第3章电阻应变传感器

合集下载

15第3章_电气式传感(1)

15第3章_电气式传感(1)
Rx kl x s xp Rp R
x
B
C
A
x
xp
灵敏度
dR dx
kl

e0 ey
e0
x
ey
x
x pey e0
1.1 变阻器式传感器

x x pey e0 kley
e0
ey
0
x
Hale Waihona Puke xp1.1 变阻器式传感器
后接分压电路
R p Rx
e0
Rx
ey
RL
V
ey

A
dl
l
A
2
dA
l A
d
代入 R l / A
dR R

dl l

dA A

d

1.2 电阻应变式传感器
金属丝 A r 2 金属丝体积不变
dR dl l
dr r dl l
2 d

2 dr r

d

R


器(differential transformer))
2.1 自感型(self-inductance)(可变磁阻式)
原理:电磁感应
线圈
由电磁学原理可知: L W m i 其 中 : L 电 感 ; W 线 圈 匝 数 ; i 电 流 ;
m 电 流 i产 生 的 磁 通
基于金属导体的应变效应(strain effect),即
金属导体在外力作用下发生机械变形时,其电 阻值随着所受机械变形(伸长或缩短)的变化而 发生变化象。
1.2 电阻应变式传感器

电阻应变式传感器

电阻应变式传感器

当温度变化∆t时,电阻丝电阻的变化值为:
∆Rα=Rt-R0=R0α0∆t
2) 试件材料和电阻丝材料的线膨胀系数的影响 当试件与电阻丝材料的线膨胀系数相同时,不论环境温度如 何变化,电阻丝的变形仍阻丝材料的线膨胀系数不同时,由于环境温度的 变化,电阻丝会产生附加变形,从而产生附加电阻变化。 设电阻丝和试件在温度为0℃时的长度均为l0, 它们的线膨胀 系数分别为βs和βg,若两者不粘贴,则它们的长度分别为
当电桥平衡时, Uo=0, 则有 或 R1R4 = R2R3
R1 R3 = R2 R4
电桥平衡条件:相邻两臂 电桥平衡条件 电阻的比值应相等, 或相 对两臂电阻的乘积相等。
电桥接入的是电阻应变片时,即为应变桥。当一个 桥臂、两个桥臂乃至四个桥臂接入应变片时,相应 的电桥为单臂桥、半桥和全臂桥。 2.不平衡直流电桥的工作原理及电压灵敏度
R1 Z1 = R1 + jwR1C1
R2 Z2 = R2 + jwR2C2
Z 3 = R3
输出电压
⋅ ⋅
Z 4 = R4
U ( Z1Z 4 − Z 2 Z 3 ) U0 = ( Z1 + Z 2 )( Z 3 + Z 4 )
要满足电桥平衡条件, 即U0=0, 则有 Z1 Z4 = Z2 Z3


∆R ∆ρ = (1 + 2 µ )ε + R ρ
∆ρ ∆R R = (1 + 2 µ ) + ρ
ε
ε
通常把单位应变能引起的电阻值变化称为金属电 阻丝的灵敏度系数。其物理意义是单位应变所引起的 电阻相对变化量, 其表达式为 ∆ρ ρ K 0 = 1 + 2µ + ε ∆R = k 0ε 因此 R 灵敏度系数受两个因素影响: ①受力后材料几何尺寸的变化, 即(1+2µ); ②受力后材料的电阻率发生的变化, 即∆ρ/

第三章 常用传感器的变换原理

第三章 常用传感器的变换原理

根据电阻的定义式: 阻的相对变化为:
R l/A
如果电阻丝在外力作用下产生变化时,其电
dR d 1 2 x R
1 为电阻丝轴向相对变形,或称纵向应变。
dR ( 1 2 ) K x 0 x R
d 引起的。
是由于电阻丝几何尺寸变化引起的; 是由于受力后材料的电阻率发生变化而

蠕变:应力不变的条件下,应变随时间延 长而增加的现象。 横向效应:敏感栅的电阻变化一定小于 纯直线敏感栅的电阻变化的现象。 机械滞后:应变片贴在试件上以后,在 一定温度下,进行循环的加载和卸载,加载 和卸载时的输入-输出特性曲线不重合的现象。
2)箔式应变片 箔式应变片中的箔栅是金属箔(厚为 0.002~0.01mm)通过光刻、腐蚀等工艺制 成的。如图3-10中(d)、(f)、(h)、(k)。箔的 材料多为电阻率高、热稳定性好的康铜和 铜镍合金。
(二)应变片的粘贴 1. 去污:采用 手持砂轮工具除去 构件表面的油污、 漆、锈斑等,并用 细纱布交叉打磨出 细纹以增加粘贴力 , 最后用浸有酒精或 丙酮的纱布片或脱 脂棉球擦洗。
2. 贴片:在应 变片的表面和处理 过的粘贴表面上, 各涂一层均匀的粘 贴胶 ,用镊子将应 变片放上去,并调 好位置,然后盖上 塑料薄膜,用手指 揉和滚压,排出下 面的气泡 。
dR d 1 2 x R
对于金属材料:
d 是个常数,往往很小,可以忽略。
因此,上式可写成为:
dR ( 1 2 ) E 应变-电阻效应 x 1 x R
K0为金属单丝灵敏系数,是单位应变所 引起的电阻相对变化。
对于半导体材料: 对一块半导体材料的某一轴向施加一定的载荷 而产生应力时,它的电阻率会发生变化,这种物理 现象称为半导体的压阻效应。 半导体应变片是根据压阻效应原理工作的。 当沿某一晶轴方向切下一小条半导体应变片, 若只沿其轴向受到应力,其电阻率的变化量可由下 式表示

