相似图形 1~4节知识点

合集下载

初三相似的图形知识点归纳总结

初三相似的图形知识点归纳总结

初三相似的图形知识点归纳总结相似的图形在初中数学中占据非常重要的位置。

相似的图形具有相同的形状但不一定相等的大小。

在初三学习过程中,我们接触到了许多涉及相似图形的知识点。

本文将对初三相似的图形知识点进行归纳总结,以帮助同学们更好地理解和掌握这一内容。

一、相似三角形的判定条件1. AAA相似定理:如果两个三角形的对应角相等,则它们相似。

2. AA相似定理:如果两个三角形的一个角对应对应地相等,并且两个对应边成比例,则它们相似。

3. 相似三角形的对应边的比例关系:如果两个三角形相似,那么它们的对应边的长度之比等于相似比。

即\(\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}\)二、相似三角形的性质和应用1. 相似三角形的边长比例性质:两个相似三角形的相应边的比等于它们的相似比。

即\(\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}\)2. 相似三角形的高线比例性质:两个相似三角形的高线与底边之比等于相似比。

即\(\frac{h_1}{h_2} = \frac{AB}{A'B'} = \frac{BC}{B'C'} =\frac{CA}{C'A'}\)3. 相似三角形的面积比例性质:两个相似三角形的面积之比等于边长之比的平方。

即\(\frac{S_1}{S_2} = \left(\frac{AB}{A'B'}\right)^2 =\left(\frac{BC}{B'C'}\right)^2 = \left(\frac{CA}{C'A'}\right)^2\)4. 利用相似三角形性质解决实际问题。

如影子定理、塔楼高度的测量等。

人教版相似图形知识点总结

人教版相似图形知识点总结

人教版相似图形知识点总结一、基本概念1. 相似图形的定义相似图形是指形状相同但大小可能不同的图形。

当两个图形的对应角相等,对应边成比例时,我们称这两个图形是相似的。

2. 相似比相似图形之间的边的长度比叫做相似比。

设两个相似图形的对应边分别为a和b,那么a:b就是它们的相似比。

3. 相似比的性质相似比是真分数或小数。

相似比的倒数也是其相似比。

4. 相似比的应用相似比可用于求解各种问题,如测量图形的大小,进行比例测量等。

在解决实际问题时,我们经常需要根据相似比进行尺寸的调整和计算。

二、相似图形的性质1. 对应角相等相似图形的对应角相等。

这意味着,如果两个图形是相似的,它们的对应角度度数是相等的。

2. 对应边成比例相似图形的对应边成比例。

这意味着,如果两个图形是相似的,那么它们的对应边的长度之比是相等的。

3. 面积的比相似图形的面积比等于边长比的平方。

设两个相似图形的对应边分别为a和b,它们的面积分别为S1和S2,那么S1:S2 = (a/b)²。

三、相似图形的判定1. 判断相似的方法(1)角对应相等判断两个图形是否相似,可以首先比较它们对应的角度是否相等。

如果对应角相等,则这两个图形是相似的。

(2)边成比例当两个图形的对应边成等比例时,它们是相似的。

也就是说,如果两个图形的对应边的长度之比相等,那么这两个图形是相似的。

2. 斜率的判断方法两条直线斜率相等,那么它们之间的夹角相等。

因此,我们可以通过计算两个图形的直线斜率来判断它们是否相似。

3. 重要结论如果三角形的一个角相等,则它们是相似的。

如果三角形的三边成比例,则它们是相似的。

四、相似图形的应用1. 相似图形的构造通过相似图形的性质,我们可以利用已知的图形构造出相似的新图形。

比如通过放缩、旋转等方式,我们可以构造出相似的图形。

2. 根据相似图形的性质进行计算使用相似图形的性质,我们可以进行各种计算。

比如求解未知边长、未知角度的大小等问题。

八年级数学相似图形知识点

八年级数学相似图形知识点

八年级数学相似图形知识点八年级数学相似图形知识点一、定义表示两个比相等的式子叫比例.如果a与b的比值和c与d的比值相等,那么或a∶b=c∶d,这时组成比例的四个数a,b,c,d叫做比例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项. 如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio)AB∶CD=m∶n,或写成 = ,其中,线段AB、CD分别叫做这两个线段比的前项和后项.如果把表示成比值k,则 =k或AB=kCD. 四条线段a,b,c,d中,如果a与b的比等于c与d的比,即 ,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.黄金分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果 ,那么称线段AB被点C黄金分割(golden section),点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.其中0.618.引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.相似多边形:对应角相等,对应边成比例的两个多边形叫做相似多边形. 相似多边形:各角对应相等、各边对应成比例的两个多边形叫做相似多边形.相似比:相似多边形对应边的比叫做相似比.二、比例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么 .如果(b,d都不为0),那么ad=bc.2、合比性质:如果 ,那么 .3、等比性质:如果 == (b+d++n0),那么4、更比性质:若那么 .5、反比性质:若那么三、求两条线段的比时要注意的问题:(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.四、相似三角形(多边形)的性质:相似三角形对应角相等,对应边成比例,相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比.相似多边形的周长比等于相似比,面积比等于相似比的平方.五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL六、相似三角形的判定方法,判断方法有:1.三边对应成比例的两个三角形相似;2.两角对应相等的两个三角形相似;3.两边对应成比例且夹角相等;4.定义法: 对应角相等,对应边成比例的两个三角形相似.5、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.在特殊的三角形中,有的相似,有的不相似.1、两个全等三角形一定相似.2、两个等腰直角三角形一定相似3、两个等边三角形一定相似.4、两个直角三角形和两个等腰三角形不一定相似.七、位似图形上任意一对对应点到位似中心的距离之比等于位似比. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫位似中心,这时的相似比又称为位似比.八、常考知识点:1、比例的基本性质,黄金分割比,位似图形的性质.2、相似三角形的性质及判定.相似多边形的性质.初中数学整式的乘法知识点(一)单项式与单项式相乘1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

