数学(理)答案

合集下载

2023届河南省洛阳市第一高级中学高三9月月考数学(理)试题(解析版)

2023届河南省洛阳市第一高级中学高三9月月考数学(理)试题(解析版)

2023届河南省洛阳市第一高级中学高三9月月考数学(理)试题一、单选题1.已知集合{A x y ==,{}22,B y y x x R ==-+∈,则A B =( )A .(,2]-∞B .[1,2]C .[1,2)D .[1,)+∞【答案】B【解析】转化条件为{}1A x x =≥,{}2B y y =≤,再由集合的交集运算即可得解.【详解】因为{{}1A x y x x ===≥,{}{}22,2B y y x x R y y ==-+∈=≤,所以{}[]121,2A B x x ⋂=≤≤=. 故选:B.【点睛】本题考查了集合的交集运算,考查了运算求解能力,属于基础题. 2.利用二分法求方程3log 3x x =-的近似解,可以取的一个区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)【答案】C【分析】设3()log 3f x x x =-+,根据当连续函数()f x 满足f (a )f (b )0<时,()f x 在区间(,)a b 上有零点,即方程3log 3x x =-在区间(,)a b 上有解,进而得到答案. 【详解】解:设3()log 3f x x x =-+,当连续函数()f x 满足f (a )f (b )0<时,()f x 在区间(,)a b 上有零点, 即方程3log 3x x =-在区间(,)a b 上有解, 又f (2)3log 210=-<,f (3)3log 33310=-+=>,故f (2)f (3)0<,故方程3log 3x x =-在区间(2,3)上有解,即利用二分法求方程3log 3x x =-的近似解,可以取的一个区间是(2,3). 故选:C . 3.若函数y的定义域为R ,则实数a 的取值范围是( )A .(0,12]B .(0,12) C .[0,12]D .[0,12)【答案】D【分析】根据题意将问题转化为二次型不等式恒成立问题,结合对参数a 的讨论,根据∆即可求得结果.【详解】要满足题意,只需2420ax ax -+>在R 上恒成立即可. 当0a =时,显然满足题意. 当0a >时,只需2Δ1680a a =-<, 解得10,2a ⎛⎫∈ ⎪⎝⎭.综上所述,10,2a ⎡⎫∈⎪⎢⎣⎭故选:D .【点睛】本题考查二次型不等式恒成立求参数范围的问题,属基础题.4.已知公比为q 的等比数列{}n a 前n 项和为n S ,则“1q >”是“{}n S 为递增数列”的( )条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要 【答案】D【分析】根据充分条件和必要条件的定义,结合等比数列的性质即可得到结论. 【详解】解:①在等比数列中,若1,2q n >≥时,1n n n S S a --=,当10a <时,110n n a a q -=<,则1n n S S -<,此时{}n S 为递减数列,即充分性不成立; ②若“{}n S 为递增数列”,即2n ≥时,1n n S S ->,则有10n n S S -->,而110n n a a q -=>并不能推得1q >,如111,2a q ==,故必要性不成立, 故“1q >”是“{}n S 为递增数列”的既不充分也不必要条件, 故选:D.5.已知函数()f x 的导函数f x 的图像如图所示,那么函数()f x 的图像最有可能的是( )A .B .C .D .【答案】A【分析】由导函数图象可知原函数的单调区间,从而得到答案.【详解】由导函数图象可知,()f x 在(-∞,-2),(0,+∞)上单调递减, 在(-2,0)上单调递增, 故选:A . 6.函数6()e 1||1xmxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3 B .4 C .6 D .与m 值有关【答案】C【分析】利用分离常数法对函数的式子变形,结合函数奇函数的定义及奇函数最值的性质即可求解.【详解】由题意可知,()3e 16()3e 1||1e 1||1x x x mx mxf x x x =+=--+++++, 设()()3e 1e 1||1x x mxg x x =--+++,则()g x 的定义域为(),-∞+∞,所以()()()()()3e 13e 1e 1||1e 1||1x x xx m x mx g x g x x x --⎡⎤-⎢⎥-=-+=--+=-+-+++⎢⎥⎣⎦--, 所以()g x 为奇函数, 所以()()max min 0g x g x +=,所以()()()()max min max min 336f x f x M N g x g x +=+=+++=, 故选:C.7.函数f (x )的图象与其在点P 处的切线如图所示,则()()11f f -'等于( )A .-2B .0C .2D .4【答案】D【分析】根据图象求出切线斜率和方程,由导数的几何意义和切点在切线上可解. 【详解】由题意,切线经过点(2,0),(0,4),可得切线的斜率为40202k -==--,即()12f '=-,又由切线方程为24y x =-+,令1x =,可得2y =,即()12f =, 所以()()11224f f '-=+=. 故选:D8.若函数()ln 1f x x x ax =-+在[e,)+∞上单调递增,则实数a 的取值范围是( ) A .(,2)-∞ B .(,2]-∞ C .(2,)+∞ D .[2,)+∞【答案】B【分析】求导,导函数在[e,)+∞上恒非负,根据恒成立的问题的办法解决.【详解】()1ln f x x a '=+-,又()f x 在[e,)+∞上单调递增,故()0f x '≥在[e,)+∞上恒成立,而[e,)x ∈+∞时,易见min ()2f x a '=-,只需要20a -≥即可,故2a ≤. 故选:B.9.已知()1xf x e =-(e 为自然对数的底数),()ln 1g x x =+,则()f x 与()g x 的公切线条数( )A .0条B .1条C .2条D .3条【答案】C【分析】设直线l 是()f x 与()g x 的公切线,分别设出切点,分别得出切线方程,根据方程表示同一直线,求出参数即可得到答案.【详解】根据题意,设直线l 与()1xf x e =-相切于点(),1m m e - ,与()g x 相切于点(),ln 1n n +,对于()1x f x e =-,()x f x e '=,则1mk e =则直线l 的方程为()1m my e e x m +-=- ,即(1)1m m y e x e m =+--,对于()ln 1g x x =+,()1g x x'=,则21=k n则直线l 的方程为()()1ln 1y n x n n -+=-,即1ln y x n n=+, 直线l 是()f x 与()g x 的公切线,则()11ln 1m m e n m e n ⎧=⎪⎨⎪-=+⎩, 可得110mm e ,即0m =或1m =则切线方程为:1y ex =- 或y x =,切线有两条. 故选:C10.已知()()11e x f x x -=-,()()21g x x a =++,若存在1x ,2R x ∈,使得()()21f x g x ≥成立,则实数a 的取值范围为( ) A .1,e ∞⎡⎫+⎪⎢⎣⎭B .1,e ∞⎛⎤- ⎥⎝⎦C .()0,eD .1,0e ⎡⎫-⎪⎢⎣⎭【答案】B【分析】原命题等价于max min ()()f x g x ≥,再求max ()f x 和min ()g x 解不等式即得解. 【详解】12R ,x x ∃∈,使得()()21f x g x ≥成立,则max min ()()f x g x ≥,由题得()()111e 1e e x x xf x x x ---=-+-=-',当0x >时,()0f x '<,当0x <时,()0f x '>,所以函数()f x 在(-∞,0)单调递增,在(0,+∞)单调递减, 所以()()max 10ef x f ==,由题得min ()(1)g x g a =-=, ∴1ea ≤故选:B.11.已知函数3,0,()212,0,x x f x x x ⎧≥⎪=⎨-++<⎪⎩若存在唯一的整数..x ,使得03()2x a f x -<-成立,则所有满足条件的整数..a 的取值集合为( ) A .{2,1,0,1,2}-- B .{2,1,0,1}-- C .{1,0,1,2}- D .{1,0,1}-【答案】B【分析】作出()3()g x f x =的图象,由不等式的几何意义:曲线上一点与(),2a 连线的直线斜率小于0,结合图象即可求得a 范围.【详解】令33,0,()3()616,0,x x g x f x x x ⎧≥⎪==⎨-++<⎪⎩作出()g x 的图象如图所示:03()2x a f x -<-等价于()20ax x g --<,表示点()(),x g x 与点(),2a 所在直线的斜率,可得曲线()g x 上只有一个整数点()(),x g x 与(),2a 所在的直线斜率小于0,而点(),2a 在直线2y =上运动,由()20,(1)6,(0)0g g g -=-== 可知当-21a ≤≤-时,只有点()00,满足()20a x x g --<,当01a ≤≤时,只有点()16-,满足()20ax x g --<,当1a >时,至少有()16-,,()13,满足()20ax x g --<,不满足唯一整数点,故舍去, 当2a <-时,至少有()()0020-,,,满足()20ax x g --<,不满足唯一整数点,故舍去, 因为a 为整数,故a 可取2101--,,, 故选:B12.已知6ln1.25a =,0.20.2e b =,13c =,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】A【分析】0.20.20.20.2e e ln e b ==,令()ln f x x x =,利用导数求出函数()f x 的单调区间,令()e 1xg x x =--,利用导数求出函数()g x 的单调区间,从而可得出0.2e 和1.2的大小,从而可得出,a b 的大小关系,将,b c 两边同时取对数,然后作差,从而可得出,b c 的大小关系,即可得出结论.【详解】解:0.20.20.20.2e e ln e b ==,6ln1.2 1.2ln1.25a ==,令()ln f x x x =,则()ln 1f x x '=+,当10ex <<时,()0f x '<,当1e x >时,()0f x '>,所以函数()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭上递增,令()e 1x g x x =--,则()e 1xg x '=-,当0x <时,()0g x '<,当0x >时,()0g x '>, 所以函数()g x 在(),0∞-上递减,在()0,∞+上递增, 所以()()0.200g g >=,即0.21e10.2 1.2e>+=>,所以()()0.2e 1.2f f >,即0.20.2e e 1.22ln ln1.>,所以b a >,由0.20.2e b =,得()0.211ln ln 0.2e ln 55b ==+,由13c =,得1ln ln 3c =,11151ln ln ln ln ln 35535c b -=--=-,因为55625510e 3243⨯⎛⎫=>> ⎪⎝⎭,所以155e 3>,所以51ln 35>,所以ln ln 0c b ->,即ln ln c b >, 所以c b >, 综上所述a b c <<. 故选:A.【点睛】本题考查了比较大小的问题,考查了同构的思想,考查了利用导数求函数的单调区间,解决本题的关键在于构造函数,有一定的难度.二、填空题13.已知命题“R x ∀∈,210x ax ++>”是假命题,则实数a 的取值范围为______. 【答案】(,2][2,)-∞-+∞【解析】根据“R x ∀∈,210x ax ++> ”是假命题,得出它的否定命题是真命题,求出实数a 的取值范围.【详解】解:∵命题“R x ∀∈,210x ax ++> ”是假命题, ∴R x ∃∈,210x ax ++≤是真命题, 即R x ∃∈使不等式210x ax ++≤有解; 所以240a ∆=-≥,解得:2a ≤-或2a ≥. ∴实数a 的取值范围是(,2][2,)-∞-+∞. 故答案为:(,2][2,)-∞-+∞.【点睛】本题主要考查根据特称命题与全称命题的真假求参数,考查了一元二次不等式能成立问题,属于基础题.14.已知()f x 为R 上的奇函数,且()()20f x f x +-=,当10x -<<时,()2xf x =,则()22log 5f +的值为______. 【答案】45--0.8【分析】由题设条件可得()f x 的周期为2,应用周期性、奇函数的性质有()2242log 5(log )5f f +=-,根据已知解析式求值即可.【详解】由题设,(2)()()f x f x f x -=-=-,故(2)()f x f x +=,即()f x 的周期为2,所以()22225542log 5(22log )(log )(log )445f f f f +=⨯+==-,且241log 05-<<,所以()24log 5242log 525f +=-=-.故答案为:45-.15.已知函数()1,03,0x x f x x x x ⎧+>⎪=⎨⎪-+≤⎩,若方程()f x a =有三个不同的实数根123,,x x x ,且123x x x <<,则123ax x x +的取值范围是________.【答案】(]1,0-【分析】画出函数图象,数形结合得到a 的取值范围,且23x x a +=,解不等式得到(]11,0x ∈-,从而求出(]11231,0ax x x x =∈-+. 【详解】画出函数()f x 的图象:由函数()f x 的图象可知:10x ≤,23a <≤,令1x a x+=,则210x ax -+=, 所以23x x a +=,令1233x <-+≤,解得:(]11,0x ∈-,所以(]11231,0ax x x x =∈-+. 故答案为:(]1,0-.16.已知函数()()()2log 120kx kf x x k k +=+->,若存在0x >,使得()0f x ≥成立,则k的最大值为______. 【答案】12eln 【分析】由()0f x ≥,可得()()()()121log 1120k x x x k x +++-+≥,同构函数()2log g x x x =,结合函数的单调性,转化为()()2log 11x h x x +=+的最大值问题.【详解】由()()2log 120kx kf x x k +=+-≥,可得()()()()121log 1120k x x x k x +++-+≥ 即()()()()121log 112k x x x k x +++≥+,()()()()11221log 12log 2k x k x x x ++++≥⋅构造函数()2log g x x x =,显然在()1,+∞上单调递增, ∴()112k x x ++≥,即()2log 11x k x +≤+,令()()2log 11x h x x +=+,即求函数的最大值即可,()()()()()222221log 1log log 1ln 211x e x h x x x -+-+'==++, ∴在()1,1e -上单调递增,在()1,e -+∞上单调递减, ∴()h x 的最大值为()11ln 2h e e -= ∴10e 2k ln <≤,即k 的最大值为1e 2ln 故答案为:1e 2ln .三、解答题17.已知(){}23log 212A x x x =-+>,11216x aB x -⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭.(1)当2a =时,求R A B ⋂;(2)已知“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围. 【答案】(1)R {2A B x x ⋂=<-或46}<≤x (2)0a ≥【分析】(1)先求出,A B ,从而可求R B ,故可求R A B ⋂.(2)根据题设条件可得B A ⊆,从而可求0a ≥.【详解】(1){}2|219{2A x x x x x =-+>=<-或4}x >,当2a =时211{6}216x B x x x -⎧⎫⎪⎪⎛⎫=<=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}R6B x x =≤,所以R {2A B x x ⋂=<-或46}<≤x ,(2)11{4}216x aB x x x a -⎧⎫⎪⎪⎛⎫=<=>+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,由“x A ∈”是“x B ∈”的必要条件得B A ⊆ 所以44+≥a ,解得0a ≥.18.命题p :22430x ax a -+->(0a >),命题q :302x x -<-. (1)当1a =且p q ∧为真,求实数x 的取值范围; (2)若p ⌝ 是q ⌝的充分不必要条件,求实数a 的取值范围. 【答案】(1)(2,3) (2)[1,2]【分析】(1)结合已知条件分别化简命题p 和q ,然后由1a =且p q ∧为真即可求解; (2)结合(1)中结论分别求出p ⌝ 和q ⌝,然后利用充分不必要的概念即可求解. 【详解】(1)结合已知条件可知,22430()(3)03x ax a x a x a a x a -+->⇔--<⇔<<, 30(2)(3)0232x x x x x -<⇔--<⇔<<-, 当1a =时,命题p :13x <<,命题q :23x <<, 因为p q ∧为真,所以132323x x x <<⎧⇒<<⎨<<⎩,故求实数x 的取值范围为(2,3).(2)结合(1)中可知,命题p ⌝:x a ≤或3x a ≥,命题q ⌝:2x ≤或3x ≥, 因为p ⌝ 是q ⌝的充分不必要条件,所以{|x x a ≤或3}x a ≥是{|2x x ≤或3}x ≥的真子集,从而0233a a <≤⎧⎨≥⎩且等号不同时成立,解得12a ≤≤,故实数a 的取值范围为[1,2].19.函数()2131log 1x x x f x x x ⎧-≤⎪⎨>⎪⎩+,=,,()2g x x k x =-+-,若对任意的12,R x x ∈,都有()()12f x g x ≤成立.(1)求函数()g x 的最小值; (2)求k 的取值范围. 【答案】(1)|k -2| (2)79,,44⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭【分析】(1)根据绝对值的三角不等式,即可得答案.(2)分析可得求max min ()()f x g x ≤即可,根据()f x 解析式,作出图象,结合函数的性质,可得max ()f x ,所以可得|k -2|≥14,根据绝对值不等式的解法,即可得答案. 【详解】(1)因为g (x )=|x -k |+|x -2|≥|x -k -(x -2)|=|k -2|,所以min ()2g x k =- (2)对任意的12,R x x ∈,都有()()12f x g x ≤成立,即max min ()()f x g x ≤ 观察f (x )=2131log 1x x x x x ⎧-≤⎪⎨>⎪⎩+,,的图象,结合函数性质可得,当x =12时,函数max 1()4f x = 所以|k -2|≥14,解得k ≤74或k ≥94.故实数k 的取值范围是79,,44⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭20.低碳环保,新能源汽车逐渐走进千家万户.新能源汽车采用非常规的车用燃料作为动力来源,目前比较常见的主要有两种:混合动力汽车、纯电动汽车.为了提高生产质量,有关部门在国道上对某型号纯电动汽车进行测试,国道限速80km/h.经数次测试,得到纯电动汽车每小时耗电量Q (单位:wh )与速度x (单位:km/h )的数据如下表所示: x 0 10 40 60 Q132544007200为了描述该纯电动汽车国道上行驶时每小时耗电量Q 与速度x 的关系,现有以下三种函数模型供选择:①3211()40=++Q x x bx cx ;②22()10003⎛⎫=-+ ⎪⎝⎭xQ x a ;③3()300log a Q x x b =+.(1)当080x ≤≤时,请选出你认为最符合表格中所列数据的函数模型(需说明理由),并求出相应的函数表达式;(2)现有一辆同型号纯电动汽车从A 地行驶到B 地,其中,国道上行驶30km ,高速上行驶200km.假设该电动汽车在国道和高速上均做匀速运动,国道上每小时的耗电量Q 与速度x 的关系满足(1)中的函数表达式;高速路上车速v (单位:km/h )满足[80,120]v ∈,且每小时耗电量N (单位:wh )与速度v (单位:km/h )的关系满足()()221020080120N v v v v =-+≤≤.则当国道和高速上的车速分别为多少时,该车辆的总耗电量最少,最少总耗电量为多少? 【答案】(1)选①,理由见解析;321()215040=-+Q x x x x (2)高速上的行驶速度为80km/h ,在国道上的行驶速度为40km/h ;33800wh【分析】(1)判断③、②不符合题意,故选①,再利用待定系数法求解即可. (2)根据已知条件,结合二次函数的性质,以及对勾函数的性质进行求解. 【详解】(1)解:对于③3()300log a Q x x b =+,当0x =时,它无意义,故不符合题意,对于②,22()1000()3x Q x a =-+,()0220100003Q a ⎛⎫=-+= ⎪⎝⎭,解得999a =-,则22()13x Q x ⎛⎫=- ⎪⎝⎭,当10x =时,()02121013Q ⎛⎫=- ⎪⎝⎭,又100122033<⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝=⎭,所以()021210131Q ⎛⎫=- ⎪⎭<⎝,故不符合题意,故选①3211()40=++Q x x bx cx , 由表中数据,可得323211010101325401404040440040b c b c ⎧⨯+⨯+⨯=⎪⎪⎨⎪⨯+⨯+⨯=⎪⎩,解得2150b c =-⎧⎨=⎩,321()215040Q x x x x ∴=-+. (2)解:高速上行驶200km ,所用时间为200h v, 则所耗电量为2200200100()()(210200)400()2000f v N v v v v v v v=⋅=⋅-+=+-,由对勾函数的性质可知,()f v 在[80,120]上单调递增,min 100()(80)400(80)200030500wh 80f v f ∴==⨯+-=, 国道上行驶30km ,所用时间为30h v, 则所耗电量为322303013()()(2150)604500404g v Q v v v v v v v v =⋅=⋅-+=-+, 080v ≤≤,∴当40v =时,min ()(40)3300wh g x g ==,∴当这辆车在高速上的行驶速度为80km /h ,在国道上的行驶速度为40km/h 时,该车从A 地行驶到B 地的总耗电量最少,最少为30500330033800wh +=. 21.已知函数()ln af x x b x x=--. (1)若函数()f x 在1x =处的切线是10x y +-=,求a b +的值; (2)当1a =时,讨论函数()f x 的零点个数. 【答案】(1)4a b +=(2)当2b ≤时,()f x 在()0,∞+上有且只有1个零点,当2b >时,()f x 在()0,∞+上有3个零点.【分析】(1)利用导数的几何意义即可求解;(2)由(1)知()1ln f x x b x x =--,求导()221x bx f x x -+'=,分类讨论22b -≤≤,2b <-和2b >时,利用导数研究函数的单调性,进而得出函数的零点.【详解】(1)∵切点()()1,1f 也在切线10x y +-=上,∴1110a -+-=,即1a =. 函数()ln a f x x b x x =--,求导()21a bf x x x'=+-, 由题设知()111f a b =+-=-',即3b =, ∴4a b +=.(2)当1a =时,()1ln f x x b x x =--,0x >求导()222111b x bx f x x x x -+'=+-=. ①当22b -≤≤时,二次函数210x bx -+≥恒成立,即()0f x '≥在()0,x ∈+∞上恒成立,()f x 在()0,∞+上单调递增, 又()10f =,故()f x 在()0,∞+上有且只有1个零点.②当2b <-时,方程210x bx -+=有两个不同的根,设12,x x ,此时120x x b +=<,1210x x =>,即10x <,20x <,()0f x '>在()0,x ∈+∞上恒成立,()f x 在()0,∞+上单调递增,故()f x 在()0,∞+上有且只有1个零点.③当2b >时,方程210x bx -+=有两个不同的根,设12,x x , 此时120x x b +=>,1210x x =>,即1201x x <<<, 当10x x <<时,()0f x '>,()f x 在()10,x 上单调递增; 当12x x x <<时,()0f x '<,()f x 在()12,x x 上单调递减; 当2x x >时,()0f x '>,()f x 在()2,x +∞上单调递增. 又()()()1210f x f f x >=>,所以21111e ln e 0e ee e bb bb b bf b b ⎛⎫=--=-+< ⎪⎝⎭在()2,b ∈+∞上恒成立, 所以()f x 在()10,x 上有且只有1个零点.又()10f =,故()f x 在()12,x x 上有且只有1个零点.又()2111e e ln e e 0e e e b bb b b b b f b b f ⎛⎫=--=--=-> ⎪⎝⎭在()2,b ∈+∞上恒成立, 故()f x 在()2,x +∞上有且只有1个零点.综上所述,当2b ≤时,()f x 在()0,∞+上有且只有1个零点,当2b >时,()f x 在()0,∞+上有3个零点.22.已知函数()()2ln 211f x x ax a x a =+-+++,其中R a ∈.(1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)设()()g x f x '=,求函数()g x 在区间[]1,2上的最小值 (3)若()f x 在区间[]1,2上的最大值为2ln21-,直接写出a 的值. 【答案】(1)0y = (2)详见解析 (3)ln 2【分析】(1)求导求切线方程;(2)求导,含参讨论求最值;(3)求导判断单调性验证成立即可【详解】(1)()()2ln 211f x x ax a x a =+-+++,则()10f =()()1221f x ax a x'=+-+,则()10k f '== 则曲线()y f x =在点()1,0处的切线方程为0y = (2)()()1()221g x f x ax a x'==+-+,[]1,2x ∈ 则222121()2ax g x a x x-'=-+=,[]1,2x ∈ ①当0a ≤时,2221()0ax g x x -'=<,则()g x 在[]1,2上单调递减,()g x 在[]1,2上的最小值为()11(2)421222g a a a =+-+=-②当108a <≤时,由[]1,2x ∈,可得2281ax a ≤≤,则2221()0ax g x x-'=≤ 则()g x 在[]1,2上单调递减,()g x 在[]1,2上的最小值为1(2)22g a =-③当1182a <<时,222221()a x x ax g x x x ⎛ -⎝⎭⎝⎭'==,[]1,2x ∈当1x ≤<()0g x '<,()g x 单调递减;2x ≤时,()0g x '>,()g x 单调递增则当x =()g x取最小值()2211)1g a a =+=- ④当12a ≥时,由[]1,2x ∈,可得2221ax a ≥≥,则2221()0ax g x x -'=≥则()g x 在[]1,2上单调递增,()g x 在[]1,2上的最小值为(1)0g = (3)ln 2a =,理由如下:此时,函数()()2ln 211ln 2ln 2ln 2f x x x x =+-+++,[]1,2x ∈则()()()ln 21(1)ln 2ln 221221x f x x x xx '-+--=+= 由[]1,2x ∈,可得ln 2ln 2ln 4122x ≥=>,10x -≥,0x > 则()()ln 21(120)x f x x x--'=≥,则()f x 在[]1,2单调递增.则()f x 在[]1,2上的最大值为()()ln 2ln 2ln 2ln 212ln2422112f =-+++=-+。

