8.6三角形内角和定理(1)
北师大版八年级数学上册7.5三角形内角和定理(第1课时)教学设计
1.教师引导学生回顾已学的三角形知识,如三角形的定义、分类等。
2.教师以直观的方式,通过动态课件或实物演示,让学生观察并发现三角形内角和等于180°的现象。
3.教师给出三角形内角和定理的表述,并对定理进行讲解,强调“任意三角形内角和都等于180°”。
4.教师通过具体的例子,如等边三角形、等腰三角形等,说明三角形内角和定理的适用范围。
3.教学评价:
(1)关注学生在课堂上的表现,评价他们的参与度、合作能力和解决问题的能力;
(2)通过课后作业和小测验,了解学生对三角形内角和定理的掌握情况;
(3)开展小组评价,让学生相互评价,提高他们的自我认知和团队协作能力。
4.教学反思:
教师在教学过程中要关注学生的反馈,及时调整教学策略,以提高教学效果。同时,教师要注重自身教学能力的提升,不断学习新的教学理念和方法,为学生提供更优质的教育。
1.培养学生的探究精神,鼓励学生主动发现问题、解决问题;
2.增强学生对数学美的感受,体会数学在生活中的应用价值;
3.培养学生严谨的学习态度,养成良好的学习习惯;
4.激发学生的爱国情怀,通过学习我国数学家的贡献,增强民族自豪感。
在教学过程中,教师要关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高,实现全面发展。同时,注重启发式教学,引导学生主动思考、探索,使学生在轻松愉快的氛围中学习数学。
四、教学内容与过程
(一)导入新课
1.教师出示一块三角形的纸板,引导学生观察三角形,并提出问题:“同学们,你们知道三角形的内角和是多少度吗?如何证明三角形的内角和是180°呢?”
2.学生自由发表观点,教师收集不同的解题思路,为后续教学做好铺垫。
3.教师通过多媒体展示生活中含有三角形的实物图片,如房屋屋顶、三角形标志等,让学生感受三角形在生活中的广泛应用,从而引出本节课的学习内容:三角形内角和定理。
北师大版数学八年级上册三角形内角和定理课件(第1课时30张)
C
D4
1
40°2
3
A
E
B
课堂检测
能力提升题
如图,四边形ABCD中,点E在BC上,∠A+∠ADE=180°,
∠B=78°,∠C=60°,求∠EDC的度数. 解:∵∠A+∠ADE=180°, ∴AB∥DE. ∴∠CED=∠B=78°. 又∵∠C=60°, ∴∠EDC=180°-(∠CED+∠C) =180°-(78°+60°) =42°.
探究新知 知识点 2 三角形内角和的应用
例 如图所示,在△ABC中,∠B=38°,∠C=62°,AD是 △ABC的角平分线,求∠ADB的度数.
A
B
C
D
探究新知
解:在△ABC中,∠B+∠C+∠BAC=180°(三角形
A
内角和定理).
∵∠B=38°,∠C=62°(已知),
B
∴∠BAC=180°-38°-62°=80°(等式的性质).
7.5 三角形内角和定理 (第1课时)
导入新知
情
一天,三类三角形通过对自身的特点,讲出了
境 自己对三角形内角和的理解,请同学们作为小判官
引 给它们评判一下吧. 入
不对,我有一 个钝角,所以 我的内角和才
我的形状 最大,那 我的内角 和最大.
是最大的.
我的形状最 小,那我的 内角和最小.
素养目标
2. 会运用三角形内角和定理进行计算. 1.会用平行线的性质与平角的定义证明三角 形内角和等于180°.
A
H
E
1
B
34 2
D F
C G
A
P
Q
E
14
23 F
三角形的内角和定理--教学设计(王康)
三角形的内角和定理--教学设计(王康)此,学生具有良好的知识基础。
数学活动经验基础:本节课主要采取的活动形式是学生自主探究与合作交流的学习方式,学生具有较熟悉的数学活动经验.而本节课是学生第一次学习添加辅助线通过演绎推理的方法证明三角形内角和定理,辅助线的做法使学生在几何证明过程中第一次接触,并且辅助线的添法没有统一的规律,要根据需要而定,另外从本节课开始训练学生将命题翻译为几何符号语言,这对学生来说有一定的难度。
鉴于以上问题诊断分析,因此我确定本节课的教学重点为:动手操作、自主探究三角形内角和定理并会进行简单应用。
教学难点:探究三角形内角和定理证明思路和方法。
五、教学支持条件分析:为了有效的实现教学目标,根据问题诊断分析和学习行为分析,为落实学生的主体地位,教师是教学过程中的组织者、合作者、引导者,我确定如下的教学方式,学生自主探究、合作交流学习,教师引导发现教学。
其次本节课我采用多媒体演示教学,促进学生自主学习,增大课堂容量,提高效率,突出重点,突破难点。
六、教学过程设计:为达到本节课教学目标本节课的设计分为四个环节:知识回顾、新课引入——操作验证、探索新知——巩固练习、强化应用——课堂小结、升华提升——作业布置、反馈教学。
第一环节:知识回顾、新课引入:提出问题:在小学大家已经知道并了解三角形内角和为180°这个结论,能否通过操作验证一下?设计意图:本环节主要注重学生已有经验基础,回忆以前所学知识,使学生明确本节课学习方向,促进学生积极思考形成较高的课堂关注,为本节课的学习做准备.第二环节:操作验证、探索新知:【活动1:操作验证】工具:两张一般锐角三角形卡纸,磁铁。
实验:能否通过实验的方法验证结论是合理的吗?(量、折、)你是怎样思考操作的?想一想,还有其它方法吗?(拼)实验:将纸片三角形三角剪下,随意将它们拼凑在一起。
试用自己的语言说明这一结论的验证思路。
想一想,如果只剪下一个角呢? (学生在黑板右上方展示三种图形,并简单说明自己的方法.)。
三角形内角和ppt课件完整版
余弦函数
cosA = b/c,表示邻边与斜边的 比值,同样用于直角三角形中。
正切函数
tanA = a/b,表示对边与邻边的比 值,常用于求解直角三角形的角度。
三角函数在解三角形中应用
已知两边及夹角求第三边
01
利用正弦定理或余弦定理求解。
已知三边求角度
02
利用余弦定理求解角度,再结合三角形内角和为180度求解其他
算错误。
公式选择
根据已知条件选择合适的公式 进行计算,避免使用错误的公
式导致结果不准确。
精度问题
在计算过程中要注意精度问题, 避免因舍入误差导致结果不准
确。
06
总结回顾与拓展延伸
关键知识点总结回顾
三角形的内角和定义 三角形三个内角的度数之和等于180度。
三角形内角和定理的证明 可以通过多种方法证明,如平行线性质、外角性质等。
角度。
已知两角及一边求其他边和角
03
利用正弦定理和三角形内角和求解。
边长比例与角度关系探讨
边长比例对角度的影响
在三角形中,边长比例的变化会影响角度 的大小,如等腰三角形底角相等。
VS
角度对边长比例的影响
角度的变化也会影响三角形的边长比例, 如直角三角形中,30度角所对的直角边等 于斜边的一半。
典型问题解决方法分享
建筑设计
建筑设计中经常涉及到三角形的面积计算,如屋顶、窗户等部分的 设计。
物理问题
在物理问题中,三角形的面积计算也经常出现,如求解力的大小和方 向等。
误区提示和易错点剖析
01
02
03
04
底和高的对应
在计算三角形面积时,一定要 注意底和高的对应关系,避免
7.三角形内角和定理课件(1)
新知探究
外角的定义:△ABC 内角的一条边与另一条边的 反向延长线组成的角,称为△ABC 的外角.
A
∠1是△ABC 的外角
41
B
CD
探究1: 画出△ABC所有的外角,并指出有哪几个? 有6个,它们是∠1,∠2, ∠3, ∠4, ∠5, ∠6.
2.在△ABC中,∠A=50°, ∠ABC=70°, BD平分∠ABC, 则∠BDC的度数是 85° .
50°
70 ? °
3. 已知:如图,∠1,∠2,∠3是△ABC的三个外角。
求∠1+∠2+∠3的度数.