相似知识点总结中考

相似知识点总结中考

相似知识点总结中考1. 相似三角形相似三角形是指具有相同形状但大小不同的三角形。

当两个三角形的对应角度相等时,它们就是相似三角形。

相似三角形有以下性质:- 对应边的比例相等:如果两个三角形ABC和DEF是相似的,那么它们对应边的长度之比相等,即AB/DE=BC/EF=AC/DF。

- 相似三角形的高线、中线和角平分线的比例:在相似三角形中,高线、中线和角平分线的比例等于相似三角形任意两条对应边的比例。

2. 相似多边形相似多边形是指具有相同形状但大小不同的多边形。

当两个多边形的对应角度相等且对应边的比例相等时,它们就是相似多边形。

相似多边形的性质与相似三角形类似,对应边的比例相等。

3. 相似图形的应用相似图形在生活和工作中有着广泛的应用,例如地图上的放大和缩小、相似三角形的测量、相似多边形的制图等。

4. 相似比相似比是指两个相似图形中对应边的比值。

在相似图形中,对应边的比值即为相似比。

当两个图形相似时,它们的相似比是相等的。

5. 直角三角形的三线比在直角三角形中,三线比是指三角形的三条高、中线和角平分线之间的比例关系。

在相似直角三角形中,三线比仍然成立。

6. 相似多边形的计算在计算相似多边形的过程中,可以利用相似三角形和相似比的性质,通过对应边的比例关系来求解未知变量。

7. 相似图形的证明在证明相似图形时,可以利用对应角度相等和对应边的比例相等的性质来进行推导和证明。

8. 相似图形的判定判定两个图形是否相似,需要验证它们的对应角度是否相等,对应边的比例是否相等,从而得出相似的结论。

9. 相似图形的变换相似图形的变换是指对已知图形进行等比例放大或缩小,保持图形的形状不变。

通过相似变换,可以得到不同大小的相似图形。

10. 相似图形的应用实例相似图形在生活中有着广泛的应用,例如建筑制图、地图测量、影视特效等方面都有相似图形的应用。

以上是关于相似知识点的总结,希望对你有所帮助。

图形的相似知识点

图形的相似知识点

图形的相似知识点相似图形是几何学中的重要概念,它指的是在形状和比例上相似的图形。

本文将介绍图形的相似性,并讨论相似图形的性质和应用。

一、相似图形的定义和判断方法相似图形定义:如果两个图形的形状相同,并且对应边的长度比相等,那么这两个图形就是相似图形。

判断相似图形的方法:1.对应角相等法则:如果两个图形的对应角相等,则这两个图形相似。

2.对应边成比例法则:如果两个图形的对应边成比例,则这两个图形相似。

3.综合判断法则:根据对应角和对应边成比例的性质,综合判断两个图形是否相似。

二、相似图形的性质1.对应边成比例:相似图形的对应边的长度比相等。

2.对应角相等:相似图形的对应角相等。

3.面积成比例:相似图形的面积比等于对应边长度比的平方。

三、相似三角形相似三角形是相似图形中最常见的一种情况。

相似三角形有以下性质:1.对应角相等:如果两个三角形的对应角相等,则这两个三角形相似。

2.对应边成比例:如果两个三角形的对应边成比例,则这两个三角形相似。

3.高线成比例:如果两个三角形的高线成比例,则这两个三角形相似。

4.中线成比例:如果两个三角形的中线成比例,则这两个三角形相似。

四、相似图形的应用相似图形的概念在实际生活中有着广泛的应用,例如:1.地图比例尺:地图上的比例尺就是通过相似图形的概念来确定的。

2.影像放大:在影像处理中,可以通过相似图形的概念对影像进行放大或缩小。

3.三角测量:在测量中,可以利用相似三角形的性质来进行间接测量。

4.建筑设计:建筑设计中,相似图形的概念可以帮助设计师确定建筑物的比例和尺寸。

总结:相似图形是几何学中一个重要的概念,它指的是在形状和比例上相似的图形。

我们可以通过对应角相等和对应边成比例等方法来判断图形是否相似。

相似图形的性质包括对应边成比例、对应角相等和面积成比例等。

相似图形在地图制作、影像处理、测量和建筑设计等领域有着广泛的应用。

通过了解相似图形的知识,我们可以更好地理解和应用几何学的基本原理。

数学相似图形知识点总结归纳

数学相似图形知识点总结归纳

※2、黄金分割点是最优美、最令人赏心悦目的点.
m、n,那么就说这两条线段的比 AB:CD=m:n,或写成.
三、相像多边形
※2、四条线段 a、b、c、d 中,假如 a 与 b 的比等于 c 与 d 的比,
¤1、一般地,样子相同的图形称为相像图形.
即,那么这四条线段 a、b、c、d 叫做成比例线段,简称比例线段.
二、黄金分割

第1页共3页
本文格式为 Word 版,下载可任意编辑
写在对应的位置上. ※4、相像三角形对应高的比,对应中线的比与对应角平分线的比都
等于相像比. ※5、相像三角形周长的比等于相像比. ※6、相像三角形面积的比等于相像比的平方. 五、探究三角形相像的条件 ※1、相像三角形的判定方法: 一般三角形直角三角形 基本定理:平行于三角形的.一边且和其他两边(或两边的延长线)
※2.对应角相等、对应边成比例的三角形叫做相像三角形.相像三
致;
角形对应边的比叫做相像比.
④除了 a=b 之外,a:b≠b:a,与互为倒数;
※3、全等三角形是相像三角的特例,这时相像比等于 1.留意:证
⑤比例的基本性质:若,则 ad=bc;若 ad=bc,则
两个相像三角形,与证两个全等三角形一样,应把表示对应顶点的字母

