二元一次方程经典习题汇总 2

合集下载

二元一次方程简单题

二元一次方程简单题

二元一次方程简单题
一、知识点回顾
1. 二元一次方程的定义
含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。

一般形式为ax + by=c(a、b、c是常数,a≠0,b≠0)。

2. 二元一次方程的解
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

一般来说,二元一次方程有无数个解。

二、简单例题及解析
1. 例1:判断方程2x + 3y = 7是否为二元一次方程?
- 解析:
- 方程2x+3y = 7中含有两个未知数x和y。

- 且x的次数是1,y的次数也是1。

- 等号两边都是整式。

- 所以方程2x + 3y = 7是二元一次方程。

2. 例2:已知方程3x - 2y=5,判断x = 1 y=-1是否为该方程的解?
- 解析:
- 把x = 1,y=-1代入方程3x-2y的左边得:
- 3×1-2×(-1)=3 + 2=5。

- 方程的右边是5。

- 因为左边=右边。

- 所以x = 1 y=-1是方程3x - 2y = 5的解。

3. 例3:求方程x + y = 3的正整数解。

- 解析:
- 由x + y=3可得y = 3 - x。

- 因为要求正整数解,所以x>0,y>0。

- 即3 - x>0,解得x<3。

- 当x = 1时,y=3 - 1 = 2。

- 当x = 2时,y=3 - 2 = 1。

- 所以方程x + y = 3的正整数解为x = 1 y = 2和x = 2 y = 1。

二元一次方程组经典练习题+答案解析100道

二元一次方程组经典练习题+答案解析100道

- . -二元一次方程组练习题100道〔卷一〕〔围:代数: 二元一次方程组〕一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………〔 〕 2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解〔 〕3、由两个二元一次方程组成方程组一定是二元一次方程组〔 〕4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x 〔 〕5、假设(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,那么a 的值为±1〔 〕6、假设x +y =0,且|x |=2,那么y 的值为2 …………〔 〕7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5…………〔 〕8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………〔 〕 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………〔 〕 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………〔 〕11、假设|a +5|=5,a +b =1那么32-的值为b a ………〔〕12、在方程4x -3y =7里,如果用x 的代数式表示y ,那么437yx +=〔 〕 二、选择:13、任何一个二元一次方程都有〔 〕 〔A 〕一个解; 〔B 〕两个解; 〔C 〕三个解; 〔D 〕无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有〔 〕 〔A 〕5个 〔B 〕6个 〔C 〕7个 〔D 〕8个 15、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值围是〔 〕〔A 〕a <2; 〔B 〕34->a ; 〔C 〕342<<-a ;〔D 〕34-<a ; 16、关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是〔 〕〔A 〕2; 〔B 〕-1; 〔C 〕1;〔D 〕-2;17、在以下方程中,只有一个解的是〔 〕 〔A 〕⎩⎨⎧=+=+0331y x y x〔B 〕⎩⎨⎧-=+=+2330y x y x〔C 〕⎩⎨⎧=-=+4331y x y x〔D 〕⎩⎨⎧=+=+3331y x y x18、与二元一次方程5x -y =2组成的方程组有无数多个解的方程是〔 〕〔A 〕15x -3y =6 〔B 〕4x -y =7 〔C 〕10x +2y =4 〔D 〕20x -4y =3 19、以下方程组中,是二元一次方程组的是〔 〕〔A 〕⎪⎩⎪⎨⎧=+=+9114yx y x 〔B 〕⎩⎨⎧=+=+75z y y x〔C 〕⎩⎨⎧=-=6231y x x〔D 〕⎩⎨⎧=-=-1y x xyy x20、方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,那么a 、b 的值等于〔 〕〔A 〕a =-3,b =-14 〔B 〕a =3,b =-7 〔C 〕a =-1,b =9〔D 〕a =-3,b =14 21、假设5x -6y =0,且xy ≠0,那么yx yx 3545--的值等于〔 〕〔A 〕32 〔B 〕23 〔C 〕1 〔D 〕-122、假设x 、y 均为非负数,那么方程6x =-7y 的解的情况是〔 〕 〔A 〕无解 〔B 〕有唯一一个解 〔C 〕有无数多个解 〔D 〕不能确定23、假设|3x +y +5|+|2x -2y -2|=0,那么2x 2-3xy 的值是〔 〕 〔A 〕14 〔B 〕-4 〔C 〕-12 〔D 〕12 24、⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,那么k 与b 的值为〔 〕〔A 〕21=k ,b =-4 〔B 〕21-=k ,b =4 〔C 〕21=k ,b =4〔D 〕21-=k ,b =-4 三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______□x +5y =13 ①4x -□y =-2 ②假设x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________; 28、假设⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,那么⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,那么a =______,m =______;32、假设方程x -2y +3z =0,且当x =1时,y =2,那么z =______;33、假设4x +3y +5=0,那么3(8y -x )-5(x +6y -2)的值等于_________;34、假设x +y =a ,x -y =1同时成立,且x 、y 都是正整数,那么a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36、a -3b =2a +b -15=1,那么代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ; 43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,假设两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使以下三个方程组成的方程组有解,求常数a 的值。