解:∵∠1,∠2,∠3是△ABC的三个外角,
1A
∴ ∠1= ∠ABC+ ∠ACB,∠2= ∠BAC+
三
角
形 的
性质
外
角
1.三角形的外角等于与它不相邻的两 个内角的和
2.三角形的外角大于与它不相邻的任何 一个内角
三角形的外角和 三角形的外角和等于360 °
方法二 如图,∠BAE+∠1=180 °, ①
E
∠CBF +∠2=180 ° ,② ∠ACD +∠3=180 ° .③ 又知∠1+ ∠2+ ∠3=180 °, ①+ ②+ ③得
A 1
B2 F
3 CD
∠BAE+ ∠CBF+ ∠ACD+(∠1+ ∠2+ ∠3)=540 °,
所以∠BAE+ ∠CBF+ ∠ACD=540 °-180°=360°.
人教版八年级数学上册三角形的内角和定理
三角形的内角和定理人教八上初中数学试卷11-4一、学习目标理解“三角形的内角和等于180°”及证明过程;证明“三角形内角和定理”,体会证明中辅助线的作用,尝试用多种方法证明三角形内角和定理;运用三角形内角和定理解决问题.二、知识回顾拼拼看,将任意一个三角形的三个内角拼合在一起会形成什么角?三、新知讲解1.三角形内角和定理定理三角形三个内角的和等于180°符号语言在△ABC中,∠A+∠B+∠C=180°图示2.三角形内角和定理的证明已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.〖方法1〗证明:过A点作DE∥BC,∵DE∥BC,(已作)∴∠DAB=∠B,∠EAC=∠C,(两直线平行,内错角相等)∵∠DAB+∠BAC+∠EAC=180°,(平角=180°)∴∠BAC+∠B+∠C=180°,(等量代换)〖方法2〗证明:作BC的延长线CD,过点C作射线CE∥BA.∵CE∥BA,∴∠B=∠ECD(两直线平行,同位角相等),∠A=∠ACE(两直线平行,内错角相等),∵∠BCA+∠ACE+∠ECD=180°,(平角=180°)∴∠A+∠B+∠ACB=180°.(等量代换)3.三角形内角和定理的应用(1)已知三角形的两个内角,利用三角形内角和定理可求第三个角;(2)已知各角之间的关系,利用三角形内角和定理可求各角.四、典例探究扫一扫,有惊喜哦!1.三角形的内角和定理【例1】(2014春•靖江市校级月考)若一个三角形的三个内角之比为3:4:5,则它的最大内角的度数是()A.80° B.75° C.90° D.108°总结:给出三角形三个内角的比求内角度数时,通常要设未知数,通过列方程求解.【例2】(2014•重庆校级模拟)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=45°,则∠A的度数为()A.65° B.75° C.85° D.95°总结:关于三角形与平行线结合的问题,求解时,先从平行线的性质入手,把有关角转化到三角形中,再利用三角形的内角和定理求解.【例3】(2014秋•太和县期末)如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A.100° B.110° C.115° D.120°总结:三角形中两内角平分线相交组成的角等于90°与第三个内角一半的和.练1.(2015•重庆模拟)在△ABC中,已知∠A=4∠B=104°,则∠C的度数是()A.50° B.45° C.40° D.30°练2.(2014秋•安庆期中)在△ABC中,∠A、∠B、∠C的度数之比为3:4:5,那么△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形练3.(2014春•通川区校级期中)如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.2.三角形内角和定理的实际应用【例4】如图,一轮船由B处向C处航行,在B处测得C处在B的北偏东75°方向上,在海岛上的观察所A测得B在A的南偏西30°方向上,若轮船行驶到C处时测得∠BAC=55°,那么从C处看A,B两处的视角∠ACB是多少度?总结:1.“三角形的内角和为180°”是隐含条件,在实际应用中必不可少.2.在有关方位角的计算中,常常构造三角形,在三角形中计算角的度数.练4.(2010•石家庄二模)如图所示是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD为________度.3.(2014春•江阴市校级期中)如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°4.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数为()A.30°B.40°C.50°D.60°二、填空题5.(2014秋•宁津县校级月考)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A= ,∠C= .6.(2014•徐州二模)如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C= .(2013春•苏州期末)如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE= .7.三、解答题8.(2014春•庐江县期末)如图,已知∠DAB=70°,AC平分∠DAB,∠1=35°,求∠D的度数.9.(2012春•中山区期中)已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.10.(2011春•宣威市校级月考)如图所示,已知图①五角星ABCDE,将图①中的A点向下移动得到图②,将图①中的C点向上移动得图③,对于五角星及五角星的变形图,∠A+∠B+∠C+∠D+∠E的和为多少度?并选择一图加以说明.典例探究答案:【例1】(2014春•靖江市校级月考)若一个三角形的三个内角之比为3:4:5,则它的最大内角的度数是()A.80° B.75° C.90° D.108°分析:设三角形的三个内角的度数分别为3x、4x、5x,根据三角形内角和定理得到3x+4x+5x=180°,然后解方程求出x后计算5x即可.解答:解:设三角形的三个内角的度数分别为3x、4x、5x,所以3x+4x+5x=180°,解得x=15°,所以5x=75°.故选B.点评:本题考查了三角形内角和定理,即三角形内角和是180°.(2014•重庆校级模拟)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=45°,【例2】则∠A的度数为()A.65° B.75° C.85° D.95°分析:根据平行线的性质可得∠C=∠AED=45°,再利用三角形内角和为180°可以计算出∠A的度数.解答:解:∵DE∥BC,∴∠C=∠AED=45°,∴∠A=180°﹣∠B﹣∠C=180°﹣45°﹣60°=75°,故选:B.点评:此题主要考查了三角形内角和定理,即三角形内角和为180°.【例3】(2014秋•太和县期末)如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A.100° B.110° C.115° D.120°分析:根据三角形内角和定理计算.解答:解:∵∠ABC=50°,∠ACB=80°,且BP平分∠ABC,CP平分∠ACB,∴∠PBC=25°,∠PCB=40°,∴∠BPC=115°.故选C.点评:此题主要考查了三角形的内角和定理:三角形的内角和为180°.练1.(2015•重庆模拟)在△ABC中,已知∠A=4∠B=104°,则∠C的度数是()A.50° B.45° C.40° D.30°分析:根据已知条件求出∠B的度数,再根据三角形的内角和等于180°列式计算即可得解.解答:解:∵4∠B=104°,∴∠B=26°,∴∠C=180°﹣∠A﹣∠B=180°﹣104°﹣26°=50°.故选A.点评:本题考查了三角形的内角和定理,是基础题,求出∠B的度数,然后列出∠C的表达式是解题的关键.练2.(2014秋•安庆期中)在△ABC中,∠A、∠B、∠C的度数之比为3:4:5,那么△ABC 是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形分析:已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.解答:解:设一份为k°,则三个内角的度数分别为3k°,4k°,5k°.则3k°+4k°+5k°=180°,解得k°=15°,∴5k°=75°,3k°=45°,4k°=60°,所以这个三角形是锐角三角形,故选A.点评:此题主要考查三角形的按边分类,直接根据三角形三个内角的度数比来判断是解题的关键.练3.(2014春•通川区校级期中)如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.分析:由三角形的内角和定理,可求∠BAC=70°,又由AE是∠BAC的平分线,可求∠BAE=35°,再由AD是BC边上的高,可知∠ADB=90°,可求∠BAD=25°,所以∠DAE=∠BAE﹣∠BAD=10°.解答:解:在△ABC中,∵∠BAC=180°﹣∠B﹣∠C=70°,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=35°.又∵AD是BC边上的高,∴∠ADB=90°,∵在△ABD中∠BAD=90°﹣∠B=25°,∴∠DAE=∠BAE﹣∠BAD=10°.点评:本题考查三角形的内角和定理及角平分线的性质,高线的性质,解答的关键是三角形的内角和定理,一定要熟稔于心.【例4】如图,一轮船由B处向C处航行,在B处测得处在B的北偏东75°方向上,在海岛上的观察所A测得B在A的南偏西30°方向上,若轮船行驶到C处时测得∠BAC=55°,那么从C处看A,B两处的视角∠ACB是多少度?