或2x =−是整数,故C 选项符合题意;当24a =时,方程为28240x x −−=,解得4x =±D 选项不符合题意;故选:C【点睛】本题考查一元二次方程的解法,掌握公式法解一元二次方程是解题的关键.5.(2023·安徽安庆·校考三模)如果关于x 的一元二次方程260x x a −+=无实数根,那么a 的值可以为( )A .10B .9C .8D .7【答案】A【分析】由一元二次方程根与系数的关键可得:Δ0<, 从而列不等式可得答案.【详解】解:∵一元二次方程260x x a −+=无实数根,∴()2246410b ac a ∆−−−⨯⨯==<,解得:>9a ,只有选项A 符合题意,故选:A .【点睛】本题考查的是一元二次方程根的判别式,掌握一元二次方程根的判别式是解题的关键. 6.(2023·河南商丘·统考三模)方程229x x −=的根的情况是( ) A .有两个相等的实数根 B .没有实数根 C .有一个实数根 D .有两个不相等的实数根 【答案】D【分析】根据一元二次方程根的判别式进行判断即可求解.【详解】解:∵229x x −=,即2290x x −−=,1,2,9a b c ==−=−,∴24436400b ac ∆=−=+=>,∴方程229x x −=有两个不相等的实数根,故选:D .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.7.(2022秋·江苏镇江·九年级校考阶段练习)已知关于x 的一元二次方程210x bx +−=的较大的一根小于1,则实数b 的取值范围是( ) A .一切实数 B .2b >C .1b >D .0b >【答案】D【分析】用公式法求出方程的解,根据题意得出关于b 的不等式,解不等式可得答案.【详解】解:解方程210x bx +−=得:x =,∵一元二次方程210x bx +−=的较大的一根小于1,∴1<,2b +,两边平方得:2244b b b +<+4+,∴0b >, 故选:D .【点睛】本题考查了公式法解一元二次方程,能够根据题意得出关于b 的不等式是解题的关键. 8.(2022·浙江·九年级自主招生)满足方程22419151x xy y −+=的整数对(),x y 有( ) A .0对 B .2对 C .4对 D .6对【答案】C【分析】利用一元二次方程有解判断出y 的范围,根据y 是整数求出y 的值,进而求出x 的值,利用x 也是整数判断即可得出结论. 【详解】解:原方程可化为()224191510x yx y −+−=,∵方程22419151x xy y −+=有实数根,∴()222164191516041510y y y ∆=−−=−+⨯≥,∴21511101515y ≤=,∵y 是整数,∴=3y −,2−,1−,0,1,2,3,当0y =时,原方程可化为2151x =,∴x =x 为整数,所以舍去),当1y =时,原方程可化为241320x x −−=,∴2x =±(由于x 为整数,所以舍去),当1y =−时,原方程可化为241320x x +−=,∴2x =−±x 为整数,所以舍去),当2y =时,原方程可化为28750x x −−=,∴4x =x 为整数,所以舍去),当=2y −时,原方程可化为28750x x +−=,∴4x =−x 为整数,所以舍去),当3y =时,原方程可化为212200x x −+=,∴2x =或10x =,当=3y −时,原方程可化为212200x x ++=,∴2x =−或10x =−,∴原方程的整数解为:23x y =⎧⎨=⎩或103x y =⎧⎨=⎩或23x y =−⎧⎨=−⎩或103x y =−⎧⎨=−⎩,即:方程22419151x xy y −+=的整数对(),x y 为()2,3、()10,3、()2,3−−,()10,3−−共四对,故选:C .【点睛】此题是非一次不定方程,主要考查了一元二次方程的有整数根问题.解题的关键是将原方程变形,利用判别式求解.二、填空题9.(2023·上海杨浦·统考三模)如果关于x 的方程220x x m −+=有两个相等的实数根,那么m 的值是________. 【答案】1【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程220x x m −+=有两个相等的实数根,∴()2240m ∆=−−=,解得1m = 故答案为:1.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.10.(2023·浙江嘉兴·统考二模)在()240x −+=的括号中添加一个关于x 的一次项,使方程有两个相等的实数根,这个一次项可以是______. 【答案】4x ±【分析】设方程为240x kx −+=,根据方程有两个相等的实数根可知0∆=,据此列式求解即可.【详解】设方程为240x kx −+=,由题意得2160k −=,∴4k =±, ∴一次项为4x ±. 