巧求周长与面积.学生版
三年级奥数经典课题――巧求周长和面积
巧求周长和面积-授课学案学生姓名:授课教师:班主任:科目:三年级奥数上课时间: 2012 年月日时—时跟踪上次授课情况○完全掌握○基本掌握○部分掌握○没有掌握上次授课回顾○全部完成○基本完成○部分完成○没有完成作业完成情况本次授课内容授课标题巧求周长和面积学习目标重点难点例题与方法例1.有一块长8分米,宽4分米的长方形纸板与两块边长4分米的正方形拼也一个正方形。
拼成的正方形的周长是多少分米?例2.两个大小相同的正方形拼成一个长方形后,周长比原来的两个正方形周长的和减少6厘米。
原来一个正方形的周长是多少厘米?例3.求图3和图4的周长和面积。
(单位:米)图3 图4例4.图7是一座厂房的平面图,求这座厂房平面图的周长。
例5.图9是个多边形,图中每个角都是直角,它的周长是多少?例6.一个正方形被分成3个大小、形状完全不一样的长方形(如图10),每个小长方形的周长都是24厘米,求这个正方形的周长。
图10例7.图11是由四个一样大的长方形和一个周长是4分米的小正方形拼成的一个边长是11分米的大正方形。
每个长方形的长和宽各是多少?周长是多少?图4.有两个相同的长方形,长7厘米,宽3厘米,把它们按图(16)的样子重叠在一起,这个图形的周长是多少厘米?5.一块长方形布,周长是18米,长比宽多1米,这块布的长是几厘米?宽是几米?6.用4个一样大的长方形和一个小正方形,拼成一个边长是16分米的大正方形(如图18),每个长方形的周长是多少?例题与方法例1.一块长方形土地,长是宽的2倍,中间有一座雕塑,雕塑的底面是一个正方形,周围是草坪(如图1),草坪的面积是多项式少平方米?例5.如图5,已知正方形ABCD的边长为6分米,长方形BCEF和长方形AGHD 的面积分别为24平方分米和20平方分米,求阴影部分和面积。
例6.一个边长是7厘米的正方形纸片,最多能裁出多少个长是4厘米,宽是1厘米的纸条,请画图说明。
练习与思考1.用长36厘米长的一根铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多少?2.如图8,已知大正方形的面积比小正方形多52平方分米,大正方形比小正方形的边长多2分米。
四年级几何巧求周长与面积学生版
知识要点巧求周长【例 1】 如图所示,在一个大长方形的右上角挖去一个小长方形。
如果大长方形的长是7厘米,宽是5厘米。
小长方形的长是5厘米,宽是3厘米。
那么该图形的周长是多少厘米?3575巧求周长与面积巧求周长长方形周长公式:长方形周长=(长+宽)2⨯,记作:C 长方形()2a b =+⨯; 正方形周长公式:正方形周长=边长4⨯,记作:C 正方形4a =⨯; 巧求周长时,常用到“平移线段法”和“标向法”。
巧求面积长方形面积公式:长方形面积=长⨯宽,记作:S 长方形a b =⨯; 正方形面积公式:正方形面积=边长⨯边长,记作:S 正方形2a a a =⨯=; 巧求面积时,常用到“割补法”(将图形平移、对称、旋转)。
【例 2】如图所示,这个多边形任意相邻的两条边都互相垂直。
请根据图中所给出的数,求出这个多边形的周长。
(单位:分米)【例 3】如图所示,这个多边形任意相邻的两条边都互相垂直。
请根据图中所给出的数,求出这个多边形的周长。
(单位:厘米)68【例 4】如图所示,将3个边长为8厘米的正方形叠放在一起。
后一个正方形的顶点恰好落在前一个正方形的正中心。
那么它们覆盖住的图形周长是多少厘米?【例 5】(2010年3月14日第八届小学“希望杯”全国数学邀请赛四年级第1试第9题)将边长为10厘米的五张正方形纸片如图那样放置,每张小正方形纸片被盖住的部分是一个较小的正方形,它的边长是原正方形边长的一半,则图中的图形外轮廓(图中粗线条)的周长为_______厘米。
【例 6】 如图是由10个边长为4厘米的小正方形组成.每个小正方形的顶点恰在另一个正方形的中心,且边相互平行,求这个图形的周长。
【例 7】 如图所示,从一个大正方形的边上挖去一个正方形得到一个多边形。
大长方形的长是6厘米,宽是4厘米,正方形的边长是2厘米。
这个图形的周长是多少厘米?462【例 8】 如图所示,四个长方形组成了一个多边形,如果图中所标数值的单位都是厘米,那么这个多边形的周长是多少厘米?836512【例 9】 如图,某人从点A 走到点B 所走的路程是多少?【例 10】如图,把长为2厘米、宽为1厘米的6个长方形摆成3层。
探索小学面积与周长的计算方法
探索小学面积与周长的计算方法在小学数学的学习过程中,计算面积和周长是一个基本且重要的概念。
它们不仅是数学知识的基础,也是应用数学的重要技能。
本文将探索小学生计算面积和周长的方法,以帮助他们更好地理解和应用这些知识。
一、什么是面积和周长面积是一个平面图形所占据的空间大小,常用单位有平方厘米、平方米等。
周长是一个封闭图形的边界长度,常用单位有厘米、米等。
二、计算矩形的面积和周长矩形是小学生最常接触到的图形之一。
计算矩形的面积和周长可以通过以下公式得到:面积 = 长 ×宽周长 = 2 ×(长 + 宽)三、计算正方形的面积和周长正方形是一种特殊的矩形,其边长相等。
计算正方形的面积和周长可以用以下公式:面积 = 边长 ×边长周长 = 4 ×边长四、计算三角形的面积和周长计算三角形的面积和周长较之前的图形稍微复杂一些。
首先,我们需要知道三角形的底和高。
面积 = (底 ×高)/ 2周长 = 边1 + 边2 + 边3五、计算圆的面积和周长圆是一个没有边界的图形,计算圆的面积和周长需要用到π这个特殊的数。
圆的面积计算公式为:面积= π × 半径 ×半径周长= 2 × π ×半径六、练习题解析为了帮助小学生更好地掌握面积和周长的计算方法,我们来做几个练习题。
1. 一个长方形的长为5厘米,宽为3厘米,它的面积和周长分别是多少?解:面积 = 5厘米 × 3厘米 = 15平方厘米,周长 = 2 ×(5厘米 + 3厘米) = 16厘米。
2. 一个正方形的边长是8米,它的面积和周长分别是多少?解:面积 = 8米 × 8米 = 64平方米,周长 = 4 × 8米 = 32米。
3. 一个三角形的底是10厘米,高是6厘米,它的面积和周长分别是多少?解:面积 = (10厘米 × 6厘米)/ 2 = 30平方厘米,周长 = 边1 + 边2 + 边3。
小学五年级奥数之巧求周长
数学头脑风暴个性化学案学生姓名:年级:巧求周长同学们都知道,长方形的周长=(长+宽)×2,正方形的周长=边长×4。
长方形、正方形的周长公式只能用来计算标准的长方形和正方形的周长。
如何应用所学知识巧求表面上看起来不是长方形或正方形的图形的周长,还需同学们灵活应用已学知识,掌握转化的思考方法,把复杂的问题转化为标准的图形,以便计算它们的周长。
例1 有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠后图形的周长。
分析与解答:练习一1.下图由8个边长都是2厘米的正方形组成,求这个图形的周长。
2.下图由1个正方形和2个长方形组成,求这个图形的周长。
3.有6块边长是1厘米的正方形,如例题中所说的这样重叠着,求重叠后图形的周长。
例2 一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。
现在这块木板的周长是多少厘米?分析与解答:练习二1.有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分正好是一个正方形。
求这个正方形的周长。
2.有两个相同的长方形,长是8厘米,宽是3厘米,如果按下图叠放在一起,这个图形的周长是多少?3.有一块长方形广场,沿着它不同的两条边各划出2米做绿化带,剩下的部分仍是长方形,且周长为280米。
求划去的绿化带的面积是多少平方米?例3 已知下图中,甲是正方形,乙是长方形,整个图形的周长是多少?分析与解答:练习三1.有一张长40厘米,宽30厘米的硬纸板,在四个角上各剪去一个同样大小的正方形后准备做一个长方体纸盒,求被剪后硬纸板的周长。
2.一个长12厘米,宽2厘米的长方形和两个正方形正好拼成下图所示长方形,求所拼长方形的周长。
3.求下面图形的周长(单位:厘米)。
例4 下图是边长为4厘米的正方形,求正方形中阴影部分的周长。
分析与解答:练习四1.求下面图形的周长(单位:厘米)。
图形的周长和面积(三年级培优)学生版
巧求周长
求下列长方形和正方形的周长。
15cm
25cm
21cm
一个长是 50 米,宽是 30 米的长方形菜地要围上一圈篱笆,需要多少米的篱笆?