2023年陕西省榆林市成考专升本数学(理)自考真题(含答案)

2023年陕西省榆林市成考专升本数学(理)自考真题(含答案)

2023年陕西省榆林市成考专升本数学(理)自考真题(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.2.3.A.A.α≤-4B.α≥-4C.α≥8D.n≤84.方程2sin2x=x-3的解()A.有一个B.有两个C.有三个D.有四个5.二项式(2x-1)6的展开式中,含x4项系数是()A.A.-15B.-240C.15D.2406.函数(x∈R)的值域为A.y>0B.y<0C.0<y≤1D.y<17.A.B.C.D.8.不等式x2﹣2x<0的解集为()。

A.{x|x<0,或x>2}B.{x|-2<x<0}C.{x|0<x<2}D.{x|x<-2,或x>0}9.已知直线l1:x+2=0和l2:,l1与l2的夹角是A.45°B.60°C.120°D.150°10.抛物线y2=4x上一点P到焦点F的距离是10,则点P坐标是()A.A.(9,6)B.(9,±6)C.(6,9)D.(±6,9)11.过点P(1,2)与圆x2+y2=5相切的直线方程为()A.A.x+2y+5=0B.2x+y-5=0C.2x-Y=0D.x+2y-5=012.()A.A.第3项B.第4项C.第5项D.第6项13.()A.A.B.1C.2D.14.如果不共线的向量a和b有相等的长度,则(a+b)(a-b)=( )A.0B.1C.-1D.215.已知点A(-5,3),B(3,1),则线段AB中点的坐标为()A.A.(4,-1)B.(-4,1)C.(-2,4)D.(-1,2)16.双曲线的焦点坐标是()A.B.C.(0,-5),(0,5)D.(-5,0),(5,0)17.18.若向量a=(x,2),b=(-2,4),且a,b共线,则x=()A.-4 B.-1 C.1 D.419.20.21.设甲:x=1:乙:x2+2x-3=0()A.A.甲是乙的必要桑件但不窟乙的充分条件B.甲是乙的充分条件但不是乙的必要条件C.甲不是乙的充分条件也不是乙的必要条件D.甲是乙的充分必要条件22.23.在等比数列{a n}中,若a4a5=6,则a2a3a6a7=()A.12B.36C.24D.7224.已知|a|=2,|b|=1,a与b的夹角为π/3,那么向量m=a-4b的模为()A.B.2C.6D.1225.26.27.A. B.a C. D.a2 E.-a2 F.±a28.由平面直角坐标系中Y轴上所有点所组成的集合是()A.A.{(x,y))B.((x,0))C.((0,y))D.{(x,y)|xy=0)29.()A.A.(0,+∞)B.(-∞,+∞)C.(1,+∞)D.[1,+∞)30.二、填空题(20题)31.32.33.34.椭圆的离心率为______。