故答案为4x ±.【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根的判别式与根的关系式解答本题的关键.11.(2023·江苏苏州·苏州市第十六中学校考二模)关于x 的一元二次方程()21210m x x −−−=有两个实数根,则实数m 的取值范围是________. 【答案】0m ≥且1m ≠【分析】根据一元二次方程根的判别式0∆≥以及一元二次方程的定义得出10m −≠,即可求解. 【详解】解:依题意()244410b ac m ∆=−=+−≥,且10m −≠,解得:0m ≥且1m ≠, 故答案为:0m ≥且1m ≠.【点睛】本题考查了一元二次方程的定义,一元二次方程根的判别式的意义,熟练掌握一元二次方程根的判别式的定义是解题的关键.12.(2023·山东东营·校考二模)如果关于x 的一元二次方程234x x m ++=有两个不相等的实数根,那么m 的取值范围是________. 【答案】254m <【分析】先把这个一元二次方程变成一般式,再根据一元二次方程根的判别式计算即可.【详解】234x x m ++=,∴2340x x m ++−=.关于x 的一元二次方程234x x m ++=有两个不相等的实数根,∴()2243440b ac m ∆=−=−−>∴4250m −+> ∴254m <.故答案为:254m <.【点睛】本题主要考查了一元二次方程根的判别式,熟练掌握根的判别式性质,准确计算是解本题的关键.13.(2023·四川巴中·校考二模)已知关于x 的一元二次方程()222210x m x m +++−=.两实数根分别为12x x 、,且满足221258x x +=,则实数m 的值为_____________.【答案】2【分析】先由一元二次方程根的判别式得到关于m 的不等式,解不等式即可得到m 的取值范围,再根据根与系数的关系可得:()1222x x m +=−+,2121x x m =−,代入()2221212122x x x x x x +=+−得到关于m 的一元二次方程,解方程并根据(1)中的m 的取值范围即可得到答案.【详解】解:∵关于x 的一元二次方程()222210x m x m +++−=有实数根, ∴()()22242241b ac m m ⎡⎤∆=−=+−−⎣⎦16200m =+≥,解得:54m ≥−,即m 的取值范围是54m ≥−;∵由根与系数的关系可得:()21212221x x m x x m +=−+=−,,∴()2221212122x x x x x x +=+−()()222221m m ⎡⎤=−+−−⎣⎦221618m m =++,∵221258x x +=,∴22161858m m ++=,即28200m m +−=,∴()()2100m m −+=,解得110m =−或22m =,∵54m ≥−,∴2m =, 故答案为:2.【点睛】此题考查一元二次方程根的判别式和根与系数关系,准确计算是解题的关键.三、解答题【答案】1x =,2x =【分析】用公式法解此方程即可.250x −+=a ==5b −,c =()224=540b ac −−−>x此方程的解为:1x =,2x =【点睛】此题考查的是用公式法解一元二次方程,解题的关键是掌握公式法解方程的步骤. 15.(2022秋·青海西宁·九年级校考期中)解方程:27180x x −−=(公式法) 【答案】129,2x x ==−【分析】利用公式法解答,即可求解.【详解】解:27180x x −−=,∵1,7,18a b c ==−=−, ∴()()2741181210∆=−−⨯⨯−=>,∴7711212x ±==⨯,∴129,2x x ==−.【点睛】本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,是解题的关键.16.(2023春·北京西城·九年级北师大实验中学校考阶段练习)已知关于x 的一元二次方程2(4)(21)0m x m x m ---+=有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足要求的最小正整数时,求方程的解. 【答案】(1)112m >−且4m ≠(2)1x ,2x【分析】(1)根据方程有两个不相等的实数根,则根的判别式()()22421440b ac m m m ∆=−=−−−−>⎡⎤⎣⎦,且40m −≠,求出m(2)得到m 的最小整数,利用公式法解一元二次方程即可.【详解】(1)一元二次方程2(4)(21)0m x m x m ---+=有两个不相等的实数根,∴()()22421440b ac m m m ∆=−=−−−−=>⎡⎤⎣⎦,且40m −≠,即224414160m m m m +−−+>,且40m −≠,解得:112m >−且4m ≠;(2)m 满足条件的最小正整数是1m =,此时方程为2310x x −−+=,x ==解得:1x ,2x =【点睛】本题考查了一元二次方程根的判别式,公式法解一元二次方程,熟练掌握一元二次方程()200ax bx c a ++=≠的根与判别式24b ac ∆=−的关系是解答本题的关键.17.