第3页共3页
※2、对应角相等、对应边成比例的两个多边形叫做相像多边形.
※3、留意点:
相像多边形对应边的比叫做相像比.
①a:b=k,说明 a 是 b 的 k 倍;
四、相像三角形
②由于线段 a、b 的长度都是正数,所以 k 是正数;
※1、在相像多边形中,最为简简洁的就是相像三角形.
③比与所选线段的长度单位无关,求出时两条线段的长度单位要一

16初中数学“相似图形”知识点全解析

16初中数学“相似图形”知识点全解析

初中数学“相似图形”知识点全解析一、引言相似图形是初中数学中一个非常重要的概念,它是几何学的基础,对于培养学生的空间观念和几何直觉具有重要的作用。

本文将详细解析相似图形的概念、性质、判定方法以及应用,帮助学生更好地理解和掌握这一知识点。

二、相似图形的概念1.定义:如果两个图形对应角相等,对应边成比例,那么这两个图形叫做相似图形。

2.术语解析:在相似图形中,对应角相等的角叫做对应角,对应边成比例的边叫做对应边。

相似比是指对应边的长度之比。

三、相似图形的性质1.对应角相等:相似图形的对应角一定相等。

2.对应边成比例:相似图形的对应边之间的比例是恒定的,这个比例称为相似比。

3.面积比与相似比的关系:如果两个相似图形的相似比是k,那么它们的面积之比等于k²。

4.周长比与相似比的关系:相似图形的周长之比也等于相似比。

四、相似图形的判定方法1.三边对应成比例:如果两个三角形的三边对应成比例,那么这两个三角形相似。

2.两边对应成比例且夹角相等:如果两个三角形有两边对应成比例且夹角相等,那么这两个三角形相似。

3.两角对应相等:如果两个三角形有两个角对应相等,那么这两个三角形相似。

4.特殊角三角形的相似性:具有特殊角的三角形(如等腰三角形、直角三角形等)在满足一定条件时也可以判定为相似。

五、相似图形的应用1.几何证明:在几何证明中,利用相似图形的性质可以解决很多问题,如证明线段的比例关系、证明角的关系等。

2.实际问题解决:在实际生活中,很多问题可以通过建立数学模型并运用相似图形的知识进行解决。

例如,在建筑设计中,可以利用相似三角形的性质计算建筑物的高度或距离;在地理学中,可以利用相似图形的原理计算地球表面两点之间的距离等。

3.数学竞赛:在数学竞赛中,相似图形经常作为难题的考点出现。

掌握这一知识点可以提高学生的数学竞赛水平。

六、解题方法与技巧1.建立数学模型:在解决问题时,首先要根据问题的实际背景和条件建立数学模型,将问题转化为数学语言进行描述。

九年级人教版相似图形知识点归纳

九年级人教版相似图形知识点归纳

九年级人教版相似图形知识点归纳相似图形是初中数学中一个重要的概念,掌握相似图形的知识可以帮助我们解决许多几何问题。

在九年级数学课程中,我们学习了人教版教材中关于相似图形的知识点,下面对这些知识点进行归纳总结。

1. 相似三角形的定义相似三角形是指具有相同形状但大小可以不同的三角形。

两个三角形相似的条件是它们对应的角相等,对应的边成比例。

即如果∠A=∠D,∠B=∠E,∠C=∠F,那么三角形ABC与三角形DEF相似,且比例因子为AB/DE=AC/DF=BC/EF。

2. 相似三角形的角与边的性质a. 对应角相等:如果两个三角形相似,则它们对应的角相等。

b. 对应边成比例:如果两个三角形相似,则它们对应的边成比例。

3. 两种用来判断相似三角形的方法a. 三边成比例法:如果两个三角形的三条边长度分别成比例,即AB/DE=AC/DF=BC/EF,那么它们相似。

b. 两角对应相等法:如果两个三角形的两个角分别相等,且它们的第三个角也相等或者两个角分别相等,且它们的第三个角的对方边也成比例,那么它们相似。

4. 相似三角形的性质a. 相似三角形的对应边成比例,比例因子等于任意两边之比。

b. 相似三角形的高线成比例,比例因子等于任意两边之比。

5. 相似三角形与比例a. 两个相似三角形的面积之比等于相似三角形的边长之比的平方。

b. 相似三角形中,对应边的比例等于面积比。

即如果三角形ABC与三角形DEF相似,且比例因子为AB/DE=AC/DF=BC/EF,那么S(ABC)/S(DEF)=(AB/DE)^2=(AC/DF)^2=(BC/EF)^2。