1/4
如图所示,巧求周长。(单位:cm)
30 40
如图所示,小明和小玲同时从学校走到少儿书店,小明沿 A 路线行走,小玲沿 B 路 线行走,他们俩一共走了多少米?
填表:
有两个相同的长方形,长 7 厘米,宽 5 厘米,把它们按下图的样子重叠在一起,这个 图形的周长是多少厘米?
7cm 5cm
下图是一个苗圃的平面图,按每平方米育树苗 5 棵计算。这个苗圃可以育多少棵树苗? 4 3
5 10 单位:m
4/4
一个图形的周长是指围成它的所有线段的长度和。
对于一些不规则的比较复杂的几何图形,要求它们的周长,可以运用平移的方法,把 它转化为标准的长方形或正方形,然后再利用长方形、正方形的周长公式进行计算。
长方形的周长: C长 a b 2 ;
正方形的周长: C正 4 a ;
面积: S长 a b . 面积: S正 a a .
1
1
2 3
(2) 2 11 3
通过计算发现:图形的周长相等,面积
相等。
求下列图形的周长和面积。(单位:cm)
4
33
4
8
3 3
8
巧求面积
下图的长方形是一块草坪,中间有两条宽 1 米的走道,求植草的面积。
50米 70米 3/4
右图是一块长方形公园绿地,绿地长 22 米,宽 16 米,有一条宽为 2 米的道路,求 草地(阴影部分)的面积。
学校 B
A 110米
200米
少儿书店
小学奥数模块教程巧求周长和面积
一、基本概念(1)周长:封闭图形一周的长度就是这个图形的周长. (2)面积:物体的表面或封闭图形的大小,叫做它们的面积.二、基本公式(1)长方形的周长2=⨯(长+宽),面积=长⨯宽.(2)正方形的周长4=⨯边长,正方形的面积=边长⨯边长.三、常用方法对于基本的长方形和正方形图形,可以直接用公式求出它们的周长和面积,对于一些不规则的比较复杂的几何图形,我们可以采用转化的数学思想方法割补成基本图形,利用长方形、正方形周长及面积计算的公式求解.(1)转化是一种重要的数学思想方法在转化过程中要抓住“变”与“不变”两个部分.转化后的图形虽然形状变了,但其周长和面积不应该改变,所以在求解过程中不能遗漏掉某些线段的长度或某部分图形的面积.转化的目标是将复杂的图形转化为周长或面积可求的图形. (2)化归思想寻求正确有效的解题思路,意味着寻找一条摆脱困境、绕过障碍的途径.因此,我们在解决数学问题时,思考的着重点就是要把所需解决的问题转化为已经能够解决的问题.也就是说,在直接求解不容易或很难找到解题途径的问题时,我们往往转化问题的形式,从侧面或反面寻找突破口,知道最终把它转化成一个或若干个能解决的问题.这种解决问题的思想在数学中叫“化归”,它是数学思维中重要的思想和方法.在几何中,有许多图形是由一些基本图形组合、拼凑而成的.这样的图形我们称为不规则图形.不规则图形的面积往往无法直接应用公式计算.那么,不规则图形的面积怎样去计算呢?对称、旋转、平移这几种几何变换就是解决这类面积问题的手段. (3)平移在平面图形的计算中,常常要将一个平面图形移动到平面上的另一个位置进行计算.其中,将图形沿一个固定方向的移动叫做平移,一个图形经过平行移动不改变其形状与大小,所以图形面积是保持不变的.利用图形的平移,可以使面积计算问题的解法简捷明快,颇有新意.知识框架巧求周长和面积 发现不同(4)割补割补法在我国古代叫“出入相补原理”,我国古代魏晋时期著名的数学家刘徽在《九章算术注》中就明确地提出“出入相补,各从其类”的出入相补原理.这个原理的内容是几何图形经过分、合、移、补所拼凑成的新图形,它的面积不变. (5)旋转在平面图形的割补中,有时要将一个图形绕定点旋转到一个新的位置,产生一种新的图形结构,图形在转动过程中形状大小不发生改变.利用这种新的图形结构可以帮我们解决面积的计算问题. (6)对称平面图形中有许多简单漂亮的图形都是轴对称图形.轴对称图形沿对称轴折叠,轴两侧可以完全重合.也就是说,如果一个图形是轴对称图形,那么对称轴平分这个图形的面积.熟悉轴对称图形这个性质,对面积计算会有很大帮助. (7)代换在几何计算中,对有关数量进行适当的等量代换也是解决问题的已知技巧.本讲主要通过求一些不规则图形的周长,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求周长的技巧,提高学生的观察能力、动手操作能力、综合运用能力.【例 1】 三只猴子走得一样快,所走的路线如下图.哪只猴子先吃到桃子,就在它旁边的( )里画勾.B ( )C ( )A ( )例题精讲【巩固】一个苗圃园(如左下图),周边和中间有一些路供人行走(图中线段表示“路”),几个小朋友在里面观赏时发现:从A处出发,在速度一样的情况下,只要是按“向右”、“向上”方向走,几个人分头走不同的路线,总会同时达到B处.你知道其中的道理吗?【例 2】计算下列图形的周长(单位:厘米).【巩固】试求左下图的周长(单位:厘米).【例 3】求下面两个图形的周长(单位:厘米).【巩固】下图是由七个长5厘米、宽3厘米的相同长方形经过竖放、横放而成的图形.求这个图形的周长.【例 4】下图是一个方形螺线.已知两相邻平行线之间的距离均为1厘米,求螺线的总长度.【巩固】在一个长方形的面积为169平方厘米.在这个长方形内任取一点P,则点P到长方形四边的距离之和最小值为_______厘米.【例 5】边长是15厘米的3个正方形拼成一个长方形,这个长方形的周长是多少?【巩固】用一块长8分米,宽4分米的长方形纸板与两块边长4分米的正方形纸板拼成一个正方形.拼成的正方形的周长是多少分米?84【例 6】用若干个边长都是2厘米的平行四边形与三角形(如右图)拼接成一个大的平行四边形,已知大平行四边形的周长是244厘米,那么平行四边形和三角形各有多少个?【巩固】用若干个边长都是2厘米的平行四边形与三角形(如右图)拼接成一个大的平行四边形,已知大平行四边形的周长是236厘米,那么平行四边形和三角形各有多少个?【例 7】如图,正方形ABCD的边长是6厘米,过正方形内的任意两点画直线,可把正方形分成9个小长方形.这9个小长方形的周长之和是多少?ADC【巩固】如图,正方形的边长为4,被分割成如下12个小长方形,求这12个小长方形的所有周长之和.【例 8】一个长为12厘米,宽为10厘米的长方形,挖去一个边长为4厘米的正方形补在另一边上(如图).所得图形的周长为厘米.【巩固】如图所示,这是三个边长为10厘米的正方形纸片.从(1)和(2)中各剪去一个面积是4平方厘米的小正方形,从(3)中剪去一个面积是4平方厘米的长方形.比较(1),(2),(3),剩下部分周长最小的是_________(填图形编号),它的周长是_________厘米.(1)(2)41(3)【例 9】 将边长为10厘米的五张正方形纸片如图那样放置,每张小正方形纸片被盖住的部分是一个较小的正方形,它的边长是原正方形边长的一半,则图中的图形外轮廓(图中粗线条)的周长为多少 厘米?