传感器课后答案解析

合集下载

传感器课后答案解析

传感器课后答案解析

第1章概述1.什么是传感器?传感器定义为能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。

1.2传感器的共性是什么?传感器的共性就是利用物理规律或物质的物理、化学、生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、电容、电阻等)输出。

1.3传感器由哪几部分组成的?由敏感元件和转换元件组成基本组成部分,另外还有信号调理电路和辅助电源电路。

1.4传感器如何进行分类?(1)按传感器的输入量分类,分为位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。

(2)按传感器的输出量进行分类,分为模拟式和数字式传感器两类。

(3)按传感器工作原理分类,可以分为电阻式传感器、电容式传感器、电感式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。

(4)按传感器的基本效应分类,可分为物理传感器、化学传感器、生物传感器。

(5)按传感器的能量关系进行分类,分为能量变换型和能量控制型传感器。

(6)按传感器所蕴含的技术特征进行分类,可分为普通型和新型传感器。

1.5传感器技术的发展趋势有哪些?(1)开展基础理论研究(2)传感器的集成化(3)传感器的智能化(4)传感器的网络化(5)传感器的微型化1.6改善传感器性能的技术途径有哪些?(1)差动技术(2)平均技术(3)补偿与修正技术(4)屏蔽、隔离与干扰抑制 (5)稳定性处理第2章传感器的基本特性2.1什么是传感器的静态特性?描述传感器静态特性的主要指标有哪些?答:传感器的静态特性是指在被测量的各个值处于稳定状态时,输出量和输入量之间的关系。

主要的性能指标主要有线性度、灵敏度、迟滞、重复性、精度、分辨率、零点漂移、温度漂移。

2.2传感器输入-输出特性的线性化有什么意义?如何实现其线性化?答:传感器的线性化有助于简化传感器的理论分析、数据处理、制作标定和测试。

常用的线性化方法是:切线或割线拟合,过零旋转拟合,端点平移来近似,多数情况下用最小二乘法来求出拟合直线。

(完整版)传感器原理课后答案

(完整版)传感器原理课后答案

第一章传感与检测技术的理论基础1. 什么是测量值的绝对误差、相对误差、引用误差? 答:某量值的测得值和真值之差称为绝对误差。

相对误差有实际相对误差和标称相对误差两种表示方法。

实际相对误差是绝对误差与被测量的真值之 比;标称相对误差是绝对误差与测得值之比。

引用误差是仪表中通用的一种误差表示方法,也用相对误差表示,它是相对于仪表满量程的一种误差。

引用误差是绝对误差(在仪表中指的是某一刻度点的示值误差)与仪表的量程之比。

2. 什么是测量误差?测量误差有几种表示方法?它们通常应用在什么场合? 答:测量误差是测得值与被测量的真值之差。

测量误差可用绝对误差和相对误差表示,引用误差也是相对误差的一种表示方法。

在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。

在计算相对误差 时也必须知道绝对误差的大小才能计算。

采用绝对误差难以评定测量精度的高低,而采用相对误差比较客观地反映测量精度。

引用误差是仪表中应用的一种相对误差,仪表的精度是用引用误差表示的。

3.用测量范围为-50〜+150kPa 的压力传感器测量140kPa 压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。

解:绝对误差142 140 2 kPa什么是随机误差?随机误差产生的原因是什么?如何减小随机误差对测量结果的影响?答:在同一测量条件下,多次测量同一被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机 误差。

随机误差是由很多不便掌握或暂时未能掌握的微小因素(测量装置方面的因素、环境方面的因素、人 员方面的因素),如电磁场的微变,零件的摩擦、间隙,热起伏,空气扰动,气压及湿度的变化,测量人员 感觉器官的生理变化等,对测量值的综合影响所造成的。

对于测量列中的某一个测得值来说, 随机误差的岀现具有随机性, 即误差的大小和符号是不能预知的, 但当测量次数增大,随机误差又具有统计的规律性,测量次数越多,这种规律性表现得越明显。