6. 相似图形的面积比如果两个相似图形的边长比为a:b,那么它们的面积比为a^2:b^2。

这一性质适用于各种相似图形,如相似三角形、相似矩形等。

以上是九年级人教版相似图形知识点的归纳总结。

相似图形是几何学中一个非常重要的概念,通过掌握相似图形的性质和判断方法,我们可以在解决几何问题时更加轻松和高效。

初三---相似图形思维导图内容---1

初三---相似图形思维导图内容---1

初三相似图形思维导图内容1一、相似图形的定义相似图形是指两个图形的形状相同,但大小不同。

换句话说,如果将一个图形放大或缩小,并且保持其形状不变,那么放大或缩小后的图形与原图形相似。

二、相似图形的性质1. 对应角相等:相似图形的对应角是相等的。

这意味着,如果两个图形相似,那么它们的对应角具有相同的大小。

2. 对应边成比例:相似图形的对应边长度成比例。

也就是说,如果两个图形相似,那么它们的对应边的长度比例是相同的。

3. 相似多边形的面积比等于边长比的平方:如果两个多边形相似,那么它们的面积比等于对应边长比的平方。

三、相似图形的判定1. AA相似准则:如果两个三角形的两个角分别相等,那么这两个三角形相似。

2. SAS相似准则:如果两个三角形的两个角和它们之间的夹边分别相等,那么这两个三角形相似。

3. SSS相似准则:如果两个三角形的三边分别成比例,那么这两个三角形相似。

四、相似图形的应用相似图形在现实生活中有着广泛的应用。

例如,在建筑、设计、工程等领域,设计师和工程师经常使用相似图形来简化设计过程,提高工作效率。

相似图形也是数学中许多问题解决的关键,例如在几何证明、比例计算等方面都有重要应用。

初三相似图形思维导图内容1五、相似图形的变换相似图形的变换包括缩放、旋转和平移。

缩放是指将图形放大或缩小,旋转是指将图形绕一个点旋转一定角度,平移是指将图形沿某一方向移动一定距离。

这些变换不会改变图形的形状,只会改变图形的大小、位置或方向。

六、相似图形的证明1. 确定两个图形是否满足相似图形的定义,即形状相同但大小不同。

2. 根据相似图形的性质,检查对应角是否相等,对应边是否成比例。

3. 如果满足相似图形的性质,那么可以得出结论:两个图形相似。

七、相似图形的练习题1. 证明两个三角形相似。

2. 已知一个三角形的两个角和它们之间的夹边,求另一个相似三角形的对应边长。

3. 已知两个相似三角形的面积比,求它们对应边长的比例。

图形的相似知识点

图形的相似知识点

图形的相似知识点一、相似图形知识点1 相似图形的概念具有相同形状的图形叫做相似图形注意:由定义易得两个圆、正方形、等边三角形,等腰直角三角形必是相似图形;而两个等腰三角形,菱形,矩形不一定是相似图形。

知识点2 在格点(或网格)图中画已知图形的相似图形即通过放大或缩小在网格中画出所需图形(按比例放大或缩小)注意:每一边放大或缩小的数量必须一样,可先定点后定边。

若无特殊说明,画出与原图形全等的图形也正确。

二、相似图形的性质知识点1 线段的比一般地,在同一长度单位下量得两条线段长度的比称为这两条线段的比注意:(1)线段的比与所采用的长度单位无关,但求比时单位应统一;(2)线段的比有顺序,即a:b ≠b:a(3)比值总为正数知识点2 比例线段对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比等于另外两条线段的比,如a c b d =(或::a b c d =),那么,这四条线段叫做成比例线段,简称比例线段。

此时也称这四条线段成比例。

判断四条线段是否成比例:(1)按从小到大(或从大到小)排列(2)判断前两条线段的比是否等于后两条线段的比知识点3 比例的基本性质交叉相乘:(,,,0)a c ad bc a b c d b d=⇔=均不等于(可用于验证等式成立,或求解成比例的未知数) ,.a c a b c d a c b d b d a b c d++===--如果,那么(可用倒数验证) 拓展:a c a nb c nd b d b d ±±==如果,那么。

(分母不变,分子加上或减去分母的倍数) 知识点4 相似多边形的性质、判断性质:两个相似多边形的对应边成比例(构造比例方程求对应边),对应角相等(根据内角和定理求内角);2. ⎧⎨⎩1.全等是相似的特例:即全等必相似,可通过放大或缩小得到:即形状完全相同, 与位置,大小无关判定:如果两个多边形的对应边成比例,对应角相等,那么这两个多边形相似。

图形的相似知识点总结

图形的相似知识点总结

图形的相似考点一、比例线段 1、比例线段的相关概念如果选用同一长度单位量得两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是,或写成a :b=m :n在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项。

在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段若四条a ,b ,c ,d 满足或a :b=c :d ,那么a ,b ,c ,d 叫做组成比例的项,线段a ,d 叫做比例外项,线段b ,c 叫做比例内项,线段的d 叫做a ,b ,c 的第四比例项。

如果作为比例内项的是两条相同的线段,即cb b a =或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项。

2、比例的性质(1)基本性质①a :b=c :d ⇔ad=bc ②a :b=b :c ac b =⇔2(2)更比性质(交换比例的内项或外项) db c a =(交换内项)⇒=dcb a ac bd =(交换外项)abc d =(同时交换内项和外项) (3)反比性质(交换比的前项、后项):cd a b d c b a =⇒= (4)合比性质:ddc b b ad c b a ±=±⇒= (5)等比性质:ban f d b m e c a n f d b n m f e d c b a =++++++++⇒≠++++==== )0( 3、黄金分割把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-AB ≈0.618AB 考点二、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。

nm b a =d c b a =推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

相似图形的知识点总结

相似图形的知识点总结

相似图形的知识点总结相似图形的知识点在数学考试中考得比较多,那么相关的知识点有什么呢?以下是小编为大家精心整理的相似图形的知识点总结,欢迎大家阅读。

知识点1.概念把形状相同的图形叫做相似图形。

(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.知识点2.比例线段对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.知识点3.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.知识点4.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”;(5)相似三角形的对应边之比叫做相似比.知识点5.相似三角的判定方法(1)定义:对应角相等,对应边成比例的两个三角形相似;(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.知识点6.相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.(4)射影定理。