分析:根据方位角就可求得BA与正北方向的夹角,即可得到∠ABC,在△ABC中,根据三角形内角和定理即可求得∠ACB的度数.解答:解:∵∠BAE=30°,∴∠ABD=30°,∴∠ABC=∠DBC-∠ABD=75°-30°=45°.在△ABC中,根据三角形内角和定理得到:∠ACB=180°-45°-55°=80°,即从C处看A,B两处的视角∠ACB是80°.点评:本题主要考查了方位角的定义,以及三角形的内角和定理.练4.(2010•石家庄二模)如图所示是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD为_____度.分析:连接BD,根据对顶角相等得到∠1=∠4=38°,∠2=∠3=23°,然后根据三角形内角和定理进行计算即可.解答:解:连接BD,如图,∵∠1=∠4=38°,∠2=∠3=23°,∴∠BCD=180°-∠4-∠3=180°-23°-38°=119°.故答案为:119.点评:本题考查了三角形内角和定理:三角形的内角和为180°.也考查了对顶角相等.课后小测答案:一、选择题1.(2014•江北区模拟)在△ABC中,已知∠A=3∠C=54°,则∠B的度数是()A.90° B.94° C.98° D.108°解:如图所示:∵∠A=3∠C=54°,∴∠C=18°,∴∠B的度数是:180°﹣∠A﹣∠C=108°.故选:D.(2014春•合川区校级期中)已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()2.A.锐角三角形 B.直角三角形 C.钝角三角形 D.正三角形解:∵∠A=20°,∴∠B=∠C=(180°﹣20°)=80°,∴三角形△ABC是锐角三角形.故选A.3.(2014春•江阴市校级期中)如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.4.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数为()A.30° B.40° C.50° D.60°解:∵△ABC中,∠A=100°,∠B=40°,∴∠C=180°-∠A-∠B=180°-100°-40°=40°.故选B.二、填空题5.(2014秋•宁津县校级月考)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A= ,∠C= .解:设∠A=2x°,则∠B=3x°,∠C=4x°,∵∠A+∠B+∠C=180°,即:2x°+3x°+4x°=180°,解得:x=20∴∠A=40°,则∠B=60°,∠C=80°,故答案为:40°、80°6.(2014•徐州二模)如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C= .解:∵∠A=35°,∠AOB=75°,∠A+∠B+∠C=180°,∴∠B=180°﹣35°﹣75°=70°.又∵AB∥CD,∴∠C=∠B=70°.7.(2013春•苏州期末)如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE= .解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.三、解答题8.(2014春•庐江县期末)如图,已知∠DAB=70°,AC平分∠DAB,∠1=35°,求∠D的度数.解:∵∠DAB=70°,AC平分∠DAB,∴∠DAC=35°,又∵∠1=35°,∴∠D=180°﹣(∠1+∠DAC)=180°﹣(35°+35°)=110°.9.(2012春•中山区期中)已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.解:∵AB∥CD,AE平分∠BAC,CE平分∠ACD,又∠BAC+∠DCA=180°⇒∠CAE+∠ACE=(∠BAC+∠DCA)=90°,∠E=180°﹣(∠CAE+∠ACE)=90°,∴∠E=90°.10.(2011春•宣威市校级月考)如图所示,已知图①五角星ABCDE,将图①中的A点向下移动得到图②,将图①中的C点向上移动得图③,对于五角星及五角星的变形图,∠A+∠B+∠C+∠D+∠E的和为多少度?并选择一图加以说明.解:∠A+∠B+∠C+∠D+∠E=180°,图①:∵∠A+∠D=∠BNM,∠E+∠C=∠BMN,(三角形的外角等于与它不相邻的两个内角的和),又∵∠B+∠BNM+∠BMN=180∴∠A+∠B+∠C+∠D+∠E=180°.图②:延长AD交BE于点F,再根据三角形外角的性质解答;③同①,∵∠A+∠C=∠1,∠B+∠E=∠2,∠1+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.。
《三角形内角和》说课稿
《三角形内角和》说课稿《三角形内角和》说课稿范文(通用5篇)《三角形内角和》说课稿1一、说教材“三角形的内角和”是九年义务教育六年制小学四年级下册第六单元第3节的内容。
“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
经过第一学段以及本单元的学习,学生已经具备一定的关于三角形的认识的直接经验,已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的概念,打下了坚实的基础。
为方便教师领会教材编写的意图与理念,开展有效的教学,更好的发展学生的空间观念,培养学生的各种能力,教材在呈现教学内容时,不但重视体现知识形成的过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活的组织教学提供了清晰的思路。
主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。
从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,不断提高自己的思维水平。
基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:1、知识目标:知道三角形内角和是180°。
2、能力目标:①通过学生猜、测、拼、折、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。
②能运用三角形内角和是180°这一规律解决实际问题。
3、情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;②体验探索的乐趣和成功的快乐,增强学好数学的信心。
教学重点:三角形内角和是180°的实际应用。
教学难点:探索三角形的内角和是180°二、说教法新课程标准的基本理念就是要让学生“人人学有价值的数学”。
强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。
三角形内角和定理(教案)
我也注意到,在小组讨论环节,学生们表现得相当积极,他们提出了一些很有见地的观点和解决问题的策略。这说明,小组合作学习对学生来说是一个有效的学习方式,能够帮助他们更好地理解和吸收知识。
2.三角形内角和在实际问题中的应用;
3.相关练习题的讲解与解答,巩固学生对三角形内角和定理的理解。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力:通过引导学生观察、思考、探究三角形内角和定理的证明过程,提高学生运用逻辑推理解决问题的能力。
2.提升学生的空间观念:让学生在实际操作、观察中感知三角形的内角和,从而加强对三角形空间结构的认识。
三、教学难点与重点
1.教学重点
-核心内容:三角形内角和定理际操作,让学生理解并掌握三角形内角和为180°的定理。
-理解三角形内角和定理的证明过程。
-举例:引导学生通过剪拼、折叠等数学活动,直观感受并理解三角形内角和定理的证明方法。
-运用三角形内角和定理解决实际问题。
-解决实际问题时,如何将问题抽象为三角形内角和问题。
-举例:学生在面对复杂实际问题时,往往难以将问题简化为数学模型,需要教师引导学生进行问题分析和数学抽象。
-灵活运用三角形内角和定理解决多步骤问题。
-举例:一些综合性的问题可能涉及多个步骤的计算和多个定理的运用,学生需要掌握如何逐步求解。
在教学过程中,教师应当针对这些重点和难点内容,采用不同的教学策略和方法,如直观演示、分组讨论、问题驱动的教学方法等,以帮助学生更好地理解和掌握本节课的核心知识。通过具体的实例和练习,引导学生逐步突破难点,确保学生能够透彻理解并灵活运用三角形内角和定理。
北师版八年级数学上册课件 第七章 平行线的证明 三角形内角和定理 第1课时 三角形内角和定理的证明
三、解答题(共36分) 14.(10分)如图,△ABC中,∠ABC=40°,∠C=60°,AD⊥BC于点 D,AE是∠BAC的平分线.求∠AED的度数.
解:∵AD⊥BC,∴∠ADB=∠ADC=90°. ∵∠ABC=40°,∠C=60°,∴∠BAD=50°,∠CAD= 30°.∴∠BAC=∠BAD+∠CAD=50°+30°=80°. ∵AE是∠BAC的平分线,∴∠BAE=40°.∴∠DAE=∠BAD-∠BAE =50°-40°=10°.∴∠AED=90°-∠DAE=80°
7.(4分)(天门中考)如图,AD∥BC,∠C=30°,∠ADB∶∠BDC= 1∶2,则∠DBC的度数是__5_0_°_.
8.(8分)如图,D是AB上一点,E是AC上一点,BE,CD相交于点F, ∠A=57°,∠ACD=35°,∠ABE=19°,求∠BFD的度数.
解:∵∠A=57°,∠ACD=35°,∴∠ADC=180°-∠A-∠ACD= 180°-57°-35°=88°.∴∠BDC=180°-∠ADC=180°-88°= 92°.