二元一次方程经典40题

二元一次方程经典40题

二元一次方程经典40题1.甲、乙两人相距30千米,甲的速度是x千米/小时,乙的速度是y千米/小时,若两人同时相向而行,2小时后相遇,求x和y满足的方程。

2.A、B两城相距200千米,一辆汽车从A城开往B城的速度为x千米/小时,从B城返回A城速度为y千米/小时,已知往返共用5小时,写出关于x和y的方程。

3.甲、乙两人在周长为400米的环形跑道上跑步,甲的速度是x米/秒,乙的速度是y米/秒,若两人同时同地反向出发,20秒后相遇,求方程。

4.某人从甲地到乙地,如果步行速度是x米/分钟,骑车速度是y米/分钟,步行先走10分钟后,再骑车20分钟到达乙地,求关于x和y的方程。

5.一艘轮船顺流速度为x千米/小时,逆流速度为y千米/小时,已知水流速度为2千米/小时,求x和y满足的方程。

6.甲、乙两车分别从相距s千米的两地同时出发,甲车速度为x千米/小时,乙车速度为y千米/小时,经过3小时两车相遇,写出方程。

7.汽车从A地到B地,如果以x千米/小时的速度行驶,会迟到2小时,如果以y千米/小时的速度行驶,会早到1小时,A、B两地距离固定,求方程。

8.甲、乙两人分别从A、B两地同时出发相向而行,甲的速度为x千米/天,乙的速度为y千米/天,经过5天相遇,且A、B两地距离为120千米,求方程。

9.一项工程,甲队单独做x天完成,乙队单独做y天完成,两队合作10天完成,求x和y满足的方程。

10.甲、乙两个工程队修建一条公路,甲队每天修x米,乙队每天修y米,两队合作15天修完长为600米的公路,求方程。

11.一件工作,甲单独做x小时完成,乙单独做y小时完成,甲先做2小时后乙再做3小时完成这件工作的一半,求方程。

12.一项工程,甲、乙合作x天完成,乙、丙合作y天完成,甲、丙合作z天完成,设甲、乙、丙单独完成分别需要a、b、c天,求关于a和b的二元一次方程。

13.某工程甲单独做需x天,乙单独做需y天,甲先做3天,然后甲乙合作2天完成工程,求方程。

二元一次方程试题100题

二元一次方程试题100题

5x+y= 21答案:x=3 y=6(2) 8x+2y=74 4x-y=19答案:x=7 y=9(3) 4x+9y=100 4x+y=36答案:x=7 y=8(4) 5x-7y=-393x-y=-1答案:x=2 y=7 (5) 7x+5y= 81 4x-y=27答案:x=8 y=5(6) 4x-9y=-242x-y=16答案:x=12 y=83x-y=15答案:x=8 y=9 (8) 9x-3y=395x+2y=40答案:x=6 y=5 (9) 9x+4y=818x-y=31答案:x=5 y=9 (10) 4x+8y=112 6x-y=25答案:x=6 y=11(11) 85x-92y=-2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880答案:x=40 y=12 (14) 32x+62y=5134 57x+y=2850答案:x=50 y=57 (15) 83x-49y=8259x+y=2183答案:x=37 y=61 (16) 91x+70y=5845 95x-y=4275答案:x=45 y=25 (17) 29x+44y=5281答案:x=41 y=93 (18) 25x-95y=-4355 40x-y=2000答案:x=50 y=59 (19) 54x+68y=3284 78x+y=1404答案:x=18 y=34 (20) 70x+13y=3520 52x+y=2132答案:x=41 y=50 (21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=7619 47x-y=799答案:x=17 y=91 (23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 (25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54 (26) 79x-76y=-4388 26x-y=832答案:x=32 y=91 (27) 63x-40y=-821 42x-y=546答案:x=13 y=41 (28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78 (29) 85x+67y=7338 11x+y=308答案:x=28 y=74 (30) 78x+74y=12928 14x+y=1218答案:x=87 y=83 (31) 39x+42y=5331答案:x=99 y=35 (32) 29x+18y=1916 58x+y=2320答案:x=40 y=42 (33) 40x+31y=6043 45x-y=3555答案:x=79 y=93 (34) 47x+50y=8598 45x+y=3780答案:x=84 y=93 (35) 45x-30y=-1455 29x-y=725答案:x=25 y=86 (36) 11x-43y=-1361 47x+y=799答案:x=17 y=36 (37) 33x+59y=3254 94x+y=1034答案:x=11 y=49 (38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55 (39) 94x+71y=7517 78x+y=3822答案:x=49 y=41 (40) 28x-62y=-4934 46x+y=552答案:x=12 y=85 (41) 75x+43y=8472 17x-y=1394答案:x=82 y=54 (42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530答案:x=17 y=36 (45) 93x-52y=-852答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=8420x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92(51) 17x+62y=3216 75x-y=7350答案:x=98 y=25 (52) 77x+67y=2739 14x-y=364答案:x=26 y=11 (53) 20x-68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=4110 83x-y=5727答案:x=69 y=29 (55) 22x-38y=804 86x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84 (57) 46x+37y=7085 61x-y=4636答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=4589x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46 (64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46 (66) 43x+50y=7064 85x+y=8330答案:x=98 y=57 (67) 58x-77y=1170 38x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=10524 84x-y=7812答案:x=93 y=2789x+y=2314答案:x=26 y=95 (74) 96x+54y=6216 63x-y=1953答案:x=31 y=60 (75) 60x-44y=-352 33x-y=1452答案:x=44 y=68 (76) 79x-45y=510 14x-y=840答案:x=60 y=94 (77) 29x-35y=-218 59x-y=4897答案:x=83 y=75 (78) 33x-24y=1905 30x+y=2670答案:x=89 y=43 (79) 61x+94y=11800 93x+y=5952答案:x=64 y=84 (80) 61x+90y=5001 48x+y=2448答案:x=51 y=21 (81) 93x-19y=286x-y=1548答案:x=18 y=88 (82) 19x-96y=-5910 30x-y=2340答案:x=78 y=77 (83) 80x+74y=8088 96x-y=8640答案:x=90 y=12 (84) 53x-94y=1946 45x+y=2610答案:x=58 y=12 (85) 93x+12y=9117 28x-y=2492答案:x=89 y=70 (86) 66x-71y=-1673 99x-y=7821答案:x=79 y=9776x+y=1976答案:x=26 y=55 (88) 70x+35y=8295 40x+y=2920答案:x=73 y=91 (89) 43x+82y=4757 11x+y=231答案:x=21 y=47 (90) 12x-19y=236 95x-y=7885答案:x=83 y=40 (91) 51x+99y=8031 71x-y=2911答案:x=41 y=60 (92) 37x+74y=4403 69x-y=6003答案:x=87 y=16 (93) 46x+34y=4820 71x-y=5183答案:x=73 y=43 (94) 47x+98y=5861 55x-y=4565答案:x=83 y=20 (95) 30x-17y=239 28x+y=1064答案:x=38 y=53 (96) 55x-12y=4112 79x-y=7268答案:x=92 y=79 (97) 27x-24y=-450 67x-y=3886答案:x=58 y=84 (98) 97x+23y=8119 14x+y=966答案:x=69 y=62 (99) 84x+53y=11275 70x+y=6790答案:x=97 y=59 (100) 51x-97y=297 19x-y=1520答案:x=80 y=39。

二元一次计算题带答案

二元一次计算题带答案

二元一次计算题带答案在数学学习中,解二元一次方程是一个重要的内容。

它需要我们熟练掌握二元一次方程的求解方法,并能正确地进行计算。

本文将为大家提供一些常见的二元一次计算题,并附上详细的答案解析。

1. 计算题一:求解方程组:2x + 3y = 7x - y = 2解答:为了求解方程组,我们可以采用消元法或代入法。

这里我们使用代入法进行求解。

首先,我们将第二个方程改写为 x = y + 2。

然后,将得到的表达式代入第一个方程中,得到:2(y + 2) + 3y = 72y + 4 + 3y = 75y + 4 = 75y = 7 - 45y = 3y = 3 / 5将求得的 y 值代入第二个方程中,可以得到:x = (3 / 5) + 2x = 3 / 5 + 10 / 5x = 13 / 5因此,方程组的解为 x = 13 / 5,y = 3 / 5。

