高考数学专题复习利用导数证明不等式的常见题型与技巧
高中数学:利用导数证明不等式的常见题型
利用导数证明不等式的常见题型题型一构造函数法把不等式的证明转化为利用导数研究函数的单调性或求最值的问题,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是利用导数证明不等式的关键.这四道题比较简单,证明过程略.概括而言,这四道题证明的过程分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论.【启示】证明分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。
题型二通过对函数的变形,利用分析法,证明不等式【启示】解答第一问用的是分离参数法,解答第二问用的是分析法、构造函数,对函数的变形能力要求较高,大家应记住下面的变形:题型三求最值解决任意、存在性变量问题解决此类问题,关键是将问题转化为求函数的最值问题,常见的有下面四种形式:题型四分拆成两个函数研究【注意】(2)如果按题型一的方法构造函数求导,会发现做不下去,只好半途而废,所以我们在做题时需要及时调整思路,改变思考方向.【启示】掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助,这八个函数分别为要求会画它们的图像,以后见到这种类型的函数,就能想到它们的性质题型五设而不求当函数的极值点(最值点)不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明.【启示】设而不求,整体代换是一种常用的方法,在解析几何中体现很多.在本例第(2)问中,只设出了零点而没有求出零点,这是一种非常好的方法,同学们一定要认真体会,灵活应用.题型六估值法题型七利用图象的特点,证明不等式题型八证明数列不等式题型九利用放缩法证明不等式【注意】在解决第(2)问时,用构造函数法证不出来,又试着分开两个函数仍然不行,正当我一筹莫展时,忽然想到与第一问题的切线联系,如果左边的函数的图像在切线的上方,右边函数的图像在切线的下方,这样问题不就得证了吗?心里非常高兴,马上付诸行动。
利用导数证明不等式的常见题型及解题技巧
利用导数证明不等式的常见题型及解题技巧利用导数证明不等式的常见题型及解题技巧趣题引入已知函数 设,证明:分析:主要考查利用导数证明不等式的能力。
证明:,设 当时 ,当时 ,即在上为减函数,在上为增函数∴,又 ∴,即 设 当时,,因此在区间上为减函数;因为,又 ∴,即 故综上可知,当 时,本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。
技巧精髓一、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
二、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个x x x g ln )(=b a <<02ln )(2(2)()(0a b b a b g a g -<+-+<1ln )(+='x x g )2(2)()()(x a g x g a g x F +-+=2ln ln )2()(21)2(2)()(''''x a x x a g x g x a g x g x F +-=+-=⨯+-='a x <<00)(<'x F a x >0)(>'x F )(x F ),0(a x ∈),(+∞∈a x 0)()(min ==a F x F a b >0)()(=>a F b F 0)2(2)()(>+-+b a g b g a g 2ln )(2(2)()()(a x x a g x g a g x G --+-+=)ln(ln 2ln 2ln ln )(x a x x a x x G +-=-+-='∴0>x 0)('<x G )(x G ),0(+∞0)(=a G a b >0)()(=<a G b G 02ln )()2(2)()(<--+-+a x x a g x g a g 2ln )()2(2)()(a x x a g x g a g -<+-+b a <<02ln )()2(2)()(0a b b a b g a g -<+-+<可导函数是用导数证明不等式的关键。
高考利用导数证明不等式的常见题型及解题技巧
利用导数证明不等式的常见题型及解题技巧不等式的证明问题是高中数学的一个难点,证明不等式的方法技巧性强,并且各类不等式的证明没有通性解法。
一、简单作差(商)法方法:.要证明对任意∈x [b a ,]都有)()(x g x f ≤,可设)()()(x g x f x h -=,只要利用导数说明)(x h 在[b a ,]上的最大值为0即可.利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明问题 例1、证明下列不等式:①1+≥x e x ②1ln -≤x x ③xx 1-1ln ≥ ④1x 1)-2(x ln +≥x )1(≥x ⑤)2,0(,2sin ππ∈>x x x例2已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;二、换元后作差构造函数证明【例3】(山东卷)证明:对任意的正整数n ,不等式3211)11ln(nn n ->+ 都成立.提示:令则,1nt =构造0)1ln()(32>+-+=t t t x f例4已知:)0(∞+∈x ,求证xx x x 11ln 11<+<+;(换元:设x x t 1+=)三、利用max min )()(x g x f ≥证明不等式 例1、已知函数.22)(),,(,ln )1(1)(ex e x g R b a x a b x ax x f +-=∈+-+-= (1)若函数2)(=x x f 在处取得极小值0,求b a ,的值;(2)在(1)的条件下,求证:对任意的],[,221e e x x ∈,总有)()(21x g x f >.例2:证明:对一切),0(+∞∈x ,都有exe x x 21ln ->成立.含有两个变量的不等式常有两种题型,即根据两个变量是否能分离将题型分为可分离变量式和不可分离变量式,对于这两种采用不同的方法,请注意区别。
考点20利用导数证明不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版
考点20利用导数证明不等式(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】导数中的不等式证明是高考的常考题型,常与函数的性质、函数的零点与极值、数列等相结合,虽然题目难度较大,但是解题方法多种多样,如构造函数法、放缩法等,针对不同的题目,灵活采用不同的解题方法,可以达到事半功倍的效果【核心题型】题型一 将不等式转化为函数的最值问题待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.【例题1】(2024·陕西咸阳·模拟预测)已知1201x x <<<,下列不等式恒成立的是( )A .1221e e x xx x <B .2112ln ln x x x x >C .1122ln ln x x x x <D .11e ln x x >【变式1】(2024·全国·模拟预测)下列正确结论的个数为( )①13sin1010π> ②141sin sin 334< ③16tan 16> ④()tan π3sin 3->A .1B .2C .3D .4【变式2】(2024·四川成都·三模)已知函数2()ln ,f x ax x a =-ÎR .(1)讨论函数()f x 的单调性;(2)设0,()()a g x f x bx >=+,且1x =是()g x 的极值点,证明:2+ln 12ln 2b a £-.【变式3】(2024·四川成都·三模)已知函数()()()e sin 1,0,πxf x ax x x x =---Î.(1)若12a =,证明:()0f x >;(2)若函数()f x 在()0,π内有唯一零点,求实数a 的取值范围.题型二 将不等式转化为两个函数的最值进行比较若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.【例题2】(2023·河南开封·模拟预测)已知13a =,13e 1b =-,4ln 3c =,则( )A .a b c <<B .a c b <<C .c<a<bD .b<c<a【变式1】(2024·全国·模拟预测)已知1e 1ln ,0aa b =+>,则下列结论正确的是( )A .e 2a b<-B .1lna b<C .1a b<-D .1e lnba<【变式2】(2024·浙江杭州·模拟预测)已知函数()()1122e ,e e e 1xxx x f x m m g x -=+-=++.(1)当0m =时,证明:()e xf x -<;(2)当0x <时,()g x t ³,求t 的最大值;(3)若()f x 在区间()0,¥+存在零点,求m 的取值范围.【变式3】(2024·贵州黔西·一模)已知函数29()ln 22f x x x x x =--.(1)判断()f x 的单调性;(2)证明:1352193ln(21)35721n n n n -æö++++>-+ç÷+èøL .题型三 适当放缩证明不等式导数方法证明不等式中,最常见的是e x 和ln x 与其他代数式结合的问题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号;(2)ln x ≤x -1,当且仅当x =1时取等号.【例题1】(2024·河北沧州·一模)已知等比数列{}n a 的前n 项和为413,1,e Sn S a S >=,则数列{}n a 的公比q 满足( )A .01q <£B .10q -<<C .1q >D .1q £-【变式1】(2024·广东·模拟预测)令()sin 0.5cos1cos 2cos ,N n a n n °°°°+=+++ÎL .则n a 的最大值在如下哪个区间中( )A .(0.49,0.495)B .(0.495,0.5)C .(0.5,0.505)D .(0.505,0.51)【变式2】(2024·全国·模拟预测)设整数1p >,1x >-且0x ¹,函数()(1)1p f x x px =+--.(1)证明:()0f x >;(2)设0x >,证明:ln(1)x x +<;(3)设*n ÎN ,证明:111321232ln(1)n n n n ++++<-+L .【变式3】(23-24高三下·河南·阶段练习)已知函数()(1)1(1)r f x x rx x =+-->-,0r >且1r ¹.(1)讨论()f x 的单调性;(2)6332的大小,并说明理由;(3)当*n ÎN时,证明:2sin 176n kk n =<+å.【课后强化】基础保分练一、单选题1.(22-23高三上·四川绵阳·开学考试)若1201x x <<<,则( )A .2121e e ln ln x xx x ->-B .2121e e ln ln x xx x -<-C .1221e e x xx x >D .1221e e x xx x <2.(2023·陕西咸阳·三模)已知12023a =,20222023eb -=,1cos 20232023c =,则( )A .a b c >>B .b a c >>C .b c a>>D .a c b>>3.(23-24高三上·云南保山·期末)已知16a =,7ln 6b =,1tan 6c =,则( )A .b a c <<B .a b c <<C .a c b<<D .c<a<b4.(2024·全国·模拟预测)设13ln4,tan tan1,22a b c ==+=,则( )A .a b c <<B .b c a<<C .c<a<bD .a c b<<二、多选题5.(23-24高三上·广西百色·阶段练习)函数()21ln 2f x x ax a x =-+的两个极值点分别是12,x x ,则下列结论正确的是( )A .4a >B .22128x x +<C .1212x x x x +=D .()()()221212164f x f x x x +<+-6.(2023·福建·模拟预测)机械制图中经常用到渐开线函数inv tan x x x =-,其中x 的单位为弧度,则下列说法正确的是( )A .inv x x ×是偶函数B .inv x 在ππ(π,π)22k k --+上恰有21k +个零点(N k Î)C .inv x 在ππ(π,π)22k k --+上恰有41k +个极值点(N k Î)D .当π02x -<<时,inv sin x x x <-三、填空题7.(2023·海南·模拟预测)已知函数()1ln e x x af x --=,()1x a g x x--=,若对任意[)1,x ¥Î+,()()f x g x £恒成立,则实数a 的取值范围是 .8.(2023·河南开封·模拟预测)实数x ,y 满足()23e 31e x y x y -£--,则3xy -的值为 .四、解答题9.(2023·吉林长春·模拟预测)已知函数()21()1ln 2f x x x =--.(1)求()f x 的最小值;(2)证明:47ln332>.10.(2024·广东佛山·二模)已知()21e 4e 52x xf x ax =-+--.(1)当3a =时,求()f x 的单调区间;(2)若()f x 有两个极值点1x ,2x ,证明:()()12120f x f x x x +++<.11.(2023·四川成都·二模)已知函数()e sin xf x x -=.(1)求()f x 在()()0,0f 处的切线方程;(2)若0x 是()f x 的最大的极大值点,求证:()01f x <<综合提升练一、单选题1.(22-23高三上·河南·阶段练习)若32e 3ln 22x yx y +-=+,其中2,2x y >>,则( )A .e x y<B .2x y>C .24e xy>D .2e x y>2.(2023·福建·模拟预测)已知ln 2a =,1e b a=-,2a c a =-,则( )A .b c a>>B .b a>C .c a b>>D.c b a>>3.(2023·河北衡水·三模)若a =1b =-,c =则( )A .c a b <<B .c b a <<C .b c a<<D .a c b<<4.(2023·新疆·三模)已知数列{}n a 中,11a =,若1nn nna a n a +=+(N n *Î),则下列结论中错误的是( )A .325a =B .1111n na a +-£C .1ln 1nn a <-(2,N n n *³Î)D .2111112n n a a ++-<5.(2023·河南·模拟预测)设a ,b 为正数,且2ln ab a b=-,则( ).A .112a b<<B .12a b<<C .112ab <<D .12ab <<6.(2024·上海虹口·二模)已知定义在R 上的函数()(),f x g x 的导数满足()()f x g x ¢£¢,给出两个命题:①对任意12,x x ÎR ,都有()()()()1212f x f x g x g x -£-;②若()g x 的值域为[]()(),,1,1m M f m f M -==,则对任意x ÎR 都有()()f x g x =.则下列判断正确的是( )A .①②都是假命题B .①②都是真命题C .①是假命题,②是真命题D .①是真命题,②是假命题7.(2024·四川泸州·三模)已知0x >,e ln 1x y +=,给出下列不等式①ln 0x y +<;②e 2x y +>;③ln e 0y x +<;④1x y +>其中一定成立的个数为( )A .1B .2C .3D .48.(2024·四川攀枝花·三模)已知正数,,a b c 满足ln e c a b b ca ==,则( )A .a b c >>B .a c b>>C .b a c>>D .b c a>>二、多选题9.(2023·福建龙岩·二模)已知函数()ln n f x x n x =-(*n ÎN )有两个零点,分别记为n x ,n y (<n n x y );对于0a b <<,存在q 使)()()(()n n n f f f a q b a b -=-¢,则( )A .()n f x 在()1,+¥上单调递增B .e n >(其中e 2.71828=L 是自然对数的底数)C .11n n n n x x y y ++-<-D .2q a b<+10.