电阻式传感器

电阻式传感器
r
F F
y x
r
a
l1 l (a) (b)
图3-5 横向应变 (a) 应变片及轴向受力图; (b) 应变片的横向效应图
第3章 电阻式传感器 综上所述,将直的电阻丝绕成敏感栅后,虽然长度改 变产生的应变情况相同,但由于圆弧段截面积增大,电阻值 减小,敏感栅的灵敏系数 k 较同样长度单纯受轴向力时的 灵敏系数 k0要小。这种因弯折处应变的变化使灵敏系数减 小的现象称之为应变片的横向效应。横向效应。
R R k L L

R k R
(3-36)
式中, ε为应变片的轴向应变, ε =ΔL/L。 k 为应变片的灵敏系数,又称“标称灵敏系数” 。
第3章 电阻式传感器 * 2.横向效应和横向灵敏度
当将图3-5所示的应变片粘贴在被测试件上时,由于其敏 感栅是由n条长度为l1 的直线段和直线段端部的n-1个半径为r 的半圆圆弧或直线组成,若该应变片承受轴向应力而产生纵 向拉应变εx外, 还在与x方向垂直的y方向产生压缩应变εy, 使圆弧段截面积增大,电阻值减小。
k0 dR R

(1 2 )
d

(1)应变片受力后材料几何尺寸的变化,即1+2μ; (2) 应变片受力后材料的电阻率发生的变化, 即
d


对金属材料来说,电阻丝灵敏度系数表达式中1+2μ 的值要比(dρ/ρ)/ε大得多。一般金属材料在弹性形变时, μ约为0.3,所以k0的第一项约为1.6 。 用金属电阻材料制成的金属丝应变片和金属箔式应变 片,其灵敏系数k0主要取决于第一项,因电阻率的变化而 引起的电阻值变化是较小的。
灵敏系数稳定性好,不但在弹性变形范围内能保持 为常数,进入塑性变形范围内也基本上能保持为常数; 康铜的电阻温度系数较小且稳定,当采用合适的热 处理工艺时,可使电阻温度系数在±50×10-6/℃的范围 内; 康铜的加工性能好,易于焊接,因而国内外多以康 铜作为应变丝材料。

应变传感器

应变传感器

第3章 应变传感器
3.2.2 薄膜的工作原理
薄膜的工作原理是基于材料的压电阻特性(即应力的变 化会引起电阻的变化)。电阻变化的原因是当材料受到应力 (或力)作用之后,电阻元件尺寸和材料电阻率发生了变化。 材料电阻率发生变化是由于应力对电子自由程的影响。一般 应力测量是采用金属线和金属片作为电阻元件,并将其接入 惠斯顿电桥的某一臂来测量电阻变化,从而得知应力的大小。 但金属片必须贴在需要测量的表面上,这样就限制了测量的 精度(因为应力不可能完全传送至金属片),同时也限制了这 种传感器的最大工作温度。薄膜应力传感器可克服这些缺点。 因为薄膜应力传感器是由直接沉积在需要测量的表面上的压
第3章 应变传感器
2) 箔式应变片
箔式应变片的敏感栅是通过光刻、腐蚀等工艺制成的; 其箔栅厚度一般为0.003~0.01 mm;箔金属材料为康铜或合 金(卡玛合金、镍镕锰硅合金等);基底可用环氧树脂、酚醛 或酚醛树脂等制成。 箔式应变片有较多优点,可根据需要制成任意形状的敏 感栅;表面积大,散热性能好,允许通过比较大的电流;蠕 变小,疲劳寿命高;便于成批生产且生产效率比较高。
电阻丝与基底粘贴在一起;引出线4,用来连接测量导线。

第3章 应变传感器
图3.1 应变片的结构
第3章 应变传感器
2. 电阻应变片的分类
电阻应变片的分类方法很多,常用的方法是按照制造应 变片时所用的材料、工作温度范围以及用途不同来进行分类。 (1) 按应变片敏感栅的材料不同,应变片可分成金属应 变片和半导体应变片两大类。其中,金属应变片又分为体型 (箔式、丝式)和薄膜型;半导体应变片又分为体型、薄膜型、 扩散型、PN结型及其他型。 (2) 按应变片的工作温度不同,应变片可分为常温应变 片(-30 ℃~60 ℃)、中温应变片(60 ℃~300 ℃)、高温应 变片(300 ℃以上)和低温应变片(低于-30 ℃)等。