2. 计算题二:求解方程组:3x - 2y = 82x + 4y = 10解答:同样地,我们可以使用消元法或代入法来求解这个方程组。

这里我们选用消元法。

首先,我们将第一个方程乘以 2,得到:6x - 4y = 16然后,我们将第二个方程乘以 3,得到:6x + 12y = 30接下来,将这两个方程相减,得到:(6x - 4y) - (6x + 12y) = 16 - 306x - 4y - 6x - 12y = -14-16y = -14y = (-14) / (-16)y = 7 / 8将求得的 y 值代入第一个方程中,可以得到:3x - 2(7 / 8) = 83x - 14 / 8 = 83x = 8 + 14 / 83x = 8 + 7 / 43x = 32 / 4 + 7 / 43x = 39 / 4x = (39 / 4) / 3x = 39 / 4 * 1 / 3x = 13 / 4因此,方程组的解为 x = 13 / 4,y = 7 / 8。

(完整版)二元一次方程计算题含答案,推荐文档

(完整版)二元一次方程计算题含答案,推荐文档


,然后在用加减消元法
由(1)×2 得:3x﹣2y=2(3), 由(2)×3 得:6x+y=3(4), (3)×2 得:6x﹣4y=4(5), (5)﹣(4)得:y=﹣ ,
把 y 的值代入(3)得:x= ,


点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.
2.解下列方程组 (1)
二元一次方程组解法练习题精选(含答
案)
建议收藏下载参本考答文案与,试题以解析便随时学习!
一.解答题(共 16 小题)
1.求适合
的 x,y 的值.
考点:解二元一次方程组. 809625
分析: 先把两方程变形(去分母),得到一组新的方程
消去未知数 x,求出 y 的值,继而求出 x 的值. 解答:
解:由题意得:
(1)依题意得:
,再运
①﹣②得:2=4k, 所以 k= ,
所以 b= .
(2)由 y= x+ , 把 x=2 代入,得 y= .
(3)由 y= x+
把 y=3 代入,得 x=1. 点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可
得出要求的数. 7.解方程组:
(1)

解得 x=2, 把 x=2 代入①得,2+y=1,
解得 y=﹣1.
故原方程组的解为

(2)①×3﹣②×2 得,﹣13y=﹣39, 解得,y=3, 把 y=3 代入①得,2x﹣3×3=﹣5, 解得 x=2. 故原方程组的解为 .
(3)原方程组可化为
①+②得,6x=36, x=6, ①﹣②得,8y=﹣4, y=﹣ .
解得:

七年级数学二元一次方程组经典练习题及答案

七年级数学二元一次方程组经典练习题及答案

二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a +5|=5,a +b =1则32-的值为b a ………()12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解;(C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) (A )5个 (B )6个 (C )7个 (D )8个 15、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ; 16、关于x 、y 的方程组⎩⎨⎧=-=+my x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( ) (A )⎩⎨⎧=+=+0331y x y x(B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x(D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( )(A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =319、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14(B )a =3,b =-7 (C )a =-1,b =9(D )a =-3,b =14 21、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于( )(A )32(B )23 (C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )12 24、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( )(A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4(D )21-=k ,b =-4三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________; 28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+;39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

二元一次方程练习题

二元一次方程练习题

二元一次方程练习题1. 解:(1) 2x + 3y = 74x - y = 13解法一:将第二个方程中的y表示为x的函数:y = 4x - 13将y的值带入第一个方程:2x + 3(4x - 13) = 7化简得到:2x + 12x - 39 = 7合并同类项:14x - 39 = 7移项得到:14x = 46解得:x = 46 / 14 = 23 / 7将x的值代入y = 4x - 13:y = 4(23/7) - 13化简得到:y = 92/7 - 13/1 = 92/7 - 91/7 = 1/7所以方程的解是:x = 23/7,y = 1/7解法二:将第二个方程乘以3得到:12x - 3y = 39将第一、第二个方程相加消去y得到:2x + 12x - 3y + y = 7 + 39化简得到:14x = 46解得:x = 23 / 7将x的值代入第一个方程:2(23/7) + 3y = 7化简得到:23/7 + 21/7 = 7合并同类项:44/7 = 7解得:y = 1 / 7所以方程的解是:x = 23/7,y = 1/7(2) 3x + 4y = 18x - 2y = 7解法一:将第二个方程中的x表示为y的函数:x = 7 + 2y 将x的值带入第一个方程:3(7 + 2y) + 4y = 18化简得到:21 + 6y + 4y = 18合并同类项:10y = -3解得:y = -3 / 10将y的值代入x = 7 + 2y:x = 7 + 2(-3/10)化简得到:x = 7 - 6/10 = 7 - 3/5 = 35/5 - 3/5 = 32/5所以方程的解是:x = 32/5,y = -3/10解法二:将第二个方程乘以3得到:3x - 6y = 21将第一、第二个方程相加消去x得到:3x + 3x - 6y + 4y = 18 + 21化简得到:6x -2y = 39合并同类项:6x - 2y = 39解得:3x - y = 19.5所以方程的解是:x = 32/5,y = -3/102. 解:(1) x - 3y = 82x + 5y = 1解法一:将第一个方程中的x表示为y的函数:x = 8 + 3y将x的值代入第二个方程:2(8 + 3y) + 5y = 1化简得到:16 + 6y + 5y = 1合并同类项:11y = -15解得:y = -15 / 11将y的值代入x = 8 + 3y:x = 8 + 3(-15/11)化简得到:x = 8 - 45/11 = 88/11 - 45/11 = 43/11所以方程的解是:x = 43/11,y = -15/11解法二:将第一个方程乘以2得到:2x - 6y = 16将第一、第二个方程相加消去x得到:2x + 2x - 6y + 5y = 1 + 16化简得到:4x - y = 17解得:4x - y = 17所以方程的解是:x = 43/11,y = -15/11(2) 4x - 7y = -23x + 5y = 3解法一:将第一个方程中的x表示为y的函数:x = (3 + 5y) / 3将x的值代入第二个方程:4((3 + 5y) / 3) - 7y = -2化简得到:4 + 20y/3 - 7y = -2将所有项乘以3消去分数得到:12 + 20y - 21y = -6合并同类项:-y = -18解得:y = 18将y的值代入x = (3 + 5y) / 3:x = (3 + 5(18)) / 3化简得到:x = (3 + 90) / 3 = 93 / 3 = 31所以方程的解是:x = 31,y = 18解法二:将第一个方程乘以3得到:12x - 21y = -6将第一、第二个方程相加消去y得到:12x + 3x - 21y + 5y = -6 + 3化简得到:15x - 16y = -3解得:15x - 16y = -3所以方程的解是:x = 31,y = 18通过以上两道二元一次方程的练习题,我们了解了如何使用两种解方程的方法来求解题目中提供的方程组。

二元一次方程专题(内含答案详解)

二元一次方程专题(内含答案详解)