(2023·河南信阳·模拟预测)已知,,,a b c d ÎR ,满足0a b c d >>>>,则( )A .sin sin a b >B .sin sin a a b b ->-C .a bd c>D .ad bc ab cd+>+11.(2024·河北沧州·一模)已知函数()e xf x =与函数()211g x x =+-的图象相交于()()1122,,,A x y B x y 两点,且12x x <,则( )A .121y y =B .211exy =C .21211y y x x ->-D .221x y =三、填空题12.(2023·四川成都·三模)已知函数()2()2ln 32f x x a x x =+-+,a ÎR .当1x >时,()0f x >,则实数a 的取值范围为.13.(23-24高三下·广东云浮·阶段练习)若实数a ,b 满足()()221ln 2ln 1a b a b -³+-,则a b += .14.(2024·全国·模拟预测)若实数a ,b ,c 满足条件:()2e e 2e 1a b ca b c a -++-+=-,则444abca b c ++的最大值是 .四、解答题15.(2024·青海西宁·二模)已知函数()()()2222ln R f x x a x a x a =+--Î.(1)若2a =,求()f x 的极值;(2)若()()2222ln g x f x a x x =+-+,求证:()12g x ³.16.(2024·山东济南·二模)已知函数()()()22l ,n 1e x f x ax x g x x ax a =--=-ÎR .(1)讨论()f x 的单调性;(2)证明:()()f x g x x +³.17.(2024·上海松江·二模)已知函数ln y x x a =×+(a 为常数),记()()y f x x g x ==×.(1)若函数()y g x =在1x =处的切线过原点,求实数a 的值;(2)对于正实数t ,求证:()()()ln 2f x f t x f t t a +-³-+;(3)当1a =时,求证:e ()cos x g x x x+<.18.(2024·上海嘉定·二模)已知常数m ÎR ,设()ln mf x x x=+,(1)若1m =,求函数()y f x =的最小值;(2)是否存在1230x x x <<<,且1x ,2x ,3x 依次成等比数列,使得()1f x 、()2f x 、()3f x 依次成等差数列?请说明理由.(3)求证:“0m £”是“对任意()12,0,x x Î+¥,12x x <,都有()()()()1212122f x f x f x f x x x ¢¢+->-”的充要条件.19.(2024·全国·模拟预测)已知函数()()2e ln 1xf x a x =-+.(1)若2a =,讨论()f x 的单调性.(2)若0x >,1a >,求证:()1ln 2f x a a >-.拓展冲刺练一、单选题1.(2023·上海奉贤·二模)设n S 是一个无穷数列{}n a 的前n 项和,若一个数列满足对任意的正整数n ,不等式11n n S S n n +<+恒成立,则称数列{}n a 为和谐数列,有下列3个命题:①若对任意的正整数n 均有1n n a a +<,则{}n a 为和谐数列;②若等差数列{}n a 是和谐数列,则n S 一定存在最小值;③若{}n a 的首项小于零,则一定存在公比为负数的一个等比数列是和谐数列.以上3个命题中真命题的个数有( )个A .0B .1C .2D .32.(2023·新疆乌鲁木齐·三模)已知0.19e a -=,0.9b =,2ln0.91c =+,则( )A .b c a>>B .a c b>>C .c b a>>D .b a c>>3.(2023·湖南长沙·一模)已知()e 0.1e 0.1a +=-,e e b =,()e 0.1e 0.1c -=+,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b a c<<D .a c b<<4.(2024·青海·二模)定义在R 上的函数()f x 满足()()2231218f x f x x x --=-+,()f x ¢是函数()f x 的导函数,以下选项错误的是( )A .()()000f f ¢+=B .曲线()y f x =在点()()1,1f 处的切线方程为210x y --=C .()()f x f x m -¢³在R 上恒成立,则2m £-D .()()74ee xf x f x -³-¢-二、多选题5.(2024·全国·模拟预测)已知n S 为正项数列{}n a 的前n 项和,且221n n n a S a -=,则( )A .=n aB .1n na a +>C .1ln n nS n S -³D .212n n n S S S +++>6.(2024·全国·模拟预测)已知1e 1ln ,0aa b=+>,则下列结论正确的是( )A .e 2a b >-B .1lna b<C .1e lnb a<D .1a b>-三、填空题7.(2023·浙江温州·二模)已知函数e e()ln ln f x x x x x=++-,则()f x 的最小值是 ;若关于x 的方程()22f x ax =+有1个实数解,则实数a 的取值范围是.8.(2023·福建福州·模拟预测)已知定义在()0,¥+上函数()f x 满足:()()ln 1x f x x +<<,写出一个满足上述条件的函数()f x = .四、解答题9.(2024·辽宁·模拟预测)已知函数()()sin ln sin f x x x =-,()1,2x Î(1)求()f x 的最小值;(2)证明:()sin sin eln sin 1x xx x -×->.10.(2024·四川攀枝花·三模)已知函数()()ln 1R af x x a x=+-Î.(1)当2a =时,求函数()f x 在1x =处的切线方程;(2)设函数()f x 的导函数为()f x ¢,若()()()1212f x f x x x ¢¢=¹,证明:()()1211f x f x a++>.11.(2024·山西晋城·二模)已知函数()()e x f x x a x a =-++(a ÎR ).(1)若4a =,求()f x 的图象在0x =处的切线方程;(2)若()0f x ³对于任意的[)0,x Î+¥恒成立,求a 的取值范围;(3)若数列{}n a 满足11a =且122nn n a a a +=+(*n ÎN ),记数列{}n a 的前n 项和为n S ,求证:[]1ln (1)(2)3n S n n +<++.。
高考数学专题复习-利用导数证明函数不等式
专题四 利用导数证明函数不等式(一)函数不等式的证明由于其形式多变,方法灵活,成为了近几年高考的一个热点与难点,它一般出现在压轴题的位置,解决起来比较困难.利用导数作为工具进行证明是证明函数不等式的一种常见方法,本专题总结了利用导数证明一个未知数的函数不等式的常见方法,希望同学们看后有所收获,提升利用导数证明函数不等式的能力.模块1 整理方法 提升能力对于一个未知数的函数不等式问题,其关键在于将所给的不等式进行“改造”,得到一平一曲、两曲两种模式中的一种.当出现一平一曲时,只需运用导数求出“曲”的最值,将其与“平”进行比较即可. 当出现两曲时,如果两个函数的凸性相同,则可以考虑通过曲线进行隔离.由于隔离曲线的寻找难度较大,所以我们一般希望两个函数的凸性相反.当两个函数的凸性相反时,则可以寻找直线(常选择公切线或切线)实现隔离放缩,当然最理想的直线状态是该直线与x 轴平行或重合.当改造的过程中出现一斜一曲时,一般要将其继续改造,要么将其化归到一边,转化为一平一曲,要么将其转化为两曲.常用不等式的生成在不等式“改造”或证明的过程中,可借助题目的已知结论、均值不等式、函数单调性、与e x 、ln x 有关的常用不等式等方法进行适当的放缩,再进行证明.下面着重谈谈与e x 、ln x 有关的常用不等式的生成. 生成一:利用曲线的切线进行放缩设e x y =上任一点P 的横坐标为m ,则过该点的切线方程为()e e m m y x m -=-,即()e 1e m m y x m =+-,由此可得与e x 有关的不等式:()e e 1e x m m x m ≥+-,其中x ∈R ,m ∈R ,等号当且仅当x m =时成立.特别地,当0m =时,有e 1x x ≥+;当1m =时,有e e x x ≥.设ln y x =上任一点Q 的横坐标为n ,则过该点的切线方程为()1ln y n x n n-=-,即11ln y x n n =-+,由此可得与ln x 有关的不等式:1ln 1ln x x n n≤-+,其中0x >,0n >,等号当且仅当x n =时成立.特别地,当1n =时,有ln 1x x ≤-;当e n =时,有1ln e x x ≤.利用切线进行放缩,能实现以直代曲,化超越函数为一次函数.生成二:利用曲线的相切曲线进行放缩由图1可得1ln x x x -≥;由图2可得1ln e x x≥-;由图3可得,()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);由图4可得,11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).综合上述两种生成,我们可得到下列与e x 、ln x 有关的常用不等式: 与e x 有关的常用不等式: (1)e 1x x ≥+(x ∈R ); (2)e e x x ≥(x ∈R ). 与ln x 有关的常用不等式:(1)1ln 1x x x x -≤≤-(0x >); (2)11ln e ex x x -≤≤(0x >);(3)()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);(4)11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).用1x +取代x 的位置,相应的可得到与()ln 1x +有关的常用不等式.例1设函数()1e e ln x xb f x a x x-=+,曲线()y f x =在点()()1,1f 处的切线为()e 12y x =-+.(1)求a 、b ; (2)证明:()1f x >.【解析】(1)因为()1e f '=,()12f =,而()2e e e ln xa x bxb f x a x x +-'=+,所以()()1e e12f a f b '⎧==⎪⎨==⎪⎩,解得1a =,2b =. 【证明】(2)法1:(寻找公切曲线隔离)由(1)知,()12e e ln x xf x x x-=+,于是()12e 1e ln 1x xf x x x->⇔+>.由于()f x 混合了指数函数、对数函数和幂函数,比较复杂,所以可以考虑将指数函数、对数函数进行分离,改造为21ln e e xx x +>. 令()2ln e g x x x =+,则()2212e 2e e x g x x x x -'=-=,由()0g x '>可得2e x >,由()0g x '<可得20ex <<,所以()g x 在20,e ⎛⎫ ⎪⎝⎭上递减,在2,e ⎛⎫+∞ ⎪⎝⎭上递增.而()1e xh x =递减,所以两个函数的凸性相同(都是下 凸函数).此时,我们可以寻找与两个曲线都相切的曲线()1e t x x=,将两个函数进行隔离,从而实现证明.211ln ln 0e e e x x x x x +≥⇔+≥,令()1ln e k x x x =+,则()2211e 1e e x k x x x x -'=-=,由()0k x '>可得1e x >,由()0k x '<可得10e x <<,所以()k x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭上递增,所以()min10e k x k ⎛⎫⎡⎤== ⎪⎣⎦⎝⎭,于是1ln 0e x x +≥. 11e e e e 0e ex x x x x x ≥⇔≥⇔-≥,令()e e x s x x =-,则()e e x s x '=-,由()0s x '>可得1x >,由()0s x '<可得01x <<,所以()s x 在()0,1上递减,在()1,+∞上递增,所以()()min 10s x s ⎡⎤==⎣⎦,于是e e 0xx -≥.由于等号不能同时成立,所以21ln e e xx x +>. 法2:(寻找公切线隔离)由(1)知,()12e e ln x xf x x x-=+,于是()12e 1e ln 1x xf x x x ->⇔+>,将不等式改造为2ln e e x x x x +>.令()2ln e m x x x =+,则()1ln m x x '=+.由()0m x '>可得1ex >,由()0m x '<可得10e x <<,所以()m x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭上递增,所以()min11e em x m ⎛⎫⎡⎤== ⎪⎣⎦⎝⎭.令()e x x n x =, 则()1ex xn x -'=.由()0n x '<可得1x >,由()0n x '> 可得01x <<,所以()n x 在()0,1上递增,在()1,+∞ 上递减,所以()()max11en x n ⎡⎤==⎣⎦.两个函数的凸性相反.此时,我们可以寻找与两个曲线都相切的公切线1ey =,将两个函数进行隔离,又因为等号不能同时成立,所以2ln x x x x +>. 【点评】法1中的两个函数凸性相同,因此需要寻找公切曲线()1e t x x=进行隔离,公切曲线的寻找需要有一定的函数不等式放缩经验.该放缩211ln e e e xx x x +≥≥与常用不等式e e x x ≥以及11ln e ex x x -≤≤有关,因此熟练掌握与e x 、ln x 有关的常用不等式,能有效打开某些不等式的证明思路,使题目的难度降低.法2中的两个函数凸性相反,且两个函数的最值相同,此时可寻找到与x 轴平行的公切线1ey =,实现隔离放缩. 如何恰当地“改造”函数是解题的关键,这需要我们熟悉与n x 、ln x 、e x 四则运算组合后的函数,如:(1)e x x 、2e x x 、3e x x 、…过原点,先减后增;(2)e x x、2e x x 、3e x x 、…过原点,先增后减;(3)e x x 、2e x x 、3e xx、…在(),0-∞上递减,在()0,+∞上先减后增;(4)ln x x 、2ln x x 、3ln x x 、…在()0,+∞上先减后增;(5)ln x x 、2ln x x 、3ln xx、…在()0,+∞上先增后减; (6)ln xx 、2ln x x 、3ln x x、…在()0,1上递减,在()1,+∞上先减后增.例2已知函数()21e xax x f x +-=.(1)求曲线()y f x =在点()0,1-处的切线方程; (2)求证:当1a ≥时,()e 0f x +>. 【解析】(1)()212exax a x f x -+-+'=,因为()0,1-在曲线()y f x =上,且()02f '=,所以切线方程为()()120y x --=-,即210x y --=.【证明】(2)法1:()2211e 0e 01e 0ex xax x f x ax x ++-+≥⇔+≥⇔+-+≥. 当1a ≥时,21211e 1e x x ax x x x +++-+≥+-+,令()211e x g x x x +=+-+,则()121e x g x x +'=++,()12e 0x g x +''=+>,于是()g x '在R 上递增.又因为()10g '-=,由()0g x '<可得1x <-,由()0g x '>可得1x >-,所以()g x 在(),1-∞-上递减,在()1,-+∞上递增,所以()()10g x g ≥-=.法2:()2211e 0e 01e 0ex xax x f x ax x ++-+≥⇔+≥⇔+-+≥. 当1a ≥时,21211e 1e x x ax x x x +++-+≥+-+,由常见不等式e 1x x ≥+(x ∈R ),可得1e 2x x +≥+,所以()()22121e 1210x x x x x x x ++-+≥+-++=+≥.法3:令()()21e e exax x F x f x +-=+=+,则()()2212e x ax a x F x -+-+'== ()()21e x x ax -+-,由()0F x '>可得12x a -<<,由()0F x '<可得1x a <-或2x >,所以()F x 在1,a ⎛⎫-∞- ⎪⎝⎭上递减,在1,2a ⎛⎫- ⎪⎝⎭上递增,在()2,+∞上递减.