(2023·北京西城·校考模拟预测)关于x 的一元二次方程()2320x m x m −+++=.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是正整数,求m 的最小值. 【答案】(1)见解析 (2)1−【分析】(1)先求出一元二次方程根的判别式为()21m ∆=+,即可证明结论;(2)根据题意得到1212x x m ==+,是原方程的根,根据方程两个根均为正整数,可求m 的最小值. 【详解】(1)证明:由()2320x m x m −+++=得,()()()222342211m m m m m ∆=−+−+=++=+⎡⎤⎣⎦,∵()210m +≥,∴方程总有两个实数根; (2)∵()2320x m x m −+++=,∴()()120x x m −−+=⎡⎤⎣⎦,∴1212x x m ==+,,∵方程的两个实数根都是正整数, ∴21m +≥. ∴1m ≥−.∴m 的最小值为1−.【点睛】本题考查的是根的判别式及解一元二次方程,在解答(2)时得到方程的两个根是解题的关键. 18.(2018秋·广东清远·九年级统考期末)不解方程,判断方程22410x x −−=的根的情况. 【答案】有两个不相等的实数根【分析】先求一元二次方程的判别式,由∆与0的大小关系来判断方程根的情况. 【详解】解:∵2a =,4b =−,1c =− ∴()()2244421240b ac ∆=−=−−⨯⨯−=>∴原方程有两个不相等的实数根.【点睛】此题考查一元二次方程根的情况与判别式∆的关系:(1)0∆>,方程有两个不相等的实数根;(2)Δ0=方程有两个相等的实数根;(3)Δ0<方程没有实数根.19.(2023春·河南三门峡·九年级统考阶段练习)已知关于x 的方程2210x x a +−+=没有实数根,试判断关于y 的方程21y ay a ++=实数根的情况,并说明理由. 【答案】一定有两个不相等的实数根.理由见解析.【分析】根据关于x 的方程2210x x a +−+=没有实数根,求出a 的求值范围;再表示关于y 的方程21y ay a ++=,()()222412a a a ∆=−−=−,即可判断该方程根的情况.【详解】解:∵方程2210x x a +−+=没有实数根,()144140a a ∴∆=−−+=<,<0a ∴,对于关于y 的方程21y ay a ++=,()()222412a a a ∆=−−=−,0a <,()220a ∴−>,即20∆>,∴方程21y ay a ++=一定有两个不相等的实数根.【点睛】本题考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式与根的情况之间的关系是解题关键.20.(2022秋·四川遂宁·九年级校考期中)对于任意一个三位数k ,如果k 满足各个数位上的数字都不为零,且十位上的数字的平方等于百位上的数字与个位上的数字之积的4倍,那么称这个数为“喜鹊数”.例如:k =169,因为62=4×1×9,所以169是“喜鹊数”.(1)已知一个“喜鹊数”k =100a +10b +c (1≤a 、b 、c ≤9,其中a ,b ,c 为正整数),请直接写出a ,b ,c 所满足的关系式 ;判断241 “喜鹊数”(填“是”或“不是”),并写出一个“喜鹊数” ;(2)利用(1)中“喜鹊数”k 中的a ,b ,c 构造两个一元二次方程ax 2+bx +c =0①与cx 2+bx +a =0②,若x =m是方程①的一个根,x=n是方程②的一个根,求m与n满足的关系式;(3)在(2)中条件下,且m+n=﹣2,请直接写出满足条件的所有k的值.【答案】(1)b2﹣4ac=0;不是;121(2)mn=1(3)121,242,363,484【分析】(1)根据喜鹊数的定义解答即可;(2)根据一元二次方程的定义和根的判别式解答即可;(3)求出m与n互为倒数,又m+n=﹣2,得出m=﹣1,n=﹣1,求出b=a+c,a=c,结合喜鹊数的定义即可得出答案.【详解】(1)∵k=100a+10b+c是喜鹊数,∴b2=4ac,即b2﹣4ac=0;∵42=16,4×2×1=8,16≠8,∴241不是喜鹊数;∵各个数位上的数字都不为零,百位上的数字与个位上的数字之积的4倍,∴十位上的数字的平方最小为4,∵22=4,4×1×1=4,∴最小的“喜鹊数”是121.故答案为:b2﹣4ac=0;不是;121.(2)∵x=m是一元二次方程ax2+bx+c=0的一个根,x=n是一元二次方程cx2+bx+a=0的一个根,∴am2+bm+c=0,cn2+bn+a=0,将cn2+bn+a=0两边同除以n2得:a(1n)2+b(1n)+c=0,∴将m、1n看成是方程ax2+bx+c的两个根,∵b2﹣4ac=0,∴方程ax2+bx+c有两个相等的实数根,∴m=1n,即mn=1;故答案为:mn=1.