【巩固】 下图是一面砖墙的平面图,每块砖长20厘米,高8厘米,像图中那样一层、二层…一共摆十层,求摆好后这十层砖墙的周长是多少?【例 10】 下图中的阴影部分BCGF 是正方形,线段FH 长18厘米,线段AC 长24厘米,则长方形ADHE 的周长是多少厘米?HGFEDCB A【巩固】 如图,在长方形ABCD 中,EFGH 是正方形.已知10cm AF =,7cm HC =,求长方形ABCD 的周长.H GFEDCBA【例 11】 如图,一个长方形的周长是26厘米,如果它的长和宽各增加3厘米,那么增加的面积是多少平方厘米?【巩固】 有一个长方形,如果宽减少2米,或长减少3米,则面积均减少24平方米,求这个长方形的面积?23【例 12】 两个同样的长方形摆放成如图所示图形,图中单位是厘米,每个长方形的面积是多少平方厘米?【巩固】 有10张长3厘米,宽2厘米的纸片,将它们按照下图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?【例 13】 用两个同样的等腰直角三角形ABC 拼成一个正方形,如图,等腰直角三角形的斜边AC=6厘米,那么正方形ABCB′的面积是多少平方厘米?【巩固】 有一个周长是72厘米的长方形,它是由三个大小相等的正方形拼成的.一个正方形的面积是多少平方厘米?【例 14】 如图1,△ABC 是等腰直角三角形(AC=BC ,∠ACB 是直角),D 是AC 的中点,E 是BC 的中点,DE长8厘米,阴影部分的面积是多少平方厘米?【巩固】 右图中甲的面积比乙的面积大__________平方厘米.乙甲6厘米8厘米4厘米【例 15】如图,正方形ABCD中,AB、BC、CD、DA的中点分别是E、F、C、H,已知AB =8厘米,正方形EFGH 的面积是多少平方厘米?【巩固】如图,正方形ABCD中,E是AB的中点,F是BC的中点,G是CD的中点,H是DA的中点,I是EF 的中点,J是FG的中点,K是GH的中点,L是HE的中点,正方形ABCD的周长是32厘米,那么正方形IJKL的面积是多少平方厘米?【例 16】图内9个相同的小长方形构成大长方形,大长方形周长为90,则每个小长方形周长为多少?【巩固】有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如图)的面积是45平方厘米,求这个大长方形的周长.【例 17】 一块长方形铁皮(如图),将长边剪去6厘米,短边剪去3厘米后,得到的正方形面积比原来少了54平方厘米,那么原长方形的面积是多少平方厘米?【例 18】 图中是由1个小正方形与8个相同的长方形拼成的大正方形.已知小正方形的面积是900平方厘米,大正方形的周长是200厘米.那么,每个长方形的长是多少?【例 19】 图中每个小方格的边长是2厘米,正方形ABCD 的面积是多少平方厘米?【巩固】 右图是一个方格网,计算阴影部分的面积.1cm1cmABC D EF课堂检测【随练1】一个长方形,长减少1厘米和宽增加1厘米,得到一个正方形,那么正方形面积比长方形的面积( ).①多2平方厘米②多1平方厘米③少2平方厘米④少1平方厘米⑤同样大【随练2】右图的正方形的周长是48厘米,中间有一个长方形,长方形的四个顶点恰好把正方形每边分作两段,其中长的那段长度是短的那段长度的两倍.长方形的面积是平方厘米.【随练3】右图ABCD是个正方形:它的边长是4厘米,E、F分别是边AB、BC的中点,图中阴影部分的面积是平方厘米.【随练4】右图中,三角形ABC是等腰直角三角形(AC=BC,∠ACB是直角),D是AC的中点;E是BC的中点,AD长6厘米.阴影部分的面积是平方厘米.【随练5】如图,里面正方形的周长24厘米,外面长方形的各边分别平行于正方形的四条边,那么根据图中给出的数据(单位均为厘米),长方形的周长是( )厘米.A. 32B. 36C. 40D.44E.48【随练6】下图是一副七巧板拼成的正方形.正方形的边长是20厘米,问七巧板中图形4和图形5的面积之和是平方厘米.【随练7】如右图,有一块正方形的草坪,周边用边长为3分米的方砖铺了一条宽12分米的小路(如图阴影部分),共用方砖1504块.则小路所围草坪的面积是( )平方分米.A. 79524B. 76176C. 72900D. 57600E. 90000【随练8】一个长方形,如果长和宽都增加6厘米,则面积增加156平方厘米.原来的长方形的周长是多少厘米?【随练9】有5个相同的长方形拼成下图的大长方形MNPQ,已知小长方形的长比宽多2厘米,则大长方形MNPQ的面积是( )平方厘米.A. 6B. 5C. 4D. 3E. 2【随练10】在长方形ABCD中,EFGH是正方形.如果AG=12厘米,EC=9厘米,那么长方形ABCD的周长是厘米.【随练11】两张同样大小的正三角形纸片,每张面积是36平方厘米(如下图),一张是一个顶点向下,一张是一个顶点向上,叠在一起得到一个六角星形.这个六角星形的面积是多少平方厘米?【随练12】如下图,把一个大正方形分割成六个小长方形,如果这六个小长方形的周长总和是90厘米,那原大正方形的面积是平方厘米.【随练13】如图所示,把长2厘米,宽1厘米的长方形一层、二层、三层······那么摆下去,摆到第15层,这个图形的周长是厘米,面积是平方厘米.【随练14】右图是陈老师家房屋平面图(单位:米),陈老师要将卧室、客厅的房顶四周装木条装饰线,请你帮助算一算,要买木条装饰线的米数至少是( ).A. 68B. 62C. 58D. 54E. 48家庭作业【作业1】一张长方形纸片的周长是64厘米,3张这样的长方形纸片恰好拼成一张正方形纸片,如图,拼成的正方形纸片的周长是多少厘米?【作业2】如图一个正方形分割成六个长方形,这六个长方形的周长和比原正方形周长增加了24厘米,原正方形周长是多少厘米?面积是多少平方厘米?【作业3】如图,A、B、C、D分别是长方形各边上的三等分点,阴影部分四边形ABCD的面积为24平方厘米,长方形EFGH的面积是多少平方厘米?【作业4】如图所示阴影部分的面积是73平方厘米,那么图中正方形的面积是多少平方厘米?(单位:厘米)【作业5】一个周长是20厘米的正方形,剪下一个周长是6厘米的正方形,剩下的图形的周长是______ (写出所有可能的结果).【作业6】下图是一个边长为3的正八边形,它的阴影部分与没有阴影部分的面积之差是多少?。
巧算面积和周长