()F x 的极小值为11e e e e 0a F a ⎛⎫-=-+<-+≤ ⎪⎝⎭,由洛必达法则,可得21212lim e e lim e lim e e e e x x x x x x ax x ax a →+∞→+∞→+∞⎛⎫+-++=+=+= ⎪⎝⎭,所以()0F x ≥,即()e 0f x +>. 法4:()2211e 0e 01e 0e x xax x f x ax x ++-+≥⇔+≥⇔+-+≥.令()211e x G x ax x +=+-+,则()121e x G x ax +'=-+,()12e 0x G x a +''=+>,所以()G x '在R 上递增,又因为()00G '=,由()0G x '<可得0x <,由()0G x '>可得0x >,所以()G x 在(),0-∞上递减,在()0,+∞上递增,所以()()00G x G ≥=.法5:()2211e 0e 01e 0ex xax x f x ax x ++-+≥⇔+≥⇔+-+≥.当0x =时,不等式成立,当0x ≠时,()1212e 11e 0x x x ax x a k x x ++--++-+≥⇔≥=.()()()()()121111433e 12e 12e 1e 2e 2x x x x x x x x x x x k x x x x +++++-----+----++-'===,由()0k x '>可得1x <-或02x <<,由()0k x '<可得10x -<<或2x >,所以()k x 在(),1-∞-上递增,在()1,0-上递减,在()0,2上递增,在()2,+∞上递减.因为()11k -=,()3e 124k +=-,所以()max1k x ⎡⎤=⎣⎦,而1a ≥,所以()a k x ≥,即()e 0f x +≥.法6:()2211e 0e 01e ex xax x f x ax x ++-+≥⇔+≥⇔+-≥-. 令()21m x ax x =+-,则()m x 是以12x a=-为对称轴,开口方向向上的抛物线.令()1e x n x +=-,则()n x 递 减.由于两个函数的凸性相反,因此我们可以通过寻找两 个曲线的公切线将两个函数进行隔离,但由于公切线不容 易寻找,又因为两个函数处于相离的状态,因此我们可以选择在()1e x n x +=-上找切线,通过该切线将两个函数隔离,从而实现证明.由常见不等式e 1x x ≥+可得1e 2x x +≥+,容易想到隔离切线2y x =--,下面进行证明.()()222212210110ax x x ax x a x x +-≥--⇔++≥⇔-++≥,而12e x x +--≥-,命题获证.【点评】对于含有参数的一个未知数的函数不等式,其证明方法与不含参数的一个未知数的函数不等式证明大体一致.法3是直接证明()e 0f x +≥,法4是将不等式等价转化为211e0x ax x ++-+≥,法5是通过分离参数进而证明12e 1x x a x+--+≥,3种方法本质都是一平一曲状态.法6将不等式转化为211e x ax x ++-≥-,由于两个函数的凸性相反,因此我们可以寻找切线实现隔离放缩.对于含有参数的一个未知数的函数不等式,我们还可以通过放缩,消去参数,转化为研究一个特例函数的问题,从而使题目的难度大大降低.例3已知函数()1ln f x x a x =--. (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪⎪⎝⎭⎝⎭⎝⎭,求m 的最小值. 【解析】(1)()f x 的定义域为()0,+∞.法1:(分离参数法)①当1x =时,有()10f =,成立.②当1x >时,11ln 0ln x x a x a x ---≥⇔≤,令()1ln x h x x-=,则()21ln 1ln x x h x x-+'=,令()1ln 1k x x x =-+,则()210x k x x-'=>,所以()k x 在()1,+∞上递增,于是()()10k x k >=,所以()0h x '>,所以()h x 在()1,+∞上递增.由洛必达法则可得1111limlim 11ln x x x x x++→→-==,所以1a ≤.③当01x <<时,11ln 0ln x x a x a x ---≥⇔≥,令()1ln x h x x-=,仿照②可得()h x 在()0,1上递增.由洛必达法则可得1111lim lim 11ln x x x xx--→→-==,所以1a ≥. 综上所述,1a =.法2:(不猜想直接用最值法)()1a x af x x x-'=-=. ①当0a ≤时,()f x 在()0,+∞上递增,而()10f =,于是()0f x ≥不成立.②当0a >时,由()0f x '>可得x a >,由()0f x '<可得0x a <<,所以()f x 在()0,a 上递减,在(),a +∞上递增,而()10f =,所以1a =.法3:(通过猜想减少分类讨论)由11ln 2022f a ⎛⎫=-+≥ ⎪⎝⎭可得12ln 2a ≥.()1a f x x '=-,由()0f x '>可得x a >,由()0f x '<可得0x a <<,所以()f x 在()0,a 上递减,在(),a +∞上递增,而()10f =,所以1a =.(2)当1a =时()1ln 0f x x x =--≥,即ln 1x x ≤-,则有()ln 1x x +≤,当且仅当0x =时等号成立,所以11ln 122kk ⎛⎫+< ⎪⎝⎭,*k ∈N ,于是2111ln 1ln 1ln 1222n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21111112222n n +++=-<,所以2111111e 222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.当3n =时,23111359135111222224864⎛⎫⎛⎫⎛⎫+++=⨯⨯=> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,于是m 的最小值为3. 112n ⎫⎛⎫+⎪⎪⎭⎝⎭较麻烦.考虑取对数,将不等式等价转化为ln ln 1⎛⎛+++ ⎝容易联想到与ln x 有关的常用不等式()ln 1x x +≤.模块2 练习巩固 整合提升练习1:已知函数()ln 1a x bf x x x=++,曲线()y f x =在点()()1,1f 处的切线方程为230x y +-=.(1)求a 、b 的值;(2)证明:当0x >,且1x ≠时,()ln 1xf x x >-. 【解析】(1)()()221ln 1x a x b x f x x x +⎛⎫- ⎪⎝⎭'=-+. 由于直线230x y +-=的斜率为12-,且过点()1,1,所以()()11112f f ⎧=⎪⎨'=-⎪⎩,即1122b ab =⎧⎪⎨-=-⎪⎩,解得1a =,1b =. 【证明】(2)由(1)知()ln 11x f x x x =++,所以()ln ln 1ln 111x x xf x x x x x >⇔+>-+- ()222ln 12110ln 0112x H x x x x x x x ⎡⎤⎛⎫⇔+>⇔=--> ⎪⎢⎥--⎝⎭⎣⎦.构造函数()11ln 2h x x x x ⎛⎫=-- ⎪⎝⎭(0x >),则()()22211111022x h x x x x -⎛⎫'=-+=-≤ ⎪⎝⎭,于是()h x 在()0,+∞上递减.当01x <<时,()h x 递减,所以()()10h x h >=,于是()()2101H x h x x =>-;当1x >时,()h x 递减,所以()()10h x h <=,于是()()2101H x h x x =>-. 综上所述,当0x >,且1x ≠时,()ln 1xf x x >-.练习2:已知函数()()211ln 2ex bf x ax x ax bx =+--+(a 、b ∈R ).(1)若12a b ==,求函数()()ln ex bF x f x ax x =--的单调区间;(2)若1a =,1b =-,求证:()221ln 12e 2f x ax bx x -++>--.【解析】(1)当12a b ==,()211ln 42F x x x x =--,()()()21111222x x F x x x x +-'=--=-.由()0F x '>可得01x <<,由()0F x '<可得1x >,所以()F x 的递增区间为()0,1,递减区间为()1,+∞.【证明】(2)若1a =,1b =-,()222112ln 12e ln 12e ex f x ax bx x x x -++>--⇔->--.令()1ln e x G x x x =-,则()1ln 1e x G x x '=++,()11e e e x x xx G x x x -''=-=.设()e x h x x =-,则()e 10x h x '=->,所以()h x 在()0,+∞上递增,所以()()01h x h >=,所以()0G x ''>,所以()G x '在()0,+∞上递增.又因为1e 1e 0e G -⎛⎫'=> ⎪⎝⎭,21e 21e 10e G -⎛⎫'=-< ⎪⎝⎭,所以()G x '恰有一个零点0211,e e x ⎛⎫∈ ⎪⎝⎭,即()0001ln 10e x G x x '=++=,且当00x x <<时,()0G x '<,当0x x >时,()0G x '>,所以()G x 在()00,x 上递减,在()0,x +∞上递增,所以()()00000001ln ln ln 1ex G x G x x x x x x ≥=-=++.设()ln ln 1x x x x ϕ=++,211,e e x ⎛⎫∈ ⎪⎝⎭,则()11ln 11e 0x x x ϕ'=++>-+>,所以()x ϕ在211,e e ⎛⎫ ⎪⎝⎭上递增,所以()02222211112ln ln 11e ee e e x ϕϕ⎛⎫>=++=-- ⎪⎝⎭.命题获证.练习3:已知函数()e e ln x f x x x =+.(1)求曲线()y f x =在()()1,1f 处的切线方程; (2)求证:()2e f x x ≥.【解析】(1)()()e e 1ln x f x x '=++,所以()12e f '=,又()1e f =,所以()y f x =在()()1,1f 处的切线方程为()e 2e 1y x -=-,即2e e y x =-.【证明】(2)法1:()2212e e e ln e e ln 0x x f x x x x x x x x -≥⇔+≥⇔+-≥,构造函数()12e ln x g x x x x -=+-,则()1e 1ln 2x g x x x -'=++-,()11e 2x g x x-''=+-,()121e x g x x -'''=-.因为()g x '''在()0,+∞上递增,且()10g '''=,所以当01x <<时,()0g x '''<,当1x >时,()0g x '''>,所以()g x ''在()0,1上递减,在()1,+∞上递增,所以()()10g x g ''''≥=,于是()g x '在()0,+∞上递增,又因为()10g '=,所以当01x <<时,()0g x '<,()g x 递减,当1x >时,()0g x '>,()g x 递增,所以()()10g x g ≥=,命题获证.法2:()122e e e e ln e ln 0x xf x x x x x x x x -≥⇔+≥⇔+-≥,构造函数()1e ln x G x x x x-=+-,则()()()()()11122221e e 1e 111x x x x x x x x x G x x xx x -------+-'=+-==.令()1e x H x x -=-,则()1e 1x H x -'=-,由()0H x '>可得1x >,由()0H x '<可得01x <<,于是()H x 在()0,1上递减,在()1,+∞上递增,于是()()10H x H ≥=.于是当01x <<时,()0G x '<,当1x >时,()0G x '>,所以()G x 在()0,1上递减,在()1,+∞上递增,于是()()10G x G ≥=,命题获证.构造的不等式两端的函数凸性一致,且寻找隔离曲线的难度大,不容易证明.考虑到函数()12e ln x g x x x x -=+-的形式不算太复杂,可通过多次求导证明其在x 轴的上方(有且仅有一单的原因在于()G x 当中的ln x 比较“单纯”,求导一次就能消去ln x .练习4:设函数()()ln 1f x x =+,()()g x xf x '=,0x ≥,其中()f x '是()f x 的导函数.(1)若()()f x ag x ≥恒成立,求实数a 的取值范围;(2)设*n ∈N ,比较()()()12g g g n +++与()n f n -的大小,并加以证明. 【解析】(1)()11f x x '=+,所以()1x g x x=+. 法1:(分离参数法)当0x =时,()()f x ag x ≥恒成立.当0x >时,()()f x ag x ≥在()0,+∞上恒成立()()()()()1ln 1f x x x a F x g x x ++⇔≤==在()0,+∞上恒成立.()()2ln 1x x F x x -+'=,令()()ln 1G x x x =-+,则()01x G x x'=>+,所以()G x 在()0,+∞上递增,于是()()00G x G >=,即()0F x '>,所以()F x 在()0,+∞上递增.由洛必达法则,可得()()()001ln 11ln 1lim lim 11x x x x x x ++→→++++==,所以1a ≤,于是实数a 的取值范围为(],1-∞.法2:(不猜想直接用最值法)令()()()()ln 11ax h x f x ag x x x=-=+-+,则()()()()22111111a x ax x a h x x x x +--+'=-=+++,令()0h x '=,得1x a =-. ①当10a -≤,即1a ≤时,()0h x '≥在[)0,+∞上恒成立,所以()h x 在[)0,+∞上递增,所以()()00h x h >=,所以当1a ≤时,()0h x ≥在[)0,+∞上恒成立.②当10a ->,即1a >时,()h x 在()0,1a -上递减,在()1,a -+∞上递增,所以当1x a =-时()h x 取到最小值,于是()()1ln 1h x h a a a ≥-=-+.设()ln 1a a a ϕ=-+,1a >,则()110a aϕ'=-<,所以函数()a ϕ在()1,+∞上递减,所以()()10a ϕϕ<=,即()10h a -<,所以()0h x ≥不恒成立.综上所述,实数a 的取值范围为(],1-∞.(2)设*n ∈N ,比较()()()12g g g n +++与()n f n -的大小,并加以证明.(2)()()()1212231n g g g n n +++=++++,()()ln 1n f n n n -=-+,比较结果为:()()()()12g g g n n f n +++>-.证明如下.上述不等式等价于()111ln 1231n n +>++++.为证明该式子,我们首先证明11ln 1i i i +>+. 法1:在(1)中取1a =,可得()ln 11x x x +>+,令1x i =,可得11ln 1i i i +>+.令1,2,,i n =可得21ln 12>,31ln 23>,…,11ln 1n n n +>+,相加可得()111ln 1231n n +>++++,命题获证.法2:令1t i =,则()11ln ln 111i t t i i t +>⇔+>++,构造函数()()ln 11t F t t t=+-+,01t <<,则()()()22110111t F t t t t '=-=>+++,于是()F t 在()0,1上递增,所以()()00F t F >=,于是11ln 1i i i +>+. 下同法1. 练习5:已知函数()()1ln 2f x x a x x =-+(其中a ∈R ). (1)若曲线()y f x =在点()()00,xf x 处的切线方程为12y x =,求a 的值; (2)若12e a <<e 是自然对数的底数),求证:()0f x >. 