二元一次方程专题一.选择题(共12小题)1.已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为() A.1 B.﹣1 C.2 D.﹣22.已知与是二元一次方程mx+ny=5的两组解,则m+n的值为()A.1 B.2 C.3 D.43.下列方程中,是二元一次方程的是()A.8x2+1=y B.y=8x+1 C.y= D.xy=14.在方程﹣=5中,用关于x的代数式表示y,正确的是()A.x=y﹣10 B.x=y+10 C.y=x﹣15 D.y=y+155.已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为()A.50元、150元B.50元、100元C.100元、50元D.150元、50元6.若关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,则m+n的值为()A.1 B.﹣1 C.3 D.﹣37.将方程x+y=1中的x的系数化为整数,则下列结果正确的是()A.﹣x+y=1 B.x﹣2y=﹣2 C.﹣x+y=2 D.x﹣y=28.已知x和y满足2x+3y=5,则当x=4时,代数式3x2+12xy+y2的值是()A.4 B.3 C.2 D.19.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.﹣2 D.210.若方程组的解满足x+y=0,则k的值为()A.﹣1 B.1 C.0 D.不能确定11.一个长方形的长的2倍比宽的5倍还多1cm,宽的3倍又比长多1cm,求这个长方形的长与宽.设长为xcm,宽为ycm,则下列方程组中正确的是()A.B.C.D.12.小明的储钱罐有5角和1元的硬币共100枚,币值共有68元.求5角、1元硬币各有多少枚?设小明有5角硬币x枚,有1元硬币y枚,则可列出方程组为()A. B.C. D.二.填空题(共6小题)13.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是.14.有一些苹果及苹果箱,若每箱装25千克,则剩余40千克无处装,如每箱装30千克则余20只空箱,则共有千克苹果,个苹果箱.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了道题.16.把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.17.某同学家离学校12千米,每天骑自行车上学和放学,有一天上学时顺风,从家到学校共用30分钟,放学时逆风,从学校回家共用时40分钟,已知该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则根据题意可列方程组.18.某校在春节运动会比赛中,七年级一班和二班的实力相当,关于比赛结果,甲同学说:一班与二班的得分比为4:3,乙同学说:一班得分比五班得分的2倍少40分.若设一班得x分,二班得y分,则根据题意可列方程组.三.解答题(共6小题)19.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)20.“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?21.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?22.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?23.某市一种出租车的起步价为10元,两位乘客分别乘这种出租车走了10km 和14km,车费分别为21.2元和27.6元,假设一路顺利,没有停车等候,且不考虑计程器计费的某些特殊规定.请你算出这种出租车起步价所允许行驶的最远路程;并算出超过起步路程但行驶不到15km时,超过部分每千米车费为多少元?24.一个被滴上墨水的方程组如下,小明回忆到:这个方程组的解为,而我求出的解是,经检查后发现,我的错误是由于看错了第二个方程中的x的系数所致,请你根据小明的回忆,把原方程还原出来.二元一次方程专题参考答案与试题解析一.选择题(共12小题)1.已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为() A.1 B.﹣1 C.2 D.﹣2【分析】把代入方程4kx﹣3y=﹣1,即可得出一个关于k的方程,求出方程的解即可.【解答】解:∵是关于x、y的方程4kx﹣3y=﹣1的一个解,∴代入得:8k﹣9=﹣1,解得:k=1,故选:A.【点评】本题考查了二元一次方程的解和解一元一次方程,能根据题意得出关于k的方程是解此题的关键.2.已知与是二元一次方程mx+ny=5的两组解,则m+n的值为()A.1 B.2 C.3 D.4【分析】代入后得出关于m、n的方程组,两方程相加即可求出答案.【解答】解:∵与是二元一次方程mx+ny=5的两组解,∴代入得:①+②得:5m+5n=10,m+n=2,故选:B.【点评】本题考查了解二元一次方程组和二元一次方程组的解,能根据题意得出关于m、n的方程组是解此题的关键.3.下列方程中,是二元一次方程的是()A.8x2+1=y B.y=8x+1 C.y= D.xy=1【分析】根据二元一次方程的定义求解即可.【解答】解:A、是一元二次方程,故A不符合题意;B、是二元一次方程,故B符合题意;C、是分式方程,故C不符合题意;D、是二元二次方程,故D不符合题意;故选:B.【点评】本题考查了二元一次方程,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.4.在方程﹣=5中,用关于x的代数式表示y,正确的是()A.x=y﹣10 B.x=y+10 C.y=x﹣15 D.y=y+15【分析】把x看做已知数表示出y即可.【解答】解:方程﹣=5,整理得:y==x﹣15,故选:C.【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.5.已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为()A.50元、150元B.50元、100元C.100元、50元D.150元、50元【分析】设甲种商品的定价分别为x元,则乙种商品的定价分别为y元,根据“若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:设甲种商品的定价分别为x元,则乙种商品的定价分别为y元,根据题意得:,解得:.故选:D.【点评】本题考查了解二元一次方程组,根据数量关系列出二元一次方程组是解题的关键.6.若关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,则m+n的值为()A.1 B.﹣1 C.3 D.﹣3【分析】(方法一)根据二元一次方程的定义,即可得出关于m、n的二元一次方程组,解之即可得出m、n的值,将其相加即可得出结论;(方法二)根据二元一次方程的定义,即可得出m+2=1、n﹣1=1,将其相加即可得出m+n的值.【解答】解:(方法一)∵关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,∴,解得:,∴m+n=1.故选A.(方法二)∵关于x,y的方程x m+2﹣y n﹣1=5是二元一次方程,∴m+2=1,n﹣1=1,∴m+2+n﹣1=2,∴m+n=1.故选:A.【点评】本题考查了二元一次方程的定义以及解二元一次方程组,熟练掌握二元一次方程的定义是解题的关键.7.将方程x+y=1中的x的系数化为整数,则下列结果正确的是() A.﹣x+y=1 B.x﹣2y=﹣2 C.﹣x+y=2 D.x﹣y=2【分析】方程两边乘以2变形即可得到结果.【解答】解:方程左右两边乘以2得:﹣x+2y=2,即x﹣2y=﹣2.【点评】此题考查了解二元一次方程,熟练掌握等式的性质是解本题的关键.8.已知x和y满足2x+3y=5,则当x=4时,代数式3x2+12xy+y2的值是()A.4 B.3 C.2 D.1【分析】根据题意先把x=4代入2x+3y=5求出y的值,然后把x、y的值代入代数式3x2+12xy+y2即可求得.【解答】解:把x=4代入2x+3y=5得:y=﹣1,把x=4,y=1代入3x2+12xy+y2得:3×16+12×4×(﹣1)+1=1,故选:D.【点评】本题考查了二元一次方程的解法,主要运用了代入法,难度适中.9.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.﹣2 D.2【分析】方程组的两个方程相减,即可求出答案.【解答】解:,②﹣①得:x﹣y=﹣2,故选:C.【点评】本题考查了解二元一次方程组,能选择适当的方法求解是解此题的关键.10.若方程组的解满足x+y=0,则k的值为()A.﹣1 B.1 C.0 D.不能确定【分析】根据等式的性质,可得答案.【解答】解:①+②,得3(x+y)=3﹣3k,由x+y=0,得3﹣3k=0,故选:B.【点评】本题考查了二元一次方程组的解,利用等式的性质是解题关键.11.一个长方形的长的2倍比宽的5倍还多1cm,宽的3倍又比长多1cm,求这个长方形的长与宽.设长为xcm,宽为ycm,则下列方程组中正确的是() A.B.C.D.【分析】由题意,得长的2倍比宽的5倍还多1cm可得方程2x﹣5y=1;宽的3倍又比长多1cm可得方程3y﹣x=1,即可得方程组.【解答】解:根据题意,得方程组.故选:C.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.小明的储钱罐有5角和1元的硬币共100枚,币值共有68元.求5角、1元硬币各有多少枚?设小明有5角硬币x枚,有1元硬币y枚,则可列出方程组为()A. B.C. D.【分析】根据:①5角钱的枚数+1元钱的枚数=100、②5角的总钱数+1元的总钱数=68元,据此可得方程组.【解答】解:设小明有5角硬币x枚,有1元硬币y枚,则可列出方程组为,故选:C.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到题目蕴含的相等关系.二.填空题(共6小题)13.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是95.【分析】设原来十位上数字为x,个位上的数字为y,分别表示出调换前后的两位数,根据题意列方程组求解.【解答】解:设原来十位上数字为x,个位上的数字为y,由题意得,,解得:,故这个两位数为95.故答案为;95.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.14.有一些苹果及苹果箱,若每箱装25千克,则剩余40千克无处装,如每箱装30千克则余20只空箱,则共有3240千克苹果,128个苹果箱.【分析】设共有x千克苹果,y个苹果箱.等量关系:①每箱装25千克,则剩余40千克无处装;②每箱装30千克则余20只空箱.【解答】解:设共有x千克苹果,y个苹果箱.根据题意,得,解,得.则共有3240千克苹果,128个苹果箱.【点评】正确找到等量关系是列方程(组)解应用题的关键.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【分析】设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.【点评】此题主要考查了二元一次方程组的应用,根据题意利用所得分数以及有20题选择题分别得出等式是解题关键.16.把面值20元的纸币换成1元和5元的两种纸币,则共有3种换法.【分析】设1元和5元的纸币各x张、y张,根据题意列出方程,求出方程的正整数解即可.【解答】解:设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20﹣5y,当x=1,y=15;x=2,y=10;x=3,y=5,则共有3种换法,故答案为:3【点评】此题考查了二元一次方程的应用,弄清题意是解本题的关键.17.某同学家离学校12千米,每天骑自行车上学和放学,有一天上学时顺风,从家到学校共用30分钟,放学时逆风,从学校回家共用时40分钟,已知该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则根据题意可列方程组.【分析】由题意可知:顺风速度=无风时速度+风速,逆风速度=无风时速度﹣风速,根据家与学校之间的距离=顺风速度×顺风时间=逆风速度×逆风时间,列出方程组解答即可.【解答】解:30分钟=小时40分钟=小时设该同学在无风时骑自行车的速度为x千米/时,风速为y千米/时,则该同学在顺风时骑自行车的速度为(x+y)千米/小时,逆风时骑自行车的速度为(x﹣y)千米/小时,由题意得.故答案为:.【点评】此题考查由实际问题抽象出二元一次方程组,掌握顺风速度、逆风速度、无风时速度、风速之间的关系是解决问题的关键.18.某校在春节运动会比赛中,七年级一班和二班的实力相当,关于比赛结果,甲同学说:一班与二班的得分比为4:3,乙同学说:一班得分比五班得分的2倍少40分.若设一班得x分,二班得y分,则根据题意可列方程组.【分析】根据题意可得等量关系:①一班得分×3=二班的得分×4;②一班得分=五班得分×2﹣40,根据等量关系列出方程组即可.【解答】解:设一班得x分,二班得y分,由题意得:,故答案为:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.三.解答题(共6小题)19.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)3(2x﹣1)=2(1﹣x)﹣1,6x﹣3=2﹣2x﹣1,x=,(2),整理得:,②﹣①得:﹣x=1,x=﹣1,把x=﹣1代入①中得:y=5,∴方程组的解为:.【点评】此题考查了解二元一次方程组和一元一次方程,熟练掌握运算法则是解本题的关键.20.“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?【分析】设A型号的空调购买价为x元,B型号的空调购买价为y元,根据“购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设A型号的空调购买价为x元,B型号的空调购买价为y元,依题意得:,解得:.答:A型号的空调购买价为2120元,B型号的空调购买价为2320元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?【分析】设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,根据平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,可列成方程组求解.【解答】解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,,解得:.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.【点评】本题考查理解题意能力,关键是能准确2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.22.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?【分析】根据题目中的关键句子:“同向而行,乙10小时可追上甲;若相向而行,2小时两人相遇”找到两个等量关系后列出方程组即可.【解答】解:设甲每小时行x千米,乙每小时行y千米,则可列方程组为,解得,答:甲每小时行10千米,乙每小时行15千米.【点评】本题考查了二元一次方程组的应用的知识,解题的关键是根据题意找到两个等量关系,难度不大.23.某市一种出租车的起步价为10元,两位乘客分别乘这种出租车走了10km 和14km,车费分别为21.2元和27.6元,假设一路顺利,没有停车等候,且不考虑计程器计费的某些特殊规定.请你算出这种出租车起步价所允许行驶的最远路程;并算出超过起步路程但行驶不到15km时,超过部分每千米车费为多少元?【分析】设起步价允许行驶的最远路程是xkm,超过部分每千米车费是y元,关键描述语:出租车的起步价为10元,两位乘客分别乘这种出租车走了10km和14km,车费分别为21.2元和27。