传感器课后习题答案

传感器课后习题答案

习题1 传感器及其特性1-1 什么叫传感器?它由哪几部分组成?并说出各部分的作用及其相互间的关系。

答:传感器是能感受规定的被测量并按照一定的规律将其转换成可用输出信号的器件或装置。

通常传感器由敏感元件和转换元件组成。

敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。

由于传感器的输出信号一般都很微弱, 因此需要有信号调节与转换电路对其进行放大、运算调制等。

随着半导体器件与集成技术在传感器中的应用,传感器的信号调节与转换电路可能安装在传感器的壳体里或与敏感元件一起集成在同一芯片上。

此外,信号调节转换电路以及传感器工作必须有辅助的电源,因此信号调节转换电路以及所需的电源都应作为传感器组成的一部分。

1-2 简述传感器的作用和地位及其传感器技术的发展方向。

答:传感器位于信息采集系统之首,属于感知、获取及检测信息的窗口,并提供给系统赖以进行处理和决策所必须的原始信息。

没有传感技术,整个信息技术的发展就成了一句空话。

科学技术越发达,自动化程度越高,信息控制技术对传感器的依赖性就越大。

发展方向:开发新材料,采用微细加工技术,多功能集成传感器的研究,智能传感器研究,航天传感器的研究,仿生传感器的研究等。

1-3 传感器的静态特性指什么?衡量它的性能指标主要有哪些?答:传感器的静态特性是指被测量的值处于稳定状态时的输出—输入关系。

与时间无关。

主要性能指标有:线性度、灵敏度、迟滞和重复性等。

1-4 传感器的动态特性指什么?常用的分析方法有哪几种?答:传感器的动态特性是指其输出与随时间变化的输入量之间的响应特性。

常用的分析方法有时域分析和频域分析。

时域分析采用阶跃信号做输入,频域分析采用正弦信号做输入。

1-5 解释传感器的无失真测试条件。

答:对于任何一个传感器(或测试装置),总是希望它们具有良好的响应特性,精度高、灵敏度高,输出波形无失真的复现输入波形等。

传感器课后习题答案

传感器课后习题答案

、厚度等

•返
•上
•下
•图
第4章
| 4.4 总结电容式传感器的优缺点,主要应用场合 以及使用中应注意的问题。
• 4.4
• 答:①优点:a温度稳定性好

b结构简单、适应性强

c动响应好
• ②缺点:a可以实现非接触测量,具有平均效应

b输出阻抗高、负载能力差

c寄生电容影响大
•返
•上
•下
•图
第4章
| 4.4

拟合直线灵敏度 0.68,线性度 ±7%
•返
•上
•下
•图
第1章
| 1.4 某温度传感器为时间常数 T=3s 的一阶系统 ,当传感器受突变温度作用后,试求传感器指示 出温差的1/3和1/2所需的时间。
• 解:设温差为R,测此温度传感器受幅度为R的阶跃响 应为(动态方程不考虑初态)
•返
•上
•下
•图
第1章
| 1.5 某传感器为一阶系统,当受阶跃函数作用时,在
t=0时,输出为10mV;t→∞时,输出为100mV;在t=5s时, 输出为50mV,试求该传感器的时间常数。
• 解:此题与炉温实验的测飞升曲线类似:
•返
•上
•下
•图
第1章
| 1.8 什么是传感器的静特性?有哪些主要指标?
• 答:静特性是当输入量为常数或变化极慢时,传感器 的输入输出特性,其主要指标有线性度、迟滞、重复 性、分辨力、稳定性、温度稳定性、各种抗干扰稳定 性。
。而电感式传感器存在交流零位信号,不宜于高频
动态信号检测;其响应速度较慢,也不宜做快速动
态测量。