【解析】(1)()3ln 2a f x x x '=-+,依题意,有()00000000121ln 231ln 22y x y x a x x a x x ⎧=⎪⎪⎪=-+⎨⎪⎪-+=⎪⎩,解得011x a =⎧⎨=⎩或01x a a =⎧⎨=⎩,所以1a =. (2)法1:令()()g x f x '=,则()21a g x x x '=+,因为12ea <<()0g x '>,即()g x 在()0,+∞上递增.因为311ln ln 02222222a a a a g a ⎛⎫=-+=-<-= ⎪⎝⎭,()3111ln ln ln 0222e 2a g a a a a =-+=+>+=,所以()g x 在,2a a ⎛⎫ ⎪⎝⎭上有唯一零点0x .当00x x <<时,()0g x <,当0x x >时,()0g x >,所以()f x 在()00,x 上递减,在()0,x +∞上递增,所以当0x x =时,()f x 取到最小值()()00001ln 2f x x a x x =-+.因为()0003ln 02ag x x x =-+=,所以003ln 2a x x =-,所以()()00003122a f x x a x x ⎛⎫=--+= ⎪⎝⎭ ()()()2220000000051125222222a x a x ax a x a x a x x x --+=--+=---,因为0,2a x a ⎛⎫∈ ⎪⎝⎭,所以()00f x >,所以当12ea <<()0f x >. 法2:当x a =时,()02a f a =>. 当x a ≠时,()()()()1ln 0ln 022x f x x a x x x a x x a ⎡⎤=-+>⇔-+>⎢⎥-⎢⎥⎣⎦.令()()ln 2x F x x x a =+-,则()()()()()()22222221252222x a x a a x ax a F x x x a x x a x x a ---+'=-==---,由()0F x '>可得02a x <<或2x a >,由()0F x '<可得2a x a <<或2a x a <<,所以()F x 在0,2a ⎛⎫ ⎪⎝⎭上递增,在,2a a ⎛⎫ ⎪⎝⎭上递减,在(),2a a 上递减,在()2,a +∞上递增.因为112ln ln ln 022222222aa a a F a a ⎛⎫=+=-<-= ⎪⎛⎫⎝⎭- ⎪⎝⎭,()()21112ln 2ln 2ln 02222e 2a F a a a a a =+=+>+=-,所以当0x a <<时,()0F x <,所以()()()0f x x a F x =->,当x a >时,()0F x >,所以()()()0f x x a F x =->.。
利用导数证明不等式的常见题型及解题技巧
利用导数证明不等式的常见题型及解题技巧利用导数证明不等式的常见题型及解题技巧趣题引入已知函数x x x g ln )(= 设b a <<0, 证明:2ln )()2(2)()(0a b b a b g a g -<+-+< 分析:主要考查利用导数证明不等式的能力。
证明:1ln )(+='x x g ,设)2(2)()()(x a g x g a g x F +-+= 2ln ln )2()(21)2(2)()(''''x a x x a g x g x a g x g x F +-=+-=⨯+-=' 当a x <<0时 0)(<'x F ,当a x >时 0)(>'x F ,即)(x F 在),0(a x ∈上为减函数,在),(+∞∈a x 上为增函数∴0)()(min ==a F x F ,又a b > ∴0)()(=>a F b F , 即0)2(2)()(>+-+b a g b g a g 设2ln )()2(2)()()(a x x a g x g a g x G --+-+= )ln(ln 2ln 2ln ln )(x a x x a x x G +-=-+-='∴ 当0>x 时,0)('<x G ,因此)(x G 在区间),0(+∞上为减函数;因为0)(=a G ,又a b > ∴0)()(=<a G b G ,即 02ln )()2(2)()(<--+-+a x x a g x g a g 故2ln )()2(2)()(a x x a g x g a g -<+-+ 综上可知,当 b a <<0时,2ln )()2(2)()(0a b b a b g a g -<+-+< 本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。
利用导数证明不等式的四种常用方法
利用导数证明不等式的四种常用方法方法一:使用函数的单调性如果函数f(x)在区间[a,b]上单调递增(或递减),则对于任意的x1,x2∈[a,b],有f(x1)≤f(x2)(或f(x1)≥f(x2))。
举例说明:证明当x>0时,e^x>1+x。
我们考虑函数f(x)=e^x-(1+x),取f'(x)=e^x-1、如果f'(x)≥0,则f(x)在x>0上单调递增,且f(x)在x=0处取到最小值。
通过计算可得f'(x)≥0,所以f(x)在x>0上单调递增,即e^x-(1+x)≥0。
即e^x>1+x。
方法二:使用函数的极值点如果函数f(x)在一些点x0处取得极小值(或极大值),则该点附近的函数值也有相应的性质。
举例说明:证明(1+x)^n > 1+nx,其中n为自然数。
我们考虑函数f(x) = (1+x)^n - (1+nx),取f'(x) = n(1+x)^(n-1) - n。
令f'(x) = 0,可得x = -1/(n-1)。
我们先考虑x ∈ (-∞, -1/(n-1)),在此区间上f'(x) > 0,所以f(x)在此区间上单调递增。
当x < -1/(n-1)时,有f(x) > f(-1/(n-1)) = 0。
所以在此区间上(1+x)^n > 1+nx。
同理可得,当x ∈ (-1/(n-1), +∞)时,也有(1+x)^n > 1+nx。
方法三:使用函数的凹凸性如果函数f(x)在一些区间上是凹的(或凸的),则函数的函数值也有相应的性质。
举例说明:证明当a>0时,有√a≤(a+1)/2我们考虑函数f(x) = √x,取f''(x) = -x^(-3/2)。
我们知道,当f''(x)≥0时,函数f(x)在该区间上为凹函数。
计算可得f''(x)≥0,所以f(x)在[0, +∞)上为凹函数。
利用导数证明不等式的常见题型及解题技巧
利用导数证明不等式的常见题型及解题技巧————————————————————————————————作者:————————————————————————————————日期:ﻩ利用导数证明不等式的常见题型及解题技巧趣题引入已知函数x x x g ln )(= 设b a <<0,证明:2ln )()2(2)()(0a b ba b g a g -<+-+< 分析:主要考查利用导数证明不等式的能力。
证明:1ln )(+='x x g ,设)2(2)()()(xa g x g a g x F +-+= 2lnln )2()(21)2(2)()(''''xa x x a g x g x a g x g x F +-=+-=⨯+-=' 当a x <<0时 0)(<'x F ,当a x >时 0)(>'x F , 即)(x F 在),0(a x ∈上为减函数,在),(+∞∈a x 上为增函数 ∴0)()(min ==a F x F ,又ab > ∴0)()(=>a F b F ,即0)2(2)()(>+-+ba gb g a g 设2ln )()2(2)()()(a x xa g x g a g x G --+-+=)ln(ln 2ln 2ln ln )(x a x xa x x G +-=-+-='∴当0>x 时,0)('<x G ,因此)(x G 在区间),0(+∞上为减函数; 因为0)(=a G ,又a b > ∴0)()(=<a G b G ,即 02ln )()2(2)()(<--+-+a x xa g x g a g 故2ln )()2(2)()(a x xa g x g a g -<+-+综上可知,当 b a <<0时,2ln )()2(2)()(0a b ba b g a g -<+-+< 本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。
利用导数证明不等式考点与题型归纳
利用导数证明不等式考点与题型归纳考点一 单变量不等式的证明 方法一 移项作差构造法证明不等式[例1] 已知函数f (x )=1-ln x x ,g (x )=a e e x +1x -bx (e 为自然对数的底数),若曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直.(1)求a ,b 的值;(2)求证:当x ≥1时,f (x )+g (x )≥2x .[解] (1)因为f (x )=1-ln xx ,所以f ′(x )=ln x -1x 2,f ′(1)=-1.因为g (x )=a e e x +1x -bx ,所以g ′(x )=-a e e x -1x2-b .因为曲线y =f (x )与曲线y =g (x )的一个公共点是A (1,1),且在点A 处的切线互相垂直, 所以g (1)=1,且f ′(1)·g ′(1)=-1, 即g (1)=a +1-b =1,g ′(1)=-a -1-b =1, 解得a =-1,b =-1.(2)证明:由(1)知,g (x )=-e e x +1x +x ,则f (x )+g (x )≥2x ⇔1-ln x x -e e x -1x +x ≥0.令h (x )=1-ln x x -e e x -1x+x (x ≥1),则h ′(x )=-1-ln x x 2+e e x+1x 2+1=ln x x 2+ee x +1. 因为x ≥1,所以h ′(x )=ln x x 2+eex +1>0,所以h (x )在[1,+∞)上单调递增,所以h (x )≥h (1)=0, 即1-ln x x -e e x -1x+x ≥0,所以当x ≥1时,f (x )+g (x )≥2x .[解题技法]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.方法二 隔离审查分析法证明不等式[例2] (2019·长沙模拟)已知函数f (x )=e x 2-x ln x .求证:当x >0时,f (x )<x e x +1e .[证明] 要证f (x )<x e x +1e ,只需证e x -ln x <e x +1e x ,即e x -e x <ln x +1e x .令h (x )=ln x +1e x (x >0),则h ′(x )=e x -1e x2,易知h (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,则h (x )min =h ⎝⎛⎭⎫1e =0,所以ln x +1e x≥0. 再令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x )max =φ(1)=0,所以e x -e x ≤0.因为h (x )与φ(x )不同时为0,所以e x -e x <ln x +1e x ,故原不等式成立.[解题技法]若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个都便于求导的函数,从而找到可以传递的中间量,达到证明的目标.方法三、放缩法证明不等式[例3] 已知函数f (x )=ax -ln x -1. (1)若f (x )≥0恒成立,求a 的最小值; (2)求证:e -xx+x +ln x -1≥0;(3)已知k (e -x +x 2)≥x -x ln x 恒成立,求k 的取值范围. [解] (1)f (x )≥0等价于a ≥ln x +1x.令g (x )=ln x +1x (x >0),则g ′(x )=-ln xx2,所以当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0,则g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以g (x )max =g (1)=1,则a ≥1, 所以a 的最小值为1.(2)证明:当a =1时,由(1)得x ≥ln x +1, 即t ≥ln t +1(t >0).令e -xx =t ,则-x -ln x =ln t , 所以e -xx ≥-x -ln x +1,即e -xx +x +ln x -1≥0. (3)因为k (e -x +x 2)≥x -x ln x恒成立,即k ⎝ ⎛⎭⎪⎫e -x x +x ≥1-ln x 恒成立,所以k ≥1-ln x e -x x +x =-e -xx+x +ln x -1e -xx +x +1,由(2)知e -xx +x +ln x -1≥0恒成立,所以-e -xx+x +ln x -1e -xx +x +1≤1,所以k ≥1.故k 的取值范围为[1,+∞). [解题技法]导数的综合应用题中,最常见就是e x 和ln x 与其他代数式结合的难题,对于这类问题,可以先对e x 和ln x 进行放缩,使问题简化,便于化简或判断导数的正负.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号; (2)e x ≥e x ,当且仅当x =1时取等号;(3)当x ≥0时,e x ≥1+x +12x 2, 当且仅当x =0时取等号;(4)当x ≥0时,e x ≥e2x 2+1, 当且仅当x =0时取等号;(5)x -1x≤ln x ≤x -1≤x 2-x ,当且仅当x =1时取等号;(6)当x ≥1时,2(x -1)x +1≤ln x ≤x -1x ,当且仅当x =1时取等号.考点二 双变量不等式的证明[典例] 已知函数f (x )=ln x -12ax 2+x ,a ∈R.(1)当a =0时,求函数f (x )的图象在(1,f (1))处的切线方程;(2)若a =-2,正实数x 1,x 2满足f (x 1)+f (x 2)+x 1x 2=0,求证:x 1+x 2≥5-12. [解] (1)当a =0时,f (x )=ln x +x ,则f (1)=1,所以切点为(1,1),又因为f ′(x )=1x +1,所以切线斜率k =f ′(1) =2,故切线方程为y -1=2(x -1),即2x -y -1=0. (2)证明:当a =-2时,f (x )=ln x +x 2+x (x >0). 由f (x 1)+f (x 2)+x 1x 2=0,即ln x 1+x 21+x 1+ln x 2+x 22+x 2+x 1x 2=0,从而(x 1+x 2)2+(x 1+x 2)=x 1x 2-ln(x 1x 2), 令t =x 1x 2,设φ(t )=t -ln t (t >0), 则φ′(t )=1-1t =t -1t,易知φ(t )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以φ(t )≥φ(1)=1, 所以(x 1+x 2)2+(x 1+x 2)≥1, 因为x 1>0,x 2>0,所以x 1+x 2≥5-12成立. [解题技法]破解含双参不等式的证明的关键一是转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式;二是巧构造函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. [题组训练]已知函数f (x )=ln x +ax .(1)求f (x )的最小值;(2)若方程f (x )=a 有两个根x 1,x 2(x 1<x 2),求证:x 1+x 2>2a . 解:(1)因为f ′(x )=1x -a x 2=x -ax2(x >0),所以当a ≤0时,f (x )在(0,+∞)上单调递增,函数无最小值. 当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 函数f (x )在x =a 处取最小值f (a )=ln a +1.(2)证明:若函数y =f (x )的两个零点为x 1,x 2(x 1<x 2), 由(1)可得0<x 1<a <x 2.令g (x )=f (x )-f (2a -x )(0<x <a ),则g ′(x )=(x -a )⎣⎢⎡⎦⎥⎤1x 2-1(2a -x )2=-4a (x -a )2x 2(2a -x )2<0,所以g (x )在(0,a )上单调递减,g (x )>g (a )=0, 即f (x )>f (2a -x ).令x =x 1<a ,则f (x 1)>f (2a -x 1),所以f (x 2)=f (x 1)>f (2a -x 1), 由(1)可得f (x )在(a ,+∞)上单调递增,所以x 2>2a -x 1, 故x 1+x 2>2a .