电阻应变式传感器

电阻应变式传感器

U
o

2 )对称电桥
对于电源左右两边对称,例如 产生纵向应变 , 产生横向应 R2 R1 变 , 、 为固定电阻。因此得:
r

R3
R4
U
U 4
R3
o

R1

o
均是产生纵向应变的应变片,
k
KU U
o
k (1 )
KU
U
o

U 4
R4
k (1 )
R2

是固定电阻,则
• 金属电阻应变片常用的三种。
金属电阻应变片
– 丝式:常用高电阻率的金属电阻丝制成,允许最大工作电流较小。 – 箔式:通过光刻、腐蚀等工序制成的一种很薄的金属箔栅,允许最 大工作电流较大,灵敏度高。 – 薄膜式:是采用真空蒸镀技术在薄的绝缘基片上蒸镀上金属电阻材 料薄膜,允许最大工作电流较大,灵敏度较高。
(1 2 ) k R
k • 式中, 1 2 称为应变灵敏度系数。由于大多数金属材料的 0.3 ~ 0.5 之间,所以 k 在1.6~2.0之间。 • 金属电阻应变片具有分辨率高,非线性误差小;温漂系数小;测量范 围大,可从弹性变形一直测至塑性变形(1%~2%),可超载达20%; 既能测量静态应变,又能测量动态应变;价格低廉,品种繁多,便于 选择和大量使用等优点,因此在各行各业都广泛应用。
U
o

U 2
k (1 )
2U
o2

2 40
2U
o
kU (1 )

kU (1 )

2 10 (1 0 . 5 )
2666 10

第3章 电阻式传感器原理及其应用

第3章 电阻式传感器原理及其应用
第3章 电阻式传感器原理及其应用
3.1 电阻应变式传感器
3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 传感器的工作原理 电阻应变片的结构和分类 电阻应变式传感器的测量电路 电阻应变式的粘贴 电阻应变式传感器的应用
3.2 压阻式传感器
3.2.1 压阻式传感器的结构 3.2.2 压阻式传感器的工作原理 3.2.3 压阻式传感器的应用
金属箔式电阻应变片的结构 它的敏感栅是通过光刻、腐蚀等工艺制成。 它的敏感栅是通过光刻、腐蚀等工艺制成。将合金 先轧成厚度为0.002mm~0.01mm的箔材,经过热 的箔材, 先轧成厚度为 的箔材 处理后在一面图刷一层0.03~0.05mm厚的树脂胶, 厚的树脂胶, 处理后在一面图刷一层 厚的树脂胶 再经聚合固化形成基底。 再经聚合固化形成基底。 在另一面经照相制版、光刻、 在另一面经照相制版、光刻、腐蚀等工艺制成敏感 焊上引线, 栅,焊上引线,并涂上与基底相同的树脂胶作为覆 盖片。 盖片。
若 接入的两个应变片对于电源输入端对称, 接入的两个应变片对于电源输入端对称,且满足两 个应变片在工作时所产生的电阻增量大小相等符号 相反时,电桥的输出电压变化为: 相反时概述
电阻式传感器是利用一定的方式将被测量的变化 电阻式传感器是利用一定的方式将被测量的变化 转化为敏感元件电阻参数的变化, 转化为敏感元件电阻参数的变化,再通过电路转变成 电压或电流信号的输出,从而实现非电量的测量。 电压或电流信号的输出,从而实现非电量的测量。 可用于各种机械量和热工量的检测, 可用于各种机械量和热工量的检测,如用来测量 压力、位移、应变、速度、加速度、 力、压力、位移、应变、速度、加速度、温度和湿度 它结构简单,性能稳定,成本低廉, 等。它结构简单,性能稳定,成本低廉,在许多行业 得到了广泛应用。 得到了广泛应用。 由于构成电阻的材料及种类很多, 由于构成电阻的材料及种类很多,引起电阻变化 的物理原因也很多, 的物理原因也很多,这就构成了各种各样的电阻式传 感元件以及由这些元件构成的电阻式传感器。 感元件以及由这些元件构成的电阻式传感器。

第3章 电阻应变式传感器

第3章 电阻应变式传感器

第3章电阻应变式传感器作者:黄小胜3.1 何为电阻应变效应?怎样利用这种效应制成应变片?3.2 什么是应变片的灵敏系数?它与金属电阻丝的灵敏系数有何不同?为什么?3.3 为什么增加应变片两端电阻条的横截面积便能减小横向效应?3.4 金属应变片与半导体应变片在工作原理上有何不同?半导体应变片灵敏系数范围是多少,金属应变片灵敏系数范围是多少?为什么有这种差别,说明其优缺点。

举例说明金属丝电阻应变片与半导体应变片的相同点和不同点。

3.5 一应变片的电阻R=120Ω,灵敏系数k=2.05,用作应变为800/m mμ的传感元件。

求:①R∆和/R R∆;②若电源电压U=3V,初始平衡时电桥的输出电压U0。

3.6 在以钢为材料的实心圆柱形试件上,沿轴线和圆周方向各贴一片电阻为120Ω的金属应变片R1和R2(如图3-28a所示),把这两应变片接入电桥(见图3-28b)。