A.20° B.40° C.60° D.80°
3.(3分)已知△ABC的三个内角∠A,∠B,∠C满足关系式∠B+∠C= 2∠A,则此三角形( B )
A.有一个内角为45° B.有一个内角为60° C.是直角三角形 D.是钝角三角形
4.(3分)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC,若 ∠A=70°,∠AED=60°,则∠B的大小为( A)
∵∠ABE=19°,∴∠BFD=180°-∠BDC-∠ABE=180°-92°- 19°=69°
9.(9分)(教材P185复习题T6变式)如图,在△ABC中,CD平分∠ACB,过 点D作DE∥BC交AC于点E,若∠A=54°,∠B=48°,求∠CDE的度数.
北师大版数学八年级上册5《三角形内角和定理》教学设计1
北师大版数学八年级上册5《三角形内角和定理》教学设计1一. 教材分析《三角形内角和定理》是北师大版数学八年级上册第五章的内容。
本节内容主要让学生掌握三角形的内角和定理,即三角形的三个内角之和等于180度。
这个定理是几何学中的基础内容,对于学生后续学习几何学其他知识有着重要的影响。
教材通过丰富的活动,让学生经历探索、发现、验证三角形内角和定理的过程,培养学生的观察能力、操作能力和推理能力。
二. 学情分析学生在学习本节内容前,已经学习了多边形的概念、分类,对多边形有了一定的了解。
同时,学生已经掌握了角的度量方法,能够准确地度量角的度数。
此外,学生还学习了平行线的性质、同位角、内错角等知识,对于通过观察、操作、推理等方法探索几何问题的解决策略有了一定的掌握。
但是,部分学生在解决几何问题时,仍存在思维定势,不能灵活运用所学知识。
三. 教学目标1.知识与技能目标:让学生掌握三角形的内角和定理,能运用三角形的内角和定理解决简单的几何问题。
2.过程与方法目标:通过观察、操作、推理等方法,让学生经历探索、发现、验证三角形内角和定理的过程,培养学生的观察能力、操作能力和推理能力。
3.情感态度与价值观目标:让学生在探索过程中,体验到数学的乐趣,增强对数学的兴趣,培养学生的团队协作能力和交流表达能力。
四. 教学重难点1.教学重点:三角形的内角和定理。
2.教学难点:如何引导学生通过观察、操作、推理等方法探索并验证三角形的内角和定理。
五. 教学方法1.情境教学法:通过设置情境,让学生在实际问题中感受并探索三角形的内角和定理。
2.引导发现法:引导学生通过观察、操作、推理等方法,自主发现并验证三角形的内角和定理。
3.合作学习法:学生进行小组合作,培养学生的团队协作能力和交流表达能力。
六. 教学准备1.教具:三角板、直尺、圆规、多媒体设备等。
2.学具:每个学生准备一套三角板、直尺、圆规等。
七. 教学过程1.导入(5分钟)教师通过多媒体展示一系列与三角形有关的问题,如:什么是三角形?三角形有哪些性质?引发学生对三角形的思考,为新课的学习做好铺垫。
2022年北京市中考数学试题及答案 全市统考试题
2022年北京中考数学试题及答案全市统考第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下面几何体中,是圆锥的为()A.B.C. D.【参考答案】B2.截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨.将262883000000用科学计数法表示应为()A.1026.288310⨯ B.112.6288310⨯C.122.6288310⨯ D.120.26288310⨯【参考答案】B3.如图,利用工具测量角,则1∠的大小为()A.30°B.60°C.120°D.150°【参考答案】A4.实数a b ,在数轴上的对应点的位置如图所示,下列结论中正确的是()A. 2a -<B.1b <C.a b >D.a b->【参考答案】D5.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.14B.13C.12D.34【参考答案】A6.若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为()A.4- B.14-C.14D.4【参考答案】C7.图中的图形为轴对称图形,该图形的对称轴的条数为()A.1B.2C.3D.5【参考答案】D8.下面的三个问题中都有两个变量:①汽车从A 地匀速行驶到B 地,汽车的剩余路程y 与行驶时间x ;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 与放水时间x ;③用长度一定的绳子围成一个矩形,矩形的面积y 与一边长x ,其中,变量y 与变量x 之间的函数关系可以利用如图所示的图象表示的是()A.①②B.①③C.②③D.①②③【参考答案】A第二部分非选择题二、填空题(共16分,每题2分)9.在实数范围内有意义,则实数x 的取值范围是___________.【参考答案】x ≥8【详解】解:由题意得:x -8≥0,解得:x ≥8.故答案为:x ≥8.10.分解因式:2xy x -=______.【参考答案】()()11x y y +-【详解】2xy x-()21x y =-()()11x y y =+-故答案为:()()11x y y +-.11.方程215x x=+的解为___________.【参考答案】x =5【详解】解:215x x=+方程的两边同乘x (x +5),得:2x =x +5,解得:x =5,经检验:把x =5代入x (x +5)=50≠0.故原方程的解为:x =512.在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)【参考答案】>【详解】解:∵k >0,∴在每个象限内,y 随x 的增大而减小,25 <,∴1y >2y .故答案为:>.13.某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:鞋号353637383940414243销售量/双2455126321根据以上数据,估计该商场进鞋号需求最多的滑冰鞋的数量为________双.【参考答案】120【详解】解:根据题意得:39码的鞋销售量为12双,销售量最高,∴该商场进鞋号需求最多的滑冰鞋的数量为1240012040⨯=双.故答案为:12014.如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____.【参考答案】1【详解】解:如图,作DF AC ⊥于点F ,∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,∴1DF DE ==,∴1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1.15.如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为_______.【参考答案】1【详解】解:在矩形ABCD 中:AD BC ∥,90ABC ∠=︒,∴14AE AF BC FC ==,4BC ===,∴144AE =,∴1AE =,故答案为:1.16.甲工厂将生产的I 号、II 号两种产品共打包成5个不同的包裹,编号分别为A,B,C,D,E,每个包裹的重量及包裹中I 号、II 号产品的重量如下:包裹编号I 号产品重量/吨II 号产品重量/吨包裹的重量/吨A 516B 325C 235D 437E358甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂.(1)如果装运的I 号产品不少于9吨,且不多于11吨,写出一中满足条件的装运方案________(写出要装运包裹的编号);(2)如果装运的I 号产品不少于9吨,且不多于11吨,同时装运的II 号产品最多,写出满足条件的装运方案________(写出要装运包裹的编号).【参考答案】①.ABC(或ABE 或AD 或ACD 或BCD)②.ABE 或BCD【详解】解:(1)根据题意,选择ABC 时,装运的I 号产品重量为:53210++=(吨),总重6551619.5++=<(吨),符合要求;选择ABE 时,装运的I 号产品重量为:53311++=(吨),总重6581919.5++=<(吨),符合要求;选择AD 时,装运的I 号产品重量为:549+=(吨),总重671319.5+=<(吨),符合要求;选择ACD 时,装运的I 号产品重量为:52411++=(吨),总重6571819.5++=<(吨),符合要求;选择BCD 时,装运的I 号产品重量为:3249++=(吨),总重5571719.5++=<(吨),符合要求;选择DCE 时,装运的I 号产品重量为:4239++=(吨),总重7582019.5++=>(吨),不符合要求;选择BDE 时,装运的I 号产品重量为:34310++=(吨),总重5782019.5++=>(吨),不符合要求;综上,满足条件的装运方案有ABC 或ABE 或AD 或ACD 或BCD.