考点三 证明与数列有关的不等式[典例] 已知函数f (x )=ln(x +1)+ax +2.(1)若x >0时,f (x )>1恒成立,求a 的取值范围; (2)求证:ln(n +1)>13+15+17+…+12n +1(n ∈N *).[解] (1)由ln(x +1)+ax +2>1,得a >(x +2)-(x +2)ln(x +1). 令g (x )=(x +2)[1-ln(x +1)],则g ′(x )=1-ln(x +1)-x +2x +1=-ln(x +1)-1x +1.当x >0时,g ′(x )<0,所以g (x )在(0,+∞)上单调递减. 所以g (x )<g (0)=2,故a 的取值范围为[2,+∞). (2)证明:由(1)知ln(x +1)+2x +2>1(x >0), 所以ln(x +1)>xx +2.令x =1k(k >0),得ln ⎝⎛⎭⎫1k +1>1k1k +2, 即ln k +1k >12k +1.所以ln 21+ln 32+ln 43+…+ln n +1n >13+15+17+…+12n +1,即ln(n +1)>13+15+17+…+12n +1(n ∈N *).[解题技法]证明与数列有关的不等式的策略(1)证明此类问题时常根据已知的函数不等式,用关于正整数n 的不等式替代函数不等式中的自变量.通过多次求和达到证明的目的.此类问题一般至少有两问,已知的不等式常由第一问根据待证式的特征而得到.(2)已知函数式为指数不等式(或对数不等式),而待证不等式为与对数有关的不等式(或与指数有关的不等式),还要注意指、对数式的互化,如e x >x +1可化为ln(x +1)<x 等.[题组训练](2019·长春质检)已知函数f (x )=e x ,g (x )= ln(x +a )+b .(1)若函数f (x )与g (x )的图象在点(0,1)处有相同的切线,求a ,b 的值; (2)当b =0时,f (x )-g (x )>0恒成立,求整数a 的最大值;(3)求证:ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <ee -1(n ∈N *).解:(1)因为函数f (x )和g (x )的图象在点(0,1)处有相同的切线,所以f (0)=g (0)且f ′(0)=g ′(0),又因为f ′(x )=e x ,g ′(x )=1x +a,所以1=ln a +b,1=1a ,解得a =1,b =1.(2)现证明e x ≥x +1,设F (x )=e x -x -1,则F ′(x )=e x -1,当x ∈(0,+∞)时,F ′(x )>0,当x ∈(-∞,0)时,F ′(x )<0,所以F (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以F (x )min =F (0)=0,即F (x )≥0恒成立,即e x ≥x +1.同理可得ln(x +2)≤x +1,即e x >ln(x +2), 当a ≤2时,ln(x +a )≤ln(x +2)<e x , 所以当a ≤2时,f (x )-g (x )>0恒成立.当a ≥3时,e 0<ln a ,即e x -ln(x +a )>0不恒成立. 故整数a 的最大值为2.(3)证明:由(2)知e x >ln(x +2),令x =-n +1n ,则e -n +1n >ln ⎝ ⎛⎭⎪⎫-n +1n +2, 即e -n +1>⎣⎢⎡⎦⎥⎤ln ⎝⎛⎭⎪⎫-n +1n +2n =[ln(n +1)-ln n ]n,所以e 0+e -1+e -2+…+e -n +1>ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n ,又因为e 0+e -1+e -2+…+e -n +1=1-1e n1-1e <11-1e=ee -1,所以ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <ee -1.[课时跟踪检测]1.(2019·唐山模拟)已知f (x )=12x 2-a 2ln x ,a >0.(1)求函数f (x )的最小值;(2)当x >2a 时,证明:f (x )-f (2a )x -2a >32a .解:(1)函数f (x )的定义域为(0,+∞), f ′(x )=x -a 2x =(x +a )(x -a )x.当x ∈(0,a )时,f ′(x )<0,f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,f (x )单调递增.所以当x =a 时,f (x )取得极小值,也是最小值,且f (a )=12a 2-a 2ln a .(2)证明:由(1)知,f (x )在(2a ,+∞)上单调递增, 则所证不等式等价于f (x )-f (2a )-32a (x -2a )>0.设g (x )=f (x )-f (2a )-32a (x -2a ),则当x >2a 时,g ′(x )=f ′(x )-32a =x -a 2x -32a=(2x +a )(x -2a )2x>0,所以g (x )在(2a ,+∞)上单调递增, 当x >2a 时,g (x )>g (2a )=0, 即f (x )-f (2a )-32a (x -2a )>0,故f (x )-f (2a )x -2a>32a .2.(2018·黄冈模拟)已知函数f (x )=λln x -e -x (λ∈R). (1)若函数f (x )是单调函数,求λ的取值范围; (2)求证:当0<x 1<x 2时,e1-x 2-e1-x 1>1-x 2x 1.解:(1)函数f (x )的定义域为(0,+∞), ∵f (x )=λln x -e -x ,∴f ′(x )=λx +e -x =λ+x e-xx,∵函数f (x )是单调函数,∴f ′(x )≤0或f ′(x )≥0在(0,+∞)上恒成立,①当函数f (x )是单调递减函数时,f ′(x )≤0,∴λ+x e -xx ≤0,即λ+x e -x ≤0,λ≤-x e -x=-x ex .令φ(x )=-xe x ,则φ′(x )=x -1ex ,当0<x <1时,φ′(x )<0;当x >1时,φ′(x )>0,则φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴当x >0时,φ(x )min =φ(1)=-1e ,∴λ≤-1e.②当函数f (x )是单调递增函数时,f ′(x )≥0,∴λ+x e -xx ≥0,即λ+x e -x ≥0,λ≥-x e -x=-x ex ,由①得φ(x )=-xe x 在(0,1)上单调递减,在(1,+∞)上单调递增,又∵φ(0)=0,当x ―→+∞时,φ(x )<0,∴λ≥0.综上,λ的取值范围为⎝⎛⎦⎤-∞,-1e ∪[0,+∞). (2)证明:由(1)可知,当λ=-1e 时,f (x )=-1e ln x -e -x 在(0,+∞)上单调递减,∵0<x 1<x 2,∴f (x 1)>f (x 2),即-1e ln x 1-e -x 1>-1e ln x 2-e -x 2,∴e1-x 2-e1-x 1>ln x 1-ln x 2.要证e1-x 2-e1-x 1>1-x 2x 1,只需证ln x 1-ln x 2>1-x 2x 1,即证ln x 1x 2>1-x 2x 1,令t =x 1x 2,t ∈(0,1),则只需证ln t >1-1t,令h (t )=ln t +1t -1,则当0<t <1时,h ′(t )=t -1t2<0,∴h (t )在(0,1)上单调递减,又∵h (1)=0,∴h (t )>0,即ln t >1-1t ,故原不等式得证.3.(2019·贵阳模拟)已知函数f (x )=kx -ln x -1(k >0). (1)若函数f (x )有且只有一个零点,求实数k 的值; (2)求证:当n ∈N *时,1+12+13+…+1n>ln(n +1).解:(1)∵f (x )=kx -ln x -1,∴f ′(x )=k -1x =kx -1x (x >0,k >0);当0<x <1k 时,f ′(x )<0;当x >1k时,f ′(x )>0.∴f (x )在⎝⎛⎭⎫0,1k 上单调递减,在⎝⎛⎭⎫1k ,+∞上单调递增, ∴f (x )min =f ⎝⎛⎭⎫1k =ln k , ∵f (x )有且只有一个零点, ∴ln k =0,∴k =1.(2)证明:由(1)知x -ln x -1≥0,即x -1≥ln x ,当且仅当x =1时取等号, ∵n ∈N *,令x =n +1n ,得1n >ln n +1n,∴1+12+13+…+1n >ln 21+ln 32+…+ln n +1n =ln(n +1),故1+12+13+…+1n >ln(n +1).。
利用导数证明不等式考点与题型归纳
利用导数证明不等式考点与题型归纳例1]已知函数$f(x)=1-\frac{1}{x\ln x}$,$g(x)=\frac{1}{x}-bxe^{-x}$,若曲线$y=f(x)$与曲线$y=g(x)$的一个公共点是$A(1,1)$,且在点$A$处的切线互相垂直.(1)求$a$,$b$的值;(2)求证:当$x\geq 1$时,$f(x)+g(x)\geq\frac{1}{x\ln x}$.解](1)因为$f(x)=1-\frac{1}{x\ln x}$,所以$f'(x)=\frac{1}{x^2\ln x}$,$f'(1)=-1$。
因为$g(x)=\frac{1}{x}-bxe^{-x}$,所以$g'(x)=-\frac{1}{x^2}-be^{-x}+bxe^{-x}$,$g'(1)=1-a-b$。
因为曲线$y=f(x)$与曲线$y=g(x)$的一个公共点是$A(1,1)$,且在点$A$处的切线互相垂直,所以$g(1)=1$,且$f'(1)\cdot g'(1)=-1$,即$g(1)=a+1-b=1$,$g'(1)=-a-1-b=1$,解得$a=-1$,$b=-1$.2)证明:由(1)知,$g(x)=-\frac{1}{x}+x$,则$f(x)+g(x)\geq\frac{1}{x\ln x}\Leftrightarrow 1-\frac{1}{x\ln x}-\frac{1}{x}+x\geq 0$,即$\frac{1}{x\ln x}-\frac{1}{x}+x\geq 1$。
令$h(x)=1-\frac{1}{x\ln x}-\frac{1}{x}+x(x\geq 1)$,则$h'(x)=\frac{2}{x^3}-\frac{1}{x^2}+\frac{1}{x\ln^2 x}+1$,因为$x\geq 1$,所以$h'(x)>0$,所以$h(x)$在$[1,+\infty)$上单调递增,所以$h(x)\geq h(1)=1-\frac{1}{\ln e}-1+1=0$,即$\frac{1}{x\ln x}-\frac{1}{x}+x\geq 1$,所以当$x\geq 1$时,$f(x)+g(x)\geq\frac{1}{x\ln x}$.解题技法]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.例2](2019·长沙模拟)已知函数$f(x)=e^{x^2}-x\ln x$.求证:当$x>1$时,$f(x)<x e^x$.证明]要证$f(x)<xe^x$,只需证$e^x-e^{-x}<\frac{\lnx}{x}$.令$h(x)=\ln x+\frac{1}{x}(x>0)$,则$h'(x)=\frac{1}{x^2}-\frac{1}{x^2}=0$,$h''(x)=\frac{2}{x^3}>0$,所以$h(x)$在$(0,+\infty)$上下凸,所以$h(x)\geq h(1)=1$,即$\lnx+\frac{1}{x}\geq 1$,即$\frac{\ln x}{x}\geq 1-\frac{1}{x}$.再令$\varphi(x)=e^x-e^{-x}$,则$\varphi'(x)=e^x+e^{-x}>0$,所以$\varphi(x)$在$(0,+\infty)$上单调递增,所以$\varphi(x)<\varphi(1)=e-e^{-1}$.因为$\frac{\ln x}{x}\geq 1-\frac{1}{x}>1-e^{-1}$,所以$\varphi(x)1$时,$f(x)<e^{x^2}-x\ln x<xe^x$.3.已知不等式 $\frac{e^{1-x_2}-e^{1-x_1}}{\ln{x_1}-\ln{x_2}}>\frac{1}{x_2}$,证明 $\ln{x_1}-\ln{x_2}>1-\frac{1}{e^{1-x_2}-e^{1-x_1}}$。
利用导数证明不等式考点与题型归纳
利用导数证明不等式考点与题型归纳考点一单变量不等式的证明方法一移项作差构造法证明不等式ln x ae 1[例1]已知函数f(x)= 1 —~x,g(x)= 'e x + X— bx(e为自然对数的底数),若曲线y= f(x) 与曲线y= g(x)的一个公共点是 A(1,1),且在点A处的切线互相垂直.(1)求a, b的值;2(2)求证:当 x> 1 时,f(x) + g(x)> -xIn x[解]⑴因为f(x)= 1 —-^,In x— 1所以f (x)= 7 , f' (1) =— 1.ae 1 ae 1因为 g(x)= e x + x— bx,所以 g (x)= — e x—x^—b.因为曲线y= f(x)与曲线y= g(x)的一个公共点是 A(1,1),且在点A处的切线互相垂直,所以 g(1) = 1,且 f' (1) g- (1) = — 1,即 g(1) = a + 1— b= 1, g' (1) = — a — 1 — b= 1,解得 a=— 1, b=— 1.e 1(2)证明:由(1)知,g(x)= —孑+ x + x,小2^ A In x e 1贝 y f(x)+g(x) > x?1—T—e x— x+X》0.令 h(x) = 1 —皿—€—1+ x(x> 1),x e x则 h'(x)=—+e+x2+1=少+當+1.In x e因为 x> 1,所以 h' (x)=卡+1>o,所以h(x)在[1 ,+s)上单调递增,所以h(x)>h(1) = 0,即 1-也-e—丄+x> o,x e xx2 所以当 x> 1 时,f(x) + g(x)>x.[解题技法]待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.方法二隔离审查分析法证明不等式1 [例2] (2019长沙模拟)已知函数f(x)= ex2- xln x•求证:当x> 0时,f(x)v xe x+ -.1 1 1[证明]要证 f(x)v xe x+-,只需证 ex — In x v e x+ ,即 ex - e x< In x+ .ex —e ex ex1令 h(x) = In x +—(x>0),贝U h' (x)= ex易知h(x)在0, e上单调递减,在e,上单调递增,则h(x)min = h 1 = 0,所以In1x+ex》°.再令0(x)= ex— e x,贝U O' (x) = e— e x,易知O(x)在 (0,1)上单调递增,在(1,+^ )上单调递减,则O(X)max= 0(1) = 0,所以ex —e x< 0.x 1因为h(x)与«x)不同时为0,所以ex — e x< In x+ £,故原不等式成立.[解题技法]若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个都便于求导的函数,从而找到可以传递的中间量,达到证明的目标.方法三、放缩法证明不等式[例 3]已知函数 f(x)= ax— In x— 1.(1)若f(x)》0恒成立,求a的最小值;e x(2)求证:—+ x+ In x— 1 > 0;xx[解](1)f(x) >0 等价于 a >(3)已知k(e x + x2)> x— xIn x恒成立,求k的取值范围. In x+ 1x1 — Inx所以k》- e- x T + x人In x+1…, In x令 g(x) = X~(x>0),贝V g (x)=—立,所以当 x€ (0,1)时,g' (x)> 0,当 x€ (1 ,+s)时,g' (x)v 0,则g(x)在(0,1)上单调递增,在(1 ,+s)上单调递减,所以g(x)max= g(1) = 1,则a > 1, 所以a的最小值为1.