数学理(全国Ⅲ卷)丨2020年普通高等学校招生全国统一考试数学理试卷及答案

数学理(全国Ⅲ卷)丨2020年普通高等学校招生全国统一考试数学理试卷及答案

机密★启用前2020年普通高等学校招生全国统一考试(全国Ⅲ卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1已知集合A ={(x ,y)|x ,y ∈N *,y ≥x},B ={(x ,y)|x +y =8},则A ∩B 中元素的个数为 A.2 B.3 C.4 D.62.复数113i -的虚部是 A.-310 B.-110 C.110 D.3103.在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且411ii p==∑,则下面四种情形中,对应样本的标准差最大的一组是A.p 1=p 4=0.1,p 2=p 3=0.4B.p 1=p 4=0.4,p 2=p 3=0.1C.p 1=p 4=0.2,p 2=p 3=0.3D.p 1=p 4=0.3,p 2=p 3=0.24.Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:()0.23(53)1t K I t e --=+,其中K 为最大确诊病例数。

当I(t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln19≈3) A.60 B.63 C.66 D.695.设O 为坐标原点,直线x =2与抛物线C :y 2=2px(p>0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为 A.(14,0) B.(12,0) C.(1,0) D.(2,0) 6.已知向量a ,b 满足|a|=5,|b|=6,a ·b =-6,则cos<a ,a +b>=A.-3135 B.-1935 C.1735 D.19357.在△ABC 中,cosC =23,AC =4,BC =3,则cosB =A.19B.13C.12D.238.右图为某几何体的三视图,则该几何体的表面积是A.6+2B.4+2C.6+3D.4+3 9.已知2tan θ-tan(θ+4π)=7,则tan θ= A.-2 B.-1 C.1 D.210.若直线l 与曲线y x 和圆x 2+y 2=15都相切,则l 的方程为 A.y =2x +1 B.y =2x +12 C.y =12x +1 D.y =12x +1211.设双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 25P 是C上一点,且F 1P ⊥F 2P 。

2023年成人高考高起专数学(理)真题及答案

2023年成人高考高起专数学(理)真题及答案

2023年成人高考高起专数学(理)真题及答案2023年成人高考高起专数学(理)真题及答案成人高考成绩怎么查1、成考考生登录考试所在地的教育考试院网站进行查询。

2、点击成人高考,找到当年的成人高考报名入口并点击。

3、点击成考相关查询,选择“成人高考成绩查询”并点击。

4、在成考查询中心点击成考成绩查询,输入身份证或者准考证、报名号就可以查询了。

成人高考成绩查询注意事项忘记准考证号、报名号的成考生,可以通过所在教育机构查询准考证号,或者持身份证到所在地的办公室或者省教育考试中心查询准考证号。

成人高考成绩查询一般可以通过在线成绩查询、电话查询和短信查询这三种方式进行查询,考生可以尝试使用不同的方法进行查询;可以尝试使用不同的方法进行查询,考生只需要输入自己的准考证号就可以查询到自己的成人高考的信息,最后参加考试。

录取了的成考考生,请按照学校公布的交费流程缴纳学费和教材费,对于费用问题,相关部门早有规定,严禁一次性收取几年的学费,因此大家如果遇到要求你一次性上交几年学费的情况一定要留心上当受骗。

成考的通过率成人高考通过率高达90%,成人高考大多数都是在职人员考的,入学严进宽出,成人高考的题目并不是很难,分数线也不高,成人高考属于国家性的考试,学历也是国家所承认的,考生可以放心报考。

成人高考数学考试形式及试卷结构成人高考数学考试方法为闭卷、笔试。

试卷满分为150分,考试时间(专升本)为150分钟。

数学试卷有选择题、填空题、解答题3种题型。

其中选择题占55%,填空题占10%,解答题占35%即选择题85分其他65分。

从试题难度比例上看,较容易题约占40%,中等难度题约占50%,较难题约占10%。

成人高考考试内容有哪些高起专考试科目为3门,分别是语文、数学及外语,其中数学按文科、理科分数学文科类和数学理科类两种,外语分英语、日语、俄语三个语种,成人高考考生根据报考院校的专业要求选择一种进行考试。

理科类:语文、数学(理)、外语。

2023年高考全国乙卷数学(理)真题(解析版)

2023年高考全国乙卷数学(理)真题(解析版)