故答案为:ABC(或ABE 或AD 或ACD 或BCD).(2)选择ABC 时,装运的II 号产品重量为:1236++=(吨);选择ABE 时,装运的II 号产品重量为:1258++=(吨);选择AD 时,装运的II 号产品重量为:134+=(吨);选择ACD 时,装运的II 号产品重量为:1337++=(吨);选择BCD 时,装运的II 号产品重量为:2338++=(吨);故答案为:ABE 或BCD.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:0(1)4sin 45 3.π-+--【参考答案】4【详解】解:0(1)4sin 45 3.π-+--2=1432+⨯-+=4.【点睛】本题考查了实数的混合运算,掌握零次幂、特殊角的正弦值、二次根式的化简及去绝对值是解题的关键.18.解不等式组:274,4.2x x xx +>-⎧⎪⎨+<⎪⎩【参考答案】14x <<【详解】解:274 4 2x x xx +>-⎧⎪⎨+<⎪⎩①②解不等式①得1x >,解不等式②得4x <,故所给不等式组的解集为:14x <<.19.已知2220x x +-=,求代数式2(2)(1)x x x +++的值.【参考答案】5【详解】解:∵2220x x +-=,∴222x x +=,∴2(2)(1)x x x +++22221x x x x =++++2241x x =++()2221x x =++221=⨯+5=20.下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角和等于180°,已知:如图,ABC ∆,求证:180.A B C ∠+∠+∠=方法一证明:如图,过点A 作.DE BC ∥方法二证明:如图,过点C 作.CD AB ∥【参考答案】答案见解析【详解】证明:过点A 作//DE BC ,则B BAD ∠=∠,C EAC ∠=∠.(两直线平行,内错角相等)点D ,A ,E 在同一条直线上,180DAB BAC C ∴∠+∠+∠=︒.(平角的定义)180B BAC C ∴∠+∠+∠=︒.即三角形的内角和为180︒.21.如图,在ABCD 中,AC BD ,交于点O ,点E F ,在AC 上,AE CF =.(1)求证:四边形EBFD 是平行四边形;(2)若,BAC DAC ∠=∠求证:四边形EBFD 是菱形.【参考答案】(1)见解析(2)见解析【小问1详解】证明:∵四边形ABCD 为平行四边形,∴AO CO =,BO DO =,∵AE CF =,∴AO AE CO CF -=-,即EO FO =,∴四边形EBFD 是平行四边形.【小问2详解】∵四边形ABCD 为平行四边形,∴AB CD ,∴DCA BAC ∠=∠,∵,BAC DAC ∠=∠∴DCA DAC ∠=∠,∴DA DC =,∴四边形ABCD 为菱形,∴AC BD ⊥,即EF BD ⊥,∵四边形EBFD 是平行四边形,∴四边形EBFD 是菱形.22.在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(4,3),(2,0)-,且与y 轴交于点A .(1)求该函数的解析式及点A 的坐标;(2)当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值,直接写出n 的取值范围.【参考答案】(1)112y x =+,(0,1)(2)1n ≥【小问1详解】解:将(4,3),(2,0)-代入函数解析式得,3=402k b k b +⎧⎨=-+⎩,解得121k b ⎧=⎪⎨⎪=⎩,∴函数的解析式为:112y x =+,当0x =时,得1y =,∴点A 的坐标为(0,1).【小问2详解】由题意得,112x n x +>+,即22x n >-,又由0x >,得220n -≤,解得1n ≥,∴n 的取值范围为1n ≥.23.某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两位同学得分的折线图:b .丙同学得分:10,10,10,9,9,8,3,9,8,10c .甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m根据以上信息,回答下列问题:(1)求表中m 的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).【参考答案】(1)8.6(2)甲(3)乙【小问1详解】解:丙的平均数:101010998398108.610+++++++++=,则8.6m =.【小问2详解】2222212(8.68)4(8.69)2(8.67)2(8.610) 1.0410S ⎡⎤=⨯-+⨯-+⨯-+⨯-=⎣⎦甲,222214(8.67)4(8.610)2(8.69) 1.8410S ⎡⎤=⨯-+⨯-+⨯-=⎣⎦乙,22S S < 甲乙,∴甲、乙两位同学中,评委对甲的评价更一致,故答案为:甲.【小问3详解】由题意得,去掉一个最高分和一个最低分后的平均分为:甲:889799910=8.6258+++++++,乙:77799101010=9.758+++++++,丙:10109989810=9.1258+++++++,∵去掉一个最高分和一个最低分后乙的平均分最高,因此最优秀的是乙,故答案为:乙.24.如图,AB 是O 的直径,CD 是O 的一条弦,,AB CD ⊥连接,.AC OD(1)求证:2;BOD A ∠=∠(2)连接DB ,过点C 作,CE DB ⊥交DB 的延长线于点E ,延长,DO 交AC 于点F ,若F 为AC 的中点,求证:直线CE 为O 的切线.【参考答案】(1)答案见解析(2)答案见解析【小问1详解】证明:设AB 交CD 于点H ,连接OC ,由题可知,OC OD ∴=,90OHC OHD ∠=∠=︒,OH OH = ,()Rt COH Rt DOH HL ∴∆≅∆,COH DOH ∴∠=∠,BCBD ∴=,COB BOD ∴∠=∠,2COB A ∠=∠ ,2BOD A ∴∠=∠;【小问2详解】证明:连接AD ,OA OD = ,OAD ODA ∠=∠∴,同理可得:OAC OCA ∠=∠,OCD ODC ∠=∠,∵点H 是CD 的中点,点F 是AC 的中点,OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠,180OAD ODA OAC OCA OCD ODC ∠+∠+∠+∠+∠+∠=︒ ,30OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠=︒,223060COB CAO ∴∠=∠=⨯︒=︒,AB Q 为O 的直径,90ADB ∴∠=︒,90903060ABD DAO ∴∠=-∠=︒-︒=︒,60ABD COB ∴∠=∠=︒,//OC DE ∴,CE BE ⊥Q ,CE OC ∴⊥,∴直线CE 为O 的切线.25.单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m)与水平距离x (单位:m)近似满足函数关系2()(0)y a x h k a =-+<.某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的几组数据如下:水平距离x /m 02581114竖直高度y /m20.0021.4022.7523.2022.7521.40根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系2()(0);y a x h k a =-+<(2)第二次训练时,该运动员的竖直高度y 与水平距离x 近似满足函数关系20.04(9)23.24.y x =--+记该运动员第一次训练的着陆点的水平距离为d 1,第二次训练的着陆点的水平距离为2d ,则1d ______2d (填“>”“=”或“<”).【参考答案】(1)23.20m;()20.05823.20y x =--+(2)<【小问1详解】解:根据表格中的数据可知,抛物线的顶点坐标为:()8,23.20,∴8h =,23.20k =,即该运动员竖直高度的最大值为23.20m,根据表格中的数据可知,当0x =时,20.00y =,代入()2823.20y a x =-+得:()220.000823.20a =-+,解得:0.05a =-,∴函数关系关系式为:()20.05823.20y x =--+.