名师教育授课讲义教师:芳芳科目:数学学生:年级:上课时间:年月日时分至时分共小时课题:图形的周长和面积备注一、教学目标:掌握长方形、正方形的周长和面积并能灵活应用,巧算周长和面积二、教学重难点:灵活使用公式,计算周长和面积三、教学容及过程:【知识梳理】正方形:周长=边长×4 面积=边长×边长长方形:周长=(长+宽)×2 面积=长×宽【融知于题】【典型例题分析】例1、如下图,一个长方形土地里面有一块正方形花坛,这个花坛的周长是200米,它的各边和长方形的各边恰好平行,和长方形各边的距离如图所示(单位:米),那么这个长方形的周长是多少?这样做正方形的边长是200÷4=50(米)所以长方形的长=50+40+60=150(米)宽=50+20+30=100(米)因此长方形的周长是:(150+100)×2=500(米)答:这个长方形的周长是500米。
例2、下图是四个一样的长方形和一个小正方形拼成了一个大正方形,大正方形的面积为121平方米,小正方形的面积是25平方米。
求长方形的长和宽。
这样做由题意可知大正方形的面积是121平方米,所以它的边长为11米。
小正方形的面积是25平方米,所以它的边长是5米。
大正方形的边长恰等于长方形的长、宽的和,或者等于小正方形的边长再加上长方形的两个宽。
由第二个条件可以得到长方形的宽是:(11-5)÷2=3(米)再由第一个条件可以得到长方形的长是:11-3=8(米)答:长方形的边长是8米,宽是3米。
例3、如下图是一个长22米,宽18米的迷宫,其中道路的宽为2米,从A 点出发,沿道路的中心线向里走去,一直到B点(到迷宫的尽头,挨到墙)。
所走过的路线的长度是多少米?这样做将长方形的迷宫割补平移为宽1米的路,路的总面积和以前迷宫的面积一样,那么路有多长在迷宫里就走了多远,22×18÷2=198(米)答:在迷宫里所走的路线的长度是198米。
小学数学竞赛:巧求周长.学生版解题技巧 培优 易错 难
一、基本概念①周长:封闭图形一周的长度就是这个图形的周长.②面积:物体的表面或封闭图形的大小,叫做它们的面积.二、基本公式:①长方形的周长2=⨯(长+宽),面积=长⨯宽.②正方形的周长4=⨯边长,正方形的面积=边长⨯边长.三、常用方法:(1)对于基本的长方形和正方形图形,可以直接用公式求出它们的周长和面积,对于一些不规则的比较复杂的几何图形,我们可以采用转化的数学思想方法割补成基本图形,利用长方形、正方形周长及面积计算的公式求解.(2)转化是一种重要的数学思想方法,在转化过程中要抓住“变”与“不变”两个部分.转化后的图形虽然形状变了,但其周长和面积不应该改变,所以在求解过程中不能遗漏掉某些线段的长度或某部分图形的面积.转化的目标是将复杂的图形转化为周长或面积可求的图形.(3)寻求正确有效的解题思路,意味着寻找一条摆脱困境、绕过障碍的途径.因此,我们在解决数学问题时,思考的着重点就是要把所需解决的问题转化为已经能够解决的问题.也就是说,在直接求解不容易或很难找到解题途径的问题时,我们往往转化问题的形式,从侧面或反面寻找突破口,知道最终把它转化成一个或若干个能解决的问题.这种解决问题的思想在数学中叫“化归”,它是数学思维中重要的思想和方法.(4)在几何中,有许多图形是由一些基本图形组合、拼凑而成的.这样的图形我们称为不规则图形.不规则图形的面积往往无法直接应用公式计算.那么,不规则图形的面积怎样去计算呢?对称、旋转、平移这几种几何变换就是解决这类面积问题的手段.四、几个重要的解题思想 (1)平移在平面图形的计算中,常常要将一个平面图形移动到平面上的另一个位置进行计算.其中,将图形沿一个固定方向的移动叫做平移,一个图形经过平行移动不改变其形状与大小,所以图形面积是保持不变的.利用图形的平移,可以使面积计算问题的解法简捷明快,颇有新意.(2)割补割补法在我国古代叫“出入相补原理”,我国古代魏晋时期著名的数学家刘徽在《九章算术注》中就明确地提出“出入相补,各从其类”的出入相补原理.这个原理的内容是几何图形经过分、合、移、补所拼凑成的新图形,它的面积不变.知识点拨4-2-2.巧求周长(3)旋转在平面图形的割补中,有时要将一个图形绕定点旋转到一个新的位置,产生一种新的图形结构,图形在转动过程中形状大小不发生改变.利用这种新的图形结构可以帮我们解决面积的计算问题.(4)对称平面图形中有许多简单漂亮的图形都是轴对称图形.轴对称图形沿对称轴折叠,轴两侧可以完全重合.也就是说,如果一个图形是轴对称图形,那么对称轴平分这个图形的面积.熟悉轴对称图形这个性质,对面积计算会有很大帮助.(5)代换在几何计算中,对有关数量进行适当的等量代换也是解决问题的已知技巧.小结:本讲主要通过求一些不规则图形的周长,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求周长的技巧,提高学生的观察能力、动手操作能力、综合运用能力.例题精讲模块一、图形的周长和面积——割补法【例 1】求图中所有线段的总长(单位:厘米)【例 2】如图所示,点B是线段AD的中点,由A、B、C、D四个点所构成的所有线段的长度均为整数,若这些线段的长度之积为10500,则线段AB的长度是。
三年级奥数经典课题――巧求周长和面积
巧求周长和面积-授课学案学生姓名:授课教师:班主任:科目:三年级奥数上课时间: 2012 年月日时—时跟踪上次授课情况上次授课回顾○完全掌握○基本掌握○部分掌握○没有掌握作业完成情况○全部完成○基本完成○部分完成○没有完成本次授课内容授课标题巧求周长和面积学习目标重点难点例题与方法例1.有一块长8分米,宽4分米的长方形纸板与两块边长4分米的正方形拼也一个正方形。
拼成的正方形的周长是多少分米?例2.两个大小相同的正方形拼成一个长方形后,周长比原来的两个正方形周长的和减少6厘米。
原来一个正方形的周长是多少厘米?例3.求图3和图4的周长和面积。
(单位:米)图3 图4例4.图7是一座厂房的平面图,求这座厂房平面图的周长。
例5.图9是个多边形,图中每个角都是直角,它的周长是多少?例6.一个正方形被分成3个大小、形状完全不一样的长方形(如图10),每个小长方形的周长都是24厘米,求这个正方形的周长。
图10例7.图11是由四个一样大的长方形和一个周长是4分米的小正方形拼成的一个边长是11分米的大正方形。
每个长方形的长和宽各是多少?周长是多少?图例8.一根铁丝长12厘米,能围成几种长和宽都是整厘米数的长方形,每咱长方形的长和宽各是几厘米?围成的正方形的边长是几厘米?例9. 有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如图)的面积是30平方厘米,求这个大长方形的周长。
练习与思考1.把一个长10厘米,宽5厘米的长方形,分成两个大小一样的正方形,每个正方形的周长是多少?2.用一个长8厘米,宽4厘米的长方形与7个边长4厘米的正方形,拼成一个大正方形。