九年级相似图形知识点归纳

九年级相似图形知识点归纳

九年级相似图形知识点归纳相似图形是几何学中的一个基本概念,它指的是形状相似但尺寸不同的两个或多个图形。

在九年级的数学学习中,相似图形是一个重要的知识点,涉及到比例、比例尺、相似比等概念。

本文将对九年级相似图形的相关知识进行归纳总结。

一、相似图形的定义相似图形是指在形状上相似但尺寸不同的两个或多个图形。

相似图形具有以下特点:1. 对应角相等:两个相似图形的对应角都相等;2. 对应边成比例:两个相似图形的对应边的长度成比例。

二、相似图形的判定方法1. AAA判定法:若两个图形的对应角分别相等,则它们是相似图形。

2. AA判定法:若两个图形的两组对应角分别相等,则它们是相似图形。

三、相似图形的性质和定理1. 三角形的相似定理:a. AA相似定理:如果两个三角形的两组对应角相等,则这两个三角形是相似的。

b. SSS相似定理:如果两个三角形的三组对边成比例,则这两个三角形是相似的。

c. SAS相似定理:如果两个三角形的一组对边成比例且对应角相等,则这两个三角形是相似的。

2. 相似三角形的性质:a. 对应边成比例:相似三角形的对应边的长度成比例。

b. 三角形内角对应:相似三角形的内角都对应相等。

四、相似图形的应用相似图形的知识在实际生活和实际问题中有广泛应用,例如:1. 测量:利用相似图形的知识可以进行测量,如通过测量一个三角形的边长和另一个相似三角形的边长,可以得到未知边长的长度。

2. 设计:在设计中,相似图形的概念可以应用于建筑、道路等方面,通过对已知图形进行放大或缩小,使其与实际需求相适应。

3. 地图测绘:地图上的比例尺就是利用相似图形的原理进行测绘的。

五、示例题目1. 已知两个三角形的对边成比例,但两个三角形的对应角不全等,是否可以判定这两个三角形是相似的?2. 若一个平面图形与一个已知的相似图形所对应的角相等,并且对应边成比例,能否判断这两个图形是相似的?六、总结九年级相似图形是一个重要的几何学知识点,它涵盖了相似图形的定义、判定方法、性质和应用等方面。

相似图形知识点总结

相似图形知识点总结

相似图形知识点总结一、相似图形的定义和性质1.1 相似图形的定义相似图形是指具有相同形状但大小可以不同的图形。

当两个图形的对应边成比例,并且对应的角度相等时,我们称这两个图形是相似的。

1.2 相似图形的性质相似图形具有以下性质:1) 对应角相等:相似图形中的对应角是相等的。

2) 对应边成比例:相似图形中的对应边的长度成比例。

3) 面积比例:相似图形的面积的比等于对应边的平方比。

1.3 相似图形与全等图形的区别相似图形和全等图形都具有相同的形状,但是它们之间有一个重要的区别:全等图形的对应边和对应角都相等,而相似图形的对应边成比例,对应角相等。

二、相似图形的判定条件2.1 AAA相似判定如果两个图形的对应角相等,则这两个图形是相似的。

2.2 AA相似判定如果两个图形的其中两组对应角相等,则这两个图形是相似的。

2.3 直角三角形的相似判定在直角三角形中,如两个直角三角形中对应角相等,则这两个三角形是相似的。

2.4 SSS相似判定如果两个图形的对应边成比例,则这两个图形是相似的。

2.5 SAS相似判定如果两个图形的其中两组对应边成比例,并且两组对应角相等,则这两个图形是相似的。

2.6 相似图形的判定定理在实际问题中,我们常常需要判定两个图形是否相似。

根据相似图形的性质,我们可以得到相似图形的判定定理,例如:角平分线定理、高度定理等。

三、相似图形的应用3.1 计算图形的面积相似图形的面积比例定理可以用于计算图形的面积。

根据相似图形的面积比例定理,我们可以得到如果两个图形相似,它们的面积的比等于对应边的平方比。

这个性质可以用于计算各种图形的面积,例如三角形、矩形、圆等。

3.2 计算图形的周长相似图形中的对应边成比例,这个性质可以用于计算图形的周长。

如果两个图形相似,它们的周长的比等于对应边的比例。

3.3 解决实际问题相似图形的性质和定理在解决各种实际问题中有着广泛的应用,例如解决建筑设计、地图测量、影视特效等问题。

相似知识总结(学生资料)

相似知识总结(学生资料)

相似知识总结知识点一:放缩与相似形1、图形的放大或缩小,称为图形的放缩运动。

2、把形状相同的两个图形说成是相似的图形,或者就说是相似性。

注意:⑴、相似图形强调图形形状相同,与它们的位置、颜色、大小无关。

⑵、相似图形不仅仅指平面图形,也包括立体图形相似的情况。

⑶、我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷、若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.1.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念1、比:选用同一长度单位量得两条线段。

a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或nm b a =) 2、比的前项,比的后项:两条线段的比a :b 中。

a 叫做比的前项,b 叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如dc b a = 4、比例外项:在比例d cb a =(或a :b =c :d )中a 、d 叫做比例外项。

5、比例内项:在比例d cb a =(或a :b =c :d )中b 、c 叫做比例内项。

6、第四比例项:在比例dcb a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为dbb a =(或a:b =b:d 时,我们把b叫做a 和d 的比例中项。

8、比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a =(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。

(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)(2)比例性质1、基本性质:bc ad d cb a =⇔=(两外项的积等于两内项积) 2、反比性质:cda b d c b a =⇔= (把比的前项、后项交换)3、更比性质(交换比例的内项或外项):()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项4、合比性质:ddc b b ad c b a ±=±⇒=(分子加(减)分母,分母不变) .注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a .5、等比性质:(分子分母分别相加,比值不变.) 如果)0(≠++++====n f d b nmf e d c b a ,那么b a n f d b m ec a =++++++++ . 注意:(1)、此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法;(2)、应用等比性质时,要考虑到分母是否为零;(3)、可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立. 知识点三:黄金分割1)定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC =, 即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