(3)∵m+n=﹣2,mn=1,∴m =﹣1,n =﹣1,∴a ﹣b+c =0,∴b =a+c ,∵b2=4ac ,∴(a+c )2=4ac ,解得:a =c ,∴满足条件的所有k 的值为121,242,363,484.故答案为:121,242,363,484.【点睛】此题考查了一元二次方程的应用,解题关键是弄清喜鹊数的定义.【答案】(1)m=0或m=1(2)m=0或m=1【分析】(1)把x=2代入方程22(23)320x m x m m −++++=得到关于m 的一元二次方程,然后解关于m 的方程即可;(2)先计算出判别式,再利用求根公式得到12x m =+,21x m =+,则AC=m+2,AB=m+1.因为△ABC 是直角三角形,所以当BC 或AC 为斜边时根据勾股定理分别解关于m 的一元二次方程即可.【详解】(1)解:∵x=2是方程的一个根,∴242(23)320m m m −++++=,∴m=0或m=1;(2)解:∵△=22[(23)]4(32)1m m m −+−++=, ∴x=2312m +±∴12x m =+,21x m =+,∴AB 、AC (AB <AC )的长是这个方程的两个实数根,∴AC=m+2>0,AB=m+1>0.∴m>-1.∵△ABC 是直角三角形,∴当BC 为斜边时,有222(2)(1)m m +++=,解这个方程,得13m =−(不符合题意,舍去),20m =;当AC 为斜边时,有222(1)(2)m m ++=+,解这个方程,得1m =.综上所述,当m=0或m=1时,△ABC 是直角三角形.【点睛】此题考查了解一元二次方程和直角三角形的判定,解题的关键是掌握公式法解一元二次方程,熟练运用勾股定理进行分类讨论.【答案】(1)241不是“快乐数”;最大的“快乐数”为999(2)333【分析】(1)根据“快乐数”的定义解答即可;(2)根据“快乐数”可得出2a cb +=,根据一元二次方程根的情况可得2b ac =,再结合710a b c ≤++≤及1a ≤、b 、9c ≤,a 、b 、c 为自然数可得出a 、b 、c 的值,最后结合“快乐数”的定义即可得出答案.【详解】(1)解:∵2142+≠,∴241不是“快乐数”,∵各个数位上的数字都不为零,且十位上的数字等于百位上的数字与个位上的数字的平均数,各个数位上的数字最大为9,又∵9992+=,∴最大的“快乐数”为999.(2)∵10010k a b c =++为“快乐数”, ∴2a cb +=,∵关于x 的一元二次方程220ax bx c ++=有两个相等的实数根,∴()2240b ac −=,即2b ac =, ∴2271019a c b b ac a b c a b c +⎧=⎪⎪⎪=⎨⎪≤++≤⎪≤≤⎪⎩、、,解得:3a =,3b =,3c =,∴1001010031033333k a b c =++=⨯+⨯+=,综上所述,满足条件的所有k 的值为333.∴满足条件的所有k 的值为333.“快乐数”的定义. )已知在ABC 中,问题探究:(2)如图,将正方形CDEF问题拓展:(3)将正方形CDEF 绕点C 旋转一周,当=45ADC ∠︒时,若3AC =,1CD =,请直接写出线段AH 的长.【答案】(1)BF AD =,BF AD ⊥,理由见解析;(2)见解析;(3)2或【分析】(1)根据正方形的性质和全等三角形的判定证明()SAS BCF ACD ≌△△,得出BF AD =,FBC DAC ∠=∠,再利用角的代换得到90AHF ∠=︒,即可得到结论;(2)先证明()SAS BCF ACD ≌△△,得出CBK CAH ∠=∠,进而证明()SAS BCK ACH ≌△△,得到CK CH =,BCK ACH ∠=∠,进一步即可证明KCH 是等腰直角三角形,于是可得HK =,然后利用线段间的代换即可证得结论;(3)分两种情况:①当A ,()H F ,D 三点共线时,=45ADC ∠︒;②当B ,()D H ,F 三点共线时,=45ADC ∠︒;设AH x =,在Rt ABH △中根据勾股定理列出关于x 的方程,解方程即可求出结果.