拼成的大正方形的周长是多少?3.图14是一座楼房的平面图,这座楼房平面图的周长是多少米?4.有两个相同的长方形,长7厘米,宽3厘米,把它们按图(16)的样子重叠在一起,这个图形的周长是多少厘米?5.一块长方形布,周长是18米,长比宽多1米,这块布的长是几厘米?宽是几米?6.用4个一样大的长方形和一个小正方形,拼成一个边长是16分米的大正方形(如图18),每个长方形的周长是多少?例题与方法例1.一块长方形土地,长是宽的2倍,中间有一座雕塑,雕塑的底面是一个正方形,周围是草坪(如图1),草坪的面积是多项式少平方米?例2.图2是由6个相等的三角形拼成的图形,求这个图形的面积。
初中数学《巧求周长与面积》讲义及练习
1、 巩固三四年级学习的几何图形并深化构造思想2、 将等量代换等解题方法用到解题中本讲主要通过求一些不规则图形的面积,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求面积的技巧,提高学生的观察能力、动手操作能力、综合运用能力.模块一、旋转平移变换【例 1】 在一个正方形中放入一个四个顶点与大正方形相接的一个小正方形(如图),如果两个正方形的周长相差16厘米,面积相差96平方厘米,求小正方形的面积是多少平方厘米?(1) (2)【解析】 方法一:本题就此图来看计算起来比较麻烦,但是我们可以把图⑴经过旋转后变成图⑵这样我们就可以根据我们学过的知识来解决这道题了.八条虚线的长度正好是大小两个正方形的周长差,空白处即为两个正方形的面积差,所以虚线长为:1682÷=(厘米)从图中可以看出上、下、左、右四个长方形的面积相等为:(96224-⨯⨯)420÷=(平方厘米),所以小正方的边长为:20210÷=(厘米),即小正方形的面积为:1010100⨯=(平方厘米)方法二:本题还可以将里面的正方形移到一角上来计算,由右图可知虚线长度为:1644÷=(厘米)所以小正方形的面积为:4416⨯=(平方厘米)白色长方形的面积为:(9616-)240÷=(平方厘米),所以小正方形的边长为:40410÷=(厘米),正方形的面积为:1010100⨯=(平方厘米).【巩固】 有一大一小两块正方形试验田,他们的周长相差40米,面积相差220平方米,那么小正方形试验田的面积是多少平方米?知识点拨教学目标例题精讲第二讲:巧求周长与面积c b ca图a图b【解析】 根据已知条件,我们将两个正方形试验田的一个顶点对齐,画出示意图(如图a ),将大正方形在小正方形外的部分分割成两个直角梯形,再拼成一个长方形(如图b ).由于两个正方形的周长相差40米,从而它们的每边相差40410÷=米,即图b 中的长方形的宽是10米.又因为长方形的面积是两个正方形的面积之差,即为220平方米,从而长方形的长为:2201022÷=(米).由图可知,长方形的长是大正方形与小正方形的边长之和,长方形的宽为大正方形与小正方形的边长之差,从而小正方形的边长为:(2210)26-÷=(米).所以小正方形的面积为:6636⨯=(平方米).【例 2】 长方形ABCD 的周长是30厘米,以这个长方形的每一条边为边长向外画正方形.已知这四个正方形的面积之和为290平方厘米,那么长方形ABCD 的面积是多少平方厘米?C 1D 1E 1A 1EBC DA【解析】 从图形我们可以看出,1A B 的长度恰好为长方形的长与宽之和,即为长方形ABCD 周长的一半,可以看出若以1A B 和1BC 为边能构成大正方形111A BC E (如右下图所示),其中包含两个长方形和两个正方形,而且两个长方形的面积是相等的,两个正方形的面积刚好是290平方厘米的一半.这样我们容易求出:大正方形111A BC E 的边长为30215÷=厘米,面积为:1515225⨯=平方厘米,正方形11CDD C 与正方形1ADEA 的面积之和为:2902145÷=(平方厘米).长方形ABCD 与长方形11EDD E 的面积相等.所以,长方形ABCD 的面积为:(225145)240-÷=(平方厘米).【例 3】 一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道黑条,黑条宽都是2厘米,这条手帕白色部分的面积是多少?【解析】 方法一:由于手帕边长是18厘米,所以手帕的面积是1818324⨯=(平方厘米).要求白色部分的面积,只需减去红色部分的面积就可以了.红色部分是四个长为18厘米,宽为2厘米的红色长条,所以这四个红色长条面积是:4182144⨯⨯=(平方厘米),但每个横红条与每个竖红条在交叉处重叠一个边长为2厘米的正方形,即多计算了224⨯=(平方厘米),因此两个横红条与两个竖红条共重叠4416⨯=(平方厘米),所以两个横红条与两个竖红条覆盖的面积为14416128-=(平方厘米),所以这块白手帕白色部分的面积是324128196-=(平方厘米)方法二:换个方式思考:把竖的两个红条平行移动一下,使它们紧贴在一起,再移到紧贴正方形的左端边上,把横的两个红条也做同样的位置平移,使它们紧贴在正方形下端的边上,如图所示.这样通过平移横、竖红条后使原来分散的白色部分集中起来了,而且所得图形的白色部分的面积不变.这时白色部分面积一目了然,它等于变成为14厘米的正方形面积,即1414196⨯=(平方厘米)【例 4】 7个完全相同的长方形拼成了图中阴影部分,图中空白部分的面积是多少平方厘米?【解析】 由图可知,长方形的长是宽的4倍,宽的6倍是24厘米,则长方形的宽是4厘米,故图中空白部分的面积是44232⨯⨯=(平方厘米).【巩固】 (第五届”祖冲之杯”数学邀请赛)如右图所示,在长方形ABCD 中,放入六个形状大小相同的长方形(尺寸如图),图中阴影部分的面积是__________.B【解析】 由图中可以看出小长方形的长3+⨯小长方形的宽14=,小长方形的长-小长方形的宽6=. 第二式乘以3再与第一式相加得 4⨯小长方形的长146332=+⨯=.所以小长方形的长8=,小长方形的宽2=,小长方形的面积8216⨯=,大长方形的面积14(622)140=⨯+⨯=, 阴影面积14061644=-⨯=.模块二、完美长方形【例 5】 (第十二届“迎春杯”刊赛试题)如图,边长是整数的四边形AFED 的面积是48平方厘米,FB为8厘米.那么,正方形ABCD 的面积是 平方厘米.A BCDE F 488【解析】 根据题意,有48AD AF ⨯=且8AF AD +=,又AD 、AF 都是整数,于是根据尝试可得,12AD =厘米,4AF =厘米.所以1212144ABCDS=⨯=(平方厘米).【例 6】 如图,一个正方形被分成4个小长方形,它们的面积分别是110平方米、15平方米、310平方米和25平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?【解析】 为了方便叙述,将某些点标上字母,如右上图。