二元一次方程组经典应用题及答案

二元一次方程组经典应用题及答案

2.25%;第二种,三年期整存整取,这种存款银行年利率为 2.70%.三年后同时取出共得利息
303.75 元( 不计利息税 ) ,问小敏的爸爸两种存款各存入了多少元?
解: 设 x 为第一种存款的方式, Y 第二种方式存款,则
X + Y = 4000
X * 2.25 % * 3 + Y * 2.7 % * 3 = 303.75
① x+y=10
② 2000x+1500y=18000
解得: x=6 , y=4
答:李大叔去年甲、乙两种蔬菜各种植了
6 亩、 4 亩
某商场用 36 万元购进 A、 B 两种商品,销售完后共获利 6 万元,其进价和售价如下表:
A
B
进价(元 / 件)
1200
1000
售价(元 / 件)
1380
1200
(注:获利 = 售价 — 进价)求该商场购进 A、 B 两种商品各多少件; 解: 设购进 A 的数量为 x 件、购进 B 的数量为 y 件,依据题意列方程组
解得: X = 1500 , Y = 2500 。
答:略。
;.
..
五:列二元一次方程组解决 —— 生产中的配套问题
现有 190 张铁皮做盒子,每张铁皮做 8 个盒身或 22 个盒底,一个盒身与两个盒底配成一个完整盒 子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子? 解:设 x 张做盒身, y 张做盒底,则有盒身 8x 个,盒底 22y 个
;.
..
十一:列二元一次方程组解决 —— 年龄问题
今年,小李的年龄是他爷爷的五分之一 分之一 . 试求出今年小李的年龄 .
解: 设小李 X 岁,爷爷 Y 岁,则