【详解】解:(1)BF AD =,BF AD ⊥;理由如下:∵四边形CDEF 是正方形,∴CF CD =,90FCD ∠=︒,在BCF △和ACD 中,,90,,BC AC BCF ACD CF CD =⎧⎪∠=∠=︒⎨⎪=⎩∴()SAS BCF ACD ≌△△, ∴BF AD =,FBC DAC ∠=∠,∵90BFC FBC ∠+∠=︒,BFC AFH ∠=∠,∴90AFH DAC ∠+∠=︒,∴90AHF ∠=︒,∴BF AD ⊥;(2)证明:如图,在线段BF 上截取BK AH =,连接CK ,∵四边形CDEF 是正方形,∴CF CD =,90FCD ACB ∠=︒=∠,∴ACD BCF ∠=∠,∴()SAS BCF ACD ≌△△,∴CBK CAH ∠=∠,在BCK 和ACH 中,,,,BC AC CBK CAH BK AH =⎧⎪∠=∠⎨⎪=⎩∴()SAS BCK ACH ≌△△, ∴CK CH =,BCK ACH ∠=∠,∴90KCH BCA ∠=∠=︒,∴KCH 是等腰直角三角形,∴HK ,∴BH AH BH BK KH −=−=;(3)分两种情况:①如图,当A ,()H F ,D 三点共线时,=45ADC ∠︒;同理可证明:BH AD =,BH AD ⊥,且1CD CF ==,FD =∵3BC =,∴AB =设AH x =,则BH AD x ==在Rt BAH 中,∵222BH AH AB +=,∴((222x x +=,解得x =或x =(舍去);②如图,当B ,()D H ,F 三点共线时,=45ADC ∠︒,设AH x =,∵BF AH =,∴BH AH HF x =−=在Rt ABH △中,∵222BH AH AB +=,∴((222x x +=,解得x =或x =(舍去);综上所述,线段AH 的长为2或.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理以及一元二次方程的求解等知识,属于常考题型,正确添加辅助线、证明三角形全等是解题的关键.。
人教版初三数学上册用公公式法解一元二次方程
用公式法求解一元二次方程 一、公式法公式法:求根公式:一般地,对于一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac ≥0时,它的根是:2b x a-±=.上面这个式子称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法.【知识拓展】(1)求根公式专指一元二次方程的求根公式,只有确定方程是一元二次方程时,才可以使用.(2)应用公式法解一元二次方程时,要先把方程化成一般形式,确定二次项系数、一次项系数、常数项,且要注意它们的符号.(3)b 2-4ac ≥0是公式使用的前提条件,是公式的重要组成部分.一元二次方程的求根公式的推导:一元二次方程的求根公式的推导过程就是用配方法解一般形式的一元二次方程ax 2+bx +c =0(a ≠0)的过程.∵a ≠0,∴方程的两边同除以a 得20b cx x a a++=.配方得22222b b c b x x a a a a ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,222424b b ac x a a -⎛⎫+= ⎪⎝⎭, ∵a ≠0,∴a 2>0,∴4a 2>0.∴当b 2-4ac ≥时,2244b ac a-是一个非负数.此时两边开平方得22b x a a+=,∴2b x a-±=【知识拓展】(1)被开方数b2--4ac有意义.(2)由求根公式可知一元二次方程的根是由其系数a ,b ,c 决定的,只要确定了a ,b ,c 的值,就可以代入公式求一元二次方程的根.【新课导读·点拨】因为a =1,b =-1,c =-90,所以1192x ±==.故x 1=10,x 2=-9(不符合实际,舍去).所以全校有10个队参赛.【例1】解下列方程.(1)x 2-2x =0; (2)3x 2+4x =-1; (3)2x 2-4x +5=0. 分析:解:(1)x 2-2x -2=0,∵a =1,b =-2,c =-2,∴b 2-4ac =(-2)2-4X1×(-2)-12>0,∴2222x ±±==,∴11x =+,11x =- (2)原方程可化为3x 2+4x +1=0,∵a =3,b =4,c =1,∴b 2-4ac =42-4×3×1=4>0, (3)2x 2-4x +5=0,∵a =2,b =-4,c =5,∴b 2-4ac =(-4)2-4×2×5=-24<0, ∴该方程没有实数根.二、一元二次方程根的判别式定义:一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可由b 2-4ac 来判定.我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母“△”来表示,读作:“delta(德尔塔)”.对于一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根; 当b 2-4ac =0时,方程有两个相等的实数根; 当b 2-4ac <0时,方程没有实数根. 反之亦成立.【知识拓展】(1)根的判别式是△=b 2-4ac ,而不是24b =-(2)根的判别式是在一元二次方程的一般形式下得出的,因此,必须把所给的方程化为一般形式再判别根的情况,要注意方程中各项系数的符号.(3)如果一元二次方程有实根,那么应当包括有两个不相等的实数根和有两个相等的实数根两种情况,此时b 2-4ac ≥0.