2023年普通高等学校招生全国统一考试理科数学一、选择题1.设z =2+i1+i 2+i5,则z =()A.1-2iB.1+2iC.2-iD.2+i【答案】B 【解析】【分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得z =2+i 1+i 2+i 5=2+i 1-1+i =i 2+i i2=2i -1-1=1-2i ,则z=1+2i.故选:B .2.设集合U =R ,集合M =x x <1 ,N =x -1<x <2 ,则x x ≥2 =()A.∁U M ∪NB.N ∪∁U MC.∁U M ∩ND.M ∪∁U N【答案】A 【解析】【分析】由题意逐一考查所给的选项运算结果是否为x |x ≥2 即可.【详解】由题意可得M ∪N =x |x <2 ,则∁U M ∪N =x |x ≥2 ,选项A 正确;∁U M =x |x ≥1 ,则N ∪∁U M =x |x >-1 ,选项B 错误;M ∩N =x |-1<x <1 ,则∁U M ∩N =x |x ≤-1 或x ≥1 ,选项C 错误;∁U N =x |x ≤-1 或x ≥2 ,则M ∪∁U N =x |x <1 或x ≥2 ,选项D 错误;故选:A .3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D 【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【详解】如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=3,点H ,I ,J ,K 为所在棱上靠近点B 1,C 1,D 1,A 1的三等分点,O ,L ,M ,N 为所在棱的中点,则三视图所对应的几何体为长方体ABCD -A 1B 1C 1D 1去掉长方体ONIC 1-LMHB 1之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:2×2×2 +4×2×3 -2×1×1 =30.故选:D .4.已知f (x )=xe xe ax -1是偶函数,则a =()A.-2B.-1C.1D.2【答案】D 【解析】【分析】根据偶函数的定义运算求解.【详解】因为f x =xe x e ax-1为偶函数,则f x -f -x =xexe ax -1--x e-xe -ax -1=x e x -e a -1xe ax -1=0,又因为x 不恒为0,可得e x -e a -1 x=0,即e x =e a -1x,则x =a -1 x ,即1=a -1,解得a =2.故选:D .5.设O 为平面坐标系的坐标原点,在区域x ,y 1≤x 2+y 2≤4 内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.12【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域x ,y |1≤x 2+y 2≤4 表示以O 0,0 圆心,外圆半径R =2,内圆半径r =1的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角∠MON =π4,结合对称性可得所求概率P =2×π42π=14.故选:C .6.已知函数f (x )=sin (ωx +φ)在区间π6,2π3 单调递增,直线x =π6和x =2π3为函数y =f x 的图像的两条对称轴,则f -5π12 =()A.-32B.-12C.12D.32【答案】D 【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入x =-5π12即可得到答案.【详解】因为f (x )=sin (ωx +φ)在区间π6,2π3单调递增,所以T 2=2π3-π6=π2,且ω>0,则T =π,w =2πT =2,当x =π6时,f x 取得最小值,则2⋅π6+φ=2k π-π2,k ∈Z ,则φ=2k π-5π6,k ∈Z ,不妨取k =0,则f x =sin 2x -5π6 ,则f -5π12 =sin -5π3 =32,7.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种【答案】C 【解析】【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有C 16种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有A 25种,根据分步乘法公式则共有C 16⋅A 25=120种,故选:C .8.已知圆锥PO 的底面半径为3,O 为底面圆心,PA ,PB 为圆锥的母线,∠AOB =120°,若△PAB 的面积等于934,则该圆锥的体积为()A.πB.6πC.3πD.36π【答案】B 【解析】【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在△AOB 中,∠AOB =120°,而OA =OB =3,取AC 中点C ,连接OC ,PC ,有OC ⊥AB ,PC ⊥AB ,如图,∠ABO =30°,OC =32,AB =2BC =3,由△PAB 的面积为934,得12×3×PC =934,解得PC =332,于是PO =PC 2-OC 2=332 2-32 2=6,所以圆锥的体积V =13π×OA 2×PO =13π×(3)2×6=6π.9.已知△ABC 为等腰直角三角形,AB 为斜边,△ABD 为等边三角形,若二面角C -AB -D 为150°,则直线CD 与平面ABC 所成角的正切值为()A.15B.25C.35D.25【答案】C 【解析】【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取AB 的中点E ,连接CE ,DE ,因为△ABC 是等腰直角三角形,且AB 为斜边,则有CE ⊥AB ,又△ABD 是等边三角形,则DE ⊥AB ,从而∠CED 为二面角C -AB -D 的平面角,即∠CED =150°,显然CE ∩DE =E ,CE ,DE ⊂平面CDE ,于是AB ⊥平面CDE ,又AB ⊂平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面ABC =CE ,直线CD ⊂平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而∠DCE 为直线CD 与平面ABC 所成的角,令AB =2,则CE =1,DE =3,在△CDE 中,由余弦定理得:CD =CE 2+DE 2-2CE ⋅DE cos ∠CED =1+3-2×1×3×-32=7,由正弦定理得DE sin ∠DCE =CDsin ∠CED,即sin ∠DCE =3sin150°7=327,显然∠DCE 是锐角,cos ∠DCE =1-sin 2∠DCE =1-3272=527,所以直线CD 与平面ABC 所成的角的正切为35.故选:C10.已知等差数列a n 的公差为2π3,集合S =cos a n n ∈N * ,若S =a ,b ,则ab =()A.-1B.-12C.0D.12【解析】【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.【详解】依题意,等差数列{a n }中,a n =a 1+(n -1)⋅2π3=2π3n +a 1-2π3,显然函数y =cos 2π3n +a 1-2π3的周期为3,而n ∈N ∗,即cos a n 最多3个不同取值,又{cos a n |n ∈N ∗}={a ,b },则在cos a 1,cos a 2,cos a 3中,cos a 1=cos a 2≠cos a 3或cos a 1≠cos a 2=cos a 3,于是有cos θ=cos θ+2π3 ,即有θ+θ+2π3 =2k π,k ∈Z ,解得θ=k π-π3,k ∈Z ,所以k ∈Z ,ab =cos k π-π3 cos k π-π3 +4π3 =-cos k π-π3 cos k π=-cos 2k πcos π3=-12.故选:B11.设A ,B 为双曲线x 2-y 29=1上两点,下列四个点中,可为线段AB 中点的是()A.1,1B.-1,2C.1,3D.-1,-4【答案】D 【解析】【分析】根据点差法分析可得k AB ⋅k =9,对于A 、B 、D :通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【详解】设A x 1,y 1 ,B x 2,y 2 ,则AB 的中点M x 1+x 22,y 1+y 22,可得k AB =y 1-y 2x 1-x 2,k =y 1+y 22x 1+x 22=y 1+y 2x 1+x 2,因为A ,B 在双曲线上,则x 21-y 219=1x 22-y 229=1,两式相减得x 21-x 22-y 21-y 229=0,所以k AB ⋅k =y 21-y 22x 21-x 22=9.对于选项A :可得k =1,k AB =9,则AB :y =9x -8,联立方程y =9x -8x 2-y 29=1 ,消去y 得72x 2-2×72x +73=0,此时Δ=-2×72 2-4×72×73=-288<0,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得k =-2,k AB =-92,则AB :y =-92x -52,联立方程y =-92x -52x 2-y 29=1,消去y 得45x 2+2×45x +61=0,此时Δ=2×45 2-4×45×61=-4×45×16<0,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得k =3,k AB =3,则AB :y =3x由双曲线方程可得a =1,b =3,则AB :y =3x 为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :k =4,k AB =94,则AB :y =94x -74,联立方程y =94x -74x 2-y 29=1,消去y 得63x 2+126x -193=0,此时Δ=1262+4×63×193>0,故直线AB 与双曲线有交两个交点,故D 正确;故选:D .12.已知⊙O 的半径为1,直线PA 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若PO =2,则PA ⋅PD的最大值为()A.1+22B.1+222C.1+2D.2+2【答案】A 【解析】【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得PA ⋅PD =12-22sin 2α-π4 ,或PA ⋅PD =12+22sin 2α+π4 然后结合三角函数的性质即可确定PA ⋅PD的最大值.【详解】如图所示,OA =1,OP =2,则由题意可知:∠APO =45°,由勾股定理可得PA =OP 2-OA 2=1当点A ,D 位于直线PO 异侧时,设∠OPC =α,0≤α≤π4,则:PA ⋅PD =|PA |⋅|PD |cos α+π4=1×2cos αcos α+π4=2cos α22cos α-22sin α =cos 2α-sin αcos α=1+cos2α2-12sin2α=12-22sin 2α-π4 0≤α≤π4,则-π4≤2α-π4≤π4∴当2α-π4=-π4时,PA ⋅PD 有最大值1.当点A ,D 位于直线PO 同侧时,设∠OPC =α,0≤α≤π4,则:PA ⋅PD =|PA |⋅|PD |cos α-π4=1×2cos αcos α-π4=2cos α22cos α+22sin α =cos 2α+sin αcos α=1+cos2α2+12sin2α=12+22sin 2α+π40≤α≤π4,则π4≤2α+π4≤π2∴当2α+π4=π2时,PA ⋅PD 有最大值1+22.综上可得,PA ⋅PD 的最大值为1+22.【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.二、填空题13.已知点A 1,5 在抛物线C :y 2=2px 上,则A 到C 的准线的距离为.【答案】94【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为x =-54,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【详解】由题意可得:5 2=2p ×1,则2p =5,抛物线的方程为y 2=5x ,准线方程为x =-54,点A 到C 的准线的距离为1--54 =94.故答案为:94.14.若x ,y 满足约束条件x -3y ≤-1x +2y ≤93x +y ≥7,则z =2x -y 的最大值为.【答案】8【解析】【分析】作出可行域,转化为截距最值讨论即可.详解】作出可行域如下图所示:z =2x -y ,移项得y =2x -z ,联立有x -3y =-1x +2y =9,解得x =5y =2,设A 5,2 ,显然平移直线y =2x 使其经过点A ,此时截距-z 最小,则z 最大,代入得z =8,故答案为:8.15.已知a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=.【解析】【分析】根据等比数列公式对a 2a 4a 5=a 3a 6化简得a 1q =1,联立a 9a 10=-8求出q 3=-2,最后得a 7=a 1q ⋅q 5=q 5=-2.【详解】设a n 的公比为q q ≠0 ,则a 2a 4a 5=a 3a 6=a 2q ⋅a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,因为a 9a 10=-8,则a 1q 8⋅a 1q 9=-8,则q 15=q 5 3=-8=-2 3,则q 3=-2,则a 7=a 1q ⋅q 5=q 5=-2,故答案为:-2.16.设a ∈0,1 ,若函数f x =a x +1+a x 在0,+∞ 上单调递增,则a 的取值范围是.【答案】5-12,1 【解析】【分析】原问题等价于f x =a x ln a +1+a x ln 1+a ≥0恒成立,据此将所得的不等式进行恒等变形,可得1+a a x ≥-ln aln 1+a ,由右侧函数的单调性可得实数a 的二次不等式,求解二次不等式后可确定实数a 的取值范围.【详解】由函数的解析式可得f x =a x ln a +1+a x ln 1+a ≥0在区间0,+∞ 上恒成立,则1+a x ln 1+a ≥-a x ln a ,即1+a a x ≥-ln aln 1+a在区间0,+∞ 上恒成立,故1+a a 0=1≥-ln aln 1+a,而a +1∈1,2 ,故ln 1+a >0,故ln a +1 ≥-ln a 0<a <1即a a +1 ≥10<a <1 ,故5-12≤a <1,结合题意可得实数a 的取值范围是5-12,1.故答案为:5-12,1.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为x i ,y i (i =1,2,⋅⋅⋅10),试验结果如下试验序号i 12345678910伸缩率x i545355525754545659545312541868伸缩率y i536527543530560533522550576536记z i =x i -y i (i =1,2,⋯,10),记z 1,z 2,⋯,z 10的样本平均数为z,样本方差为s 2,(1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥2s 210,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).【答案】(1)z =11,s 2=61;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【解析】【分析】(1)直接利用平均数公式即可计算出x ,y ,再得到所有的z i 值,最后计算出方差即可;(2)根据公式计算出2s 210的值,和z 比较大小即可.【小问1详解】x =545+533+551+522+575+544+541+568+596+54810=552.3,y =536+527+543+530+560+533+522+550+576+53610=541.3,z =x -y=552.3-541.3=11,z i =x i -y i 的值分别为:9,6,8,-8,15,11,19,18,20,12,故s 2=(9-11)2+(6-11)2+(8-11)2+(-8-11)2+(15-11)2+0+(19-11)2+(18-11)2+(20-11)2+(12-110=61【小问2详解】由(1)知:z=11,2s 210=2 6.1=24.4,故有z ≥2s 210,所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.18.在△ABC 中,已知∠BAC =120°,AB =2,AC =1.(1)求sin ∠ABC ;(2)若D 为BC 上一点,且∠BAD =90°,求△ADC 的面积.【答案】(1)21 14;(2)310.【解析】【分析】(1)首先由余弦定理求得边长BC的值为BC=7,然后由余弦定理可得cos B=5714,最后由同角三角函数基本关系可得sin B=21 14;(2)由题意可得S△ABDS△ACD=4,则S△ACD=15S△ABC,据此即可求得△ADC的面积.【小问1详解】由余弦定理可得:BC2=a2=b2+c2-2bc cos A=4+1-2×2×1×cos120°=7,则BC=7,cos B=a2+c2-b22ac=7+4-12×2×7=5714,sin B=1-cos2B=1-2528=2114.【小问2详解】由三角形面积公式可得S△ABDS△ACD=12×AB×AD×sin90°12×AC×AD×sin30°=4,则S△ACD=15S△ABC=15×12×2×1×sin120°=310.19.如图,在三棱锥P-ABC中,AB⊥BC,AB=2,BC=22,PB=PC=6,BP,AP,BC的中点分别为D,E,O,AD=5DO,点F在AC上,BF⊥AO.(1)证明:EF⎳平面ADO;(2)证明:平面ADO⊥平面BEF;(3)求二面角D-AO-C的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)22.【解析】【分析】(1)根据给定条件,证明四边形ODEF 为平行四边形,再利用线面平行判定推理作答.(2)由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.(3)由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.【小问1详解】连接DE ,OF ,设AF =tAC ,则BF =BA +AF =(1-t )BA +tBC ,AO =-BA +12BC ,BF ⊥AO ,则BF ⋅AO =[(1-t )BA +tBC ]⋅-BA +12BC =(t -1)BA 2+12tBC 2=4(t -1)+4t =0,解得t =12,则F 为AC 的中点,由D ,E ,O ,F 分别为PB ,PA ,BC ,AC 的中点,于是DE ⎳AB ,DE =12AB ,OF ⎳AB ,OF =12AB ,即DE ⎳OF ,DE =OF ,则四边形ODEF 为平行四边形,EF ⎳DO ,EF =DO ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ⎳平面ADO .ABCDEO P【小问2详解】由(1)可知EF ⎳OD ,则AO =6,DO =62,得AD =5DO =302,因此OD 2+AO 2=AD 2=152,则OD ⊥AO ,有EF ⊥AO ,又AO ⊥BF ,BF ∩EF =F ,BF ,EF ⊂平面BEF ,则有AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .【小问3详解】过点O 作OH ⎳BF 交AC 于点H ,设AD ∩BE =G ,由AO ⊥BF ,得HO ⊥AO ,且FH =13AH ,又由(2)知,OD ⊥AO ,则∠DOH 为二面角D -AO -C 的平面角,因为D ,E 分别为PB ,PA 的中点,因此G 为△PAB 的重心,即有DG =13AD ,GE =13BE ,又FH =13 AH ,即有DH =32GF ,cos ∠ABD =4+32-1522×2×62=4+6-PA 22×2×6,解得PA =14,同理得BE =62,于是BE 2+EF 2=BF 2=3,即有BE ⊥EF ,则GF 2=13×622+622=53,从而GF =153,DH =32×153=152,在△DOH 中,OH =12BF =32,OD =62,DH =152,于是cos ∠DOH =64+34-1542×62×32=-22,sin ∠DOH =1--222=22,所以二面角D -AO -C 的正弦值为22.ABCD EFGH OP20.已知椭圆C :y 2a 2+x 2b 2=1a >b >0 的离心率为53,点A -2,0 在C 上.(1)求C 的方程;(2)过点-2,3 的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解【解析】【分析】(1)根据题意列式求解a ,b ,c ,进而可得结果;(2)设直线PQ 的方程,进而可求点M ,N 的坐标,结合韦达定理验证y M +y N2为定值即可.【小问1详解】由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.【小问2详解】由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3 x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y 2x 2+22=k x 1+2 +3x 1+2+k x 2+2 +3x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2 x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +316k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段PQ 的中点是定点0,3 .【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.已知函数f(x)=1x +aln(1+x).(1)当a=-1时,求曲线y=f x 在点1,f1处的切线方程;(2)是否存在a,b,使得曲线y=f1x关于直线x=b对称,若存在,求a,b的值,若不存在,说明理由.(3)若f x 在0,+∞存在极值,求a的取值范围.【答案】(1)ln2x+y-ln2=0;(2)存在a=12,b=-12满足题意,理由见解析.(3)0,12.【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得函数的定义域,由函数的定义域可确定实数b的值,进一步结合函数的对称性利用特殊值法可得关于实数a的方程,解方程可得实数a的值,最后检验所得的a,b是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数g x =ax2+x-x+1ln x+1,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论a≤0,a≥12和0<a<12三中情况即可求得实数a的取值范围.【小问1详解】当a=-1时,f x =1x-1ln x+1,则f x =-1x2×ln x+1+1x-1×1x+1,据此可得f1 =0,f 1 =-ln2,函数在1,f1处的切线方程为y-0=-ln2x-1,即ln2x+y-ln2=0.【小问2详解】由函数的解析式可得f1x=x+aln1x+1,函数的定义域满足1x+1=x+1x>0,即函数的定义域为-∞,-1∪0,+∞,定义域关于直线x=-12对称,由题意可得b=-12,由对称性可知f-12+m=f-12-mm>12,取m=32可得f1 =f-2,即a+1ln2=a-2ln 12,则a+1=2-a,解得a=12,经检验a=12,b=-12满足题意,故a=12,b=-12.即存在a=12,b=-12满足题意.【小问3详解】由函数的解析式可得f x =-1 x2ln x+1+1x+a1x+1,由f x 在区间0,+∞存在极值点,则f x 在区间0,+∞上存在变号零点;令-1 x2ln x+1+1x+a1x+1=0,则-x+1ln x+1+x+ax2=0,令g x =ax2+x-x+1ln x+1,f x 在区间0,+∞存在极值点,等价于g x 在区间0,+∞上存在变号零点,g x =2ax-ln x+1,g x =2a-1 x+1当a≤0时,g x <0,g x 在区间0,+∞上单调递减,此时g x <g0 =0,g x 在区间0,+∞上无零点,不合题意;当a≥12,2a≥1时,由于1x+1<1,所以g x >0,g x 在区间0,+∞上单调递增,所以g x >g 0 =0,g x 在区间0,+∞上单调递增,g x >g0 =0,所以g x 在区间0,+∞上无零点,不符合题意;当0<a<12时,由gx =2a-1x+1=0可得x=12a-1,当x∈0,12a-1时,g x <0,g x 单调递减,当x∈12a-1,+∞时,g x >0,g x 单调递增,故g x 的最小值为g12a-1=1-2a+ln2a,令m x =1-x+ln x0<x<1,则m x =-x+1x>0,函数m x 在定义域内单调递增,m x <m1 =0,据此可得1-x+ln x<0恒成立,则g 12a-1=1-2a +ln2a <0,令h x =ln x -x 2+x x >0 ,则hx =-2x 2+x +1x ,当x ∈0,1 时,h x >0,h x 单调递增,当x ∈1,+∞ 时,h x <0,h x 单调递减,故h x ≤h 1 =0,即ln x ≤x 2-x (取等条件为x =1),所以g x =2ax -ln x +1 >2ax -x +1 2-x +1 =2ax -x 2+x ,g 2a -1 >2a 2a -1 -2a -1 2+2a -1 =0,且注意到g 0 =0,根据零点存在性定理可知:g x 在区间0,+∞ 上存在唯一零点x 0.当x ∈0,x 0 时,g x <0,g x 单调减,当x ∈x 0,+∞ 时,g x >0,g x 单调递增,所以g x 0 <g 0 =0.令n x =ln x -12x -1x ,则n x =1x -121+1x 2=-x -1 22x2≤0,则n x 单调递减,注意到n 1 =0,故当x ∈1,+∞ 时,ln x -12x -1x <0,从而有ln x <12x -1x,所以g x =ax 2+x -x +1 ln x +1 >ax 2+x -x +1 ×12x +1 -1x +1=a -12 x 2+12,令a -12 x 2+12=0得x 2=11-2a,所以g 11-2a>0,所以函数g x区间0,+∞ 上存在变号零点,符合题意.综合上面可知:实数a 得取值范围是0,12.【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ=2sin θπ4≤θ≤π2,曲线C 2:x =2cos αy =2sin α (α为参数,π2<α<π).(1)写出C 1的直角坐标方程;(2)若直线y =x +m 既与C 1没有公共点,也与C 2没有公共点,求m 的取值范围.【答案】(1)x 2+y -1 2=1,x ∈0,1 ,y ∈1,2 (2)-∞,0 ∪22,+∞ 【解析】【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意x ,y 的取值范围;(2)根据曲线C 1,C 2的方程,结合图形通过平移直线y =x +m 分析相应的临界位置,结合点到直线的距离公式运算求解即可.【小问1详解】因为ρ=2sin θ,即ρ2=2ρsin θ,可得x 2+y 2=2y ,整理得x 2+y -1 2=1,表示以0,1 为圆心,半径为1的圆,又因为x =ρcos θ=2sin θcos θ=sin2θ,y =ρsin θ=2sin 2θ=1-cos2θ,且π4≤θ≤π2,则π2≤2θ≤π,则x =sin2θ∈0,1 ,y =1-cos2θ∈1,2 ,故C 1:x 2+y -1 2=1,x ∈0,1 ,y ∈1,2 .【小问2详解】因为C 2:x =2cos αy =2sin α(α为参数,π2<α<π),整理得x 2+y 2=4,表示圆心为O 0,0 ,半径为2,且位于第二象限的圆弧,如图所示,若直线y =x +m 过1,1 ,则1=1+m ,解得m =0;若直线y =x +m ,即x -y +m =0与C 2相切,则m2=2m >0 ,解得m =22,若直线y=x +m 与C 1,C 2均没有公共点,则m >22或m <0,即实数m 的取值范围-∞,0 ∪22,+∞ .【选修4-5】(10分)23.已知f x =2x +x -2 .(1)求不等式f x ≤6-x 的解集;(2)在直角坐标系xOy 中,求不等式组f (x )≤yx +y -6≤0所确定的平面区域的面积.【答案】(1)[-2,2];(2)6.【解析】【分析】(1)分段去绝对值符号求解不等式作答.(2)作出不等式组表示的平面区域,再求出面积作答.【小问1详解】依题意,f (x )=3x -2,x >2x +2,0≤x ≤2-3x +2,x <0,不等式f (x )≤6-x 化为:x >23x -2≤6-x或0≤x ≤2x +2≤6-x 或x <0-3x +2≤6-x ,解x >23x -2≤6-x,得无解;解0≤x ≤2x +2≤6-x ,得0≤x ≤2,解x <0-3x +2≤6-x ,得-2≤x <0,因此-2≤x ≤2,所以原不等式的解集为:[-2,2]小问2详解】作出不等式组f (x )≤yx +y -6≤0表示的平面区域,如图中阴影△ABC,由y =-3x +2x +y =6,解得A (-2,8),由y =x +2x +y =6 , 解得C (2,4),又B (0,2),D (0,6),所以△ABC 的面积S △ABC =12|BD |×x C -x A =12|6-2|×|2-(-2)|=8.。