【小问2详解】设着陆点的纵坐标为t ,则第一次训练时,()20.05823.20t x =--+,解得:()82023.20x t =+-或()82023.20x t =--,∴根据图象可知,第一次训练时着陆点的水平距离18d =+,第二次训练时,()20.04923.24t x =--+,解得:9x =+9x =∴根据图象可知,第二次训练时着陆点的水平距离29d =,∵()()2023.202523.24t t --<,,∴12d d <.故答案为:<.26.在平面直角坐标系xOy 中,点(1,),(3,)m n 在抛物线2(0)y ax bx c a =++>上,设抛物线的对称轴为.x t =(1)当2,c m n ==时,求抛物线与y 轴交点的坐标及t 的值;(2)点00(,)(1)x m x ≠在抛物线上,若,m n c <<求t 的取值范围及0x 的取值范围.【参考答案】(1)(0,2);2(2)t 的取值范围为322t <<,0x 的取值范围为023x <<【小问1详解】解:当2c =时,22y ax bx =++,∴当x =0时,y =2,∴抛物线与y 轴交点的坐标为(0,2);∵m n =,∴点(1,),(3,)m n 关于对称轴为x t =对称,∴1322t +==;【小问2详解】解:当x =0时,y =c ,∴抛物线与y 轴交点坐标为(0,c ),∴抛物线与y 轴交点关于对称轴x t =的对称点坐标为(2t ,c ),∵0a >,∴当x t ≤时,y 随x 的增大而减小,当x t >时,y 随x 的增大而增大,当点(1,)m ,点(3,)n ,(2t ,c )均在对称轴的右侧时,1t <,∵,m n c <<1<3,∴2t >3,即32t >(不合题意,舍去),当点(1,)m 在对称轴的左侧,点(3,)n ,(2t ,c )均在对称轴的右侧时,点0(,)x m 在对称轴的右侧,13t <<,此时点(3,)n 到对称轴x t =的距离大于点(1,)m 到对称轴x t =的距离,∴13t t -<-,解得:2t <,∵,m n c <<1<3,∴2t >3,即32t >,∴322t <<,∵0(,)x m ,(1,)m ,对称轴为x t =,∴012x t +=,∴013222x +<<,解得:023x <<,∴t 的取值范围为322t <<,0x 的取值范围为023x <<.27.在ABC ∆中,90ACB ∠= ,D 为ABC ∆内一点,连接BD ,DC 延长DC 到点E ,使得.CE DC =(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF 若AF EF ⊥,求证:BD AF ⊥;(2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.【参考答案】(1)见解析(2)CD CH =;证明见解析【小问1详解】证明:在F C E ∆和BCD ∆中,CE CD FCE BCD CF CB =⎧⎪∠=∠⎨⎪=⎩,∴()SAS FCE BCD ∆∆@,∴CFE CBD Ð=Ð,∴EF BD ∥,∵AF EF ⊥,∴BD AF ⊥.【小问2详解】解:补全后的图形如图所示,CD CH =,证明如下:延长BC 到点M ,使CM =CB ,连接EM ,AM ,∵90ACB ∠= ,CM =CB ,∴AC 垂直平分BM ,∴AB AM =,在MEC ∆和BDC ∆中,CM CBMCE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS MEC BDC ∆∆@,∴ME BD =,CME CBD Ð=Ð,∵222AB AE BD =+,∴222AM AE ME =+,∴90AEM ∠=︒,∵CME CBD Ð=Ð,∴BH EM ∥,∴90BHE AEM Ð=Ð=°,即90DHE ∠=︒,∵12CE CD DE ==,∴12CH DE =,∴CD CH =.28.在平面直角坐标系xOy 中,已知点(,),.M a b N 对于点P 给出如下定义:将点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',点P'关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点(1,1),M 点N 在线段OM 的延长线上,若点(2,0),P -点Q 为点P 的“对应点”.①在图中画出点Q ;②连接,PQ 交线段ON 于点.T 求证:1;2NT OM =(2)O 的半径为1,M 是O 上一点,点N 在线段OM 上,且1(1)2ON t t =<<,若P 为O 外一点,点Q 为点P 的“对应点”,连接.PQ 当点M 在O 上运动时直接写出PQ 长的最大值与最小值的差(用含t 的式子表示)【参考答案】(1)见解析(2)42t -【小问1详解】解:①点Q 如下图所示.∵点(1,1)M ,∴点(2,0)P -向右平移1个单位长度,再向上平移1个单位长度,得到点P',∴()'1,1P -,∵点P'关于点N 的对称点为Q ,()2,2N ,∴点Q 的横坐标为:()2215⨯--=,纵坐标为:2213⨯-=,∴点()5,3Q,在坐标系内找出该点即可;②证明:如图延长ON 至点()3,3A ,连接AQ ,∵//AQ OP ,∴AQT OPT ∠=∠,在ΔAQT 与ΔOPT ∠中,AQT OPT ATQ OTP AQ OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ΔΔAQT OPT AAS ≅,∴12TA TO OA ==,∵()3,3A ,(1,1)M ,(2,2)N ,∴OA ==,OM ==ON ==,∴12TO OA ==,∴2NT ON OT =-==,∴12NT OM =;【小问2详解】解:如图所示,连接PO 并延长至S ,使OP OS =,延长SQ 至T ,使ST OM =,∵(,)M a b ,点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',∴'1PP OM ==,∵点P'关于点N 的对称点为Q ,∴'NP NQ =,又∵OP OS =,∴OM ∥ST ,∴NM 为Δ'P QT 的中位线,∴//NM QT ,1=2NM QT ,∵1NM OM ON t =-=-,∴222TQ NM t ==-,∴()12221SQ ST TQ t t =-=--=-,在ΔPQS 中,PS QS PQ PS QS -<<+,结合题意,max PQ PS QS =+,min PQ PS QS =-,∴()()max min 242PQ PQ PS QS PS QS QS t -=+--==-,即PQ 长的最大值与最小值的差为42t -.。
三角形的内角和(基础)知识讲
三角形的内角和(基础)知识讲解责编:赵炜【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°.【答案与解析】解:已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.证法1:如图1所示,延长BC 到E ,作CD ∥AB .因为AB ∥CD (已作),所以∠1=∠A (两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).又∠ACB+∠1+∠2=180°(平角定义),所以∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC 边上任取一点D ,作DE ∥AB ,交AC 于E ,DF ∥AC ,交AB 于点F .因为DF ∥AC (已作),所以∠1=∠C (两直线平行,同位角相等),∠2=∠DEC (两直线平行,内错角相等).因为DE ∥AB (已作).所以∠3=∠B ,∠DEC=∠A (两直线平行,同位角相等).所以∠A=∠2(等量代换).又∠1+∠2+∠3=180°(平角定义),所以∠A+∠B+∠C=180°(等量代换).证法3:如图3所示,过A 点任作直线,过B 点作∥,过C 点作∥,1l 2l 1l 3l 1l因为∥(已作).1l 3l所以∠l=∠2(两直线平行,内错角相等). 同理∠3=∠4.又∥(已作),1l 2l所以∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补).所以∠5+∠2+∠6+∠3=180°(等量代换).又∠2+∠3=∠ACB,所以∠BAC+∠ABC+∠ACB=180°(等量代换).证法4:如图4,将ΔABC的三个内角剪下,拼成以C为顶点的平角.证法5:如图5-1和图5-2,在图5-1中作∠1=∠A,得CD∥AB,有∠2=∠B;在图5-2中过A作MN∥BC有∠1=∠B,∠2=∠C,进而将三个内角拼成平角.【总结升华】三角形内角和定理的证明方法有很多种,无论哪种证明方法,都是应用的平行线的性质.2.在△ABC中,已知∠A+∠B=80°,∠C=2∠B,试求∠A,∠B和∠C的度数.