磁电式传感器测量的物理参数有:磁场、电流

《传感器与自动检测技术》第3版 课后习题解答

《传感器与自动检测技术》第3版 课后习题解答
2. 传感器的分类有哪几种?各有什么优缺点? 答:传感器常用的分类方法有两种,一种是按被测输入量来分,另一种是按传感器的工作原理来分。 按被测输入量来分:这种分类方法的优点是比较明确地表达了传感器的用途,便于使用者根据其用途
选用。其缺点是没有区分每种传感器在转换机理上有何共性和差异,不便于使用者掌握其基本原理及分析 方法。
较大的载荷,便于加工,实心圆柱形可测量大于 10kN 的力,空心圆柱形可测量 1~10kN 的力,应力变化 均匀。
(2) 圆环式弹性敏感元件比圆柱式输出的位移量大,因而具有较高的灵敏度,适用于测量较小的力。 但它的工艺性较差,加工时不易得到较高的精度。
2
传感器的分辩力是在规定测量范围内所能检测的输入量的最小变化量 ∆min 。有时也用该值相对满量程
输入值的百分数表示,称为分辨率。阈值通常又称为死区、失灵区、灵敏限、灵敏阈、钝感区,是输入量 由零变化到使输出量开始发生可观变化的输入量的值。
稳定性有短期稳定性和长期稳定性之分。传感器常用长期稳定性表示,它是指在室温条件下,经过相 当长的时间间隔,如一天、一月或一年,传感器的输出与起始标定时的输出之间的差异。通常又用其不稳 定度来表征其输出的稳定度。
1
例 4: ±20g 压电式加速度传感器。 在侧重传感器科学研究的文献、报告及有关教材中,为方便对传感器进行原理及其分类 的研究,允许只采用第 2 级修饰语,省略其他各级修饰语。 传感器代号的标记方法:一般规定用大写汉字拼音字母和阿拉伯数字构成传感器完整代号。传感器完 整代号应包括以下 4 个部分:(1)主称(传感器);(2)被测量;(3)转换原理;(4)序号。4 部分 代号格式为:
(4)序号 (3)转换原理 (2)被测量 (1)主称
在被测量、转换原理、序号 3 部分代号之间有连字符“-”连接。 例 5:应变式位移传感器,代号为:CWY-YB-10; 例 6:光纤压力传感器,代号为:CY-GQ-1; 例 7:温度传感器,代号为:CW-01A; 例 8:电容式加速度传感器,代号为:CA-DR-2。 有少数代号用其英文的第一个字母表示,如加速度用“A”表示。 4. 传感器的静态性能指标有哪些?其含义是什么? 答:传感器的静态特性主要由线性度、灵敏度、重复性、迟滞、分辨力和阈值、稳定性、漂移及量程 范围等几种性能指标来描述。 含义:线性度是传感器输出量与输入量之间的实际关系曲线偏离理论拟合直线的程度,又称非线性误 差。通常用相对误差表示其大小; 灵敏度是指传感器在稳态下,输出增量与输入增量的比值。对于线性传感器,其灵敏度就是它的静态 特性曲线的斜率,对于非线性传感器,其灵敏度是一个随工作点而变的变量,它是特性曲线上某一点切线 的斜率。 重复性是传感器在输入量按同一方向作全量程多次测试时,所得特性曲线不一致性的程度。 迟滞是传感器在正向行程(输入量增大)和反向行程(输入量减小)期间,输出—输入特性曲线不一致的 程度。

传感器课后题答案

传感器课后题答案

第五章3.试述霍尔效应的定义及霍尔传感器的工作原理。

霍尔效应:将半导体薄片置于磁场中,当它的电流方向与磁场方向不一致时,半导体薄片上平行于电流和磁场方向的两个面之间产生电动势,这种现象称为霍尔效应。

霍尔传感器工作原理:霍尔传感器是利用霍尔效应原理将被测物理量转换为电动势的传感器。

在垂直于外磁场B的方向上放置半导体薄片,当半导体薄片流有电流I时,在半导体薄片前后两个端面之间产生霍尔电势Uh。

霍尔电势的大小与激励电流I和磁场的磁感应强度成正比,与半导体薄片厚度d成反比。

4.简述霍尔传感器的组成,画出霍尔传感器的输出电路图。

组成:从矩形薄片半导体基片上的两个相互垂直方向侧面上,引出一对电极,其中1-1’电极用于加控制电流,称控制电流,另一对2-2’电极用于引出霍尔电势。

在基片外面用金属或陶瓷、环氧树脂等封装作为外壳。

电路图:5.简述霍尔传感器灵敏系数的定义。

答:它表示一个霍尔元件在单位激励电流和单位磁感应强度时产生霍尔电势的大小。

7.说明单晶体和多晶体压电效应原理,比较石英晶体和压电陶瓷各自的特点。

原理:石英晶体是天然的六角形晶体,在直角坐标系中,x轴平行于它的棱线,称为电轴,通常把沿电轴方向的作用下产生电荷的压电效应称为纵向压电效应;y轴垂直于它的棱面,称为机械轴,把沿机械轴方向的力作用下产生电荷的压电效应称为横向压电效应;z轴表示其纵轴,称为光轴,在光轴方向时,不产生压电效应。

压电陶瓷是人工制造的多晶体,在极化处理以前,各晶粒的电畴按任意方向排列,当陶瓷施加外电场时,电畴由自发极化方向转到与外加电场方向一致,此时,压电陶瓷具有一定极化强度,这种极化强度称为剩余极化强度。

由于束缚电荷的作用,在陶瓷片的电极表面上很快就吸附了一层来自外界的自由电荷,正负电荷距离大小因压力变化而变化,这种由机械能转变成电能的现象就是压电陶瓷的正压电效应,放电电荷的多少与外力的大小成比例关系,Q=dF33特点:石英晶体:(1) 压电常数小,时间和温度稳定性极好;(2) 机械强度和品质因素高,且刚度大,固有频率高,动态特性好;(3) 居里点573℃,无热释电性,且绝缘性、重复性均好。