2023年浙江省嘉兴市成考专升本数学(理)自考真题(含答案带解析)

2023年浙江省嘉兴市成考专升本数学(理)自考真题(含答案带解析)

2023年浙江省嘉兴市成考专升本数学(理)自考真题(含答案带解析) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.点(2,4)关于直线y=x的对称点的坐标为()。

A.(4,2)B.(-2,-4)C.(-2,4)D.(-4,-2)2.某学生从7门课程中选修4门,其中甲、乙、丙三门课程至少选修两门,则不同的选课方案共有()A.A.4种B.18种C.22种D.26种3.函数:y=2x的图像与函数x=log2y的图像( )A.关于x轴对称B.关于y轴对称C.关于直线y=x对称D.是同-条曲线4.已知复数z1=2+i,z2=l-3i,则3z1-z2=()A.A.5+6iB.5-5iC.5D.75.已知函数f(x)的定义域为R,且f(2x)=4x+1,则f(1)=()A.9B.5C.7D.36.已知复数z=a+6i,其中a,b∈R,且b≠0,则()A.A.B.C.D.7.Y=xex,则Y’=()A.A.xexB.xex+xC.xex+exD.ex+x8.在△ABC中,已知AB=5,AC=3,∠A=120°,则BC长为()A.A.7B.6C.D.9.9种产品有3种是名牌,要从这9种产品中选5种参加博览会,如果名牌产品全部参加,那么不同的选法共有()A.A.30种B.12种C.15种D.36种10.抛物线的准线方程为()。

11.12.设0<x<l,则()A.log2x>0B.0<2x<1C.D.1<2x<213.14.已知平面向量a=(-2,1)与b=(λ,2)垂直,则λ=()。

A.4B.-4C.1D.115.三角形全等是三角形面积相等的A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件16.()A.A.(3,-6)B.(1.-2)C.(-3,6)D.(2,-8)17.18.下列各选项中,正确的是()A.y=x+sinx是偶函数B.y=x+sinx是奇函数C.Y=D.xE.+sinx是偶函数F.y=G.xH.+sinx是奇函数19.20.若函数f(x)的定义域为[0,1],则f(cosx)的定义域为( )A.[0,1]B.(-∞,+∞)C.[-π/2,π/2]D.[2kπ-π/2,2kπ+π/2](k∈Z)22.下列函数在各自定义域中为增函数的是()。

2023年山东省枣庄市成考专升本数学(理)自考真题(含答案带解析)

2023年山东省枣庄市成考专升本数学(理)自考真题(含答案带解析)

2023年山东省枣庄市成考专升本数学(理)自考真题(含答案带解析)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.若甲:x>1;乙:,则()。

A.甲是乙的必要条件,但不是乙的充分条件B.甲是乙的充分必要条件C.甲不是乙的充分条件,也不是乙的必要条件D.甲是乙的充分条件,但不是乙的必要条件2.由数字1,2,3,4,5组成没有重复数字且数字1与2不相邻的五位数有( )A.36个B.72个C.120个D.96个3.已知集合A={x|-4≤x<2},B={x|-1≤x<3},那么集合A∩B=()A.{x|-4<x<3}B.{x|-4≤x≤3}C.{x|-1<x<2}D.{x|-1≤x≤2}4.5.已知椭圆的长轴长为8,则它的一个焦点到短轴一个端点的距离为()A.A.8B.6C.4D.26.设函数f(x)=x2-1,则f(x+2)=()A.x2+4x+5B.x2+4x+3C.x2+2x+5D.x2+2x+37.抛物线y2=4x上一点P到焦点F的距离是10,则点P坐标是()A.A.(9,6)B.(9,±6)C.(6,9)D.(±6,9)8.A.x/4B.-x/4C.x/2D.y=±x/49.已知b⊥β,b在a内的射影是b’那么b’和a的关系是A.b’//aB.b’⊥aC.b’与a是异面直线D.b’与a相交成锐角10.A.A.B.C.D.√711.()A.A.没有极大值B.没有极小值C.的极大值为-1D.的极小值为-112.13.从6位同学中任意选出4位参加公益活动,不同的选法共有A.30种B.15种C.10种D.6种14. A.2 B.3 C.4 D.515.若函数y=f(x)的定义域为[-1,1],那么f(2x-1)的定义域是A.[0,1]B.[-3,1]C.[-1,1]D.[-1,0]16.在△ABC中,若a+1/a=b+1/b=c+1/c,则△ABC必是( )A.直角三角形B.等腰三角形C.等边三角形D.铫角三角形17.若△ABC的面积是64,边AB和AC的等比中项是12,那么sinA 等于()A.A.B.3/5C.4/5D.8/918.函数y=2sin6x的最小正周期为()。

2021年成考高起点数学(理)真题及答案

2021年成考高起点数学(理)真题及答案

2021年成人高等学校招生全国统一考试高起点数学一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x|-1≤x<5},B={x|-2<x<2},A∩B ()A.{x|-1≤x<2}B.{x|-2<x<2}C.{x|-2<x<5}D.{x|-1≤x<5}【答案】A【考情点拨】本题主要考查的知识点为集合的运算。

【应试指导】A∩B={x|-1≤x<2}.2.已知sinα<0且tanα<0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【考情点拨】本题主要考查的知识点为三角函数的性质.【应试指导】正弦函数值在第三、四象限小于0,正切函数值在第二,四象限小于0.故题中所求离在第四章限.3.下列函数中,既是偶函数又是周期函数的为()A.y=sin2xB.y=x²C.y=tanxD.y=cos3x【答案】D【考情点拨】本题主要考查的知识点为函数的奇偶性和周期性.【应试指导】选项A、C是奇函数,选项B是偶函数,但不是周期函数,只有选项D既是偶函数又是周期函数.4.函数y=1+log2x(x>0)的反函数为()A.y=21−x(x∈R)B.y=2x−1(x∈R)C.y=−1+log12x(x>0)D.y=log2x2(x>0)【答案】B【考情点拨】本题主要考查的知识点为函数的反函数。

【应试指导】已知y=1+log2x.则有log2x=y-1.化简得.x=2y-1.故原函数的反函数为y=2x−1(z∈R).5.函数y=5cos²x-3sin²x的最小正周期为()A.4πB.2πC.πD.π2【答案】C【考情点拨】本题主要考查的知识点为三角函数的周期.【应试指导】整理得y=3(cos²x-sin²x)+2cos²x=3cos2x+cos2x+1=4cos2x+1,故函数的最小正周期为T−2π2=π6.已知平面α,两条直线L₁,L₂.设甲:L₁⊥a且L₂⊥α₁乙L₁∥L₂,则()A.甲是乙的必要条件但不是充分条件B.甲是乙的充分条件但不是必要条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】B【考情点拨】本题主要考查的知识点为简易逻辑。