⑵证明:当a= 1时,由(1)得x> In x+ 1,即 t> In t + 1(t> 0).e—x令~x~ = t,则—x— In x= In t,e—x所以——> —x— In x+ 1,xe-x即一+ x+ In x — 1 > 0. x—xe 、⑶因为k(e-x+ x2) >x— xIn x恒成立,即 k—— + x > 1 — In x恒成立,xe- x二 + x + In x— 1+1,e—x由⑵知■— + x+ In x— 1> 0恒成立,入—xe+ x+ In x— 1x所以一二 ---------------- + K 1,所以k> 1.e—故k的取值范围为[1 , + g).[解题技法]导数的综合应用题中,最常见就是e x和In x与其他代数式结合的难题,对于这类问题, 可以先对e x和In x进行放缩,使问题简化,便于化简或判断导数的正负•常见的放缩公式如下:(1)e x> 1 + x,当且仅当x= 0时取等号;(2)e x>ex,当且仅当x = 1时取等号;1(3)当x>0时,e x> 1 + x+ ?x2,当且仅当x= 0时取等号;(6)当 x> 1 时, 2 x— 1x+ 1 < In x<x— 1x,当且仅当x= 1时取等号.X1 +⑷当x>0时,e x>討+ 1,当且仅当x= 0时取等号;X— 1⑸一 < In x< x — K X2— x,当且仅当 x= 1时取等号;X考点二双变量不等式的证明[典例]已知函数 f(x)= In x— 2ax2+ x, a € R.(1)当a = 0时,求函数f(x)的图象在(1, f(1))处的切线方程;⑵若 a =— 2,正实数 X1, x2 满足 f(X1)+ f(X2)+ X1x2= 0,求证:1 [解](1)当 a= 0 时,f(x)= In x+ x,则 f(1) = 1,所以切点为(1,1),又因为 f ' (x) = - +入1,所以切线斜率k= f (1) = 2,故切线方程为 y— 1 = 2(x— 1),即卩2x— y— 1 = 0.(2)证明:当 a=— 2 时,f(x)= In x+ x2 + x(x> 0).由 f(X1 ) + f(X2) + X1X2= 0,即 In X1 + x1+ X1 + In X2 + x2+ x2 + X1X2 = 0,从而(X1+ X2)2 +(X1+ X2) = X1X2 — In(X1X2),令 t= X1X2,设©(t) = t — In t(t> 0),则© (t)= 1 —1 =一,易知©(t)在区间(0,1)上单调递减,在区间(1,+^)上单调递增,所以©(t) > ©(1) = 1,所以(X1+ X2)2 + (X1+ X2) > 1 ,V5 — 1 因为 X1> 0, X2> 0,所以 X1+ X2> —2 —成立.[解题技法]破解含双参不等式的证明的关键一是转化,即由已知条件入手,寻找双参所满足的关系式,并把含双参的不等式转化为含单参的不等式;2 4a x — a 石 2v 0,二是巧构造函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. [题组训练]a已知函数f(x) = In x+ .x(1)求f(x)的最小值;⑵若方程f(x)= a 有两个根x i , X 2(x i v x 2),求证:x i + X 2> 2a.1 a x — a解:(1)因为 f' (x) = x — x 2= x^(x> 0),所以当a w 0时,f(x)在(0 ,+R )上单调递增,函数无最小值.当a > 0时,f(x)在(0, a)上单调递减,在(a ,+^)上单调递增.函数f(x)在x= a 处取最小值f(a)= In a+ 1.⑵证明:若函数y= f(x)的两个零点为X 1, x 2(X 1V x 2),由(1)可得 O v X 1V a v X 2.令 g(x) = f(x) — f(2a — x)(0 v x v a),丄 1则 g ' (x)= (x — a) X 2— 2a — x 2 所以g(x)在(0, a)上单调递减,g(x)>g(a) = 0,即 f(x) > f(2a — x).令 x = X 1 v a,贝V f(x 1) >f(2a — X 1),所以 f(x 2) = f(x 1) >f(2a — X 1),由(1)可得f(x)在(a, + g )上单调递增,所以X 2>2a — X 1,故 X 1 + X 2> 2a. 考点三证明与数列有关的不等式a [典例]已知函数f(x)= In(x+ 1) + 二..X. I 厶(1)若x>0时,f(x)> 1恒成立,求a 的取值范围;1 1 1 1 *⑵求证:ln(n+ 1)>3+ 5171…+ 2^+1 (n C N ).a[解](1)由 In(x+ 1)+ > 1,得x+ 2a> (x+ 2) — (x+ 2)1 n(x+ 1).令 g(x) = (x+ 2)[1 — In(x+ 1)],x+ 2 1则 g ' (x)= 1 — In (x+ 1) —=— In (x+ 1)—-x+ 1 x + 1 当x>0时,g' (x) v 0,所以g(x)在(0,+g)上单调递减.所以g(x)v g(0) = 2,故a的取值范围为[2 , + ).2(2)证明:由(1)知 In(x+ 1) + > 1(x> 0),x+ 2所以 In(x+ 1) > xx+ 2令 x = k(k> 0),得 In k+ 1>k+2k+ 1 即In1 > 一2 3所以 In” + In^+ In 4n + 11 1 1 13+…+ In => 1+1+尹…+ 乔,即 ln(n + 1)>3 +1 + 7+・・・+-^(n € N *).3 5 72n + 1[解题技法]证明与数列有关的不等式的策略(1)证明此类问题时常根据已知的函数不等式,用关于正整数 n 的不等式替代函数不等式中的自变量.通过多次求和达到证明的目的. 此类问题一般至少有两问,已知的不等式常由第一问根据待证式的特征而得到.(2)已知函数式为指数不等式(或对数不等式),而待证不等式为与对数有关的不等式 (或与指数有关的不等式),还要注意指、对数式的互化,如e x > x+ 1可化为In(x+ 1)v x 等.[题组训练](2019 长春质检)已知函数 f(x)= e x ,g(x)= In(x+ a) + b. (1) 若函数f(x)与 g(x)的图象在点(0,1)处有相同的切线,求a ,b 的值;(2)当b = 0时,f(x) — g(x) > 0恒成立,求整数 a 的最大值;(3) 求证:In 2 + (In 3 - In2)2+ (In 4 - In 3)3+ — + [ln(n + 1) — In n]n v -^(n € N *). e i 解:⑴因为函数f(x)和g(x)的图象在点(0,1)处有相同的切线,所以 f(0) = g(0)且f' (0)=g' (0),ii又因为 f' (x)= e x , g' (x)= ,所以 1 = In a+ b,1 = ;,x+ aa解得 a= 1, b= 1.⑵现证明 e x > x+ 1,设 F(x)= e x - x-1,则 F ' (x)= e x - 1,当 x € (0, + )时,F' (x) > 0,当x € (—a, 0)时,F ' (x)v 0,所以F(x)在(0 ,+s )上单调递增,在(一a, 0)上单调 递减,所以F(x)min = F(0) = 0,即F(x)> 0恒成立,即 e x>x+ 1.同理可得 In(x+ 2)w x+ 1,即 e x> In(x+ 2),当 a w 2 时,ln(x + a) w ln(x+ 2) v e x,所以当a w 2时,f(x) — g(x) > 0恒成立.当 a >3 时,e0v In a,即 e x- In(x+ a)> 0 不恒成立.故整数a的最大值为2.—n+ 1⑶证明:由⑵知e x>ln(x+2),令x= —,—n+1一n+ 1则e~~^~ >ln一n—+2,——n -k 1即 e-n + 1> In ----------- + 2n= [ln(n + 1) - In n]n,n所以 e°+ e-1 + e-2+ …+ e一n+ 1>In 2+ (In 3 — In 2)2+ (In 4— In 3) 3+ …+ [ln(n+ 1) — Innn],11—』1 e 又因为 e0 + e-1+ e-2+ ••• + e-n+1= 1 v —= ,1-;1-1 e-1e ee 所以 In 2 + (In 3 - In 2) 2+ (In 4 — In 3)3+ …+ [ln(n+ 1)-In n]n v e- 1[课时跟踪检测]11. (2019 唐山模拟)已知 f(x)= qx2— a2ln x, a>0.⑴求函数f(x)的最小值;f x — f 2a 3⑵当x>2a时,证明:>尹x— 2a 2解:⑴函数f(x)的定义域为(0 ,+^),a2 x+ a x— a f (x) = x — x=当 x € (0, a)时,f' (x)v 0, f(x)单调递减;当 x € (a ,+s)时,f' (x)> 0, f(x)单调递增.1所以当x= a时,f(x)取得极小值,也是最小值,且f(a) = ~a2— a2ln a.(2)证明:由⑴知,f(x)在(2a, + )上单调递增,3则所证不等式等价于 f(x) — f(2a) — ^a(x— 2a) > 0.“ 3设 g(x) = f(x) — f(2a) — 2a(x— 2a),则当x>2a时,, , 3 a2 32x+ a x— 2a2x > 0,g (x) = f (x) — 2a = x—— ^a所以g(x)在(2a,+s)上单调递增,当 x>2a 时,g(x)>g(2a)= 0,3即 f(x) — f(2a) — ?a(x— 2a)>0,f x — f 2a 3故> "a.x— 2a 22.(2018黄冈模拟)已知函数f(x)=亦x— e—x(入€ R). (1)若函数f(x)是单调函数,求入的取值范围;x2 ⑵求证:当 0v X1 v x2 时,e1 — x2 — e1 — X1> 1 —:.1解:⑴函数f(x)的定义域为(0 ,+8 ),••f(x)= An x— e—x,+ xe— x~X~,•••函数f(x)是单调函数,••• f' (x)w 0或f' (x) > 0在(0 ,+s)上恒成立,+ xe x①当函数f(x)是单调递减函数时,f' (x)< 0, •------------------- < 0,即X+ xe—x< 0,疋xe—x Xx X一 1令y(x)=—孑,贝y y (x)=-e^,当 0 v x v 1 时,y (x) v 0;当 x> 1 时,y (x) >0,则y x)在(0,1)上单调递减,在(1 ,+8 )上单调递增,•••当x> 0时,y x)min=y i) =x+ xe②当函数f(x)是单调递增函数时,f' (x)>0,•••------------------- >0,即入 + xe—x》0, xe—xx由①得y(x)= —吞在(o,1)上单调递减,在(1, + 8)上单调递增,又■ y(0) = 0,当 x综上,入的取值范围为1——8(2)证明:由(1)可知,当f(x)= — ein X — e— x在(0, + 8 )上单调递减,X1 X2 ln X2>1 —门■-0 v x i v X2,1 1•••f(X1)>f(x2),即一:ln X1 — e— X1 >— ?ln X2 — e— X2,•'el — X2— el — x i > In x i — In X2.X2 X2要证e1—X2—e1 — 11>1—X1,只需证In X1—ln X2>1—门即证11 1令 t= X11,t€ (0,1),则只需证 In t> 1 —-,• - f(x)min ==In k,1t —12 13令 h(t) = In t+ f — 1,则当 0v t v 1 时,h'⑴v 。
利用导数证明不等式的九大题型
利用导数证明不等式的九大题型
题型一:构造函数法
把不等式的证明转化为利用导数研究函数的单调性或求最值的问题,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是利用导数证明不等式的关键。
这四道题比较简单,证明过程略.概括而言,这四道题证明的过程分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论.【启示】证明分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。
题型二:通过对函数的变形,利用分析法,证明不等式
【启示】解答第一问用的是分离参数法,解答第二问用的是分析法、构造函数,对函数的变形能力要求较高,大家应记住下面的变形:
题型三:求最值解决任意、存在性变量问题
解决此类问题,关键是将问题转化为求函数的最值问题,常见的有下面四种形式:
题型四:分拆成两个函数研究
【注意】(2)如果按题型一的方法构造函数求导,会发现做不下去,只好半途而废,所以我们在做题时需要及时调整思路,改变思考方向.
【启示】掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助,这八个函数分别为
要求会画它们的图像,以后见到这种类型的函数,就能想到它们的性质.
题型五:设而不求
当函数的极值点(最值点)不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明.。
高三数学一轮复习3-专题研究1 利用导数证明不等式
数值域相应的端点值表述]
5.设函数 f(x)=e2x2x+1,g(x)=ee2xx,对任意 x1,x2∈(0,+∞),不等式gkx1 ≤kf+x21 恒成立,则正数 k 的取值范围是________.
解析 因为对任意x1,x2∈(0,+∞), 不等式gkx1≤kf+x21 恒成立,所以k+k 1≥gfxx21mmianx. 因为 g(x)=ee2xx, 所以g′(x)=e2-x(1-x).
当 x∈(1e,+∞)时,f′(x)>0,f(x)单调递增. ①当 0<t<1e<t+2,即 0<t<1e时,f(x)min=f(1e)=-1e; ②当1e≤t<t+2,即 t≥1e时,f(x)在[t,t+2]上单调递增,f(x)min =f(t)=tlnt. 所以 f(x)min=- tln1te,,t0≥<t1e<.1e,
∴当 x>1 时,h′(x)<0,当 0<x<1 时,h′(x)>0, ∴h(x)在(0,1]上是增函数,在[1,+∞)上是减函数, 当 x∈[12,2]时,h(x)最大值为 h(1)=1, ∴m≥1,即 m∈[1,+∞). 【答案】 (1)f(x)有极小值 f(3)=1+ln3,没有极大值 (2)[1,+∞)
∵f′(x)=-x32+1x=x-x2 3,f′(3)=0, ∴当 x>3 时,f′(x)>0,f(x)是增函数, 当 0<x<3 时,f′(x)<0,f(x)是减函数. ∴f(x)有极小值 f(3)=1+ln3,没有极大值.
(2)g(x)=x3+x2-x,g′(x)=3x2+2x-1. 当 x∈[12,2]时,g′(x)>0, ∴g(x)在[12,2]上是单调递增函数,g(2)=10 最大. 对于任意的 s,t∈[12,2],f(s)≥110g(t)恒成立,即对任意 x∈[12, 2],f(x)=mx +lnx≥1 恒成立,∴m≥x-xlnx. 令 h(x)=x-xlnx,则 h′(x)=1-lnx-1=-lnx.
利用导数证明不等式-高考数学复习
不妨设x1≥x2,由于a≤-2, 由(1)可得f(x)在(0,+∞)上单调递减. 所以|f(x1)-f(x2)|≥4|x1-x2|等价于 f(x2)-f(x1)≥4(x1-x2), 即f(x2)+4x2≥f(x1)+4x1. 令g(x)=f(x)+4x, 则 g′(x)=a+x 1+2ax+4=2ax2+4xx+a+1.
则g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而g(x)≤g(1) =0,当且仅当x=1时,等号成立. 故f(x)>g(x),即ex+xln x+x2-2x>0.
题型三 双变量不等式的证明
例3 已知函数f(x)=(a+1)ln x+ax2+1. (1)讨论函数f(x)的单调性;
f(x)的定义域为(0,+∞), f′(x)=a+x 1+2ax=2ax2+x a+1. 当a≥0时,f′(x)>0, 故f(x)在(0,+∞)上单调递增; 当a≤-1时,f′(x)<0, 故f(x)在(0,+∞)上单调递减;
利用导数证明不等式
课标要求
导数中的不等式证明是高考的常考题型,常与函数的性质、函 数的零点与极值、数列等相结合,虽然题目难度较大,但是解 题方法多种多样,如构造函数法、放缩法等,针对不同的题目, 灵活采用不同的解题方法,可以达到事半功倍的效果.