《传感器技术》习题答案完整

《传感器技术》习题答案完整

《传感器技术》习题答案目录第一章传感器的基本概念及一般特性 (1)第二章电阻式传感器 (3)第三章电容式传感器 (5)第四章电感式传感器 (6)第五章磁电式传感器 (8)第六章压电式传感器 (9)第七章光电式传感器 (12)第八章热电及红外辐射传感器 (13)第九章数字式传感器 (14)第十章气敏和湿敏传感器 (15)第十三章传感器的标定与校准 (19)第一章 传感器的基本概念及一般特性4.解:对于一阶传感器,其幅频特性为21j )()()(ωτωω+==k H A要求幅值误差不超过5%,即a (j )115%H X k ω=-=≤因为ω=2πf=200π,带入解得0≤τ≤5.23×10-4s = 523 μs5.解:一阶传感器,其微分方程为)()()(t x b t y a dtt dy a 001=+ 对照题目所给微分方程可见:a 1=1,a 0=3,b 0=0.15。

静态灵敏度00a b k =;时间常数01a a =τ。

于是可求得∴ τ=a 1/a 0=1/3=0.33 (s )k=b 0/a 0=0.15/3=0.05 (mV/ oC )6./()/由()k ω=()k k ω=令00f x f ωωτω=== (1) 当()0.97k kω=时 421.960.0630x x --=解得,23 1.99x =(舍去负值),即3 1.41x =(舍去负值) 301.4128.28f f kHz ∴==(2) 当()1.03k kω=时, 421.960.05740x x -+=解得,211.39()0.172x x ==舍去负值, (舍去负值) 110 3.44f x f kHz ∴== 22027.8f x f kHz ==所以,工作频率为0~3.44kHz ,27.8~28.28kHz 。

但由于27.8~28.28kHz 距离0f 太近,易引起共振,工程上一般不予采用,故最终的工作频率范围为0~3.44kHz 。

传感器课后习题答案

传感器课后习题答案

《传感器与测试技术》计算题 解题指导(仅供参考)第1章 传感器的一般特性1—5 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。

当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。

由你的计算结果能得出什么结论? 解:满量程(F▪S )为50﹣10=40(mV)可能出现的最大误差为:∆m =40⨯2%=0.8(mV) 当使用在1/2和1/8满量程时,其测量相对误差分别为:%4%10021408.01=⨯⨯=γ %16%10081408.02=⨯⨯=γ1—6 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。

(1)T y dt dy5105.1330-⨯=+ 式中, y ——输出电压,V ;T ——输入温度,℃。

(2)x y dt dy6.92.44.1=+式中,y ——输出电压,μV ;x ——输入压力,Pa 。

解:根据题给传感器微分方程,得 (1) τ=30/3=10(s),K=1.5⨯10-5/3=0.5⨯10-5(V/℃);(2) τ=1.4/4.2=1/3(s),K=9.6/4.2=2.29(μV/Pa)。

1—7 已知一热电偶的时间常数τ=10s ,如果用它来测量一台炉子的温度,炉内温度在540℃至500℃之间接近正弦曲线波动,周期为80s ,静态灵敏度K=1。

试求该热电偶输出的最大值和最小值。

以及输入与输出之间的相位差和滞后时间。

解:依题意,炉内温度变化规律可表示为x (t) =520+20sin(ωt)℃由周期T=80s ,则温度变化频率f =1/T ,其相应的圆频率 ω=2πf =2π/80=π/40; 温度传感器(热电偶)对炉内温度的响应y(t)为y(t)=520+Bsin(ωt+ϕ)℃热电偶为一阶传感器,其响应的幅频特性为()()786010********22.B A =⎪⎪⎭⎫ ⎝⎛⨯π+=ωτ+==ω因此,热电偶输出信号波动幅值为B=20⨯A(ω)=20⨯0.786=15.7℃由此可得输出温度的最大值和最小值分别为y(t)|m ax =520+B=520+15.7=535.7℃ y(t)|m in =520﹣B=520-15.7=504.3℃输出信号的相位差ϕ为ϕ(ω)= -arctan(ωτ)= -arctan(2π/80⨯10)= -38.2︒相应的时间滞后为∆t =()s 4.82.3836080=⨯1—8 一压电式加速度传感器的动态特性可以用如下的微分方程来描述,即x y dt dy dt y d 1010322100.111025.2100.3⨯=⨯+⨯+式中,y ——输出电荷量,pC ;x ——输入加速度,m/s 2。