二元一次解方程练习题

二元一次解方程练习题

二元一次解方程练习题解方程是数学中的重要内容,其中二元一次方程是一种常见的形式。

本文将为您提供一些关于二元一次方程的练习题,以帮助您熟悉解这类方程的方法。

练习题1:解下列二元一次方程组:1)3x + 4y = 102x - y = 12)5x - 2y = 83x + 4y = 2练习题2:求解下列二元一次方程:1)x - y = -22x + 3y = 72)2x + 3y = 14x - y = 11练习题3:请解下列二元一次方程组:1)2x + 5y = 13x - y = 42)4x - y = -3x + 2y = 5练习题4:解下列二元一次方程:1)3x + 2y = 82x - y = 12)4x + 5y = 143x - 2y = -5在解决这些练习题时,我们可以使用不同的方法,如代入法、消元法或图解法。

下面逐一解答这些题目,供您参考。

练习题1:1)首先,我们可以通过消元法解决这个方程组。

将两个方程相加,消去y的系数,得到5x = 11。

然后,将此结果代入第一个方程,解得x = 11/5。

将x的值代入任一方程,求得y的值为3/5。

因此,方程的解为x = 11/5,y = 3/5。

2)对于第二个方程组,我们可以使用代入法。

将第一个方程中的x 表示为y的函数,并代入第二个方程中,最终解得x = 2,y = -3。

因此,方程的解为x = 2,y = -3。

练习题2:1)对于第一个方程组,我们可以使用消元法。

将第一个方程的2倍加到第二个方程上,得到4x + 6y = 14。

然后,将此结果代入第一个方程,解得x = 5,将x的值代入任一方程,求得y的值为-3。

因此,方程的解为x = 5,y = -3。

2)针对第二个方程组,我们可以使用代入法。

将第一个方程中的x 表示为y的函数,并代入第二个方程中,得到2y + 3y = 1。

化简后,解得y = 1/5,将y的值代入任一方程,求得x的值为51/5。

二元一次方程组经典练习题(二)

二元一次方程组经典练习题(二)

二元一次方程组练习题(二)1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是( )A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5x-11y=21 ( )A.有且只有一解 B.有无数解 C.无解 D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于( )A。

-1 B。

0 C。

1 D。

2 6.下列各式,属于二元一次方程的个数有()①xy+2x-y=7; ②4x+1=x-y;③1x+y=5; ④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.47.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有( )A.246246216246 ... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩8.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.9.若x2m-3-2y n-2=5是二元一次方程,则m=_____,n=______.10.已知2,3xy=-⎧⎨=⎩是方程4x-ky=1的解,那么k=_______.11.已知│x-1│+(2y-1)2=0,且2x-ky=4,则k=_____.12.二元一次方程2x+y=5的正整数解有______________.13.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.14.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.15.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?(3)如图,宽为50 cm 的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽 分别是多少?16.解下列方程组:(1)⎩⎨⎧=-=+711y x y x (2)⎪⎩⎪⎨⎧=+-=653425y x y x(3)⎩⎨⎧=+=-52323y x y x (4)359236x y x y -=⎧⎨-+=-⎩(5)()()()()31445135x y y x -=-⎧⎪⎨-=+⎪⎩ (6)83206570u v u v ++=⎧⎨++=⎩17.甲。

二元一次方程20道题

二元一次方程20道题

二元一次方程20道题一、基础型题目(1 - 10题)1. 已知方程2x + 3y=12,当x = 3时,求y的值。

- 解析:将x = 3代入方程2x+3y = 12中,得到2×3+3y=12,即6 + 3y=12。

方程两边同时减去6,得到3y=12 - 6=6,解得y = 2。

2. 解方程组x + y=5 x - y = 1- 解析:将两个方程相加,(x + y)+(x - y)=5 + 1,即2x=6,解得x = 3。

把x = 3代入x + y=5中,得到3+y = 5,解得y=2。

3. 若3x - 2y=11,且y = 2x - 4,求x和y的值。

- 解析:把y = 2x-4代入3x - 2y=11中,得到3x-2(2x - 4)=11,展开括号得3x-4x + 8 = 11,移项得3x-4x=11 - 8,即-x = 3,解得x=-3。

把x = - 3代入y = 2x-4,得y=2×(-3)-4=-6 - 4=-10。

4. 解方程组2x+3y = 8 3x - 2y=-1- 解析:给第一个方程2x + 3y=8两边同时乘以2,得到4x + 6y = 16;给第二个方程3x-2y=-1两边同时乘以3,得到9x-6y=-3。

将这两个新方程相加,(4x +6y)+(9x-6y)=16+(-3),即13x = 13,解得x = 1。

把x = 1代入2x + 3y=8中,2×1+3y = 8,3y=8 - 2 = 6,解得y = 2。

5. 已知x、y满足方程4x - 3y=1,且x = 2y - 2,求x和y的值。

- 解析:将x = 2y-2代入4x-3y = 1中,得到4(2y-2)-3y = 1,展开括号得8y-8 - 3y=1,移项得8y-3y=1 + 8,5y=9,解得y=(9)/(5)。

把y=(9)/(5)代入x = 2y-2,得x=2×(9)/(5)-2=(18)/(5)-(10)/(5)=(8)/(5)。

二元一次方程练习题

二元一次方程练习题

二元一次方程练习题1.要使分式的植为0,则应该等于2.若正数a是一元二次方程x2?5x+m=0的一个根,?a是一元二次方程x2+5x?m=0的一个根,则a的值是.3.已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是.4已知关于x的一元二次方程x2+ax+b=0有一个非零根?b,则a?b的值为()a.1b.?1c.0d.?25已知a,b是方程x2?x?3=0的两个根,则代数式2a3+b2+3a2?11a?b+5的值为.6.若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m?4,则=.7.菱形abcd的一条对角线长为6,边ab的长是方程的一个根,则菱形abcd的周长为_______.8.第二象限内一点a(x—1,x2—2),关于x轴的对称点为b,且ab=6,则x=_________.9.已知关于x的方程x2+(1?m)x+=0有两个不相等的实数根,则m的最大整数值是.10.关于x的一元二次方程(a?1)x2?2x+3=0有实数根,则整数a的最大值是()a.2b.1c.0d.?111.若关于x的一元二次方程kx2+4x+3=0有实根,则k的非负整数值是.12.已知关于x的方程(k?1)x2?(k?1)x+=0有两个相等的实数根,则k=13.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是a.b=?1b.b=2c.b=?2d.b=014.(2013乐山)已知一元二次方程x2-(2k+1)x+k2+k=0.(1)求*:方程有两个不相等的实数根;(2)若△abc的两边ab,ac的长是这个方程的两个实数根,第三边bc的长为5.当△abc是等腰三角形时,求k的值.第2篇:一元二次方程练习题一元二次方程有4种解法,即直接开平方法、*法、公式法、因式分解法。