探究交流已知关于x的一元二次方程x2+2x+m=0有实数根,当m取最大值时,求该一元二次方程的根.分析:根据根的判别式的意义可得△=4-4m≥0,解得m≤1,所以m的最大值为1,此时方程为x2+2x+1=0,然后运用公式法解方程.解:∵关于x的一元二次方程x2+2x+m=0有实数根,∴△=4-4m≥0,∴m≤1,∴m的最大值为1,当m=1时,一元二次方程变形为x2+2x+1=0,解得x1=x2=1.【例2】一元二次方程x2+x+3=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定分析:判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.∵a=1,b=1,c=3,∴△=b2-4ac=12-4×1×3=-11<0,∴此方程没有实数根.故选C.##整理归纳##$$练习$$##题型##单选##题干##(2013·珠海中考)已知一元二次方程:①x2+2x+3=0,x2-2x--3=0.下列说法正确的是( )A.99帮有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解##答案##B##解析##方程①的判别式△=4-12=-8,则①没有实数解;②的判别式△=4+12=16,则②有实数解.故选B.$$更多练习$$##题型##主观填空题##题干##(2011·上海中考)如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实数根,那么c 的取值范围是______. ##答案## c >9##解析##∵关于xx 2-6x +c =0(c 是常数)没有实数根,∴△=(-6)2-4c <0,即36-4c <0,c >9##题型## 主观题 ##题干##(2012·珠海中考)已知关于x 的一元二次方程x 2+2x +m =0. (1)当m =3时,判断方程的根的情况; (2)当m =3时,求方程的根. ##答案##解:(1)当m =3时,△=b 2-4ac =22-4×3=-8<0,∴原方程无实数根. (2)当m =-3时,原方程变形为x 2+2x -3=0.∵b 2-4ac =4+12=16,2122x -±==-±,∴x 1=1,x 2=-3.##题型## 主观题 ##题干##(2013·乐山中考)已知关于x 的一元二次方程x 2-(2k +1)x +k 2+k =0. (1)求证方程有两个不相等的实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.##答案##(1)证明:∵△=(2k +1)2-4(k 2+k)=1>0,∴方程有两个不相等的实根.(2)解:一元二次方程x 2-(2k+1)x +k 2+k =0的解为212k x +±=,即x 1=k ,x 2=k+1,不妨设AB =k ,AC =k +1,当AB =BC 时,△ABC 是等腰三角形,则k =5;当AC =BC 时,△ABC 是等腰三角形,则k +1=5,解的k =4.所以k 的值为5或4.$$典型$$ ##典例精析##类型一 用公式法解一元二次方程 【例1】用公式法解下列方程. (1)x 2+2x -2=0;(2) 23x+=;(3)21028n n -+=分析:方程(1)(3)可直接确定a ,b ,c 的值,方程(2)需先化为一般形式,再确定a ,b ,c 的值.解:(1)∵a =1,b =2,c =-2,∴b 2-4ac =22-4×1×(-2)=12>0,∴212x -±==-±11x =-+,11x =--(2)将方程化为一般形式,得230x -+=.∵a =1,b =-,c =3,∴(224241340b a c -=-⨯⨯=-< ∴原方程没有实数根.(3)∵a =1,b =-,18c =,∴221441028b ac ⎛⎫-=--⨯⨯= ⎪⎝⎭,∴224n ±==,∴124n n ==.规律方法小结:(1)用公式法解一元二次方程时,一定要先将方程化为一般形式,再确定a ,b ,c 的值.(2)b 2-4ac ≥0是公式中的一个重要组成部分,b 2-4ac <0时,原方程没有实数根.(3)当b2-4ac =0时,应把方程的根写成122bx x a==-,的形式,用以说明一元二次方程有两个相等的根,而不是一个根.类型二不解方程判定根的情况【例2】不解方程,判断下列方程的根的情况.(1)x2-x-1=0;(2)2x2+3x=-2;(3)-2x2-3x+4=0.解:(1)∵a=1,b=-1,c=-1,∴△=b2-4ac=1+4=5>0,∴该方程有两个不相等的实数根.(2)原方程可变形为2x2+3x+2=0,∵a=2,b=3,c=2,∴△=b2-4ac=9-16=-7<0,∴原方程没有实数根.(3)原方程可变形为2x2+3x-4=0,∵a=2,b=3,c=-4,∴b2-4ac=32-4×2×(-4)=41>0,∴原方程有两个不相等的实数根.