小学数学《巧求周长和面积》练习题(含答案)
小学数学《巧求周长和面积》练习题(含答案)“巧求周长和面积”的相关内容我们在寒假小4第四讲给予过一定的讲解. 本讲我们主要在原有知识的基础上进行提高巩固,同时加入一些新的知识,帮助我们更好的过渡到五年级几何部分的学习. 对于一些非常典型的例题,我们采用“重复加强”的学习方法,帮助孩子们牢固掌握. 奥数的题目虽然很多,但一些经典题目,常常会以原题形式出现在各个中学入学测试题中,希望我们的孩子能戒骄戒躁,温故而后知新,清晰彻底的掌握理解自己学习过题目.你还记得吗【复习1】若干个长2cm、宽1cm的长方形摆成如右图的形状,求该图形的周长.分析:观察图形,上下共有13层,所以左、右的高共长:1×13×2=26(cm);从下层往上数,第四层最长,有2×10=20cm,所以上下的宽共有:20×2=40(cm),故该图形的周长为:26+40=66(cm) .【复习2】右图中是一个方形螺线.已知两相邻平行线之间的距离均为l厘米,求螺线的总长度.分析:如下图所示,将原图形转化为3个边长分别为3、5、7厘米的正方形和中间一个三边图形.所以螺线的总长度为:(3+5+7)×4+1×3=63 cm .【复习3】有10张长3厘米,宽2厘米的纸片,将它们按照右图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?分析:每多盖一张,遮住的面积增加2×1,所以这10张纸片所盖住的桌面的面积是3×2+2×1×9=24cm2.巧求周长【例1】图1、图2都是由完全相同的正方形拼成的,并且图1的周长是22厘米,那么图2的周长是多少厘米?分析:图1的周长是小正方形边长的12倍。
图2的周长是小正方形边长的18倍.因此,图2的周长=22÷12×18=33(厘米)【巩固】右图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是多少厘米?分析:因为400÷16=25(平方厘米),所以每个正方形的边长是5厘米.观察右图,从上下方向来看有14条边是周长的一部分,从左右方向来看有20条边是周长的一部分,所以周长为170厘米.【例2】计算右面图形的周长(单位:厘米).分析:要求这个图形的周长,似乎不可能,因为缺少条件.但是,我们仔细观察这个图形,发现它的每一个角都是直角,所以,我们可以将图中右上缺角处的线段分别向上、向右平行移动到虚线处(见右下图),这样正好移补成一个长方形。
五年级几何巧求周长与面积学生版
知识要点巧求周长长方形周长公式:长方形周长=(长+宽)2⨯,记作:C 长方形()2a b =+⨯; 正方形周长公式:正方形周长=边长4⨯,记作:C 正方形4a =⨯; 巧求周长时,常用到“平移线段法”和“标向法”。
巧求面积长方形面积公式:长方形面积=长⨯宽,记作:S 长方形a b =⨯;正方形面积公式:正方形面积=边长⨯边长,记作:S 正方形2a a a =⨯=;三角形面积公式:三角形面积12=⨯底⨯高,记作:S 三角形12a h =⨯⨯;平行四边形面积公式:平行四边形面积=底⨯高,记作:S 平行四边形a h =⨯;梯形面积公式:梯形面积12=⨯(上底+下底)⨯高,记作:S 梯形()12a b h =⨯+⨯;巧求面积时,常用到“割补法”(将图形平移、对称、旋转)。
巧求周长和面积常见巧求周长和面积问题1.20个边长为3厘米的小正三角形按如图的方式拼成一个平行四边形。
这个平行四边形的周长是多少厘米?…2.用若干个边长都是2厘米的平行四边形与三角形(如图所示)拼接成一个大的平行四边形,已知大平行四边形的周长是244厘米,那么平行四边形和三角形各有多少个?3.用若干个边长都是2厘米的平行四边形与三角形(如图所示)拼接成一个大的平行四边形,已知大平行四边形的周长是236厘米,那么平行四边形和三角形各有多少个?4.一块正方形的苗圃(如图实线所示),若将它的边长各增加30米(如图虚线所示),则面积增加9900平方米,问原来这块正方形苗圃的面积是多少平方米?30m30m5. 计划修建一个正方形的花坛,并在花坛周围种上3米宽的草坪,草坪的面积为300平方米,那么修建这个花坛需要占地多少平方米?6. (2007年湖北省“创新杯”数学邀请赛五年级初赛第6题)如图,平行四边形BDEF 的底15BD =厘米,三角形AFE 的高15AG =厘米,三角形ABC 的底25BC =厘米,则阴影部分的面积为_______平方厘米。
五年级奥数-巧求周长与面积(含答案)
巧求周长与面积教学目标:1. 掌握巧求周长与面积的基本方法;2. 理解并掌握割补、平移等数学思想方法。
巧求周长【例1】 (“希望杯”第一试)右图中的阴影部分BCGF 是正方形,线段FH 长18厘米,线段AC 长24厘米,则长方形ADHE 的周长是__________厘米。
【分析】 由于图中阴影部分BCGF 是个正方形,其四条边的边长都相等,且等于长方形ADHE 的宽。
FH AC +的和应为长方形ADHE 的长加上正方形BCGF 的边长,所以等于长方形ADHE 的长与宽之和。
所以长方形ADHE 的周长为:(1824)284+⨯=厘米。
【例2】 如右图所示,在一个正方形内画中、小两个正方形,使三个正方形具有公共顶点,这样大正方形被分割成了正方形区域甲,和L 形区域乙和丙。
甲的边长为4厘米,乙的边长是甲的边长的1.5倍,丙的边长是乙的边长的1.5倍,那么丙的周长为多少厘米?EF 长多少厘米?【分析】 乙的周长实际上是正方形AHJE 的周长(我们可将乙与甲重合的两条线段分别向左、向下平移),同样的,丙的周长也就是正方形ABCD 的周长。
由于4 1.56AE =⨯=,6 1.59AD =⨯=,所以丙的周长为9436⨯=厘米,642EF AE AF =-=-=(厘米)。
【例3】 用若干个边长都是2厘米的平行四边形与三角形(如右图)拼接成一个大的平行四边形,已知大平行四边形的周长是244厘米,那么平行四边形和三角形各有多少个?【分析】 大平行四边形上、下两边的长为(24422)2120-⨯÷=厘米,观察上边,每6厘米有两个平行四边形的边,所以共有小平行四边形1206240÷⨯=个,三角形的数量与小平行G FE A C B 乙丙甲J IF E H D BA四边形的数量相等,也是40个。
[拓展] 用若干个边长都是2厘米的平行四边形与三角形(如右图)拼接成一个大的平行四边形,已知大平行四边形的周长是236厘米,那么平行四边形和三角形各有多少个?[分析] 大平行四边形上、下两边的长为(23622)2116-⨯÷=厘米,观察上边,每6厘米有两个平行四边形的边,1166192÷=L ,所以有三角形19238⨯=个,小平行四边形38139+=个。
巧求周长与面积答案版