以下是小编整理的关于一元二次方程练习题,希望大家认真阅读!题型1:认识一元二次方程,并能找出各项的系数解法:根据一元二次方程的概念,这个不难找,注意ax+bx+c=0,不是一元二次方程,因为没有确定a的范围,a=0时,它就不是。

二元一次方程组经典题

二元一次方程组经典题

二元一次方程组类型总结(提高题)类型一:: 二元一次方程的概念及求解例(1).已知(a — 2) x — by”1= 5是关于x 、y 的二元一次方程,则 a= _________ , b =_____(2).二元一次方程 3x + 2y = 15的正整数解为 ________________ .类型二:二元一次方程组的求解例(3).若|2a + 3b — 7| 与(2a + 5b — 1) 2互为相反数,则 a = ______ , b= _______ .(4). 2x — 3y = 4x — y = 5 的解为 _________ 类型三:已知方程组的解,而求待定系数 例(5). 已知x —2是方程组 3mx2y 1 的解,贝U 吊一n 2的值为y 14xny 7 2(6). 若满足方程组 3x 2y 4的x 、 y 的值相等,则k =kx (2k 1)y 62x y 3(7).若方程组的解互为相反数,贝V k 的值为 ..............2kx (k 1)y 10(A) 8( B) 9(C) 10( D) 11类型四:涉及三个未知数的方程,求出相关量。

设“比例系数”是解有关数量比的问题的常用方法.a b c 1例(7).已知一=一=一,且 a + b — c = 一,贝U a= ______________ ,b= ________23412x 3y 2 (8).解方程组 3y z 4,得x= ___________ ,y = _____ , z= ____ .z3x 6练习:若 2a + 5b + 4c = 0,3a + b — 7c = 0,贝U a + b — c = __________________由方程组x 2y 3Z 0可得,x : y : z 是()2x 3y 4z 0A 1 : 2 : 1B 、1 :(— 2): (— 1)C 、1 :(— 2): 1D 、1 : 2 :(— 1)说明:解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解.当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩类型四:列二元一次方程组解决——银行储蓄问题【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25%* 3 + Y * 2.7%* 3 = 303.75解得:X = 1500,Y = 2500。

二元一次方程组经典练习题+答案解析100道

二元一次方程组经典练习题+答案解析100道

1二元一次方程组练习题一、选择:1、任何一个二元一次方程都有 ( )(A )一组解; (B )两组解;(C )三组解; (D )无数多组解;2、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个3、关于x 、y 的方程组⎩⎨⎧=-=+m y xmy x 932的解是方程3x +2y =34的一组解,那么m 的值是() (A )2; (B )-1; (C )1; (D )-2;4、在下列方程中,只有一个解的是 () (A )⎩⎨⎧=+=+0331y x y x (B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x (D )⎩⎨⎧=+=+3331y x y x5、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是 () (A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =36、下列方程组中,是二元一次方程组的是 () (A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x (D )⎩⎨⎧=-=-1y x xyy x7、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于 () (A )32(B )23(C )1 (D )-18、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是 () (A )14 (B )-4 (C )-12 (D )129、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为 () (A )21=k ,b =-4 (B )21-=k ,b =4(C )21=k ,b =4 (D )21-=k ,b =-410下列方程中,是二元一次方程的是 () A .3x -2y=4z B .6xy+9=0 C . x+4y=6 D .4x=24 y。

(完整版)二元一次方程计算题含答案(最新整理)

(完整版)二元一次方程计算题含答案(最新整理)

∴原方程组可化为

解得 ,

∴原方程组的解为 .
点评:此题考查了学生的计算能力,解题时要细心. 12.解二元一次方程组:
(1)

(2)

考点:解二元一次方程组. 809625
专题:计算题. 分析:(1)运用加减消元的方法,可求出 x、y 的值;
(2)先将方程组化简,然后运用加减消元的方法可求出 x、y 的值. 解答:
11.解方程组:
(1)
(2)
考点:解二元一次方程组. 809625
专题:计算题;换元法. 分析:方程组(1)需要先化简,再根据方程组的特点选择解法;
方程组(2)采用换元法较简单,设 x+y=a,x﹣y=b,然后解新方程组即可求解.
解答:
解:(1)原方程组可化简为

解得

(2)设 x+y=a,x﹣y=b,
(2)
考点:解二元一次方程组. 809625
分析:观察方程组中各方程的特点,用相应的方法求解. 解答:
解:(1)①×2﹣②得:x=1,
将 x=1 代入①得: 2+y=4, y=2.
∴原方程组的解为 ;
(2)原方程组可化为

①×2﹣②得:
﹣y=﹣3, y=3. 将 y=3 代入①得: x=﹣2.
∴原方程组的解为
解答:
解:原方程组可化为

①×4﹣②×3,得
7x=42, 解得 x=6. 把 x=6 代入①,得 y=4. 所以方程组的解为 .
点评:注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的 方法有代入法和加减法.
4.解方程组:
考点:解二元一次方程组. 809625