若钢的泊松系数0.285μ=,应变片的灵敏系数k =2,电桥电源电压U=2V,当试件受轴向拉伸时,测得应变片R1的电阻变化值10.48R∆=Ω。

试求:①轴向应变;②电桥的输出电压。

3.7 一测量吊车起吊重物的拉力传感器如图3-29a所示。

R1、R2、R3、R4按要求贴在等截面轴上。

已知:等截面轴的截面积为0.00196m2,弹性模量E=2×1011N/m2,泊松比0.3μ=,且R1=R2=R3=R4=120Ω, 所组成的全桥型电路如题图3-29b所示,供桥电压U=2V。

现测得输出电压U0=2.6mV。

求:①等截面轴的纵向应变及横向应变为多少?②力F为多少?图3-293.8 已知:有四个性能完全相同的金属丝应变片(应变灵敏系数2k =),将其粘贴在梁式测力弹性元件上,如图3-30所示。

在距梁端0l 处应变计算公式为026Fl Eh bε= 设力100F N =,0100l mm =,5h mm =,20b mm =,52210/E N mm =⨯。

第3章(166)教材配套课件

第3章(166)教材配套课件

10
第3章 电阻应变式传感器
由材料力学可知,εx=F/(AE),所以ΔR/R又可以表示为
R K F
(3-9)
R AE
如果应变片的灵敏度系数Ks和试件的截面积A以及弹性模 量E均为已知,则只要设法测出ΔR/R的数值,即可获得试件受 力F的大小。
11
第3章 电阻应变式传感器
3.2 应变片的种类、结构与粘贴
(3-5)
式中, μ为金属丝材料的泊松系数。
7
第3章 电阻应变式传感器
将式(3-4)、式(3-5)代入式(3-3)得
dR R

(1
2) x

d
(3-6)

dR
d
K R (1 2)
(3-7)
x
x
Ks称为金属丝的灵敏系数,表示金属丝产生单位变形时, 电阻相对变化的大小。显然,Ks越大,单位变形引起的电阻相 对变化就越大,传感器也越灵敏。
其电阻值也将随着发生变化,这种现象称为电阻应变效应。
2
第3章 电阻应变式传感器
3.1.2 电阻应变特性 下面我们以金属丝为例来分析这种应变特性,如图3-1所
示。 设有一根长度为l、截面积为A、半径为r、电阻率为ρ的金
属单丝,它的电阻值R可表示为
R


l A


l
r2
(3-1)
3
第3章 电阻应变式传感器
29
第3章 电阻应变式传感器
上述三种工作方式中全桥工作方式的灵敏度最高,半桥双 臂次之,半桥单臂灵敏度最低。若采用半桥双臂或全桥工作方 式,当环境温度升高时,桥臂上的应变片温度同时升高,温度 引起的电阻值漂移数值一致,代入式(3-10),可以相互抵消, 所以这两种桥路具有温度自补偿功能。

第3章-应变式传感器

第3章-应变式传感器

10-5~ 1-02
10 ~ 140
F x
0~ 1-03 0~ 130
10-2~ 1-01
10 ~ 100
px
0~ 1-05 0~ 120
F, x px
10-2~ 1
1~ 100
第3章 应变式传感器
表3-2 常用弹性元件的结构和特性
类别 名称

波 纹 管 薄式
薄波 膜纹


膜纹
膜单
式圈
弹弹
挠簧 簧 性管
F x
x px px
px x
px F, x
px
x px
动态性质 时 间 常 数 /s 自 振 频 率 /Hz
10-5~ 1-02 10-2~ 1-01
10 ~ 140 10 ~ 100
10-2~ 1-01 —
10 ~ 100 10 0~ 1000
10-2~ 1
1~ 100

10 ~ 100
第3章 应变式传感器
第3章 应变式传感器
常用的粘结剂类型有硝化纤维素型、氰基丙稀酸型、聚酯 树脂型、环氧树脂型和酚醛树脂型等。
粘贴工艺包括被测件粘贴表面处理、贴片位置确定、涂底 胶、 贴片、干燥固化、贴片质量检查、引线的焊接与固定以及 防护与屏蔽等。粘结剂的性能及应变片的粘贴质量直接影响应 变片的工作特性,如零漂、蠕变、滞后、灵敏系数、线性以及 它们受温度变化影响的程度。可见,选择粘结剂和正确的粘结 工艺与应变片的测量精度有着极重要的关系。
d E
(3-10)
第3章 应变式传感器
dR
K R E
(3-12)
半导体应变片的灵敏系数比金属丝式高50~80倍, 但半导