相似图形知识点总结文库

相似图形知识点总结文库

相似图形知识点总结文库一、相似图形的定义相似图形是指两个或多个图形之间的形状相同,但大小可能不同的情况。

在几何中,通常用符号∼表示两个相似图形之间的关系。

例如,若图形A和图形B是相似的,则可以表示为A∼B。

相似图形的定义可以用比例来表达,即如果两个三角形ABC和DEF是相似的,那么它们的对应边的比例是相等的,即AB/DE=BC/EF=AC/DF。

二、相似图形的判定1. AAA相似判定法:如果两个三角形的对应角相等,那么它们是相似的。

2. AA相似判定法:如果两个三角形的两个对应角相等,那么它们是相似的。

3. SSS相似判定法:如果两个三角形的对应边成比例,那么它们是相似的。

4. 直接判定法:如果两个四边形的对应边成比例,那么它们是相似的。

在判定相似图形时,可以根据题目条件选择不同的方法进行判定,以确定两个或多个图形之间是否是相似的关系。

三、相似图形的性质1. 相似三角形的性质:(1) 相似三角形的对应角相等;(2) 相似三角形的对应边成比例;(3) 相似三角形的高线成比例;(4) 相似三角形的中位线成比例。

2. 相似四边形的性质:(1) 相似四边形的对应角相等;(2) 相似四边形的对应边成比例。

3. 相似图形的周长、面积与比例关系:(1) 如果两个图形相似,那么它们的周长之比等于它们的任意一条边的比;(2) 如果两个图形相似,那么它们的面积之比等于它们的任意一条边的比的平方。