二元一次方程组经典练习题+答案解析100道

二元一次方程组经典练习题+答案解析100道

二元一次方程组练习题100道(卷一)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a +5|=5,a +b =1则32-的值为b a ………()12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解;(C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) (A )5个 (B )6个 (C )7个 (D )8个 15、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ; 16、关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( ) (A )⎩⎨⎧=+=+0331y x y x(B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x(D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( )(A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =3 19、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14(B )a =3,b =-7 (C )a =-1,b =9(D )a =-3,b =14 21、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23 (C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )12 24、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( ) (A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4(D )21-=k ,b =-4 三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________; 28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________;31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+;39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ;41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3x+4y=16① 4。用加减法解方程组{ , 5x-6y=33② 若要消去Y,则应由 ①×____,②×____ 再_____,从而消去y。
5:思考:当a=____时,关于x的方程2x+a=2的 解是3.
解:将x=3代入方程, 得,2×3+a=2 解得,a=4.
6、方程2x+3y=8的解 ( A、只有一个 C、只有三个
(1) (2)
a b 13 2 3 2). a b 3 3 4
(1) (2)
2. 方程2x+y=9 在正整数范围内的解有___个。 解 : 由 2x y 9 得 y 9 2x
取 x 1 , 2 , 3 , 4 得 y为正整数 x 1 x 2 x 3 x 4 y 7 y 5 y 3 y 1 故有四个解
2 x y 4m 0 5.求满足方程组: 中的y 的值 14x 3 y 20 0
是x值的3倍的m的值,并求x , y 的值。
解 : 设 y 3x 并把 y 3x 代入原方程组, 得 2 x 3 x 4 m 0 14x 9 x 20 0 x 4m 0 即 5 x 20 0
解 : 把 x 1 , x 4 代入 x bx c 中 , 得
2
1 b c 8 16 4b c 8
b c 7 即 4b c 8
(1) ( 2)
(1) (2) 得 5b 15 故 b 3 把 b 3 代入 (1) 得 c 4 b3 c4
解得 m 1 , x 4 . 从而 y 3x 12 当 m 1 时 , 原方程组中 y 的值是 x 的三倍 , 并且 这时 x 4 y 12
2 x 3 5t 7.己知t 满足方程组 , 则x和y之间满 3 y 2t x
足的关系是_______
x y 3 x m y 2 5.若方程组 与 方程组同解, x y 1 nx y 3
则 m=______
x y 3 x 2 解方程组 得 将其解代入 x y 1 y 1 2 m 2 m 0 第二个方程组. 得 再解之得 2n 1 3 n 2 m0
《二元一次方程组》
经典习题讲解
之——基础篇
1。解二元一次方程组的基本思路是 消元 2x-5y=7① 2。用加减法解方程组{ 由①与② x 相减直接消去_______2x+3y=2② ______ 3。用加减法解方程组{ 4x+5y=28① 6x-5y=12②

y 相加 ①与②_______,可直接消去________
3x 5 y 2a 8. a 为何值时,方程组 的解x ,y 2 x 7 y a 18
的值互为相反数,并求它的值。
解: 原方程组的解 x , y 的值互为相反数 . 并将 y x 代入原方程组得 8 x 2a 即 5 x a 18 x2 y x
解:根据题意:得 3m+2n-16=0
3m-n-1=0 m=2 解得: n=5 即:m+n=7
2x2mn y3m2n 与 5x2n y5是同类 10. ① m , n 为何值时, 项。
解 : 根据同类项的定义, 有 2 m n 2 n 3m 2n 5 解这个方程组, 得 m 3 n 2
ax by 1 3x 5 y 39 6.方程组 有相同的 与 ax by 17 4 x 3 y 23 解,求a , b 的值。 3x 5 y 39 x 8 解 : 由方程组 得 4 x 3 y 23 y 3
3: 方程组的应用
3x2a+b+2 +5y3a-b+1=8 是关于x、y的二元一次方程求a、b 解:根据题意:得 2a+b+2=1 3a-b+1=1
得:
a= b= -
1
5 3 5
x y 60m 4. 方程组 的解是___ 30% x 6% y 10% 60m
(1) x y 60m 解 原方程组可化为 5 x y 100m ( 2) ( 2) (1) 得 4 x 40m x 10m y 50m x 10m 把 x 10m 代入 (1) 得 y 50m
3x 5 y m 2 3.使满足方程组 2 x 3 y m
的值 的和等于2,求x,y,m的值。
(1)
的x , y
(2)
4. 在方程 (a2-4)x2+(2-3a)x+(a+2)y+3a=0 中,若 此方程为二元一次方程,则a的值为______
解: 要使此方程为二元一次方程 , 则 x 2 项系数为零. 即 a2 4 0 a 2 当 a 2 时, 2 3a 和 a 1 都不为零. a 2
x 8 ax by 1 把 代入方程组 得 y 3 ax by 17 8a 3b 1 a 1 解这个方程组得 8a 3b 17 b 3 a 1 b3
7.x = 1与x = - 4时,代数式x2+bx+c的值都 是8,求b , c 的值。
x y 1 3 5 x y 0
D)
B、只有两个 D、有无数个
7、下列属于二元一次方程组的是 ( A、 B
A

3 5 1 x y x y 0
C、
x+y=5
x2+y2=1
D
1 y x2 2 xy 1
8.
3x-5y=6①
用加减法解方程组
2x-5y=7②
(1) ①- ②得x=1
3 2x t 5 解 : 由原方程组得 t 3 y x 2 3 2x 3y x 故 15y x 6 5 2
2 x 3 y 1 8.当m≠____时,方程组 有一组解。 1 x my 2
2 x 3 y 1 解 : 解方程组 1 x m y 2 ( 2) 2 (1) 得 ( 2m 3) y 0 (1) ( 2) (3)
3 当 ( 2m 3) 0 , 即 m 时 , (3)式有唯一解 . 2 故原方程组此时也只有 唯一解.
之——加强篇
1.己知:
1 a 1 (b 3) 2 0 2
ax 3 y 1 解方程组: x by 5
1 2 解 : 由 a 1 (b 3) 0 得 2 1 a 1 0 , b 3 0 2 a 2 , b 3 把 a 2 , b 3 代入方程组 2 x 3 y 1 得 x 3y 5 x 2 解之得 y 1
2. 己知方程(k2-1)x2+(k+1)x+(k-7)y=k+2 . 当k=___时,方程为一元一次方程; 当k=____时,方程为二元一次方程。
解 : 令 k 1 0 得 k 1 k 1
2 2
当 k 1 时 , 方程为一元一次方程 当 k 1 时 , 方程为二元一次方程
②已知3a3xb2x-y和-7a8-yb7是同类项
求x· y
解:根据题意:得 3x=8-y 转化为 2x-y=7 ∴
3x+y=8 2x-y=7
x=3 y=-1
即xy=-3
11。已知方程组 的解也是方程 3x-2y=5 2x+2y=10的解,求a
{
ax+y=3
12。已知
{
4x-3y-3z=0 并且Z≠0,求x:y X-3y+2z=0
3x 5 x 2a 2 x 7 x a 18 解之得 a 8 x 2 即为 y 2 ,
当 a 8 时 , 原方程组的解中x , y 的值互为相反数,
y 9、①已知 x y 2 2 x 3 y 5 0 ,求 、 的 值. 分析:由于一个数的平方是一个非负数,
2
x
一个数的绝对值也是一个非负数;两个非 负数的和为零就只能是每个数都为零,因 此,原方程就转化为方程组:
x y 2 0 2 x 3 y 5 0
重点:如果已知几个非负数的和为零,则 这几个数均为零。
②已知(3m+2n-16)2与|3m-n-1|互为相反数
求:m+n的值
具体解法如下
(2)把x=1代入①得y=-1.
(3)∴
x=1 其中出现错误的一步是( y=-1
A

A(1)
B(2) C(3)
9 解方程组
(1){
2X+5Y=12
2X-3Y=12
(2){
3(X-1)=4(Y-6) 5(Y-3)=3(X+5)
之——提高篇
5x 4 y 3 1 1.解下列方程组:). 3x y 2
相关文档
最新文档