【思路点拨】题中给出两个条件:∠A+∠B=80°,∠C=2∠B,再根据三角形的内角和等于180°,即∠A+∠B+∠C=180°就可以求出∠A,∠B和∠C的度数.【答案与解析】解:由∠A+∠B=80°及∠A+∠B+∠C=180°,知∠C=100°.又∵∠C=2∠B,∴∠B=50°.∴∠A=80°-∠B=80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C=180°.本题可以设∠B=x,则∠A=80°-x,∠C=2x建立方程求解.【高清课堂:与三角形有关的角例1、】举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型二、三角形的外角【高清课堂:与三角形有关的角例2、】3.(1)如图,AB和CD交于交于点O,求证:∠A+∠C=∠B+∠D.(2)如图,求证:∠D=∠A+∠B+∠C.【答案与解析】解:(1)如图,在△AOC中,∠COB是一个外角,由外角的性质可得:∠COB=∠A+∠C,同理,在△BOD中,∠COB=∠B+∠D,所以∠A+∠C=∠B+∠D.(2)如图,延长线段BD交线段与点E,在△ABE中,∠BEC=∠A+∠B①;在△DCE中,∠BDC=∠BEC+∠C②,将①代入②得,∠BDC=∠A+∠B+∠C,即得证.【总结升华】重要结论:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B+∠C.举一反三:【变式1】(新疆建设兵团)如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°,则∠C等于( )A、40°B、65°C、75°D、115°【答案】B【变式2】(2015春•龙口市)如图,∠A+∠B+∠C+∠D+∠E的度数为 度.【答案】如图连接CE,根据三角形的外角性质得∠1=∠A+∠B=∠2+∠3,在△DCE中有,∠D+∠2+∠DCB+∠3+∠AED=180°,∴∠D+∠A+∠DCB+∠B+∠AED=180°.类型三、三角形的内角外角综合4.(2015春•绿园)如图,∠ABC=38°,∠ACB=100°,AD 平分∠BAC,AE 是BC 边上的高,求∠DAE 的度数.【思路点拨】先根据三角形内角和定理求出∠BAC 的度数,由角平分线的定义得出∠BAD 的度数,根据三角形外角的性质求出∠ADE 的度数,由两角互补的性质即可得出结论.【答案与解析】解:∵∠ABC=38°,∠ACB=100°(己知)∴∠BAC=180°﹣38°﹣100°=42°(三角形内角和180°).又∵AD 平分∠BAC(己知),∴∠BAD=21°,∴∠ADE=∠ABC+∠BAD=59°(三角形的外角性质).又∵AE 是BC 边上的高,即∠E=90°,∴∠DAE=90°﹣59°=31°.【总结升华】此题考查的是三角形的内角和定理,熟知三角形内角和是180°是解答此题的关键.举一反三:【变式】如图所示,已知△ABC 中,P 为内角平分线AD 、BE 、CF 的交点,过点P 作PG ⊥BC 于G ,试说明∠BPD 与∠CPG 的大小关系并说明理由.【答案】解:∠BPD =∠CPG .理由如下:∵ AD 、BE 、CF 分别是∠BAC 、∠ABC 、∠ACB 的角平分线, ∴ ∠1=∠ABC ,∠2=∠BAC ,∠3=∠ACB .121212∴ ∠1+∠2+∠3=(∠ABC+∠BAC+∠ACB )=90°.12又∵ ∠4=∠1+∠2,∴ ∠4+∠3=90°.又∵ PG ⊥BC ,∴ ∠3+∠5=90°.∴ ∠4=∠5,即∠BPD =∠CPG .。
平面几何中的三角形和三角形的内角和定理
平面几何中的三角形和三角形的内角和定理三角形是平面上最简单、最基本的几何图形之一。
它由三条线段所围成,每条线段称为三角形的边,两条相邻的边所夹的角称为三角形的角。
在三角形中,有一些角具有特殊的性质,它们的和也有着特别的规律。
本文将介绍三角形中的三角形内角和定理,帮助读者更好地理解和应用平面几何。
一、三角形的内角和对于任意一个三角形ABC,三个内角的和应该等于180度,即∠A+∠B+∠C=180°。
这个结论可以用多种方法来证明。
方法一:利用三角形的等角定理。
我们先假设三角形ABC中的角A等于90度,则∠B和∠C互为余角,即∠B=90°-∠C。
将等式代入∠A+∠B+∠C=180°中,可以得到∠A+(90°-∠C)+∠C=180°,化简后得到∠A+90°=180°,即∠A=90°。
因此,三角形ABC是一个直角三角形。
方法二:利用平行线与交线的性质。
我们用线段AC作为三角形ABC的一条边,通过点B画一条平行于线段AC的直线DE,使DE与BC相交于点F。
因为AC与DE平行,所以∠A=∠E。
同时,∠EBF和∠CBF都是180度减去∠C,即∠EBF=∠CBF=180°-∠C。
因此,∠E+∠B+∠F=∠A+∠B+∠C=180°,即∠E+∠B+(180°-∠C)=180°,化简后得到∠E=∠C。
所以,∠A+∠B+∠C=∠E+∠B+∠C=180°。
方法三:利用三角形的面积公式。
我们将三角形ABC绕某个顶点旋转,使其底边平移至一条与底边平行的直线上,然后将三角形划分成两个梯形和一个三角形。
根据相似三角形的性质,两个梯形面积之和与三角形面积之比等于梯形的中线之比,即hA:hB=AC:BD。
因为BD=AC,所以hA=hB。
同理,再用梯形的面积公式,可得hA=hB=hC,即三角形ABC的三个高相等。
案例分析(三角形内角和定理)
课题:《三角形内角和定理》一、教学目标知识技能:1、理解“三角形的内角和等于180°”.2、运用三角形内角和结论解决问题.数学思考:1、通过测量、猜想、推理等数学活动,探索三角形的内角和,感受数学思考过程的条理 性,发展合情推理能力和语言表达能力.2、理解三角形内角和的计算、验证,其本质就是把三个内角集中在一起转化为一个平角,其方法可以用拼合的方法,也可以用引平行线的方法.解决问题:1、学会运用三角形内角和定理解决实际问题,如在航海测量、几何计算等方面的应用2、通过介绍“三角形内角和定理及其证明”,让学生初步了解什么是几何证明,并感 受证明几何问题的基本结构和推导过程.情感态度:在观察、操作、推理、归纳等探索过程中,发展同学们的合情推理能力,逐步养成和获得数学说理的习惯与能力.二、教学重点难点三角形内角和定理的证明及如何利用定理解决生活中的实际问题。
三、教学过程设计(一)学生回忆,引出课题问题1:复习平行线的性质如图1(1),已知:直线上有一点A ,过点A 作射线AM 、AN ,1、若∠DAM=30°,∠EAN=70°,则∠1等于多少度,为什么?2、若在AM 上任取一点B ,过点B 作BC ∥DE 交AN 于点C 如图1(2),则:(1)∠2等于多少度?为什么?(2)∠3等于多少度?为什么?(3)∠1+∠2+∠3等于多少度?为什么?师生活动:师:在第五章我们学习了相交线与平行线的相关知识,你还记得吗?请同学们完成以下练习,看看谁完成的又快又准。
生:1、∠1=80º,理由是: 平角的定义;2、(1)∠2=30º, 理由是:两直线平行,内错角相等(或利用两直线平行,同旁内角互补)(2) ∠3=70º,理由是:两直线平行,内错角相等(或利用两直线平行,同旁内角互补)(3)∠1+∠2+∠3等于180度,三角形内角和等于180度;(二)通过设疑,引出课题N M 70︒30︒1E D A 图1(1) N M 70︒30︒321E D C A B 图1(2)问题2:三角形内角和是1800是真命题吗?如何证明?师生活动:师:对于任意一个三角形的三个内角的和等于180度.我们是在小学已经知道了这个结论,那时侯,大家是怎样知道的呢?生:通过度量的方法,或者剪拼实验,能够验证一些具体的三角形的三个内角和都等于180º。
湘教版数学八年级上册2 第3课时 三角形内角和与外角1教案与反思
第3课时三角形内角和与外角满招损,谦受益。