精品文档-传感器原理及应用(郭爱芳)-第3章

精品文档-传感器原理及应用(郭爱芳)-第3章

第3章 电阻式传感器 图3.3 金属电阻应变片的种类
第3章 电阻式传感器
4) 薄膜式应变片 薄膜式应变片是利用真空蒸镀、沉积或溅射等方法在绝缘 基底上制成各种形状的薄膜敏感栅,膜厚小于1 μm。这种应 变片的优点是应变灵敏系数大,允许电流密度大,可以在- 197~317℃温度下工作。
第3章 电阻式传感器
在应变极限范围内,金属材料电阻的相对变化量与应变成 正比,即
ΔR R
S0
(3.5)
第3章 电阻式传感器
3.1.2 金属电阻应变片 1. 应变片的结构及测量原理 金属电阻应变片简称应变片,其结构大体相同,如图3.2
所示。金属电阻应变片由基底、敏感栅、覆盖层和引线等部分 组成。
第3章 电阻式传感器 图3.2 金属电阻应变片的结构
第3章 电阻式传感器
图3.1所示为金属电阻丝的电阻应变效应原理图。长度为 L、截面积为A、电阻率为ρ的金属电阻丝,在未受外力作用时 的原始电阻值为
R L
A
(3.1)
图3.1 金属电阻丝的电阻应变效应
第3章 电阻式传感器
当受到轴向拉力F作用时,其长度伸长ΔL,截面积相应减 小ΔA,电阻率ρ则因晶格变形等因素的影响而改变Δρ,故 引起电阻变化ΔR。对式(3.1)全微分可得
第3章 电阻式传感器 图3.4 应变片轴向受力及横向效应
第3章 电阻式传感器
2) 横向效应 由于应变片的敏感栅是由多条直线段和圆弧段组成,若该 应变片受轴向应力而产生纵向拉应变εx时,则各直线段的电 阻将增加。但在圆弧段,如图3.4(b)所示,除产生纵向 拉应变εx外,还有垂直方向的横向压应变εy=-εx,沿各微 段轴向(即微段圆弧的切向)的应变在εx和εy之间变化。在圆 弧段两端的起、终微段,即θ=0°和θ=180°处,承受+εx应 变;而在θ=90°的微段处,则承受εy=-εx应变。因此,将 金属电阻丝绕成敏感栅后,虽然长度不变,应变状态相同,但 应变片敏感栅的灵敏系数S比电阻丝的灵敏系数S0低,这种现 象称为应变片的横向效应。

传感器原理— 电阻应变式传感器

传感器原理— 电阻应变式传感器

三、应变式电阻传感器的测量电路 • 1.电源接入方式 • 惠斯登电桥电路按照所提供电源的不同分 为直流电桥和交流电桥两种形式,其接入 方式如图所示。
电源接入方式
• 2.应变片接入方式
图: 应变片的三种接入方式
图: 应变式电阻传感器的实际电路
(一)电桥的主要特性
当R >> ∆R时
U i ∆R1 ∆R2 ∆R3 ∆R4 U0 = − − + 4 R R R R
• 1.力敏感元件 • 力弹性敏感元件大都采用等截面柱式、等 截面薄板、悬臂梁及轴状等结构。图所示 为几种常见的力敏感元件。
图 几种常见的力敏感元件
• 2.压力敏感元件 • 常见的压力弹性敏感元件有弹簧管、波纹 管、膜盒、薄壁半球和薄壁圆管等。压力 敏感元件可以把液体或气体产生的压力转 换为位移量输出。下图所示为几种常见的 压力弹性敏感元件。
2、压力 、 压力测量演示
案例:冲床生产记数 案例: 和生产过程监测
案例:冲床生产记数 案例: 和生产过程监测
案例: 案例:机器人握力测量
小型压阻式固态压力传感器 低压进气口 高压进气口
绝对压力传感器
小型压阻式固态压力传感器 p1进气管 固态压力传 感器
p2进气管 呼吸、 呼吸、透析和注射泵设备中用的压力传感器
电阻应变式传感器
电阻应变式传感器是一种电阻传感器,

弹性敏感元件、 它主要由①弹性敏感元件、②电阻应变 组成。 ③测量转换电路组成。
利用电阻应变式传感器可以测量力、位移
等参数。 、形变、加速度等参数。 形变、
图2-3 电子秤中的应变式电阻传感器
一、弹性敏感元件
• 弹性敏感元件是一种在力的作用下产生变 形,当力消失后能恢复成原来状态的元件, 是电阻式传感器的敏感元件。它通过与被 测物件接触,能直接感受到被测的量的变 化。因而在传感器中占有非常重要的地位, 其质量的优劣直接影响应变式电阻传感器 的性能和测量精度。