第1讲巧求周长和面积几何是研究现实世界的空间形式与数量关系的一门科学,是日常生活和进一步学习必不可少的基础和工具.几何问题非常直观、有趣,但是仍然有的同学对解几何问题的基本方法掌握不好.之前已经学习了长方形和正方形的周长和面积公式,利用公式可以解决一些简单的标准图形的周长和面积问题,对于一些复杂的不规则图形的周长和面积问题,我们可以采用平移、转化、分割、添补、合并等方法,将问题转化为我们熟悉的、简单的图形问题,从而顺利的解决.周长:围成一个图形的所有边长的总和就是这个图形的周长.面积:物体的表面或围成的平面图形的大小,叫做它们的面积.长方形的周长2=⨯(长+宽).面积=长⨯宽.正方形的周长4=⨯边长.正方形的面积=边长⨯边长.编写说明知识要点【例1】下图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是多少厘米?【分析】每个正方形的面积为4001625÷=(平方厘米),所以每个正方形的边长是5厘米。
观察上图,这个图形的周长从上下方向来看是由7214⨯=条正方形的边组成,从左右方向来看是由⨯+⨯=条正方形的边组成,所以其周长为514520170⨯+⨯=厘米。
423420【前铺】学而思学员中有两只小牛:海海、宝宝,他们是两兄弟,放学后两人一起回家,海海走第一条路,宝宝走第二条路,他们的速度一样,那么谁会先到家呢?【分析】因为海海和宝宝速度相同,所以只要知道谁走的路程少,那么答案也就出来了。
首先可以让大家讨论一下,认为海海先到家的举手,然后认为宝宝先到家的举手。
并请大家说明自己的理由。
【温馨提示】通过这题来引出我们本节课的主题,最后可以点出巧求周长常用的方法是平移,当然还有转化,分割,添补,合并等。
然后第一题例题的拓展就可以用这种方法来解决。
【拓展】图⑴、图⑵都是由完全相同的正方形拼成的,并且图⑴的周长是22厘米,那么图⑵的周长是多少厘米?(1)(2)【分析】图⑴的周长是小正方形边长的12倍,图⑵的周长是小正方形边长的18倍,因此,图⑵的周长为22121833÷⨯=厘米。
三年级数学-巧求周长和巧求面积
巧求周长【知识要点】通过前面的学习,同学们已经知道围成一个图形所有边的长度总和,叫做这个图形的周长。
上册课本中我们接触了用平移法求一些不规则图形的周长,本节课我们【典型例题】例1. 一张长方形纸,长28厘米,宽15厘米,剪下一个最大的正方形后,余下的长方形纸周长是多少?例2.从一个长为100厘米的长方形中截去一个最大正方形,求剩下的长方形的周长是多少?练一练1如图,已知这个长方形的周长为38厘米,阴影部分为正方形,求长方形的长和宽。
例3.如图,一个正方形被分成3个大小、形状完全一样的长方形。
每个小长方形的周长都是32厘米,求这个正方形的周长。
练一练2一个正方形分成三个相同的长方形(如图),一个长方形的周长是64 厘米,正方形的面积是多少平方厘米?例4.如图,四个同样的长方形和一个小正方形拼成一个大正方形,大正方形的面积是100平方米,小正方形的面积是36平方米,求每个小长方形的周长。
练一练3明明用学具盒里的三个同样大小的长方形拼成一个大长方形,已知大长方形的周长是60厘米,长是宽的4倍,求小长方形的周长?※例5.如下图,在长方形ABCD中,EFGH是正方形,已知AF=10㎝,HC=7㎝,则长方形ABCD的周长是多少?能力训练1. 求图(1),图(2)的周长?(单位:分米)2. 下图已知a=18cm、b=16cm、e=6cm。
求图形的周长。
3.一个周长为20厘米的正方形,从中间剪开成为两个大小相等的长方形,这两个长方形周长共多少厘米?4. 两个大小相同的正方形拼成一个长方形后,周长比原来两个正方形周长的和减少了6厘米。
原来每个正方形的周长是多少厘米?5.长方形的长是50厘米,截去一个最大的正方形后,余下一个长方形,这个长方形的周长是多少厘米?6.一张长方形纸,长为32厘米,宽为15厘米,先剪下一个最大的正方形,再从余下的纸片中,又剪一个最大的的正方形,最后余下的长方形周长是多少?7.一根铁丝长80厘米,围成一个边长为8厘米的正方形,余下的铁丝围成一个长为14厘米的长方形,这个长方形的宽为多少厘米?8. 6张同样大小的正方形纸重叠着,每个正方形的边长都是2厘米,重叠部分的边长为原来每个正方形边长的一半。
思维拓展第5课时《巧求周长和面积》(教案)人教版四年级上册数学
思维拓展第5课时《巧求周长和面积》(教案)一、教学内容本节课教学内容为人教版四年级上册数学,主要围绕平面图形的周长和面积展开。
通过本节课的学习,学生将掌握如何巧妙地求解周长和面积,并能灵活运用到实际生活中。
二、教学目标1. 知识与技能目标:学生能够理解周长和面积的概念,掌握计算周长和面积的公式,并能运用巧妙方法求解。
2. 过程与方法目标:通过自主探究、合作交流,培养学生解决问题的能力,提高学生的逻辑思维和空间想象力。
3. 情感态度与价值观目标:激发学生对数学的兴趣,培养学生良好的学习习惯和团队合作精神。
三、教学难点1. 理解周长和面积的概念及其计算方法。
2. 学会运用巧妙方法求解周长和面积。
四、教具学具准备1. 教具:PPT课件、黑板、粉笔、直尺、圆规。
2. 学具:草稿纸、铅笔、橡皮。
五、教学过程1. 导入:通过PPT展示生活中的实例,引导学生关注周长和面积,激发学生的学习兴趣。
2. 新课导入:讲解周长和面积的概念,以及计算公式。
结合实例,让学生理解并掌握计算方法。
3. 巧求周长和面积:通过PPT展示巧妙求解周长和面积的实例,引导学生发现规律,总结方法。
4. 实践操作:学生分组合作,完成教具学具上的练习题,巩固所学知识。
5. 课堂小结:总结本节课所学内容,强调重难点。
6. 课后作业布置:布置与课堂内容相关的作业,巩固所学知识。
六、板书设计1. 周长和面积的概念及计算公式。
2. 巧求周长和面积的实例及方法。
3. 课堂练习题及答案。
七、作业设计1. 基础题:计算给定图形的周长和面积。
2. 提高题:运用巧妙方法求解周长和面积。
3. 拓展题:联系生活实际,解决与周长和面积相关的问题。
八、课后反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以便更好地为下一节课做好准备。
同时,关注学生的学习兴趣和积极性,激发学生的学习潜能,提高教学质量。
通过本节课的学习,学生能够掌握周长和面积的概念、计算方法,以及巧妙求解周长和面积的方法。
三年级奥数经典课题――巧求周长和面积
巧求周长和面积-授课学案科目:授课教师:三年级奥数学生姓名:班主任:时日时—月上课时间: 2012 年跟踪上次授课情况上次授课回顾○完全掌握○基本掌握○部分掌握○没有掌握作业完成情况○全部完成○基本完成○部分完成○没有完成本次授课内容授课标题巧求周长和面积学习目标重点难点例题与方法例1.有一块长8分米,宽4分米的长方形纸板与两块边长4分米的正方形拼也一个正方形。