《尚书》原创不容易,【关注】,不迷路!1.理解并掌握三角形的内角和定理;(重点)2.会按角的大小把三角形进行分类,了解直角三角形的有关概念;(难点) 3.理解三角形外角的概念,掌握三角形外角的性质.(重点)一、情境导入请同学们准备一块三角形纸板,把纸板的三个角剪下拼在一起,你有什么发现?二、合作探究探究点一:三角形的内角和定理【类型一】三角形的内角和如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F.已知∠A=30°,∠FCD=80°,求∠D.解析:由三角形内角和定理,可将求∠D转化为求∠CFD,即∠AFE,再在△AEF中求解即可.解:因为DE⊥AB(已知),所以∠FEA=90°(垂直定义).因为在△AEF中,∠FEA=90°,∠A=30°(已知),所以∠AFE=180°-∠FEA-∠A=180°-90°-30°=60°.(三角形内角和等于180°)又因为∠CFD=∠AFE(对顶角相等),所以∠CFD=60°.所以在△CDF中,∠CFD=60°,∠FCD=80°(已知),∠D=180°-∠CFD-∠FCD=180°-60°-80°=40°.方法总结:三角形中求角度,首先要考虑的是三角形内角和.根据三角形内角和定理,已知三角形中任意两个角的度数,可以求出第三个角的度数.【类型二】三角形内角和与平行线结合求角度如图,CD是∠ACB的平分线,DE∥BC,∠A=50°,∠B=70°,求∠EDC,∠BDC的度数.解析:根据三角形内角和求出∠ACB的度数,再由CD是∠ACB的平分线可求出∠BCD的度数,再根据平行线的性质和三角形的内角和定理即可求解.解:因为∠A=5°,∠B=70°,所以∠ACB=180°-∠A-∠B=180°-50°-70°=60°.因为CD是∠ACB的平分线,所以∠BCD=12∠ACB=12×60°=30°.因为DE∥BC,所以∠EDC=∠BCD=30°,在△BDC中,∠BDC=180°-∠B-∠BCD=180°-70°-30°=80°.方法总结:本题考查三角形的内角和定理及角平分线的定义和平行线的性质,解题的关键是利用平行线的性质沟通角与角的关系.【类型三】三角形内角和与角平分线高结合已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠DAE的度数.解析:首先根据三角形的内角和定理求得∠BAD,再根据和差关系和角平分线的定义求得∠DAE.解:因为AD⊥BC,所以∠BDA=90°.因为∠B=60°,所以∠BD=180°-∠BDA-∠B=180°-90°-60°=30°.因为∠BAC=80°,所以∠DAC=∠BAC-∠AD=80°-30°=50°.因为AE平分∠DAC,所以∠DAE=12∠DAC=12×50°=25°.方法总结:在三角形中,由高这一条件可以得到90°的角,根据三角形的内角和,在得到的直角三角形中,已知一个锐角的度数以求另一个锐角的度数从三角形一个顶点出发的角既有角平分线又有高时,要注意这个顶点处几个角的位置关系和数量关系.探究点二:三角形按角分类具备下列条件的△ABC中,是锐角三角形的是( )A.∠A+∠B=∠CB.∠A=58°,∠B=60°C.∠A:∠B:∠C=1:1:2D.∠A-∠B=90°解析:根据三角形内角和理,∠A+∠B+∠C=180°.选项A中,∠A+∠B =∠C,则∠C=90°,这个三角形是直角三角形;选项B中,∠A=58°,∠B =60°,则∠C=62°,这个三角形是锐角三角形;选项C中,∠A:∠B:∠C =1:1:2,则∠A=45°,∠B=45°,∠C=90°,这个三角形是等腰直角三角形;选项D中,∠A-∠B=90°,那么∠A>90°,这个三角形是钝角三角形.故选B.方法总结:把三角形按角分类,应先求出这个三角形中最大的角,最大的角是什么角,这个三角形相应的就是什么三角形.探究点三:三角形的外角【类型一】三角形的外角、外角性质如图,∠ABC和∠ACB的外角平分线相交于点D,设∠BDC=α,那么∠A 等于( )A.90°-αB.90°-1 2αC.180°-1 2αD.180°-2α解析:α=180°-(∠DBC+∠DCB)=180°-12(∠CBE+∠BCF)=180°-12(∠A+∠ACB+∠BCF)=180°-12(180°+∠A)=90°-12∠A.则∠A=180°-2α.故选D.方法总结:注意此题中的结论:∠ABC和∠ACB的外角平分线相交于点D,设∠BDC=α,那么∠A=180°-2α.熟记这一结论,便于计算简便.【类型二】三角形内角和与外角性质的应用如图所示,点D是AB上一点,点E是AC上一点,BE、CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°,求∠BFC的度数.解析:本题可以利用三角形的外角的性质,也可应用三角形内角和定理求∠BFC的度数.解:方法1:∵∠BDC是△ADC的外角,∴∠BDC=∠A+∠ACD=62°+35°=97°.又∵∠BFC是△BDF的外角,∴∠BFC=∠BDF+∠DBF=97°+20°=117°.方法2:在△ABC中,∠ABC+∠ACB=180°-∠A=180°-62°=118°.在△BFC中,∠FBC+∠FCB=∠ABC+∠ACB-∠ABE-∠ACD=118°-20°-35°=63°∴∠BFC=180°-(∠FBC+∠FCB)=180°-63°=117°.方法总结:方法1充分利用三角形外角的性质,方法2充分利用了三角形的内角和定理,解这类题目,观察角度不同,会有不同的解题方法.三、板书设计三角形内角和定理→三角形外角的性质↓三角形按角分类在教师的指导下,通过学生的实际操作,发现、归纳、总结三角形的内角和定理.在三角形的内角和定理的基础上,引导学生得出三角形外角的性质.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生积极参与.【素材积累】海明威和他的“硬汉形象”美国作家海明威是一个极具进取精神的硬汉子。
三角形内角和定理
三角形内角和定理三角形内角和定理,是几何学中的重要概念之一。
它描述了任意三角形三个内角的和等于180°的规律。
这个定理是我们研究三角形性质和解决三角形相关问题的基础。
在本篇文章中,我将从不同角度解析三角形内角和定理,以帮助读者更好地理解和应用这个定理。
首先,我们来看一下这个定理的数学形式。
设任意三角形ABC,其三个内角为∠A, ∠B和∠C,则有∠A + ∠B + ∠C = 180°。
这个公式简明扼要地表达了三角形内角和定理的核心思想。
那么,这个定理为什么成立呢?为了深入理解,我们可以从几何的角度来探究。
通过观察,我们可以发现三角形ABC将平面分割成了三个角相邻的区域,且这三个区域无重叠。
我们可以将这三个区域分别命名为区域1、区域2和区域3。
根据欧几里得的平面几何公理,其中的一条是“整体等于部分”,即整个平面的角和等于它的部分的角和。
根据这个公理,我们可以得出区域1、区域2和区域3对应的三个角的和分别为180°,也即∠A + ∠B + ∠C = 180°。
除了几何的角度,我们还可以从三角函数的角度来理解三角形内角和定理。
根据三角函数的定义,我们知道正弦函数sin(x)的定义域为[-1,1]。
而当∠A, ∠B和∠C为三个内角时,我们可以通过观察发现,在三角形ABC中,sin(∠A),sin(∠B)和sin(∠C)的和等于0。
换句话说,sin(∠A) + sin(∠B) + sin(∠C) = 0。
通过数学推导,我们可以得到∠A + ∠B + ∠C = 180°。
这是因为sin(x)的取值范围是[-1,1],而sin(∠A) + sin(∠B) + sin(∠C)=0意味着这三个角的和必须是π的倍数,而一个三角形的内角和是π的倍数就是180°的倍数,所以三角形内角和等于180°。
三角形内角和定理的研究和应用不仅出现在数学中,还涉及到许多其他学科,如物理学、工程学等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
D
C
东平县初中数学
巩固训练
已知:如图,在△ABC中,DE∥BC,∠A=60°, ∠C=70° 求证:∠ADE=50°
A
D
B
E
C
东平县初中数学
课堂小结
本节课你的收获是什么?
东平县初中数学
达标检测
见导学案
东平县初中数学
东平县初中数学
合作探讨
我们知道,三角形三个内角的和等于180°.
你还记得这个结论的探索过程吗?
A E
1 B C
2 D
如果不撕下∠A,那么你能通过作图的方法达到移动 ∠A的效果吗?
东平县初中数学
议一议
在证明三角形内角和定理时,小明的想法是把三个角 “凑”到A处,他过点A作直线PQ∥BC(如图),他的想法可 以吗?
8.6三角形内角和定理(1)
东平县初中数学
1.会用添加辅助线的方法证明三角形的内角和定 理; 2.会应用三角形的内角和定理解决一些简单的几
何证明问题和计算问题.
东平县初中数学
引入新课
猜谜语 形状似座山, 稳定性能坚, 三竿首尾连, 学问不简单。 布莱士·帕斯卡,是法国著名的数学家、 物理学家、哲学家和散文家。12岁独立证 明三角形内角和等于两个直角。
这里的PQ成为辅助线, 辅助线通
B
东平县初中数学
“行家”看“门道”
你还能用其他方法证明三角形的内角和是180°吗?
A Q B P (1) P T B
(3) 东平县初中数学 N
A
S
R C B
Q
M D
P
T A
N
R C
(2)
S
Q M
A
R
B (4) C
C
三角形内角和定理 三角形三个内角的和等于1800. △ABC中,∠A+∠B+∠C=1800.
B
A
C
∠A+∠B+∠C=1800的几种变形: ∠A=1800 –(∠B+∠C). ∠B=1800 –(∠A+∠C). ∠C=1800 –(∠A+∠B). ∠A+∠B=1800-∠C. ∠B+∠C=1800-∠A. ∠A+∠C=1800-∠B.
东平县初中数学
精讲点拨
例:如图,在△ABC中,已知∠ABC=38°, ∠ACB=62°,AD平分∠BAC。求∠ADB的度数。