2022年全国乙卷数学(理科)高考真题参考答案

2022年全国乙卷数学(理科)高考真题参考答案

绝密★启用前2022年普通高等学校招生全国统一考试(全国乙卷)数学(理科)参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A.2M ∈ B.3M∈ C.4M∉ D.5M∉【答案】A【解析】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A 2.已知12z i =-,且0z az b ++=,其中a ,b 为实数,则()A.1,2a b ==- B.1,2a b =-= C.1,2a b == D.1,2a b =-=-【答案】A【解析】先算出z ,再代入计算,实部与虚部都为零解方程组即可12iz =+12i (12i)(1)(22)i z az b a b a b a ++=-+++=+++-由0z az b ++=,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩故选:A3.已知向量,a b 满足||1,||2|3a b a b ==-=,则a b ⋅=()A.2-B.1- C.1D.2【答案】C【解析】根据给定模长,利用向量的数量积运算求解即可.∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||2|3,==-=a b a b ∴91443134=-⋅+⨯=-⋅ a b a b ,∴1a b ⋅= 故选:C.4.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A.15b b <B.38b b < C.62b b < D.47b b <【答案】D 【解析】解:∵()*1,2,k k α∈=N,∴1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又∵223411,11αααα>++112233411111ααααααα++<+++,∴24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误;178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.故选:D.5.设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =()A.2B. C.3D.【答案】B 【解析】根据抛物线上的点到焦点和准线的距离相等,从而求得点A 的横坐标,进而求得点A 坐标,即可得到答案.由题意得,()1,0F ,则2AF BF ==,即点A 到准线1x =-的距离为2,所以点A 的横坐标为121-+=,不妨设点A 在x 轴上方,代入得,()1,2A ,所以AB ==.故选:B6.执行下边的程序框图,输出的n =()A.3B.4C.5D.6【答案】B【解析】执行第一次循环,2123b b a =+=+=,312,12a b a n n =-=-==+=,222231220.0124b a -=-=>;执行第二次循环,2347b b a =+=+=,725,13a b a n n =-=-==+=,222271220.01525b a -=-=>;执行第三次循环,271017b b a =+=+=,17512,14a b a n n =-=-==+=,2222171220.0112144b a -=-=<,此时输出4n =.故选:B7.在正方体1111ABCD A B C D -中,E ,F 分别为,AB BC 的中点,则()A.平面1B EF ⊥平面1BDD B.平面1B EF ⊥平面1A BD C.平面1//B EF 平面1A AC D.平面1//B EF 平面11AC D【答案】A【解析】证明EF ⊥平面1BDD ,即可判断A ;如图,以点D 为原点,建立空间直角坐标系,设2AB =,分别求出平面1B EF ,1A BD ,11AC D 的法向量,根据法向量的位置关系,即可判断BCD .解:在正方体1111ABCD A B C D -中,AC BD ⊥且1DD ⊥平面ABCD ,又∵EF ⊂平面ABCD ,∴1EF DD ⊥,∵,E F 分别为,AB BC 的中点,∴EF AC ,∴EF BD ⊥,又∵1BD DD D = ,∴EF ⊥平面1BDD ,∵EF ⊂平面1B EF ,∴平面1B EF ⊥平面1BDD ,故A 正确;如图,以点D 为原点,建立空间直角坐标系,设2AB =,则()()()()()()()112,2,2,2,1,0,1,2,0,2,2,0,2,0,2,2,0,0,0,2,0B E F B A A C ,()10,2,2C ,则()()11,1,0,0,1,2EF EB =-= ,()()12,2,0,2,0,2DB DA ==,()()()1110,0,2,2,2,0,2,2,0,AA AC A C ==-=-设平面1B EF 的法向量为()111,,m x y z =,则有11111020m EF x y m EB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ ,可取()2,2,1m =- ,同理可得平面1A BD 的法向量为()11,1,1n =--,平面1A AC 的法向量为()21,1,0n =,平面11AC D 的法向量为()31,1,1n =-,则122110m n ⋅=-+=≠,所以平面1B EF 与平面1A BD 不垂直,故B 错误;因为m 与2n uu r 不平行,所以平面1B EF 与平面1A AC 不平行,故C 错误;因为m 与3n不平行,所以平面1B EF 与平面11AC D 不平行,故D 错误,故选:A.8.已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =()A.14 B.12C.6D.3【答案】D【解析】设等比数列{}n a 的公比为,0q q ≠,易得1q ≠,根据题意求出首项与公比,再根据等比数列的通项即可得解.解:设等比数列{}n a 的公比为,0q q ≠,若1q =,则250a a -=,与题意矛盾,所以1q ≠,则()31123425111168142a q a a a qa a a q a q ⎧-⎪++==⎨-⎪-=-=⎩,解得19612a q =⎧⎪⎨=⎪⎩,所以5613a a q ==.故选:D .9.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.13B.12C.33D.22【答案】C【解析】先证明当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r ,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为α,则2111sin 222222ABCD S AC BD AC BD r r r α=⋅⋅⋅≤⋅⋅≤⋅=即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r 又22r h 1+=则21432327O ABCDV r h -=⋅⋅=当且仅当222r h =即h 时等号成立,故选:C10.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为123,,p p p ,且3210p p p >>>.记该棋手连胜两盘的概率为p ,则()A.p 与该棋手和甲、乙、丙的比赛次序无关 B.该棋手在第二盘与甲比赛,p 最大C.该棋手在第二盘与乙比赛,p 最大 D.该棋手在第二盘与丙比赛,p 最大【答案】D【解析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率p 甲;该棋手在第二盘与乙比赛且连胜两盘的概率p 乙;该棋手在第二盘与丙比赛且连胜两盘的概率p 丙.并对三者进行比较即可解决该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,且连胜两盘的概率为p 甲则2132131231232(1)2(1)2()4p p p p p p p p p p p p p =-+-=+-甲记该棋手在第二盘与乙比赛,且连胜两盘的概率为p 乙则1231232131232(1)2(1)2()4p p p p p p p p p p p p p =-+-=+-乙记该棋手在第二盘与丙比赛,且连胜两盘的概率为p 丙则1321323121232(1)2(1)2()4p p p p p p p p p p p p p =-+-=+-丙则[]()1231232131231232()42()420p p p p p p p p p p p p p p p p p -=+--+-=-<甲乙[]()2131233121232312()42()420p p p p p p p p p p p p p p p p p -=+--+-=-<乙丙即p p <甲乙,p p <乙丙,则该棋手在第二盘与丙比赛,p 最大.选项D 判断正确;选项BC 判断错误;p 与该棋手与甲、乙、丙的比赛次序有关.选项A 判断错误.故选:D11.双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A.B.32C.132D.2【答案】C【解析】依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,可判断N 在双曲线的右支,设12F NF α∠=,21F F N β∠=,即可求出sin α,sin β,cos β,在21F F N 中由()12sin sin F F N αβ∠=+求出12sin F F N ∠,再由正弦定理求出1NF ,2NF ,最后根据双曲线的定义得到23b a =,即可得解;解:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,所以1OG NF ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,sin a c β=,cos b c β=,在21F F N 中,()()12sin sin sin F F N παβαβ∠=--=+4334sin cos cos sin 555b a a bc c c αβαβ+=+=⨯+⨯=,由正弦定理得211225sin sin sin 2NF NF c cF F N αβ===∠,所以112553434sin 2252c c a b a b NF F F N c ++=∠=⨯=,2555sin 222c c a a NF c β==⨯=又12345422222a b a b aNF NF a +--=-==,所以23b a =,即32b a =,所以双曲线的离心率221312c b e a a ==+=故选:C12.已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑()A.21-B.22-C.23-D.24-【答案】D【解析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.∵()y g x =的图像关于直线2x =对称,∴()()22g x g x -=+,∵()(4)7g x f x --=,∴(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,∵()(2)5f x g x +-=,∴()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,∴()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .∵()(2)5f x g x +-=,∴(0)(2)5f g +=,即()01f =,∴()(2)203f f =--=-.∵()(4)7g x f x --=,∴(4)()7g x f x +-=,又∵()(2)5f x g x +-=,联立得,()()2412g x g x -++=,∴()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,∴()36g =∵()(2)5f x g x ++=,所以()()1531f g =-=-.∴()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ 故选:D二、填空题:本题共4小题,每小题5分,共20分.13.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310或0.3【解析】从5名同学中随机选3名的方法数为35C 10=甲、乙都入选的方法数为13C 3=,所以甲、乙都入选的概率310P =故答案为:31014.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________.【答案】()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭;【解析】依题意设圆的方程为220x y Dx Ey F ++++=,若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭;15.记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若3()2f T =,9x π=为()f x 的零点,则ω的最小值为____________.【答案】3【解析】解:因为()()cos f x x ωϕ=+,(0>ω,0πϕ<<)所以最小正周期2πT ω=,因为()()2π3cos cos 2πcos 2f T ωϕϕϕω⎛⎫=⋅+=+==⎪⎝⎭,又0πϕ<<,所以π6ϕ=,即()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭,又π9x =为()f x 的零点,所以ππππ,Z 962k k ω+=+∈,解得39,Z k k ω=+∈,因为0>ω,所以当0k =时min 3ω=;故答案为:316.已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.【答案】1,1e ⎛⎫ ⎪⎝⎭【解析】由12,x x 分别是函数()22e x f x a x =-的极小值点和极大值点,可得()()12,,x x x ∈-∞⋃+∞时,()0f x '<,()12,x x x ∈时,()0f x '>,再分1a >和01a <<两种情况讨论,方程2ln 2e 0x a a x ⋅-=的两个根为12,x x ,即函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,构造函数()ln xg x a a =⋅,根据导数的结合意义结合图象即可得出答案.解:()2ln 2e xf x a a x '=⋅-,∵12,x x 分别是函数()22e xf x a x =-的极小值点和极大值点,∴函数()f x 在()1,x -∞和()2,x +∞上递减,在()12,x x 上递增,∴当()()12,,x x x ∈-∞⋃+∞时,()0f x '<,当()12,x x x ∈时,()0f x '>,若1a >时,当0x <时,2ln 0,2e 0x a a x ⋅><,则此时()0f x '>,与前面矛盾,故1a >不符合题意,若01a <<时,则方程2ln 2e 0x a a x ⋅-=的两个根为12,x x ,即方程ln e x a a x ⋅=的两个根为12,x x ,即函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,令()ln xg x a a =⋅,则()2ln ,01xg x a a a '=⋅<<,设过原点且与函数()y g x =的图象相切的直线的切点为()00,ln x x a a ⋅,则切线的斜率为()020ln xg x a a '=⋅,故切线方程为()0020ln ln x x y a a a a x x -⋅=⋅-,则有0020ln ln x x a a x a a -⋅=-⋅,解得01ln x a=,则切线的斜率为122ln ln eln aa aa ⋅=,因为函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,所以2eln e a <,解得1e ea <<,又01a <<,所以11ea <<,综上所述,a 的范围为1,1e ⎛⎫ ⎪⎝⎭.三、解答题:共0分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.【答案】(1)见解析(2)14【解析】(1)证明:∵()()sin sin sin sin C A B B C A -=-,∴sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-,∴2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅,即()22222222222a cb a bc b c a +-+--+-=-,∴2222a b c =+;(2)解:∵255,cos 31a A ==,由(1)得2250bc +=,由余弦定理可得2222cos a b c bc A =+-,则50502531bc -=,∴312bc =,故()2222503181b c b c bc +=++=+=,∴9b c +=,∴ABC 的周长为14a b c ++=.18.如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF 与平面ABD所成的角的正弦值为7【解析】(1)∵AD CD =,E 为AC 的中点,∴AC DE ⊥;在ABD △和CBD 中,∵,,B A C D CD ADB DB DB D ∠=∠==,∴ABD CBD ≌△△,∴AB CB =,又∵E 为AC 的中点,所以AC BE ⊥;又∵,DE BE ⊂平面BED ,DE BE E ⋂=,∴AC ⊥平面BED ,∵AC ⊂平面ACD ,∴平面BED ⊥平面ACD .(2)如图连接EF ,由(1)知,AC ⊥平面BED ,∵EF ⊂平面BED ,∴AC EF ⊥,∴1=2AFC S AC EF ⋅△,当EF BD ⊥时,EF 最小,即AFC △的面积最小.∵ABD CBD ≌△△,∴2CB AB ==,又∵60ACB ∠=︒,∴ABC 是等边三角形,∵E 为AC 的中点,∴1AE EC ==,BE =,∵AD CD ⊥,∴112DE AC ==,在DEB 中,222DE BE BD +=,∴BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz -,则()()()1,0,0,,0,0,1A B D ,∴()()1,0,1,AD AB =-=-,设平面ABD 的一个法向量为(),,n x y z =,则00n AD x z n AB x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取y =,则()n = ,又∵()331,0,0,0,44C F ⎛⎫- ⎪ ⎪⎝⎭,∴331,,44CF ⎛⎫= ⎪ ⎪⎝⎭,∴cos,7n CFn CFn CF⋅==,设CF与平面ABD所成的角的正弦值为02πθθ⎛⎫≤≤⎪⎝⎭,∴43sin cos,7n CFθ==,∴CF与平面ABD 所成的角的正弦值为437.19.某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m)和材积量(单位:3m),得到如下数据:样本号i12345678910总和根部横截面积i x0.040.060.040.080.080.050.050.070.070.060.6材积量i y0.250.400.220.540.510.340.360.460.420.403.9并计算得10101022i i i ii=1i=1i=10.038, 1.6158,0.2474x y x y===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数i i(1.377)(nx x y yr--=≈∑.【答案】(1)20.06m;30.39m(2)0.97(3)31209m 【解析】(1)样本中10棵这种树木的根部横截面积的平均值0.60.0610x ==样本中10棵这种树木的材积量的平均值 3.90.3910y ==据此可估计该林区这种树木平均一棵的根部横截面积为20.06m ,平均一棵的材积量为30.39m (2)()()1010iii i10x x y y x y xyr ---=∑∑0.01340.970.01377=≈则0.97r ≈(3)设该林区这种树木的总材积量的估计值为,又已知树木的材积量与其根部横截面积近似成正比,可得,解之得.则该林区这种树木的总材积量估计为31209m 20.已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【答案】(1)22143y x +=(2)(0,2)-【解析】(1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得(1,3M,(1,3N -,代入AB 方程223y x =-,可得263,)3T +,由MT TH =得到265,)3H .求得HN 方程:26(2)23y x =--,过点(0,2)-.②若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=,可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++-可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-21.已知函数()()ln 1exf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围.【答案】(1)2y x =(2)(,1)-∞-【解析】(1)()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e x x f x x f =++=,所以切点为(0,0)11(),(0)21exx f x f x ''-=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =(2)()ln(1)e xax f x x =++()2e 11(1)()1e (1)e x xxa x a x f x x x '+--=+=++设()2()e 1xg x a x=+-①若0a >,当()2(1,0),()e 10xx g x a x∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意②若,当,()0x ∈+∞,则()e 20x g x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+,即()0f x '>所以()f x 在(0,)+∞上单调递增,()(0)0f x f >=故()f x 在(0,)+∞上没有零点,不合题意③若1a <-a .当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增(0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<=当,()x f x →+∞→+∞所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点b.当()2(1,0),()e 1xx g x a x ∈-=+-设()()e 2x h x g x ax'==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '=当(1,),()0,()x n g x g x '∈-<单调递减-21-既然已经出发,就一定能到达!当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+<又1(1)0eg -=>所以存在(1,)t n ∈-,使得()0g t =,即()0f t '=当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减有1,()x f x →-→-∞而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点即()f x 在(1,0)-上有唯一零点所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-(二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为322sin x ty t⎧=⎪⎨=⎪⎩,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为sin 03m πρθ⎛⎫⎪⎝+⎭+=.(1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围.-22-2022高考文科数学(全国乙卷)【答案】(120++=y m (2)195122-≤≤m 【解析】(1)∵l :sin 03m πρθ⎛⎫ ⎪⎝+⎭+=,∴13sin cos 022ρθρθ⋅+⋅+=m ,又∵sin ,cos y x ρθρθ⋅=⋅=,∴化简为13022++=y x m ,整理得l20++=y m (2)联立l 与C的方程,即将2=x t ,2sin y t =代入20++=y m 中,可得3cos 22sin 20++=t t m ,所以23(12sin )2sin 20-++=t t m ,化简为26sin 2sin 320-+++=t t m ,要使l 与C 有公共点,则226sin 2sin 3=--m t t 有解,令sin =t a ,则[]1,1a ∈-,令2()623=--f a a a ,(11)a -≤≤,对称轴为16a =,开口向上,所以(1)623()5=-=+-=max f f a ,min 11219(())36666==--=-f f a ,所以19256-≤≤m m 的取值范围为195122-≤≤m .[选修4-5:不等式选讲]23.已知a ,b ,c 都是正数,且3332221a b c ++=,证明:(1)19abc ≤;(2)a b c b c a c a b ++≤+++;-23-既然已经出发,就一定能到达!【答案】(1)证明见解析(2)证明见解析【解析】(1)证明:因为0a >,0b >,0c >,则32a >,32b >,320c >,所以3332223a b c ++≥,即()1213abc ≤,所以19abc ≤,当且仅当333222a b c ==,即a b c ===(2)证明:∵0a >,0b >,0c >,∴b c +≥a c +≥,a b +≥,∴32a b c ≤=+32b a c ≤=+,32c a b ≤=+333333222222a b c b c a c a b ++≤+++当且仅当a b c ==时取等号.。

2023年河北省唐山市成考专升本数学(理)自考真题(含答案带解析)

2023年河北省唐山市成考专升本数学(理)自考真题(含答案带解析)

2023年河北省唐山市成考专升本数学(理)自考真题(含答案带解析) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.2.设A、B、C是三个随机事件,用A、B、C的运算关系是()表示事件。

B、C都发生,而A不发生3.A.0B.-7C.3D.不存在4.5.点(2,4)关于直线y=x的对称点的坐标为()。

A.(4,2)B.(-2,-4)C.(-2,4)D.(-4,-2)6.7.()A.A.3-4iB.3+4iC.4-3iD.4+3i8.已知复数x=1+i,i为虚数单位,则z2=()A.2iB.-2iC.2+2iD.2-2i9.圆的圆心在()上A.(1,-2)B.(0,5)C.(5,5)D.(0,0)10.()。