类型三几何图形中的方案设计问题【例3】(2012·湘潭中考)如图2所示,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.(所备材料全部用完)分析:设未知数,将矩形的长和宽表示出来,再根据矩形的面积公式列方程,解一元二次方程即可.解:设AB=x m,则BC=(50-2x)m.根据题意可得x(50-2x)=300,解得x1=10,x2=15.当x=10时,BC=50-2×10=30>25,不符合题意,舍去,当x=15时,BC=50-2×15=20<25,符合题意,故AB=15 m,BC=20 m.答:可以围成AB的长为15 m,BC的长为20 m的矩形.【解题策略】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列方程求解,注意围墙MN最长可利用25 m,舍掉不符合题意的数据.类型四用公式法解含字母系数的一元二次方程【例4】解关于x的方程x2-2mx+m2-2=0.解:∵a=1,b=-2m,c=m2-2,∴()222212mb mx ma--±-±±====±⨯∴1x m =+2x m =- 【解题策略】要熟练运用公式法求一元二次方程的解,准确确定a ,b ,c 的值是解题的关键.类型五 根据方程根的情况,确定待定系数的取值范围.【例5】k 取何值时,关于x 的一元二次方程kx 2-12x +9=0. (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?分析:(1)当△=b 2-4ac >0时,方程有两个不相等的实数根;(2)当△=b 2-4ac =0时,方程有两个相等的实数根;(3)当△=b 2-4ac <0时,方程没有实数根.分别求出是的取值范围即可.解题时注意二次项系数k ≠0. 解:方程是一元二次方程,则k ≠0. (1)若方程有两个不相等的实数根,则△= b 2-4ac =144-36k >0,解得k <4.所以k <4且k ≠0. (2)若方程有两个相等的实数根,则△=b 2-4ac =144—36k =0,解得k =4. (3)若方程没有实数根,则△=b 2-4ac =144-36k <0,解得k >4.类型六 设计方案解决几何图形面积问题【例6】(2013·连云港中考)小林准备进行如下操作实验:把一根长为40 cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪? (2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm 2.”他的说法对吗?请说明理由.分析:(1)设剪成的较短的一段长x cm ,则较长的一段长(40-x)cm ,这样就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58 cm 2建立方程求出其解即可;(2)设剪成的较短的一段长优咖,则较长的一段长(40-m)cm ,这样就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48 cm 2建立方程,如果方程有解就说明小峰的说法错误,否则正确. 解:(1)设剪成的较短的一段长x cm ,则较长的一段长(40-x)cm , 由题意,得22405844x x -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得x 1=12,x 2=28.当x =12时,40-x =40-12=28,当x =28时,40-x =40-28=12<28(舍去). ∴较短的一段长12 cm ,较长的一段长28 cm.(2)设剪成的较短的一段长m cm ,则较长的一段长(40-m)cm ,由题意,得22404844m m -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,整理,得m 2-40m +416=0,∵△=(-40)2-4×416=-64<0,∴原方程无解.∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm 2.类型七 分类讨论求方程的根【例7】解关于x 的方程(k -1)x 2+(k -2)x -2k =0.(23k >)分析:解含有字母系数的方程,往往要按字母的取值分类讨论.此题有两种情况,k =1和k ≠1,当且仅当k ≠1时,二次项系数不为零,才能用一元二次方程的求根公式来解.解:当k =1时,原方程为-x -2=0,∴x =-2. 当k ≠1时,∵a =k -1,b =k -2,c =-2k ,∴b 2-4ac =(k -2)2-4(k -1)(-2k)=9k 2-12k +4=(3k -2)2≥0, ∴x=11kx k =-,22x =-【解题策略】当二次项系数中含有参数时,要讨论;次项系数是否为零.