第3章 电阻应变式传感器

第3章 电阻应变式传感器
R1 R2 ∆R1 ∆R2 ∆R3 ∆R4 U I U0 = − + − 2 (R1 + R2 ) R1 R2 R3 R4
通常采用全等臂形式工作,即Rl=R2=R3=R4(初始值)。 且当四个桥臂均为应变片时,其相应的电阻变化为
∆R1 , ∆R2 , ∆R3和∆R4
UI 这样式(3-3)可变为: U 0 = 4
例:半桥测量时进行温度补偿。测量下图中的试件时,采用两片型号、 初始电阻值和灵敏度都相同的应变片Rl和R2。Rl贴在试件的测试点上,R2 贴在试件的应变为零处,或贴在与试件材质相同的不受力的补偿块上。 Rl和R2处于相同的温度场中,并接成双臂电桥(相邻臂)形式。当试件受 力并有温度变化时,应变片Rl的电阻变化率为: ∆R1/R1=∆R1e/R1e+∆R1t/R1 式中:∆R1e/R1e——R1由应变引起的电阻变化率; ∆R1t/R1——Rl由温度引起的电阻变化率。 应变片R2(温度补偿片)的电阻变化率为:∆R2/R2=∆R2e/R2e
如半导体硅,πL=(40~80)×10-11m2/N, E=1.67×1011N/m2,则k0=πLE=50~100。显然半导 体电阻材料的灵敏系数比金属丝的要高50~70倍。
二、结构特点
1、体形半导体应变片 条状半导体单晶硅或锗。 2、扩散性半导体应变片 最常用的半导体电阻材料有硅和锗,掺入杂质可 形成P型或N型半导体。 注意事项: 注意事项:由于半导体(如单晶硅)是各向异性材料, 因此它的压阻效应不仅与掺杂浓度、温度和材料类型 有关,还与晶向有关(即对晶体的不同方向上施加力 时,其电阻的变化方式不同)。
3-2金属电阻应变式传感器
一、电阻应变效应:假设金属应变片金属丝的长度为L,截面积为A、半 径为r、电阻率为ρ,则金属丝的初始电阻R可表示为:

第3章 电阻式传感器

第3章 电阻式传感器
通过弹性元件可将位移、压力、振动等物理量通过应力变化,并转换为 电阻的变化进行测量,这是应变式传感器测量应变的基本原理。
3. 主要特性 (1)应变片灵敏系数 k
k0 表征金属丝的灵敏系数,但金属丝做成应变片后,电阻应变特征 与单根金属丝不同。 实际的灵敏系数包括基片、粘合剂、敏感栅的横向效应等因素。做 成应变片以后灵敏系数与k0不同,必须重新标定。 通常采用实验的方法,按统一的标准,如受单向力拉力或压力,试 件材料为钢,箔松系数μ=0.285; 取成品的 5% 进行测定,取平均值做产品的灵敏系数,称标称灵敏 系数k ,即产品出厂时标注的灵敏系数。 实验表明,应变片灵敏系数小于电阻丝灵敏系数,即k<k0 如果实际 应用与标定条件不同时,k 误差较大需要修正。
• • •
(2)横向效应


直线电阻丝绕成敏感栅后,虽然长度相同,但圆弧部分应变状态 不同,圆弧段电阻的变化小于沿轴向摆放的电阻丝电阻变化。
实际应变变化 ε = ΔL/L 比拉直了看要小,可见直线的电阻丝作成 敏感栅后,虽然长度相同,但应变不同。
☻ 园弧部分使灵敏系数 k0↓下降,这种现象
称为横向效应。敏感栅越窄、基长越长, 横向效应越小。
R3 R1 R1 U0 E R R R R R R 1 2 2 3 4 1
按等臂电桥:
R3 R1 R1 U0 E R1 R1 R 2 R 2 R3 R 4
R 2 / R1 R 4 / R 3
n R 2 / R1
U0 E
n ( R1 / R1 ) (1 R1 / R1 n ) 1 n
• 由于 R 1 R 1 ,忽略分母中 R1 / R1 • 电桥输出电压可近似为 电桥输出的电压灵敏度为