A.27B.1/9C.1/3D.311.12.长方体有一个公共顶点的三个面的面积分别为4,8,18,则此长方体的体积为A.12B.24C.36D.4813.14.A.7 B.8C.9D.1015.已知f(x)是定义域在[―5,5]上的偶函数,且f(3)>f(1),则下列各式-定成立的是A.f(-1)<f(3)B.f(0)<f(5)C.f(3)>f(2)D.f(2)>f(0)16.17.18.直线x-y-3=0与x-y+3=0之间的距离为()A.B.C.D.619.A.A.16B.20C.18D.不能确定20. 从0,1,2,3,4,5这六个数字中,每次取出三个数相乘,可以得到不同乘积的个数是()A.10B.11C.20D.12021.22.方程|y|=1/|x|的图像是下图中的A.B.C.D.23.A.A.B.C.D.24.第2题设角α的终边通过点P(-5,12),则cotα+sinα等于()A.7/13 B.-7/13 C.79/156 D.-79/15625.已知正方形ABCD,以A,C为焦点,且过B点的椭圆的离心率为26.下列函数中,为偶函数的是()A.A.AB.BC.CD.D27.下列函数()是非奇非偶函数28.9种产品有3种是名牌,要从这9种产品中选5种参加博览会,如果名牌产品全部参加,那么不同的选法共有()A.A.30种B.12种C.15种D.36种29.下列等式中,成立的是()A.A.AB.BC.CD.D30.二、填空题(20题)31. 各棱长都为2的正四棱锥的体积为__________.32.函数的定义域为33.34.已知正方体的内切球的球面面积是s,那么这一正方体外接球的球面面积是______.35.36.不等式1≤|3-x|≤2的解集是_________.37.38.若正三棱锥底面边长为a,且三条侧棱两两垂直,则它的体积为________.39.为了检查一批零件的长度,从中抽取10件,量得它们的长度如下(单位:mm):22.36 22.35 22.33 22.35 22.37 22.34 22.38 22.36 22.32 22.35则样本的平均数(结果保留到小数点第二位)为__________,这组数据的方差为__________40.41.42.43.如图,在正方体ABCD-A1B1C1D1中,A1A与B1D1所成的角的度数为________44.从一批某种型号的电子元件中随机抽取样本进行使用寿命测试,测得数据如下(单位:h):245256247255249260则该样本的样本方差为——一(保留小数点后一位).45.椭圆的中心在原点,-个顶点和-个焦点分别是直线x+3y-6=0与两坐标轴的交点,则此椭圆的标准方程为___________.46.函数f(x)=x2+bx+c的图像经过点(-1,0),(3,0),则f(x)的最小值为______。

2022年成人高考第二次模拟考试高起点《数学(理工农)》试卷及参考答案

2022年成人高考第二次模拟考试高起点《数学(理工农)》试卷及参考答案

春华教育集团2022年成人高考第二次模拟考试高起点 《数学(理工类)》试题 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分。

考试时间120分钟。

第I 卷(选择题,共85分) 一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 设集合M ={x|−1≤x ≤1},N ={x|0<x <1},则集合M ∩N =( ) A. {x|x ≥−1} B. {x|0<x <1} C. {x|0<x ≤1} D. {x|−1≤x ≤1} 2. 设cos α=−12,α为第三象限角,则sin α=( ) A. −√32 B. −√22 C. 12 D. √32 3. 下列函数中,既是偶函数又是周期函数的为( ) A. y =log 3x B. y =x 2 C. y =tan x D. y =cos3x 4. 不等式|x −2|≥3的解集是( ) A. {x|x ≤−5或x ≥1} B. {x |−5≤x ≤1} C. {x|x ≤−1或x ≥5} D. {x |−1≤x ≤5} 5. 函数y =cos 23x 的最小正周期是( ) A. 13π B. 23π C. 2π D. π 6. 设甲:直线倾斜角为π2;乙:直线斜率不存在,则( ) A. 甲是乙的充要条件 B. 甲是乙的充分非必要条件 C. 甲是乙的必要非充分条件 D. 甲跟乙既非充分又非必要 7. 下列函数中,在(0,+∞)为增函数的是( )A. y=log12x B. y=x2+xC. y=(14)x D. y=cos x8. log28−(12)=()A.3B.2C.0D.49. 函数f(x)=3x+1的反函数f−1(x)=()A.x−13B.x+13C.3x−1D. 1-3x10. 从5位同学中任意选出3位参加公益活动,不同的选法共有()A. 5种B. 10种C. 15种D. 20种11. 已知向量a=(2,4),b=(m,−1),且a⊥b,则实数m=()A. 2B. 1C. −1D. −212. 双曲线x 24−y29=1的渐近线方程为()A. x4±y9=0 B. x9±y4=0C. x2±y3=0 D. x3±y2=013. 函数f(x)=log3(x2−2x)的定义域是()A. (−∞,0)∪(2,+∞)B.(−∞,−2)∪(0,+∞)C. (0,2)D. (−2,0)14. 过点(1,1)且与直线x+2y−1=0平行的直线方程为()A. 2x−y−1=0B. 2x−y−3=0C. x+2y−3=0D. x−2y+1=015. 甲,乙两人射击的命中率都是0.6,他们对着目标各射击一次,两人都击中目标的概率是()A. 0.36B. 0.48C. 0.84D. 116. 顶点在原点准线为x=2的抛物线方程是下面哪个()A. y2=8xB. y2=−8xC. x2=8yD. x2=−8y17.数列{a n}是等差数列,若a1+a5=6,则a2+a3+a4=()A.18B. 12C.9D.10第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18. (x+2)4=a0x4+a1x3+a2x2+a3x+a4,则a4=.19. 已知函数f(2x)=4x+1,则f(x)= .20. 已知f (x )=ax 3,若f′(3)=9则a = .21. 已知 射击运动员一枪射中环数ξ分布列如下表:则a =____________.三、解答题(本大题共4小题,共49分。

2023年高考真题及答案解析《数学理》(全国甲卷)

2023年高考真题及答案解析《数学理》(全国甲卷)

甲卷理科2023年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A =x x =3k +1,k ∈Z ,B =x x =3k +2,k ∈Z ,U 为整数集,则∁U A ∪B =()A.x x =3k ,k ∈ZB.x x =3k -1,k ∈ZC.x x =3k -2,k ∈ZD.∅2.若复数(a +i )(1-a i )=2,则a =()A.-1B.0C.1D.23.执行下面的程序框图,输出的B =()n ≤3n =1,A =1,B =2开始A =A +B B =A +B n =n +1结束输出B否A.21B.34C.55D.894.向量a =b =1,c =2,且a +b +c =0,则cos a -c ,b -c =()A.-15B.-25C.25D.455.已知等比数列a n 中,a 1=1,S n 为a n 前n 项和,S 5=5S 3-4,则S 4=()A.7B.9C.15D.306.有50人报名报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报名足球俱乐部,则其报名乒乓球俱乐部的概率为()A.0.8B.0.4C.0.2D.0.17.“sin 2α+sin 2β=1”是“sin α+cos β=0”()A.充分条件但不是必要条件 B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件8.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,其中一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则AB =()A.15B.55C.255D.4559.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有一人连续参加两天服务的选择种数为()A.120B.60C.40D.3010.已知f (x )为函数y =cos 2x +π6 向左平移π6个单位所得函数,则y =f (x )与y =12x -12的交点个数为()A.1B.2C.3D.411.在四棱锥P -ABCD 中,底面ABCD 为正方形,AB =4,PC =PD =3,∠PCA =45°,则△PBC 的面积为()A.22B.32C.42D.5212.已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos ∠F 1PF 2=35,则OP =()A.25B.302C.35D.352二、填空题:本题共4小题,每小题5分,共20分。

数理方程课后习题(带答案)

数理方程课后习题(带答案)
klkxxxuxtvxtwx原问题得解为数学物理方程与特殊函数方程和边界条件都是非齐次的但却与t无关可设uxtvxtwxwxdtbadtvxtvegxwxxxuxtvxtwx原问题得解为数学物理方程与特殊函数uxuxlcedecedeuxcdsinnlnlcedenlnlcedenlnlsincosbcossinururiirrsincoscrdr非齐次方程非齐次边界条件都与t无关可设uxtvxtwx可得wx再用分离变量法求解vxt数学物理方程与特殊函数sincosbsinsin代入方程可得代入边界条件可得sincosyaybxxcedexxceaxaeuayayaycosaaae此课件下载可自行编辑修改此课件供参考
T nC n co n ls atD n sin n lat
un XnTn B nsin ln x (C n cn o la ts D n sin ln a t) (C nco n la s t D nsin ln at)sin lnx
u
un
n 1
na
na n
n 1(C ncolstD nsin l t)silnx
由此可得:w (x)1
xt
dt
f()dC xA ,
a2 0 0
其中
C1 l(BAa 1 2 0 ldt0 tf()d),
数学物理方程与特殊函数
第2章习题选讲
然后用分离变量解
v(vt0,t)a2
2v x2 , 0, v(l,
t)
0,
0 x l,t 0 t 0
v(x,0) g(x) w(x), 0 x l
2 lu(x,0) n
2l
n
Dnna0
t
sin l
xdxna0x(lx)sinl

学科网-数学(理)(Ⅰ)(答案)(2)

学科网-数学(理)(Ⅰ)(答案)(2)

1.【答案】A【解析】由题意,N ={y |y >0}=(0,)+∞,又∵[1,2]M =-,∴M ∩N =(0,2].故选A . 2.【答案】C【解析】由(i –2)z =4+3i ,得43i (43i )(2i )510i 12i i 2(2i )(2i)5z ++----====----+--,则||z ==C .3.【答案】B 【解析】∵sin α35=,∴sin (π2-2α)=cos2α=1–2sin 2α=1–2×(35)2725=.故选B . 4.【答案】C5.【答案】C【解析】由三视图还原原几何体如图,可以看作正方体的一部分,该几何体为三棱锥,底面为等腰直角三角形,正方体的棱长为2,∴该几何体的表面积为S =212⨯⨯2×2+212⨯⨯.故选C .6.【答案】B【解析】模拟程序的运行,可得程序的功能是利用循环结构计算并输出变量学习切勿用于商业通途,如有侵权清联系本人下架 唯一微:71304908S 11112231011=+++⨯⨯⨯的值,S 11112231011=+++=⨯⨯⨯(112-)+(1123-)+…+(111011-)=11101111-=.故选B .学科/网7.【答案】D【解析】所有的基本事件构成的区间长度为π4-(π4-)π2=,当[,]44x ππ∈-时,由0≤sin2x 2<,解得0≤2x 3π<,则0≤x 6π<,所以由几何概型公式可得sin2x 的值介于0到2之间的概率为P π016π32-==,故选D . 8.【答案】D【解析】由题意,2a x y =+≥2a xy ≥,又xybc =,∴a 2≥bc ,故选D . 9.【答案】B10.【答案】D【解析】如图,连接AC 交BD 于点O ,连接CN 交BM 于点G ,连接OG ,由AN ∥平面BDM ,可得AN ∥OG ,∵OA =OC ,∴CG =NG ,∴G 为CN 的中点,作HN ∥BM ,∴CM =HM ,∵PM ∶MC =3∶1,学习切勿用于商业通途,如有侵权清联系本人下架 唯一微:71304908∴PH =HC ,∴PN ∶NB =PH ∶HM =2∶1,故选D .11.【答案】 B12.【答案】A【解析】由题意,2()62(63)126(1)(2)f'x x a x a x x a =-++=--,a <0,当x <2a 或x >1时,()f'x >0,函数()f x 单调递增,当2a <x <1时,()f'x <0,函数()f x 单调递减,故f (x )的极小值是f (1)=16a 2+6a –1,∴16a 2+6a –1>0,又a <0,所以a 12<-,故选A . 13.【答案】3【解析】根据题意,计算这组数据的平均数为:150x =⨯(20×2+15×3+10×4+5×5)=3.故答案为:3.学科&网 14.【答案】39【解析】∵数列{a n }是等差数列,∴2671021061072()()a a a a a a a a a +++=++++68722a a a =++=7515a =,∴73a =,∴13113713()13133392S a a a =+==⨯=.故答案为:39. 15.【答案】–4【解析】建立如图所示的直角坐标系,则A (0,0),B (2,0),C (2,2),D (0,2),设P (x ,y ),则PA PB +=(–x ,–y )+(2–x ,–y )=(2–2x ,–2y ),PC PD +=(2–x ,2–y )+(–x ,2–y )学习切勿用于商业通途,如有侵权清联系本人下架 唯一微:71304908=(2–2x ,4–2y ),所以(PA PB +)•(PC PD +)=(2–2x )2–2y (4–2y )=4[(x –1)2+(y –1)2]–4,当x =y =1时上式取得最小值–4.故答案为:–4.16.【答案】3π8【解析】函数y =3sin (2x π4+)的图象向左平移φ(0<φπ2<)个单位长度后,可得函数y =3sin (2x +2φπ4+)的图象,再根据所得函数图象关于原点成中心对称,∴sin (2φπ4+)=0,∴2φπ4+=k π,k ∈Z ,∴φ=82k ππ-+,k ∈Z ,∵0<φπ2<,∴取k =1,得φ3π8=,故答案为:3π8.17.(本小题满分12分)18.(本小题满分12分)【解析】(1)∵底面ABCD 是边长为2的菱形,60BAD ∠=, ∴AC BD ⊥,且AC =2BD =. ∵四边形BDEF 是矩形,∴DE BD ⊥. ∵平面BDEF ⊥平面ABCD ,平面BDEF平面ABCD BD =,学习切勿用于商业通途,如有侵权清联系本人下架 唯一微:71304908∴DE ⊥平面ABCD ,AC ⊥平面BDEF .(2分) 记ACBD O =,取EF 的中点H ,连接OH ,则OH DE ∥,∴OH ⊥平面ABCD .如图,以O 为原点,分别以,,OB OC OH 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O xyz -.(2)由(1)知AC ⊥平面BDEF ,∴AC ⊥平面DMB,即(0,AC =为平面DMB 的一个法向量.(AD =-,(1,AM =.(8分)设平面ADM 的法向量为(,,)x y z =n .由00AD AM ⎧⋅=⎪⎨⋅=⎪⎩n n,得0x x z ⎧-=⎪⎨++=⎪⎩.取1y =,则=-n .(10分) ∵cos <n ,14||||4AC AC AC ⋅>===⨯n n ,∴由图可知二面角A DM B --的余弦值为14.(12分) 19.(本小题满分12分)【解析】(1)利用分层抽样,选取40名基层干部,则这40人中来自C 镇的基层干部有学习切勿用于商业通途,如有侵权清联系本人下架 唯一微:71304908(606080)4080++⨯=16(人).(2分)学科#网∵x =10×0.15+20×0.25+30×0.3+40×0.2+50×0.1=28.5.∴估计A ,B ,C 三镇的基层干部平均每人走访28.5个贫困户.(5分)20.(本小题满分12分)【解析】(1)依题意,知12c a =,222a b c =+,221914a b +=,(2分)解得2,1a b c ===,故椭圆C 的标准方程为22143x y +=.(4分) (2)显然直线l 的斜率存在,故设直线l 的方程为(2)y k x =+.(5分)设点(,)N N N x y ,直线MN 的方程为(2)y k x =+,联立22143x y +=得, 2222(34)1616120k x k x k +++-=,(6分)221612234N k x k -∴-=+,即228634N k x k -+=+,212(2)34N N ky k x k ∴=+=+,即2228612(,)3434k k N k k -+++. 易知2(1,0)F ,22414NF k k k =-,11PF k k=-,(8分) 学习切勿用于商业通途,如有侵权清联系本人下架 唯一微:71304908所以直线2NF ,1PF 的方程分别为24(1)14k y x k =--,1(1)y x k=-+, 由21(1)4(1)14y x k k y x k ⎧=-+⎪⎪⎨⎪=-⎪-⎩,解得2(81,8)P k k --,(10分) 代入22143x y +=,得4219220890k k +-=,即22(241)(89)0k k -+=,得2124k =,所以k =l的方程为2)y x =+或2)y x =+.(12分)21.(本小题满分12分)①当e+1–a ≥0,即a ≤e+1时,x ∈(1,+∞)时,()F'x >(1)F'≥0,()F x 在(1,+∞)单调递增, 又F (1)=0,故当x ≥1时,关于x 的方程e x –ax +ln x –e+a =0有且只有一个实数解1;(9分) ②当e+1–a <0,即a >e+1时,(1)F'<0,(ln )F'a =a –a 1ln a+>a –a =0,又ln a >ln (e+1)>1, 故存在x 0∈(1,ln a ),0()F'x =0,当x ∈(1,x 0)时,()F'x <0,F (x )单调递减,又F (1)=0,学习切勿用于商业通途,如有侵权清联系本人下架 唯一微:71304908故当x ∈(1,x 0]时,F (x )<0,在[1,x 0)内,关于x 的方程e x –ax +ln x –e+a =0有一个实数解x =1.(10分)又x ∈(x 0,+∞)时,()F'x >0,F (x )单调递增,且F (a )=e a +ln a –a 2+a –e>e a –a 2+1, 令k (x )=e x –x 2+1(x ≥1),则()e 2x k'x x =-,易知()k'x 在(1,+∞)单调递增, 又(1)e 20k'=->,故()0k'x >,从而()k x 在(1,+∞)单调递增, 故()(1)e 0k a k >=>,所以F (a )>0,学^科网 又a ea>>x 0,由零点存在定理可知,存在x 1∈(x 0,a ),F (x 1)=0, 故在(x 0,a )内,关于x 的方程e x –ax +ln x –e+a =0有一个实数解x 1, 所以此时方程有两个解.综上可得,实数a 的取值范围为(,e 1]-∞+.(12分) 22.(本小题满分10分)选修4–4:坐标系与参数方程23.(本小题满分10分)选修4–5:不等式选讲【解析】(1)不等式()7f x x ≤,即26217x x x -++≤,可化为1226217x x x x ⎧<-⎪⎨⎪-+--≤⎩①,或13226217x x x x⎧-≤≤⎪⎨⎪-+++≤⎩②,或326217x x x x >⎧⎨-++≤⎩③, 解①无解,解②得13x ≤≤,解③得3x >,(4分) 综合得:1x ≥,即原不等式的解集为{|1}x x ≥.(5分)学习切勿用于商业通途,如有侵权清联系本人下架 唯一微:71304908(2)由绝对值不等式的性质可得()()()262126217f x x x x x =-++≥--+=,(7分) ∵关于x 的方程()f x m =存在实数解, ∴7m ≥,解得:7m ≥或7m ≤-.学科/网 ∴实数m 的取值范围为7m ≥或7m ≤-.(10分)学习切勿用于商业通途,如有侵权清联系本人下架 唯一微:71304908学习切勿用于商业通途,如有侵权清联系本人下架唯一微:71304908。