题型一 将不等式转化为函数的最值问题
例1 (12分)(2023·新高考全国Ⅰ)已知函数f(x)=a(ex+a)-x. (1)讨论f(x)的单调性;[切入点:求导,讨论a的正负] (2)证明:当a>0时,f(x)>2ln a+3 .
a+23→求
g(a)最小值
方法二:证明不等式 ex≥x+1→aex=ex+ln a≥x+ln a+1→f(x)≥a2+ln a+
文科数学高考二轮复习专题篇3用导数证明函数不等式的四种常用方法
用导数证明函数不等式的四种常用方法本文将介绍用导数证明函数不等式的四种常用方法.例 1证明不等式:x ln( x 1()x0) .证明设 f ( x)x ln( x1)( x0),可得欲证结论即 f ( x) f (0)( x0) ,因此只要证明函数 f ( x) 是增函数.而这用导数易证:f ( x)110( x 0)x1因此欲证结论建立 .注欲证函数不等式 f (x)g ( x)( x a)( 或f ( x)g (x)( x a) ),只需证明f (x) g( x) 0( x a) (或 f ( x) g( x) 0( x a) ).设 h( x) f (x) g( x)( x a) (或 h( x) f ( x)g(x)( x a) ),即证 h( x) 0( x a)(或h( x) 0( x a) ).若 h(a)0 ,则即证 h( x)h(a)( x a) (或 h(x) h(a)( x a) ).接下来,若能证得函数h( x) 是增函数即可,这常常用导数简单解决.例 2证明不等式:x ln( x 1) .证明设 f ( x)x ln( x1)( x1) ,可得欲证结论即 f ( x)0( x1) .明显,此题不可以用例1的单一性法来证,但能够这样证明:即证f (x) x ln( x 1)( x1) 的最小值是0,而这用导数易证:f ( x) 11x( x1)x 1x1因此函数 f ( x) 在 ( 1,0],[0,) 上分别是减函数、增函数,从而可得f (x)min f ( 1) 0( x1)因此欲证结论建立.注欲证函数不等式 f (x) ( ) g( x)( x I , I是区间),只需证明f (x) g( x) ( )0( x I ) .设 h( x) f (x)g( x)( x I ),即证 h(x) ()0( x I ) ,也即证 h( x)min()0( x I ) (若h( x)min不存在,则须求函数h(x)的下确界 ) ,而这用导数常常简单解决 .例 3(2014 年高考课标全国卷I 理科第21 题 )设函数f (x)ae x ln x be x1,曲线xy f (x) 在点(1, f (1))处的切线为y e(x1) 2 .(1)求a, b;(2)证明:f (x)1.解 (1) f ( x)ae x ln x a e x b2e x 1 b e x 1.x x x题设即 f (1) 2, f(1) e ,可求得 a1, b 2 .(2)即证x ln x xe x2( x0)(请注意1,而这用导数可证 1 ):e e设 g( x)x ln x( x0),得 g( x)min g1 1 .e e设h( x)xe x2( x0) ,得 h( x) max h(1)1.e e注i) 欲证函数不等式 f ( x)g( x)( x I , I是区间),只要证明f (x) min g(x)max ( x I ) ,而这用导数常常能够解决.欲证函数不等式 f ( x)g( x)( x I , I是区间 ),只要证明f ( x)min g ( x)max( x I) ,或证明 f ( x) min g ( x) max ( x I )且两个最值点不相等,而这用导数常常也能够解决.ii) 例 3第 (2)问与《 2009年曲靖一中高考冲刺卷理科数学(一)》压轴题第 (3)问完整同样,这道压轴题 (即第 22题 )是:已知函数 f (x)xln x, g(x)x2ax 3 .(1)求函数f (x)在[t ,t2]( t0) 上的最小值;(2)对全部x (0,),2 f (x)g( x) 恒建立,务实数 a 的取值范围;(3)证明:对全部x(0,) ,都有ln x12建立.e x ex例 4(2013 年高考北京卷理科第18 题 )设 L 为曲线 C:y=ln x在点 (1, 0)处的切线.x(1)求 L 的方程;(2)证明:除切点(1, 0)以外,曲线 C 在直线 L 的下方.解 (1)( 过程略 )L 的方程为 y= x- 1.(2)即证ln x(当且仅当x1时取等号).x 1xx2-1+ ln x设 g ( x)ln x( x 0) . x 1,得 g′(x)=2x x当 0< x<1 时,x2-1<0 ,ln x<0,因此 g′(x)<0 ,得 g(x)单一递减;当 x>1 时,x2- 1>0 ,ln x>0,因此 g′(x)>0 ,得 g(x)单一递加.因此 g( x)min g(1)0 ,得欲证结论建立.(2)的另解即证 ln x x1(当且仅当x 1 时取等号),也即证x2x ln x 0 (当且仅当 x 1 时取等号).x设 g( x)x2x ln x ,可得g ( x)2x 1( x 1)( x 0) .x从而可得 g (x)min g (1)0 ,因此欲证结论建立.(2)的再解即证 ln x x 1 (当且仅当x 1 时取等号),也即证ln x x2x (当且仅当xx 1 时取等号).如图 1 所示,可求得曲线y ln x 与 y x2x(x 0) 在公共点(1,0)处的切线是 y x 1,因此接下来只要证明ln x x 1, x 1 x2x( x0) (均当且仅当x 1时取等号)前者用导数易证,后者移项配方后明显建立.因此欲证结论建立 .图 1例 5(2013 年高考新课标全国卷II 理 21(2) 的等价问题 )求证:e x ln( x 2) .剖析用前三种方法都不易解决本问题,下边介绍用导数证明函数不等式的第四种常用方法 .设f ()e x (x2),(x) ln(x2)(x2),我们想方法找寻出一个函数h( x) ,使x g得 f ( x)h( x)g( x)( x2)且两个等号不是同时取到 .自然,函数 h(x) 越简短越好.但 h( x) 不行能是常数(由于函数 g (x)ln( x2)( x2) 的值域是R),因此我们可试试h( x) 可否为一次函数,自然应该考虑切线.如图 2 所示,可求得函数 f (x)e x ( x2) 在点 A(0,1) 处的切线是y x1,从而可得f (x)h( x)( x2) ;还可求得函数g( x)ln( x 2)( x2) 在点 B(1, 0) 处的切线也是y x1,从而可得 h( x)g (x)( x2) .图 2从而可用导数证得 f ( x)h(x)g(x)( x2)且两个等号不是同时取到,因此欲证结论建立 .自然,用例 2的方法,也可给出该题的证明(设而不求 ):设 f ( x)e x ln( x2) ,得f(x) e x1(x2) .x 2可得 f (x) 是增函数(两个增函数之和是增函数),且f 120, f(1) e 10,所以函数 g (x) 存在唯一的零点 x0(得e2(x02) e x01, x02e x0 , e x01),再由均值不等式可得x02f ( x) min f ( x0 )e x0ln( x02)1ln e x0x01x02 2 0x022(由于可证x01)因此欲证结论建立 .例 6 求证:e x ln x 2 .证法 1( 例 5的证法 ) 用导数可证得e x x 1 (当且仅当x0时取等号),x 1 ln x 2 (当且仅当 x 1 时取等号),因此欲证结论建立.证法 2(例 2 的证法 )设f ( x)e x ln x ,得f( x)e x1( x0) .x可得 f(x) 是增函数且 g 11110 ,因此函数 g( x) 存在独一2e0, g (0)21.5的零点 x0(得e x01, x0 e x0),再由均值不等式可得x0f ( x)min f (x0 )e x0ln x01ln e x01x0 2 (由于可证 x01)x0x0因此欲证结论建立 .注欲证函数不等式 f ( x)g( x)( x I , I 是区间),只要找寻一个函数h( x) (能够考虑曲线y h( x)是函数y f ( x), y g( x)的公切线 ) 使得f ( x)h( x)g ( x)( x且两个等2)号不是同时取到,而这用导数常常简单解决.下边再给出例5和例 6的联系.关于两个常用不等式e x x1,ln x x 1,笔者发现y e x与 y ln x 互为反函数,y x1与 y x1也互为反函数,从而获得了本文的几个结论.定理已知 f (x), g( x) 都是单一函数,它们的反函数分别是 f 1(x), g1 (x) .(1)若f (x)是增函数, f (s)g(s) 恒建立,则 f1(t)g 1 (t ) 恒建立;(2)若f (x)是减函数, f (s)g(s)(3)若f (x)是增函数, f (s)g(s)(4)若f (x)是减函数, f (s)g(s)恒建立,则 f 1(t)g1(t ) 恒建立;恒建立,则f1(t)g1(t ) 恒建立;恒建立,则f1(t)g1(t ) 恒建立.证明下边只证明 (1),(4) ;(2),(3) 同理可证 .(1)设不等式 f (s) g(s) 中s的取值范围是A,当s A 时, f (s), g(s)的取值范围分别是f A , g A,得不等式 f 1(t ) g 1(t)中t的取值范围是 f A g A,所以t f A g A , x0A, t g( x0 ), x0g 1 (t ) .由 f ( s) g (s) 恒建立,得g( x0 ) f (x0 ) .由 f (x)是增函数,得 f 1 ( x)也是增函数,所以f 1 (g ( x0 )) f 1 ( f ( x0 )) x0g 1 ( g( x0 )) ,即 f 1(t)g 1 (t ) .得t f A g A, f 1(t ) g 1 (t ) ,即欲证结论建立.(4)设不等式 f (s) g(s) 中s的取值范围是A,当s A 时, f (s), g(s)的取值范围分别是f A , g A,得不等式 f 1(t ) g 1(t)中t的取值范围是 f A g A,所以t f A g A , x0A, t g( x0 ), x0g 1 (t ) .由 f ( s) g (s) 恒建立,得g( x0 ) f (x0 ) .由 f (x)是减函数,得 f 1( x)也是减函数,所以f 1 (g ( x0 )) f 1 ( f ( x0 )) x0g 1 ( g( x0 )) ,即 f 1(t)g 1 (t ) .得t f A g A, f 1(t ) g 1 (t ) ,即欲证结论建立.推论 1已知 f (x), g (x)都是单一函数,它们的反函数分别是 f 1 (x), g 1 (x) .(1)若f ( x), g(x)都是增函数,则 f ( s)g ( s)(2)若f ( x), g(x)都是减函数,则 f ( s)g ( s)恒建立f1 (t )g1(t) 恒建立;恒建立f1 (t )g1(t) 恒建立.证明(1) 由定理 (1) 知“”建立 .下证“”:因为 g(x) 是增函数, g 1 (t ) f 1 (t) 恒成立, g 1 (x), f1 (x) 的反函数分别是g( x), f ( x) ,因此由“”的结论得 g (s) f ( s) 恒建立,即 f (s)g(s) 恒建立.(2)同 (1)可证 .,, ”后,获得的结论均建立.推论 2把定理和推论 1 中的“”分别改为“(证法也是把相应结论中的“,”分别改为“, ”.)在例 5 与例 6 这一对姊妹结论“e x ln( x2),ln x e x 2 ”中 y e x与 y ln x 互为反函数, y ln( x2) 与 y e x 2也互为反函数,因此推论 2 中的结论“若 f ( x), g ( x)都是增函数,则 f(s)g ( s) 恒建立f1(t )g 1 (t) 恒建立”给出了它们的联系.。
专题3.4利用导数证明不等式(2021年高考数学一轮复习专题)
专题利用导数证明不等式一、题型全归纳题型一作差法构造函数证明不等式【题型要点】(1)欲证函数不等式f(x)>g(x)(x>a),只需证明f(x)-g(x)>0(x>a),设h(x)=f(x)-g(x),即证h(x)>0(x>a).若h(a)=0,h(x)>h(a)(x>a).接下来往往用导数证得函数h(x)是增函数即可.(2)欲证函数不等式f(x)>g(x)(x∈I,I是区间),只需证明f(x)-g(x)>0(x∈I).设h(x)=f(x)-g(x)(x∈I),即证h(x)>0(x∈I),也即证h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决.【例1】(2020·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x.【解析】(1)由f(x)=e x-ax,得f′(x)=e x-a.因为f′(0)=1-a=-1,所以a=2,所以f(x)=e x-2x,f′(x)=e x-2.令f′(x)=0,得x=ln 2,当x<ln 2时,f′(x)<0,f(x)在(-∞,ln 2)上单调递减;当x>ln 2时,f′(x)>0,f(x)在(ln 2,+∞)上单调递增.所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-2ln 2,f(x)无极大值.(2)证明:令g(x)=e x-x2,则g′(x)=e x-2x.由(1)得g′(x)=f(x)≥f(ln 2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x2<e x.【例2】已知函数f(x)=ax+x ln x在x=e-2(e为自然对数的底数)处取得极小值.(1)求实数a的值;(2)当x>1时,求证:f(x)>3(x-1).【解析】(1)因为f(x)定义域为(0,+∞),f(x)=ax+x ln x,所以f′(x)=a+ln x+1,因为函数f(x)在x=e-2处取得极小值,所以f′(e-2)=0,即a+ln e-2+1=0,所以a =1,所以f ′(x )=ln x +2.当f ′(x )>0时,x >e -2;当f ′(x )<0时,0<x <e -2, 所以f (x )在(0,e -2)上单调递减,在(e -2,+∞)上单调递增, 所以f (x )在x =e-2处取得极小值,符合题意,所以a =1.(2)证明:由(1)知a =1,所以f (x )=x +x ln x .令g (x )=f (x )-3(x -1),即g (x )=x ln x -2x +3(x >0). g ′(x )=ln x -1,由g ′(x )=0,得x =e.由g ′(x )>0,得x >e ;由g ′(x )<0,得0<x <e. 所以g (x )在(0,e)上单调递减,在(e ,+∞)上单调递增, 所以g (x )在(1,+∞)上的最小值为g (e)=3-e >0.于是在(1,+∞)上,都有g (x )≥g (e)>0,所以f (x )>3(x -1).题型二 拆分法构造函数证明不等式【题型要点】(1)在证明不等式中,若无法转化为一个函数的最值问题,则可以考虑转化为两个函数的最值问题.(2)在证明过程中,等价转化是关键,此处f (x )min >g (x )max 恒成立.从而f (x )>g (x ),但此处f (x )与g (x )取到最值的条件不是同一个“x 的值”.【例1】设函数f (x )=ax 2-(x +1)ln x ,曲线y =f (x )在点(1,f (1))处切线的斜率为0. (1)求a 的值;(2)求证:当0<x ≤2时,f (x )>12x .【解】(1)f ′(x )=2ax -ln x -1-1x ,由题意,可得f ′(1)=2a -2=0,所以a =1.(2)证明:由(1)得f (x )=x 2-(x +1)ln x ,要证当0<x ≤2时,f (x )>12x ,只需证当0<x ≤2时,x -ln x x -ln x >12,即x -ln x >ln x x +12.令g (x )=x -ln x ,h (x )=ln x x +12,令g ′(x )=1-1x=0,得x =1,易知g (x )在(0,1)上单调递减,在(1,2]上单调递增,故当0<x ≤2时,g (x )min =g (1)=1.因为h ′(x )=1-ln xx 2,当0<x ≤2时,h ′(x )>0,所以h (x )在(0,2]上单调递增,故当0<x ≤2时,h (x )max =h (2)=1+ln 22<1,即h (x )max <g (x )min .故当0<x ≤2时,h (x )<g (x ),即当0<x ≤2时,f (x )>12x . 【例2】已知函数f (x )=eln x -ax (a ∈R ).(1)讨论f (x )的单调性;(2)当a =e 时,求证:xf (x )-e x +2e x ≤0. 【解析】(1)f ′(x )=ex-a (x >0),∈若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;∈若a >0,令f ′(x )=0,得x =e a ,则当0<x <e a 时,f ′(x )>0;当x >ea时,f ′(x )<0,故f (x )在⎪⎭⎫ ⎝⎛a e ,0上单调递增,在⎪⎭⎫⎝⎛+∞,a e 上单调递减. (2)证明:因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max =f (1)=-e. 记g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx-2e ,即xf (x )-e x +2e x ≤0.题型三 换元法构造函数证明不等式【题型要点】换元法构造函数证明不等式的基本思路是直接消掉参数a ,再结合所证问题,巧妙引入变量c =x 1x 2,从而构造相应的函数.其解题要点为:【例1】已知函数f (x )=ln x -12ax 2+x ,a ∈R .(1)当a =0时,求函数f (x )的图象在(1,f (1))处的切线方程;(2)若a =-2,正实数x 1,x 2满足f (x 1)+f (x 2)+x 1x 2=0,求证:x 1+x 2≥5-12. 【解】(1)当a =0时,f (x )=ln x +x ,则f (1)=1,所以切点(1,1),又因为f ′(x )=1x +1,所以切线斜率k =f ′(1)=2,故切线方程为y -1=2(x -1),即2x -y -1=0.(2)证明:当a =-2时,f (x )=ln x +x 2+x (x >0).由f (x 1)+f (x 2)+x 1x 2=0,得ln x 1+x 21+x 1+ln x 2+x 22+x 2+x 1x 2=0,从而(x 1+x 2)2+(x 1+x 2)=x 1x 2-ln(x 1x 2),令t =x 1x 2(t >0),令φ(t )=t -ln t ,得φ′(t )=1-1t =t -1t,易知φ(t )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以φ(t )≥φ(1)=1,所以(x 1+x 2)2+(x 1+x 2)≥1,因为x 1>0,x 2>0,所以x 1+x 2≥5-12成立. 