第3章:电阻应变传感器

第3章:电阻应变传感器

第一节 弹性敏感元件
• • (1)等截面圆柱式 等截面圆柱式弹性敏感元件,根据截面形状可分 为实心圆截面形状及空心圆截面形状等,如图3.3(a)、 图3.3(b)所示。它们结构简单,可承受较大的载荷, 便于加工。实心圆柱形的可测量大于10kN的力,而空 心圆柱形的只能测量l ~ 10kN的力。 • (2)圆环式 • 圆环式弹性敏感元件比圆柱式输出的位移量大, 因而具有较高的灵敏度,适用于测量较小的力。但它 的工艺性较差,加工时不易得到较高的精度。由于圆 环式弹性敏感元件各变形部位应力不均匀,采用应变 片测力时,应将应变片贴在其应变最大的位置上。 圆 环式弹性敏感元件的形状如图3.3(c)、图3.3(d)所 示。
不平衡电桥
3.2 不平衡单臂电桥的工作特性
单臂R1为敏感元件变化的电桥输出为: R1 U0 Us R3 R2 R1 (1 )(1 )
R1 R4
对串联对称电桥: 由R1=R2,R3=R4,得 由
1 1 Q
1 U0 Us Us (2 ) 2 4 1 2
R2 R2 R2 且 R1 R2
则 U ( R1 R1 ) R4 ( R2 R2 ) R3 Us 0 ( R1 R1 R2 R2 )( R3 R4 )
1 U s 2
灵敏度
线性度
比单臂电桥高一倍
3.4 双差动电桥的工作特性
设: R1=R2=R3=R4
要制成电阻应变片,用单一金属丝难以实现, 所以用金属丝绕制。如用直径为0.015~0.05mm 的细金属丝绕成栅网状,并粘贴在绝缘的基片上, 两侧由引线接出,线栅上再覆盖一层绝缘保护膜。 一般线栅面积为 310mm2,阻值为 60~150
结构及材料 金属丝电阻应变片的典型结构见图。它主要由粘合 层1、3,基底2、盖片4,敏感栅5,引出线6构成。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 温度补偿 ③ 电路补偿法
R1 USC R4 E R3 R2
R2 R1
补偿应变片粘贴示意图 需满足三个条件
补偿块法
零漂 完全补偿 灵敏度漂移 部分补偿
①R1和R2须属于同一批号的,即它们 的电阻温度系数α、线膨胀系数β、应 变灵敏系数K都相同,两片的初始电 阻值也要求相同;
②用于粘贴补偿片的构件和粘贴工作 片的试件二者材料必须相同,即要求 两者线膨胀系数相等;
19/42
第3章电阻式传感器
六、电阻应变计式传感器 金属应变片, 除了测定试件应力、应变外,还制造成多种应 变式传感器用来测定力、扭矩、加速度、压力等其它物理量。 应变式传感器包括两个部分:一是弹性敏感元件,利用它将被 测物理量(如力、扭矩、加速度、压力等)转换为弹性体的应 变值;另一个是应变片作为转换元件将应变转换为电阻的变化。
R2 K R
R1 R2 K R
R R RH 1 U o U ( R RH R ) ( R RH R ) 2 1 (1 )R U 4 R RH (1 )R / 2
18/42
t K g e
优点:结构简单,制造和使用都比较方便;缺点:对试件的线 膨胀系数有要求。 ②双丝组合式自补偿应变片 正负两种电阻温度系数的材料串联组成敏感栅,以达到一定的 温度范围内在一定材料的试件上实现温度补偿。
缺点:对试件的线膨胀系数有要求。
16/42
第3章电阻式传感器
如果在一定温度下,使应变片承受恒定的机械应变,其电 阻值随时间增加而变化的特性称为蠕变。一般蠕变的方向与 原应变量的方向相反。产生原因:由于胶层之间发生“滑 动”,使力传到敏感栅的应变量逐渐减少。
这是两项衡量应变片特性对时间稳定性的指标,在长时间测 量中其意义更为突出。实际上,蠕变中包含零漂,它是一个 特例。
指 示 应 变 εi 卸载 Δε 加载 Δε1 机械应变ε 应变片的机械滞后
10/42
第2章电阻式传感器
(4)零点漂移和蠕变 对于粘贴好的应变片,当温度恒定时,不承受应变时,其电 阻值随时间增加而变化的特性,称为应变片的零点漂移。 产生原因:敏感栅通电后的温度效应;应变片的内应力逐渐 变化;粘结剂固化不充分等。
E:弹性元 件的杨氏模 量
21/42
第3章电阻式传感器
2、梁力式传感器 等强度梁弹性元件是一种特殊形式的悬臂梁。梁的固定端宽 度为b0,自由端宽度为b,梁长为L,粱厚为h。 力F作用于梁端三角形顶点 上,梁内各断面产生的应力 相等,故在对L方向上粘贴 应变片位置要求不严。 横截面梁 双空梁 S形弹性元件
对金属材料,以前者为主,则K0≈ 1+2μ;
对半导体, K0值主要由电阻率相对变化所决定。
实验表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变 成正比。通常KS在1.8~3.6范围内。
5/42
第3章电阻式传感器
二、电阻应变计的基本原理与结构
(2)结构 4 3 b 2 1 l
栅长 栅宽
敏感栅1、基底2、盖片3、引线4和粘结剂
6/42
第3章电阻式传感器
三、电阻应变计的主要特性
(1) 电阻应变计灵敏度系数K 用实验方法对应变片的电阻—应变特性测定。实验表明,金属应 变片的电阻相对变化与应变ε在很宽的范围内均为线性关系。即
R K R
R K R