类型八 应用根的判别式判断三角形的形状【例8】已知a ,b ,c 分别是伽c 的三边长,当m >0时,关于x 的一元二次方程()()220cx m b x m ++--=有两个相等的实数根,则△ABC 是什么形状的三角形?分析:由方程有两个相等的实数根可得根的判别式为0,得到与m 有关的等式,由m >0得a ,b ,c之间的关系,从而判定三角形的形状. 解:将方程化为一般形式()()20b c x c b m +-+-=.因为原方程有两个相等的实数根, 所以()()()240b c c b m ∆=--+-=,即4m(a 2+b 2-c 2)=0,又因为m >0,所以a 2+b 2-c 2=0,即a 2+b 2=c 2.根据勾股定理的逆定理知△ABC 是直角三角形.类型九 探索含字母系数的一元二次方程的根的情况【例9】已知关于z 的一元二次方程ax 2+bx +c =o(a ≠0).(1)当a ,c 异号时,试说明该方程必有两个不相等的实数根;(2)当a ,c 同号时,该方程要有实数根,还需要满足什么条件?请你写出一个a ,c 同号,且有实数根的一元二次方程,并解这个方程.分析:(1)只需说明b 2-4ac >0即可.(2)是一个开放性问题,写出的方程满足a ,c 同号,且b 2-4ac ≥0即可.解:(1)因为a ,c 异号,所以ac <O ,所以-4ac >0,所以b 2-4ac >0, 所以,当a ,c 异号时,该方程必有两个不相等的实数根.(2)当a ,c 同号时,该方程要有实数根,还需满足条件b 2-4ac ≥0. 例如方程x 2-4x +3=0,解得x 1=3,x 2=1.【解题策略】(2)中并不是任意的方程都可以,它满足的条件是a ,c 同号且b 2-4ac ≥0,而这样的方程有无数个,我们可以选取一些解答较方便的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a 2, b 5, c 3
=49>0
注意符号
b 2 4ac 52 4 2 3
方程有两个不等的实数根 57 b b 2 4ac 5 49 x 2a 2 2 4
1 x1 , x 2 3 2
一 般 步 骤:
b b 2 4ac 即: x 2a
一元二次方程 a 0, b 4ac 0
2
ax2 bx c 0
的求根公式
b b 2 4ac 2a
x
a 0
用这种方法解一元二次方程的 方法叫做公式法.
三、用公式法解一元二次方程
例1、解方程
解:
2 x 5x 3 0
2 x b b 4ac a 4a 2 2
4a 2 0
b b 2 4ac 当b 4ac 0时, x 2a 4a 2
2
b b 2 4ac 即: x 2a 2a
b 2 4ac 2a
b b 2 4ac x 2a 2a
3、想一想:
ax 2 bx c 0 a 0 ,当 关于一元二次方程
a,b,c满足什么条件时,方程的两根互
为相反数?
一元二次方程 解:
x1 b
ax 2 bx c 0 a 0 的解为:
b 2 4ac b b 2 4ac , x2 2a 2a
二、公式的推导
ax 2 bx c 0
解: a 0
x2
a 0
b c x 0 a a
a
2
Байду номын сангаас
移项得: x 2 b x c
a
2
b b c b 2 配方得: x x a a 2a 2a
即:
2 x b b 4ac a 4a 2 2
3x x 1
5 x 32 x 9 6 0
4x
2
17 8 x
练习:用公式法解方程
1x 2 x 5 2 2 6t 13t 5 0
2
3 2 1 3 x x 1 0 2 2 3 2 4 x 2 2 x 0 2
1.把方程化为一般形式
2
ax bx c 0 a 0
2.写出方程的各项系数与常数项a、b、c
b 2 4ac ,看 b 2 4ac 是否大于等于0 3.求出
4.代入公式求方程的根
例2解方程
22 x
1x
2
4x 7 0
2
2 2x 1 0
2
35 x
x1 x2
b b 2 4ac b b 2 4ac 2a 2a
b b 2a 2a
b 0
4、提高练习 已知方程 2 x 2 7 x c 0, b2 4ac 0, 求c和x的值.
解:
a 2, b 7, c c
又 b 2 4ac 7 2 4 2 c 0
49 8c 49,即c 8 b 7 7 x1 x2 2a 22 4
五、小结
用公式法解一元二次方程的关键是解题步骤:
1.先写出a,b,c 2.再求出
b 2 4ac
3.最后代入公式
当 b 2 4ac 0 当 b 2 4ac 0
时,有两个实数根 时,方程无实数 解
公式法解一元二次方程
一、回顾
x 用配方法解方程: px q 0
2
解: 移项得:x
2
2
px q
2 2
p p p x 2 x q 2 2 2
则:
p p2 q x 2 4
2
p2 当 q 0时, 方程有实数解. 4