题型四 两个经典不等式的应用【题型要点】逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性的基本保证.利用两个经典不等式解决其他问题,降低了思考问题的难度,优化了推理和运算过程. (1)对数形式:x ≥1+ln x (x >0),当且仅当x =1时,等号成立.(2)指数形式:e x ≥x +1(x ∈R ),当且仅当x =0时,等号成立.进一步可得到一组不等式链: e x >x +1>x >1+ln x (x >0,且x ≠1). 【例1】设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)求证:当x ∈(1,+∞)时,1<x -1ln x <x .【解析】(1)由题设知,f (x )的定义域为(0,+∞), f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )在(0,1)上单调递增;当x >1时,f ′(x )<0,f (x )在(1,+∞)上单调递减.(2)证明:由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0.所以当x ≠1时,ln x <x -1. 故当x ∈(1,+∞)时,ln x <x -1,x -1ln x >1.∈因此ln 1x <1x -1,即ln x >x -1x ,x -1ln x<x .∈故当x ∈(1,+∞)时恒有1<x -1ln x<x . 二、高效训练突破1.(2020·四省八校双教研联考)已知函数f (x )=ax -ax ln x -1(a ∈R ,a ≠0). (1)讨论函数f (x )的单调性; (2)当x >1时,求证:1x -1>1e x-1.【解析】:(1)f ′(x )=a -a (ln x +1)=-a ln x ,若a >0,则当x ∈(0,1)时,f ′(x )>0,当x ∈(1,+∞),f ′(x )<0,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减;若a <0,则当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞),f ′(x )>0,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.(2)证明:要证1x -1>1e x -1,即证x x -1>e -x ,即证x -1x <e x ,又由第(1)问令a =1知f (x )=x -x ln x -1在(1,+∞)上单调递减,f (1)=0, 所以当x >1时,x -x ln x -1<0,即x -1x <ln x ,则只需证当x >1时,ln x <e x 即可.令F (x )=e x -ln x, x >1,则F ′(x )=e x -1x 单调递增,所以F ′(x )>F ′(1)=e -1>0,所以F (x )在(1,+∞)上单调递增,所以F (x )>F (1),而F (1)=e ,所以e x -ln x >e>0, 所以e x >ln x ,所以e x >ln x >x -1x ,所以原不等式得证.2.(2020·唐山市摸底考试)设f (x )=2x ln x +1.(1)求f (x )的最小值;(2)证明:f (x )≤x 2-x +1x+2ln x .【解】 (1)f ′(x )=2(ln x +1).所以当x ∈⎪⎭⎫ ⎝⎛e 1,0时,f ′(x )<0,f (x )单调递减;当x ∈⎪⎭⎫ ⎝⎛+∞,1e 时,f ′(x )>0,f (x )单调递增.所以当x =1e 时,f (x )取得最小值⎪⎭⎫⎝⎛e f 1=1-2e .(2)证明:x 2-x +1x +2ln x -f (x )=x (x -1)-x -1x -2(x -1)ln x =(x -1)⎪⎭⎫⎝⎛--x x x ln 21,令g (x )=x -1x -2ln x ,则g ′(x )=1+1x 2-2x =(x -1)2x 2≥0,所以g (x )在(0,+∞)上单调递增,又g (1)=0,所以当0<x <1时,g (x )<0,当x >1时,g (x )>0,所以(x -1)⎪⎭⎫⎝⎛--x x x ln 21≥0,即f (x )≤x 2-x +1x +2ln x . 3.(2020·福州模拟)已知函数f (x )=eln x -ax (a ∈R ). (1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0. 【解】(1)f ′(x )=ex-a (x >0).∈若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增; ∈若a >0,则当0<x <e a 时,f ′(x )>0,当x >ea 时,f ′(x )<0,故f (x )在(0,e a )上单调递增,在(ea ,+∞)上单调递减.(2)证明:法一:因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 所以f (x )max =f (1)=-e.记g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减,当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx -2e ,即xf (x )-e x +2e x ≤0.法二:由题意知,即证e x ln x -e x 2-e x +2e x ≤0,从而等价于ln x -x +2≤e xe x.设函数g (x )=ln x -x +2,则g ′(x )=1x -1.所以当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0,故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而g (x )在(0,+∞)上的最大值为g (1)=1. 设函数h (x )=e xe x ,则h ′(x )=e x (x -1)e x 2.所以当x ∈(0,1)时,h ′(x )<0,当x ∈(1,+∞)时,h ′(x )>0,故h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,从而h (x )在(0,+∞)上的最小值为h (1)=1. 综上,当x >0时,g (x )≤h (x ),即xf (x )-e x +2e x ≤0. 4.(2019·高考北京卷节选)已知函数f (x )=14x 3-x 2+x .(1)求曲线y =f (x )的斜率为1的切线方程; (2)当x ∈[-2,4]时,求证:x -6≤f (x )≤x .【解析】:(1)由f (x )=14x 3-x 2+x 得f ′(x )=34x 2-2x +1.令f ′(x )=1,即34x 2-2x +1=1,得x =0或x =83.又f (0)=0,⎪⎭⎫ ⎝⎛38f =827,所以曲线y =f (x )的斜率为1的切线方程是y =x 与y -827=x -83, 即y =x 与y =x -6427.(2)证明:令g (x )=f (x )-x ,x ∈[-2,4].由g (x )=14x 3-x 2得g ′(x )=34x 2-2x .令g ′(x )=0得x =0或x =83.g ′(x ),g (x )的情况如下:故-6≤g (x )≤0,即x -6≤f (x )≤x .5.已知函数f (x )=ln x -ax (x >0),a 为常数,若函数f (x )有两个零点x 1,x 2(x 1≠x 2).求证:x 1x 2>e 2. 【证明】不妨设x 1>x 2>0,因为ln x 1-ax 1=0,ln x 2-ax 2=0,所以ln x 1+ln x 2=a (x 1+x 2),ln x 1-ln x 2=a (x 1-x 2),所以ln x 1-ln x 2x 1-x 2=a ,欲证x 1x 2>e 2,即证ln x 1+ln x 2>2.因为ln x 1+ln x 2=a (x 1+x 2),所以即证a >2x 1+x 2,所以原问题等价于证明ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>2(x 1-x 2)x 1+x 2,令c =x 1x 2(c >1),则不等式变为ln c >2(c -1)c +1.令h (c )=ln c -2(c -1)c +1,c >1,所以h ′(c )=1c -4(c +1)2=(c -1)2c (c +1)2>0,所以h (c )在(1,+∞)上单调递增,所以h (c )>h (1)=ln 1-0=0,即ln c -2(c -1)c +1>0(c >1),因此原不等式x 1x 2>e 2得证.6.已知函数()()x a ax x x f 12ln 2+++=.(1)讨论()x f 的单调性;(2)当0<a 时,证明()243--≤ax f 【解析】(1)()x f 的定义域为(0,+∞),()()()xax x a ax x x f 1211221++=+++=' 当0≥a ,则当x ∈(0,+∞)时,()0>'x f ,故()x f 在(0,+∞)上单调递增.当0<a ,则当x ∈⎪⎭⎫ ⎝⎛-a 21,0时,f ′(x )>0;当x ∈⎪⎭⎫⎝⎛+∞-,21a 时,f ′(x )<0. 故()x f 在⎪⎭⎫ ⎝⎛-a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞-,21a 上单调递减. (2)证明:由(1)知,当a <0时,f (x )在x =-12a取得最大值,最大值为⎪⎭⎫ ⎝⎛-a f 21=a a 41121ln --⎪⎭⎫⎝⎛-. 所以()243--≤a x f 等价于24341121ln --≤--⎪⎭⎫ ⎝⎛-a a a ,即012121ln ≤++⎪⎭⎫ ⎝⎛-aa . 设g (x )=ln x -x +1,则g ′(x )=1x -1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,012121ln ≤++⎪⎭⎫ ⎝⎛-a a ,即()243--≤a x f . 7.已知函数f (x )=1x -x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.【解析】(1)f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.(∈)若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时f ′(x )=0,所以f (x )在(0,+∞)单调递减. (∈)若a >2,令f ′(x )=0得,x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∈⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. (2)证明:由(1)知,f (x )存在两个极值点时,当且仅当a >2.由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 1<x 2,则x 2>1. 由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x -x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减,又g (1)=0,从而当x ∈(1,+∞)时g (x )<0.所以1x 2-x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2.8.已知函数f (x )=e x ,g (x )=ln(x +a )+b .(1)当b =0时,f (x )-g (x )>0恒成立,求整数a 的最大值;(2)求证:ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <ee -1(n ∈N *).【解析】(1)现证明e x ≥x +1,设F (x )=e x -x -1,则F ′(x )=e x -1,当x ∈(0,+∞)时,F ′(x )>0,当x ∈(-∞,0)时,F ′(x )<0,所以F (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以F (x )min =F (0)=0,即F (x )≥0恒成立,即e x ≥x +1.同理可得ln(x +2)≤x +1,即e x >ln(x +2),当a ≤2时,ln(x +a )≤ln(x +2)<e x ,所以当a ≤2时,f (x )-g (x )>0恒成立. 当a ≥3时,e 0<ln a ,即e x -ln(x +a )>0不恒成立.故整数a 的最大值为2. (2)证明:由(1)知e x >ln(x +2),令x =-n +1n ,则e -n +1n >ln ⎝⎛⎭⎫-n +1n +2, 即e-n +1>ln ⎝⎛⎭⎫-n +1n +2n=[ln(n +1)-ln n ]n ,所以e 0+e -1+e -2 +…+e -n +1>ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n ,又因为e 0+e -1+e -2+…+e -n +1=1-1e n 1-1e <11-1e=e e -1, 所以ln 2+(ln 3-ln 2)2+(ln 4-ln 3)3+…+[ln(n +1)-ln n ]n <e e -1.。
高考数学复习:利用导数证明不等式
3
f(-1)=e,f(1)=e,f(2)=0,
∴函数 f(x)在区间[-1,2]的最大值为 e,最小值为 0. ....................................... 5 分
(2)证明 令
1 2
x 1 2
g(x)=f(x)-2x +x-2e=(2-x)e -2x +x-2e,则
解得x=2,当x∈(2,+∞)时,g'(x)<0;
当x∈(0,2)时,g'(x)>0,
∴g(x)在(2,+∞)内单调递减,在(0,2)内单调递增,可得g(x)max=f(2)=e2+2.
由于12>e2+2,即f(x)min>g(x)max,所以f(x)>g(x),
故当x>0时,f(x)>-x3+3x2+(3-x)ex.
3(3 -1)
=
3(-1)(2 ++1)
.
令f'(x)=0可得x=1,当x∈(1,+∞)时,f'(x)>0;当x∈(0,1)时,f'(x)<0,
∴f(x)在(1,+∞)内单调递增,在(0,1)内单调递减.
(2)证明 由(1)可得f(x)min=f(1)=12.
令g(x)=-x3+3x2+(3-x)ex,则g'(x)=-3x2+6x-ex+(3-x)ex=(2-x)(ex+3x),由g'(x)=0,
所以g(a)的单调递减区间是(1,+∞),单调递增区间是(0,1),
所以g(a)≤g(1)=0,即ln a≤a-1.
7.2利用导数证明不等式的常见题型
利用导数证明不等式的常见题型不等式的证明是近几年高考的一个热点题型,它一般出现的压轴题的位置,解决起来比较困难。
本文给出这一类问题常见的证明方法,给将要参加高考的学子一些启示和帮助。
只要大家认真领会和掌握本文的内容,定会增强解决对这一类问题的办法。
下面听我慢慢道来。
题型一 构造函数法,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
例1(人教版选修2-2第32页B 组1题)利用函数的单调性,证明不列不等式 (1)),0(,sinxπ∈<x x (2))1,0(,02∈>-x x x (3)0,1≠+>x x e x (4)0,ln ><<x e x x x这四道题比较简单,证明的过程分三个步骤,一是构造函数,二是对函数求导,判断函数的单调性,三是求此函数的最值,得出结论。
例2.当1->x时,求证:x x x ≤+≤+-)1ln(111 证明:令x x x f -+=)1ln()(,则1111)(+-=-+='x xx x f ∴当01<<-x 时,0)(>'x f ,当0>x 时,0)(<'x f ,()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln((右面得证),再证左面,令111)1ln()(-+++=x x x g ,22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时,函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴0)0()(=≥g x g ,即0111)1ln(≥-+++x x∴111)1ln(+-≥+x x (左面得证),综上,当x x x x ≤+≤-+->)1ln(111,1有时启示:证明分三个步骤,一是构造函数,二是对函数求导,判断函数的单调性,三是求此函数的最值,得出结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用导数证明不等式的常见题型与技巧
例题:已知函数x x x g ln )
(=,设b a <<0,证明:2ln )()2(2)()(0a b b a b g a g -<+-+<.
本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。
技巧:①利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
②解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
1、利用题目所给函数证明
【例1】 已知函数
x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111
【特别提醒】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证.
2、直接作差构造函数证明
【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数3
3
2)(x x g =的图象的下方;
【特别提醒】本题首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。
读者也可以设)()()(x g x f x F -=做一做,深刻体会其中的思想方法。
3、换元后作差构造函数证明
【例3】证明:对任意的正整数n ,不等式3211)11ln(n
n n ->+ 都成立.
【特别提醒】我们知道,当()F x 在[,]a b 上单调递增,则x
a >时,有()F x ()F a >.如果()f a =()a ϕ,要证明当x a >时,()f x >()x ϕ,那么,只要令()F x =()f x -()x ϕ,就可以利用()F x 的单调增性来推导.也就是说,在()F x 可导的前提下,只要证明'()
F x >0即可. 4、从条件特征入手构造函数证明
【例4】若函数y=
)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a>b ,求证:.a
)(a f >b )(b f。