试验(标定)条件:①试件受一维应力作用,②应变片的轴向与 主应力方向一致,③试件材料的泊松比为0.285的钢材。 应变片的灵敏系数K恒小于线材的灵敏系数K0。 原因:胶层传递变形失真,横向效应也是一个不可忽视的因素。
传感器与检测技术
朱启兵 zhuqib@
传感器与检测技术
第3章电阻式传感器
一、概述 二、电阻应变计的基本原理与结构 三、电阻应变计的主要特性 四、电阻应变计测量电路 五、电阻应变计的温度效应及热补偿 六、电阻应变计式传感器 七、压阻式传感器
2/42
第3章电阻式传感器
一、概述
电阻式传感器就是利用一定的方式将被测量的变化转化为敏感 元件电阻值的变化,进而通过电路变成电压或电流信号输出的 一类传感器。
F
截面积 S -ε2 +ε1
F
面积S +ε2
1 1 1 cos 2 2
ε1——沿轴向的应变;μ——弹性元件的泊松比。 当α=0时 当α=90˚时
F a)
- ε1 b) 柱式力传感器
F =1= SE
F = 2=- 1=- SE
第3章电阻式传感器
(2) 温度补偿
④ 热敏电阻补偿法
R5
R1
R2
Rt E
R4 USC
R3
热敏电阻Rt与应变片处在相同的 温度下,当应变片的灵敏度随温 度升高而下降时,热敏电阻Rt的 阻值下降,使电桥的输入电压温 度升高而增加,从而提高电桥输 出电压。选择分流电阻R5的值, 可以使应变片灵敏度下降对电桥 输出的影响得到很好的补偿。
R R R 计算公式: t t K e g t R t R 1 R 2
t 电阻温度系数 e
K—应变片灵敏系数
试件线膨胀系数
g
敏感栅线膨胀系数
15/42
第3章电阻式传感器
(2) 温度补偿 ① 单丝自补偿应变片 在选择应变片时,若应变片的敏感栅是用单一的合金丝制成, 并使其电阻温度系数 t 和线膨胀系数 g 满足下式的条件,即 可实现温度自补偿。具有这种敏感栅的应变片称为单丝自补偿 应变片。
第3章电阻式传感器
二、电阻应变计的基本原理与结构
物理意义:单位应变引起的电阻相对变化。 K0称为金属丝的应变灵敏系数。 前一部分是(1+2μ),由材料的几何尺寸变化引起,一般金属 μ≈0.3,因此(1+2μ)≈1.6;
后一部分为 。
/ l / l
,电阻率随应变而引起的(称“压阻效应”)
R3 R3 R2 R2 U o U (R / R)U So U R R R R R R R R 1 2 2 3 3 4 4 1
②恒流源补偿
14/42
第3章电阻式传感器
五、电阻应变计的温度效应及补偿
(1) 温度误差 由于环境温度变化引起的电阻变化称为应变片的温度误差,又 称热输出 应变片的电阻丝(敏感栅)具有一定温度系数; 影响因素: 电阻丝材料与测试材料的线膨胀系数不同。
第3章电阻式传感器
四、电阻应变计测量电路
ΔR/R ΔU/U 实现途径:电桥
B R2 C Rg Ig
(1)直流电桥 使用场合:无需中间放大 R 1 负载电阻Rg ∞ A R1 R3 R2 R4 Ug E R4 R1 R2 R3 R4
R3 D E
电桥平衡条件:R1R3=R2R4
应变片
l
x1 λ
x l sin 1 x 2 2 m 0 sin xdx 0 sin xt l l x
t l 2 t l 2
t m 1 m 1 t t 应变片对应变波的动态响应
sin
l
l
12/42
(1)敏感栅,传感元件,通常为60Ω、120Ω、200Ω等多种规格。测得的应 变大小是应变片栅长和栅宽所在面积内的平均轴向应变量。 丝式、箔式(光刻、腐蚀等工艺)和薄膜式(真空蒸镀或溅射式阴极扩散) (2)基底 固定形状、尺寸和位置作用 (3)盖片 保护作用 (4)引线 连接过渡作用 (5)粘接剂 连接固定作用 使用时,注意材料的选择和粘接焊接工艺
13/42
第3章电阻式传感器
例:设 K=2 ,要求非线性误差 δ<1% ,试求允许测量的最大应 变值εmax。 线性度补偿 ①差动电桥补偿
条件:相邻桥臂;变化 方向相反
R1 R2 R3 R4 R
R3 R2 R2 1 1 U o U ( R / R ) U S U o 2 2 R1 R1 R2 R2 R3 R4
第3章电阻式传感器
(2)横向效应
纵栅变形量
L1 nl
θ

单位半圆弧横栅变形量
1 1 r r cos 2 2 2
总半圆弧横栅变形量
dl
L2 ( n 1)
r
0
dl


0
rd (n 1)
r
2

11/42
第3章电阻式传感器
(5)应变极限
在一定温度下,应变片的指示应变对测试值的真实应变的相对 误差不超过规定范围(一般为10%)时的最大真实应变值。 影响因素同蠕变。 机械应变波-----纵波 (6)动态特性 设一频率为 f 的正弦应变波在构件中以速度 v 沿应变片栅 长方向传播,在某一瞬时 t,应变量沿构件分布如图所示。 ε 2 x 0 sin x / f ε1 ε0
r
纵栅和横栅总变形量 电阻变化率
L L1 L2
n 1r 2nl n 1r r 2 2
R L 2nl (n 1) r (n 1) r K0 K 0 K 0 r K x K y r R L 2L 2L
R3 R2 U o U R1 R1 R2 R3 R4
电桥线路原理图
U o U R / R=R4=R ΔR<<R
静态灵敏度 线性度
eL
So
U o U /4 R / R
U 0 U o R / R K U 0 2 R / R 2 K
柱力式传感器 梁力式传感器 应变式压力传感器 应变式加速度传感器
相关文档
最新文档