四、相似图形的应用1. 图形的放大与缩小:在工程设计、地图制作等领域,相似图形的概念经常被用来进行图形的放大与缩小,以便得到需要的大小。

2. 测量与估算:利用相似图形的性质,可以利用已知的尺寸进行图形的测量与估算,从而得到未知尺寸的大小。

3. 面积与体积的计算:利用相似图形的面积与比例关系,可以方便地计算出图形的面积与体积。

4. 几何问题的解决:在几何问题中,利用相似图形的性质,可以更快速地解决一些有关形状和比例的问题,如建筑设计、城市规划等。

相似章节知识点总结数学

相似章节知识点总结数学

相似章节知识点总结数学在数学中,相似章节是一个重要的概念。

它涉及到图形之间的比较和相似性。

在这篇文章中,我们将讨论相似章节的定义、性质和一些相关的定理。

1. 相似章节的定义相似章节是指具有相同形状但不同大小的图形。

换句话说,如果两个图形的形状完全相同,但大小不同,那么它们就是相似的。

例如,如果有两个三角形,它们的对应角度相等,相应的边长成比例,那么这两个三角形就是相似的。

2. 相似章节的性质相似章节有一些重要的性质,包括:- 对应角相等:相似的图形之间的对应角是相等的。

这意味着如果两个图形是相似的,那么它们的对应角度是相等的。

- 对应边成比例:相似的图形之间的对应边是成比例的。

换句话说,如果两个图形是相似的,那么它们的对应边长之比是相等的。

3. 相似章节的定理相似章节有一些重要的定理,包括:- AAA相似定理:如果两个三角形的对应角度相等,则这两个三角形是相似的。

- AA相似定理:如果两个三角形的一个角相等,并且它们的一个对应边成比例,则这两个三角形是相似的。

- SAS相似定理:如果两个三角形的一条边成比例,并且它们的两个对应角度相等,则这两个三角形是相似的。

4. 相似章节的运用相似章节在实际问题中有许多应用,包括:- 遥感影像处理:在遥感影像处理中,相似章节用于计算不同尺度下的地物面积。

- 三角测量:在三角测量中,相似章节被用来计算不可达地点的距离和高度。

- 工程设计:在工程设计中,相似章节被用来设计结构物和道路等。

总之,相似章节是数学中一个重要的概念,它在几何学、工程和科学中都有着广泛的应用。

通过了解相似章节的定义、性质和定理,我们可以更好地理解和应用它们。

相似图形知识点

相似图形知识点

相似图形知识点相似图形是几何学中的重要概念,它在数学和实际生活中有着广泛的应用。

相似图形指的是具有相同形状但大小不同的图形。

在本文中,我们将介绍相似图形的定义、判定条件以及相关的性质和应用。

通过学习相似图形知识点,我们可以更好地理解几何学中的形状和比例关系。

一、相似图形的定义在几何学中,如果两个图形具有相同的形状但大小不同,我们就说它们是相似图形。

相似图形之间存在比例关系,即它们的对应边长之比相等。

二、相似图形的判定条件1. AAA 相似判定:如果两个三角形的对应角度相等,则它们是相似的。

即三角形的三个内角对应相等时,它们是相似的。

2. AA 相似判定:如果两个三角形的一个角相等,并且两个对应边的比值相等,那么它们是相似的。

即当两个三角形的一个角对应相等且两个对应边之比相等时,它们是相似的。

3. 边比相等判定:如果两个图形的对应边长之比相等,则它们是相似的。

即当两个图形的对应边长之比相等时,它们是相似的。

三、相似图形的性质1. 相似图形的对应角度相等。

2. 相似图形的对应边长之比相等。

3. 相似图形的面积之比等于边长比的平方。

4. 相似图形的周长之比等于边长比。

四、相似图形的应用1. 测量不可达的高度:利用相似三角形的性质可以在无法直接测量的情况下,通过测量已知边长的三角形来计算不可达的高度。

2. 简化比例计算:相似图形的性质可以在计算中帮助简化复杂的比例关系,使计算更加方便和高效。

3. 三角形的判定:通过相似性的判定条件,我们可以判断给定的三角形是否相似。

这对于解决各种与三角形相关的问题非常有帮助。

4. 图形放大和缩小:相似图形的概念也应用于图形的放大和缩小。

通过保持相似性,我们可以按比例调整图形的大小。

总结:相似图形是几何学中重要的概念,它们具有相同的形状但大小不同。

我们可以通过比较图形的角度和边长来判断它们是否相似,并利用相似性的性质来解决各种问题。

相似图形的应用广泛,可以在测量、计算和问题解决中发挥重要作用。

九年级下册相似图形的知识点

九年级下册相似图形的知识点

九年级下册相似图形的知识点相似图形是初中数学中的一个重要概念,让我们一起来了解一下九年级下册相似图形的知识点。

相似图形是指具有相同形状但尺寸不同的图形。

在相似图形中,对应角相等,对应边成比例。

通过相似图形的研究,我们可以推导出很多有用的结论和定理。

1. 相似比例相似比例是指两个相似图形相对应边的比值。

设两个相似三角形ABC和A'B'C',则相似比例为:AB/A'B' = BC/B'C' = AC/A'C'2. 相似三角形的性质(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的高线、中线、角平分线也是相似的。

3. 判断相似三角形(1)两个三角形的对应角相等,并且两对对应边成比例时,这两个三角形相似。

(2)两个三角形的一个角相等,且两个角的对边成比例,这两个三角形相似。

4. 相似三角形的应用(1)测量高处难以到达的高度,可以利用相似三角形定理进行测算。

(2)在地图测绘中,利用相似三角形可以计算远处的高度和距离。

(3)在影视特效制作中,利用相似三角形可以实现物体的缩放和变形效果。

5. 相似多边形相似三角形的概念可以推广到相似多边形。

在相似多边形中,对应角相等,对应边成比例。

利用相似多边形的性质,我们可以解决很多与长度、面积等有关的几何问题。

总结:九年级下册相似图形是一个重要的数学知识点,通过研究相似图形,我们可以深入理解几何形状的特性,解决与长度、面积等相关的几何问题。

相似三角形和相似多边形的性质可以应用于实际生活中的测量、设计和计算中,具有广泛的应用价值。

掌握了相似图形的知识,我们可以更好地理解几何学,提高问题解决的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 相似图形------知识点与基础练习§4.1.1线段的比1. 线段的比的定义:如果选用同一个长度单位量得两条线段,AB CD 的长度分别是,m n ,那么就说这两条线段的比::A B C D m n =或写成A B m C Dn=.其中,线段,AB CD 分别叫这个线段比的前项和后项. 2. 注意:① 两条线段的比是有顺序性的;② 求两条线段的比,他们的长度单位必须统一;③ 在同一单位下线段的比与选用的单位无关; ④ 线段的比是一个没有单位的正数3. 线段的比的求法:先将两线段长度单位统一,再求它们的比.4. 比例尺:图上距离与实际距离的比§4.1.2线段的比1. 成比例线段:四条线段,,,a b c d 中,如果a 与b 的比等于c 与d 的比,即a cb d=或::a b c d =,那么这四条线段,,,a b c d 叫做成比例线段,简称比例线段2. 比例的项:已知四条线段,,,a b c d ,如果a cb d=,那么,,,a b c d 叫做组成比例的项,线段,a d 叫做比例外项,线段,b c 叫做比例内项.其中按顺序,,,a b c d 分别叫做第一,二,三,四比例项.3. 比例中项:如果作为比例线段的内项是两条相同的线段,即::a b b c =或a b b c=,那么线段b 叫做线段a 和c 的比例中项.4. 比例的性质 ① 比例的基本性质:比例的两外项之积等于两内项之积如果a c bd=,那么ac bd =,,(,,,0) ,,a c c ab d d b b d d b ac c a ac bd a b c d c d d c a b b a a b b a cddc⎧==⎪⎪⎪==⎪=≠⎨⎪==⎪⎪⎪==⎩如果,那么方法点拨:以上八个比例式都是由同一个等积式转化而来,故这八个比例式是可以互化的.因此验证两个比例式是否可以互相转化的技巧:看比例式转化成的等积式是否相同② 反比性质:把比例中两个比的前项和后项分别交换如果a cb d=,那么b d a c= (,,,0)a b c d ≠ ③ 更比性质:交换比例的内项与外项 如果a c b d =,那么a b c d = (,,0)b c d ≠ (交换内项) 如果a c bd=,那么d c b a=(,,0)a b d ≠(交换外项) 如果a cb d =,那么d b ca=(,,,0)a b c d ≠(同时交换比例的内项与外项)④ 合(分)比性质:第一比例项加上(或减去)第二比例项与第二比例项的比值等于第三比例项加上(或减去)第四比例项与第四比例项的比值 如果a c b d =,那么a b c d b d ++= (合比性质) 如果a cb d=,那么a b c d bd--=(分比性质)⑤ 等比性质:有几个比值相等的比,这些比的所有前项之和与所有后项之和的比值与原比值相等 如果(0)a c e m b d f n b d f n====++++≠L L ,那么a c e m ab d f nb++++=++++L L注:使用等比性质一定要注意所有后项之和是否为零,若没条件限制,则需要分情况讨论.设k 法是解决比例有关问题的常用方法§4.2 黄金分割黄金分割的定义: 在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,且A C B C >,如果A CBC A BA C=,那么称线段AB 被点C黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

其中0.6182AC BC ABAC==≈从以下几方面理解黄金分割的定义:①点C 把线段AB 分成两条线段AC 和BC ,且A C B C >,如果2AC AB BC =⋅,即AC 是AB 和BC 的比例中项,那么称线段AB被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