拼成的正方形的周长是多少分米?例2.两个大小相同的正方形拼成一个长方形后,周长比原来的两个正方形周长的和减少6厘米。
原来一个正方形的周长是多少厘米?例3.求图3和图4的周长和面积。
(单位:米)4 图图310/ - 1 -图7是一座厂房的平面图,求这座厂房平面图的周长。
例4.图9是个多边形,图中每个角都是直角,它的周长是多少?例5.,每个小长方形)10例6.一个正方形被分成3个大小、形状完全不一样的长方形(如图厘米,求这个正方形的周长。
的周长都是2410 图分米的小正方形拼成的一个边长是4是由四个一样大的长方形和一个周长.例7 图11 是 11分米的大正方形。
每个长方形的长和宽各是多少?周长是多少?图10/ - 2 -厘米,能围成几种长和宽都是整厘米数的长方形,每咱长方形的长12.一根铁丝长例8 和宽各是几厘米?围成的正方形的边长是几厘米?个小长方形拼成的大长方个小长方形,它们的长和宽分别相等,用这有例9. 9930平方厘米,求这个大长方形的周长。
(形如图)的面积是练习与思考厘米的长方形,分成两个大小一样的正方形,每个正方形的周5把一个长10厘米,宽1.长是多少?厘米的正方形,拼成一个大正方形。
474厘米的长方形与个边长82.用一个长厘米,宽拼成的大正方形的周长是多少?是一座楼房的平面图,这座楼房平面图的周长是多少米?14.图310/ - 3 -)的样子重叠在一起,厘米,把它们按图(16有两个相同的长方形,长4.7厘米,宽3 这个图形的周长是多少厘米?米,这块布的长是几厘米?宽是几米?一块长方形布,周长是18米,长比宽多15.,(如图18)个一样大的长方形和一个小正方形,6.用4拼成一个边长是16分米的大正方形每个长方形的周长是多少?例题与方法倍,中间有一座雕塑,雕塑的底面是一个正方形,周围是.2 一块长方形土地,长是宽的例1 ),草坪的面积是多项式少平方米?草坪(如图1米1米20 1图10/ - 4 -个相等的三角形拼成的图形,求这个图形的面积。
【奥赛】小学数学竞赛:巧求周长.学生版解题技巧 培优 易错 难
一、基本概念①周长:封闭图形一周的长度就是这个图形的周长.②面积:物体的表面或封闭图形的大小,叫做它们的面积.二、基本公式:①长方形的周长2=⨯(长+宽),面积=长⨯宽.②正方形的周长4=⨯边长,正方形的面积=边长⨯边长.三、常用方法:(1)对于基本的长方形和正方形图形,可以直接用公式求出它们的周长和面积,对于一些不规则的比较复杂的几何图形,我们可以采用转化的数学思想方法割补成基本图形,利用长方形、正方形周长及面积计算的公式求解.(2)转化是一种重要的数学思想方法,在转化过程中要抓住“变”与“不变”两个部分.转化后的图形虽然形状变了,但其周长和面积不应该改变,所以在求解过程中不能遗漏掉某些线段的长度或某部分图形的面积.转化的目标是将复杂的图形转化为周长或面积可求的图形.(3)寻求正确有效的解题思路,意味着寻找一条摆脱困境、绕过障碍的途径.因此,我们在解决数学问题时,思考的着重点就是要把所需解决的问题转化为已经能够解决的问题.也就是说,在直接求解不容易或很难找到解题途径的问题时,我们往往转化问题的形式,从侧面或反面寻找突破口,知道最终把它转化成一个或若干个能解决的问题.这种解决问题的思想在数学中叫“化归”,它是数学思维中重要的思想和方法.(4)在几何中,有许多图形是由一些基本图形组合、拼凑而成的.这样的图形我们称为不规则图形.不规则图形的面积往往无法直接应用公式计算.那么,不规则图形的面积怎样去计算呢?对称、旋转、平移这几种几何变换就是解决这类面积问题的手段.四、几个重要的解题思想 (1)平移在平面图形的计算中,常常要将一个平面图形移动到平面上的另一个位置进行计算.其中,将图形沿一个固定方向的移动叫做平移,一个图形经过平行移动不改变其形状与大小,所以图形面积是保持不变的.利用图形的平移,可以使面积计算问题的解法简捷明快,颇有新意.(2)割补割补法在我国古代叫“出入相补原理”,我国古代魏晋时期著名的数学家刘徽在《九章算术注》中就明确地提出“出入相补,各从其类”的出入相补原理.这个原理的内容是几何图形经过分、合、移、补所拼凑成的新图形,它的面积不变.知识点拨4-2-2.巧求周长(3)旋转在平面图形的割补中,有时要将一个图形绕定点旋转到一个新的位置,产生一种新的图形结构,图形在转动过程中形状大小不发生改变.利用这种新的图形结构可以帮我们解决面积的计算问题.(4)对称平面图形中有许多简单漂亮的图形都是轴对称图形.轴对称图形沿对称轴折叠,轴两侧可以完全重合.也就是说,如果一个图形是轴对称图形,那么对称轴平分这个图形的面积.熟悉轴对称图形这个性质,对面积计算会有很大帮助.(5)代换在几何计算中,对有关数量进行适当的等量代换也是解决问题的已知技巧.小结:本讲主要通过求一些不规则图形的周长,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求周长的技巧,提高学生的观察能力、动手操作能力、综合运用能力.例题精讲模块一、图形的周长和面积——割补法【例 1】求图中所有线段的总长(单位:厘米)【例 2】如图所示,点B是线段AD的中点,由A、B、C、D四个点所构成的所有线段的长度均为整数,若这些线段的长度之积为10500,则线段AB的长度是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块一、旋转平移变换
本讲主要通过求一些不规则图形的面积,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求面积的技巧,提高学生的观察能力、动手操作能力、综合运用能力.
1、 巩固三四年级学习的几何图形并深化构造思想
2、 将等量代换等解题方法用到解题中
例题精讲
第三讲
巧求周长与面积
教学目标
知识点拨
1
2
例题
4
例题3
3
模块二、完美长方形
例题7
6
5
一个大长方形若能分割成若干个大小不同的小正方形,则称为完美长方形.下面A 和B 的边长分别
厘米,那么这个完美长方形的面积分别是多少平方厘米?
【巩固】9个边长分别为1、4、7、8、9、10、14、15、18的正方形拼成一个长方形,问这个长方形的长和宽是多少?并请画出这个长方形的拼接图.
8
9
例题
图a
12
11
10
【巩固】从一块正方形木板锯下宽为
12米的一个木条以后,剩下的面积是6518
平方米.问锯下的木条面积是多少平方米?
例题14
13
例题17
16
例题15 15
18
例题18
家庭作业1
练习
4
3
练习2 2
第2题
备选2
练习5
5
1
4 3。