2023年江苏省苏州市成考专升本数学(理)自考真题(含答案带解析)

2023年江苏省苏州市成考专升本数学(理)自考真题(含答案带解析)

2023年江苏省苏州市成考专升本数学(理)自考真题(含答案带解析) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.A.A.B.C.D.2.3.4.5.下列函数中,()不是周期函数.A.y=sin(x+π)B.y=sin1/xC.y=l+cosxD.y=sin2πx6.()A.A.(0,+∞)B.(-∞,+∞)C.(1,+∞)D.[1,+∞)7.已知定义在[2,π]上的函数f(x)=logαx的最大值比最小值大1,则α=()A.A.π/2B.2/πC.2或πD.π/2或2/π8.二次函数y=(1/16)x2的图象是一条抛物线,它的焦点坐标是()A.A.(-4,0)B.(4,0)C.(0,-4)D.(O,4)9.不等式|x-2|<1的解集是()A.{x-1<x<3}B.{x|-2<x<l}C.{x|-3<x<1}D.{x|1<x<<3}10.A.偶函数而非奇函数B.奇函数而非偶函数C.非奇非偶函数D.既是奇函数又是偶函数11.已知α、β、r两两垂直,他们三条交线的公共点为O,过O引一条射线OP若OP与三条交线中的两条所成的角都是60°,则OP与第三条交线所成的角为A.30°B.45°C.60°D.不确定12.13.()A.A.-21B.21C.-30D.3014.A.A.B.C.1/2D.O15.函数y=log2(x+l)的定义域是()A.(2,+∞)B.(-2,+∞)C.(-∞,-1)D.(-1,+∞)16.不等式1<|3x+4|≤5的解集为()A.-3<x<-5/3或-1<x<1/3B.x≥-3C.-3≤x<-5/3或-1≤x≤1/3D.-3≤x<-5/3或-1<x≤1/317.()A.A.B.1C.2D.18.已知圆经过点P(1,0)作该圆的切线,切点为Q,则线段PQ的长为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年普通高中高三第一次教学质量检测
数学理科参考答案
一㊁选择题
1.C
2.B
3.C
4.A
5.D
6.C
7.D
8.C
9.D 10.B 11.D 12.C 二㊁填空题13.2 14.3365 15.22+1 16.(0,1e )三㊁解答题17.解(Ⅰ)由p 为真命题知,Δ=16-8m ɤ0解得m ȡ2,所以m 的范围是[2,+ɕ),2分 由q 为真命题知,2m -1>1,即m >1,4分 综上,m 的取值范围是[2,+ɕ)㊂5分 (Ⅱ)由(Ⅰ)可知,当p 为假命题时,m <2;q 为真命题,则2m -1>1解得:m >1则m 的取值范围是(1,2)即A ={m |1<m <2},7分 而A ⊆B ,可得,2t -1ɤ113-t 2ȡ2{
9分 解得:-11ɤt ɤ1所以,t 的取值范围是[-11,1]10分 18.解:(Ⅰ)ȵf '(x )=3x 2+2a x +b ,由题意得f '(-1)=0,f '(2)=0,{即3-2a +b =0,12+4a +b =0,{解得a =-32,b =-6.ìîíïïïïʑf (x )=x 3-32x 2-6x +c ,于是f '(x )=3x 2-3x -6.4分 令f '(x )<0,解得-1<x <2;令f '(x )>0,解得x <-1或x >2.ʑf (x )的减区间为(-1,2),增区间为(-ɕ,-1)ɣ(2,+ɕ).6分 (Ⅱ)由(Ⅰ)知,f (x )在(-ɕ,-1)上单调递增;在(-1,2)上单调递减;在(2,+ɕ)上单调递增.ʑx ɪ[-1,3]时,f (x )的最大值即为:f (-1)与f (3)中的较大者.8分 ȵf (-1)=72+c ,f (3)=-92+c .ʑ当x =-1时,f (x )取得最大值.要使f (x )+32c <c 2,只需c 2>f (-1)+32c ,即2c 2>7+5c ,)
页4共(页1第 案答学数科理三高
解得c <-1或c >
72.ʑc 的取值范围为(-ɕ,-1)ɣ(72,+ɕ).12分 19.(Ⅰ)设投入资金x 千万元,则生产A 芯片的毛收入y =x 4(x >0);2分 将(1,1)(4,2)代入y =k x α,得k =1,k ˑ4α=2,{
ʑk =1,α=12,ìîíïïïï所以,生产B 芯片的毛收入y =x (x >0).6分 (Ⅱ)公司投入4亿元资金同时生产A ,B 两种芯片,设投入x 千万元生产B 芯片,则投入(40-x )千万元资金生产A 芯片.公司所获利润f (x )=40-x 4+x -2=-14(x -2)2+910分 故当x =2,即x =4千万元时,公司所获利润最大.最大利润9千万元.12分
20.解:(Ⅰ)因为(b -a )(s i n B +s i n A )=c (3s i n B -s i n C ),由正弦定理a s i n A =b s i n B =c s i n C
,得(b -a )(b +a )=c (3b -c ),即b 2+c 2-a 2=3b c ,所以c o s A =b 2+c 2-a 22b c =3b c 2b c =32,因为0<A <π,所以A =π6.5分 (Ⅱ)方案一:选条件①和②.由正弦定理a s i n A =b s i n B ,得b =a s i n A s i n B =2s i n π6s i n π4=22.7分 C =π-A -B =π-π6-π4=7π12.8分 s i n 7π12=s i n (π4+π3)=22ˑ12+22ˑ32=2+64所以ΔA B C 的面积S =12a b s i n C =12ˑ2ˑ22ˑ2+64=3+1.12分 方案二:选条件①和③.由余弦定理a 2=b 2+c 2-2b c c o s A ,得4=b 2+3b 2-3b 2,则b 2=4,所以b =2.8分 而c =3b =23,所以ΔA B C 的面积S =12b c s i n A =12ˑ2ˑ23ˑ12=3.12分 方案三:选条件②和③,这样的三角形不存在,7分
)
页4共(页2第 案答学数科理三高
理由如下:在三角形中,因为c =3b 由正弦定理得
s i n C =3s i n B =3s i n π4=3ˑ22=62>1,不成立,所以这样的三角形不存在.12分
21.解:(Ⅰ)f (x )=4x -m ㊃2x +1,设2x =t (t ȡ2),则y =t 2-2m t ,对称轴为t =m 2分 当m ȡ2时:y m i n =m 2-2m 2=-m 2;当m <2时:y m i n =4-4m .综上所述:m ȡ2时:f (x )m i n =-m 2;m <2时:f (x )m i n =4-4m 5分 (Ⅱ)ȵg (a )+g (b )=0,ʑ2a -12a +1+2b -12b +1=0即(2a -1)(2b +1)+(2a +1)(2b -1)=0化简得到:2a +b =1ʑa +b =07分
又ȵf (a )+f (b )=0即4a -m ㊃2a +1+4b -m ㊃2b +1=0ʑm =4a +4b 2a +1+2b +1=4a +4-a 2a +1+2-a +110分 设2a +2-a =t (t >2)则m =t 2-22t =t 2-1t 易知函数y =t 2-1t 在(2,+ɕ)单调递增,故m >22-12=12即m ɪ(12,ɕ)12分 22.解:(Ⅰ)由已知,可知函数f (x )的定义域为(0,+ɕ),f
'(x )=l n x +1-2a x 在(0,+ɕ)上有两个零点,设h (x )=l n x +1-2a x ,ʑh '(x )=1-2a x x
(x >0),2分 当a ɤ0时,h '(x )>0,f '(x )为增函数,不存在两个零点;当a >0时,h '(x )=0,得x =12a ,x ɪ(0,12a )时,h '(x )>0,f '(x )为增函数;x ɪ(12a ,+ɕ)时,h '(x )<0,f '(x )为减函数,4分 且此时当x 趋近于0时,f '(x )趋近于负无穷;当x 趋近于正无穷时,f '(x )趋近于负无穷.故要满足题意,只需f '(12a )=-l n 2a >0,ʑ0<a <12,ʑ实数a 的取值范围是(0,12).6分 (Ⅱ)证明:ȵg (x )=a x (x -2)-f (x )x =a x 2-a x -l n x (x >0),ʑg '(x )=2a x -a -1x =2a x 2-a x -1x
,)页4共(页3第 案答学数科理三高
由g '(x )=0的两根为x 1,x 2,
故可得x 1+x 2=12
,ȵx 1<x 2,ʑx 2>14,8分 又ȵg '(x 2)=2a x 22-a x 2-1=0,ʑa =12x 22-x 2<0,解得0<x 2<12,ʑ14<x 2<12,ʑg (x 2)=a x 22-a x 2-l n x 2=x 2(x 2-1)2x 22-x 2-l n x 2=x 2-12x 2-1-l n x 2=12-14x 2-2-l n x 2,14<x 2<1210分 设T (x )=-l n x -14x -2,14<x <12则T '(x )=-1x +1(2x -1)2=-4x 2-5x +1x (2x -1)2=-(x -1)(4x -1)x (2x -1)2当14<x <12时,T '(x )>0,T (x )是增函数ʑT (x )m i n =T (14)=1+l n 4>2ʑg (x 2)=12-l n x 2-14x 2-2>12+2=52>9412分 )页4共(页4第 案答学数科理三高。

相关文档
最新文档