②一条线段的黄金分割点有两个③0.6182==≈较长线段较短线段整条线段较长线段112222)⋅⋅⋅较长线段=整条线段 较短线段=较长线段较短线段=整条线段两个黄金分割点间的距离整条线段[针对性练习]1.下列各组中的四条线段成比例的是( )A.3,2,a b c d ====B. 4,6,5,10a b c d ====C.2,a b c d ====D. 2,3,4,1a b c d ====2.下列线段能成比例线段的是( ) A. 1cm, 2cm, 3cm, 4cm B.1cm,C.D. 2cm, 5cm, 3cm, 4cm3.如果2,9,6,3a b c d ====, 那么( ) A .,,,a b c d 成比例 B .,,,a c b d 成比例 C. ,,,a d b c 成比例 D. ,,,a c d b 成比例 4. 若x 是3、4、9的第四比例项,则x = ,又x 是6和y 的比例中项,则y = 5. 若8,6,4,a cm b cm c cm ===则,,a b c 的第四比例项d = cm ; ,a c 的比例中项x = cm.6.已知:2三个数,请你再填一个数,可写成一个比例式,这个数是7. ,,,a b c d 满足ab cd =把它改写成比例式,错误的是( ) A. ::a d c b = B. ::a b c d = C. ::d a b c = D. ::a c d b = 8. 若互不相等的四条线段的长,,,a b c d 满足a c b d=,m 为任意实数,则下列各式一定成立的是( )A.a mc mb m d m ++=++ B.a bc db c ++=C. a d c b =D. +a b c d a b c d--=+ 9.若ac bd =,则下列各式一定成立的是( )A.a c bd =B.a dbc dc++=C.22a d bc=D.ab a cdd=10.已知a c bd=,则下列式子中正确的是( )A. 22::a b c d =B. ::a d c b =C. :():()a b a c b d =++D. :():()a b a d b d =-- 11.若5:6:=y x ,则下列等式中,不正确的是( )A.511=+yy x B.51=-yy x C.6=-yx x D.5=-xy y12.如果bc ad =,那么下列比例中错误的是( ) A.db c a = B.ba dc =C.bd ca =D.cd ab =13.已知572z y x ==,xzy x C yz x B zy x y A -+=+=++=,,,那么A 、B 、C 的大小顺序为14. 已知578a b c ==,且20a b c ++=,求2a b c +-15. 已知5:4:2::=c b a ,且236a b c -+=,求c b a 23-+.16.若25346a b c ++==,且2321a b c -+=.试求::a b c .17.已知83b a b=-,求,,,a a baa bbba b a b+++-18.已知ba ab b a x +=+=+=222,求x 的值变式:①已知cb a +=ac b +=c a P b+=,求P②已知xb c a xa cb xc b a =+=+=+,,,求x 的值③已知a 、b 、c 是非零实数, 且k cb a d da b c dc a b dc b a =++=++=++=++,求k 的值.19.如图,D 、E 分别在△ABC 的边AB 、AC 上,A D A B=A E A C=D E B C=23,且△ABC 与△ADE 的周长之差为15cm ,求△ABC 与△ADE 的周长.20.若2:1:::===d c c b b a ,则=d a :( ) A.1:2 B.1:4 C.1:6 D 、1:8 21. 若33,42a b bc ==,求22a c b c+. 变式:若54,23,43===d c c b b a ,求22db ac +.学科内综合22.已知a 、b 、c 为ΔABC 的三边, 它的周长为24且():():()2:7:1a c a b c b -+-=-,试判断ΔABC 的形状23.已知a 、b 、c 为ΔABC 的三边,且a+b+c =60cm ,a ∶b ∶c =3∶4∶5,求ΔABC 的面积24.下列说法中①如果线段d 是线段a,b,c 的第四比例项,则有a cb d=②如果点C 是线段AB 的中点,那么AC 是AB 、BC 的比例中项 ③如果点C 是线段AB 的黄金分割点,且AC>BC ,那么AC 是AB 与BC 的比例中项④如果点C 是线段AB 的黄金分割点,AC>BC ,且AB=2,则AC=1其中正确的判断有( )A.1个B.2 个C.3个D.4个25. 已知P 、Q 是线段AB 的两个黄金分割点,且AB =10cm ,则PQ 长为( )A.)15(5-B.)15(5+C.)25(10-D.)53(5-26.已知P 是线段AB的黄金分割点,且1AP =-,则AB 的长为( )A 、2 B、1 C 、21 D 、以上都不对 27.已知如图,AB=2,点C 是AB 的黄金分割点,点D 在AB 上,且2AD AB BD =⋅,求C D A C的值.28.为了弘扬雷锋精神,某中学准备在校园内建造一座高2m 的雷锋人体雕像,向全体师生征集设计方案,小兵同学查阅了有关资料,了解到黄金分割数常用于人体雕像的设计中,如图是小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高度(精确到0.01m )是1.414≈,1.732≈2.236≈)( )A.0.62m B.0.76mC.1.24m D.1.62m29.如图是一种贝壳的俯视图,点C 分线段AB 近似于黄金分割.已知AB=10cm ,则AC 的长约为 cm (结果精确到0.1cm ). 30.宽与长之比为1:215-的矩形叫黄金矩形,黄金矩形令人赏心悦目,它给我们以协调,匀称的美感,如图9,如果在一个黄金矩形里画一个正方形,那么留下的矩形还是黄金矩形吗?请证明你的结论.31.已知线段MN =1,在MN 上有点A ,如果253-=AN ,求证:A 是MN 的黄金分割点.一、平行线等分线段定理:ACDB小资料雕像上部(腰部以上)与下部(腰部以下)的高度之比等于下部与全体的高度比,这一比值是黄金分割数.图9如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.根据被截的两条直线的位置关系,可以分五种图形情况二、平行线分线段成比例定理1.定理: 三条平行线截两条直线所得的对应线段成比例。

相关文档
最新文档