传感器技术课后习题答案

传感器技术课后习题答案

1-1 衡量传感器静态特性的主要指标。

说明含义。

1、 线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。

2、 回差(滞后)—反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。

3、 重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程度。

各条特性曲线越靠近,重复性越好。

4、 灵敏度——传感器输出量增量与被测输入量增量之比。

5、 分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。

6、 阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。

7、 稳定性——即传感器在相当长时间内仍保持其性能的能力。

8、 漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。

9、 静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。

1-2 计算传感器线性度的方法,差别。

1、 理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。

2、 端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。

3、 “最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并且最小。

这种方法的拟合精度最高。

4、 最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方和最小。

1-3 什么是传感器的静态特性和动态特性为什么要分静和动(1)静态特性:表示传感器在被测输入量各个值处于稳定状态时的输出-输入关系。

动态特性:反映传感器对于随时间变化的输入量的响应特性。

(2)由于传感器可能用来检测静态量(即输入量是不随时间变化的常量)、准静态量或动态量(即输入量是随时间变化的变量),于是对应于输入信号的性质,所以传感器的特性分为静态特性和动态特性。

Z-1 分析改善传感器性能的技术途径和措施。

传感器课后题答案

传感器课后题答案

第一章1.何为准确度、精密度、精确度并阐述其与系统误差和随机误差的关系。

;答:准确度:反映测量结果中系统误差的影响程度。

精密度:反映测量结果中随机误差的影响程度。

精确度:反映测量结果中系统误差和随机误差综合的的影响程度,其定量特征可用测量的不确定度表示。

4.为什么在使用各种指针式仪表时,总希望指针偏转在全量程的2/3以上范围内使用答:选用仪表时要考虑被测量的大小越接近仪表上限越好,为了充分利用仪表的准确度,选用仪表前要对被测量有所了解,其被测量的值应大于其测量上限的2/3。

14.何为传感器的静态标定和动态标定试述传感器的静态标定过程。

答:静态标定:确定传感器的静态特性指标,如线性度、灵敏度、滞后和重复性等。

动态标定:确定传感器的动态特性参数,如频率响应、时间常数、固有频率和阻尼比等。

(静态标定过程:①将传感器全量程分成如干等间距点。

②根据传感器量程分点情况,由小到大一点一点地输入标准量值,并记录与各输入值相应的输出值。

③将输入值由大到小一点一点减小,同时记录与各输入值相对应的输出值。

④按②、③所述过程,对传感器进行正反行程往复循环多次测试,将得到的输出-输入测试数据用表格列出或作出曲线。

⑤对测试数据进行必要的处理,根据处理结果就可以确定传感器的线性度、灵敏度、迟滞和重复性等静态特性指标。

第二章~1.什么叫应变效应利用应变效应解释金属电阻应变片的工作原理。

答:应变效应:金属丝的电阻随着它所受的机械形变的大小而发生相应的变化的现象称为金属应变效应。

工作原理:在电阻丝拉伸极限内,电阻的相对变化与应变成正比,即:=K0(K0:电阻丝的灵敏系数、:导体的纵向应变)2.金属电阻应变片与的工作原理有何区别各有何优缺点答:区别:金属电阻变化主要是由机械形变引起的;半导体的阻值主要由电阻率变化引起的。

优缺点:金属电阻应变片的主要缺点是应变灵敏系数较小,半导体应变片的灵敏度是金属电阻应变片50倍左右。

-6.什么是直流电桥若按桥臂工作方式不同,可分为哪几种各自的输出电压如何计算答:直流电桥:电桥电路的工作电源E 为直流电源,则该电桥称为直流电桥。

传感器课后习题答案

传感器课后习题答案

习题1 传感器及其特性1-1 什么叫传感器?它由哪几部分组成?并说出各部分的作用及其相互间的关系。

答:传感器是能感受规定的被测量并按照一定的规律将其转换成可用输出信号的器件或装置。

通常传感器由敏感元件和转换元件组成。

敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。

由于传感器的输出信号一般都很微弱, 因此需要有信号调节与转换电路对其进行放大、运算调制等。

随着半导体器件与集成技术在传感器中的应用,传感器的信号调节与转换电路可能安装在传感器的壳体里或与敏感元件一起集成在同一芯片上。

此外,信号调节转换电路以及传感器工作必须有辅助的电源,因此信号调节转换电路以及所需的电源都应作为传感器组成的一部分。

1-2 简述传感器的作用和地位及其传感器技术的发展方向。

答:传感器位于信息采集系统之首,属于感知、获取及检测信息的窗口,并提供给系统赖以进行处理和决策所必须的原始信息。

没有传感技术,整个信息技术的发展就成了一句空话。

科学技术越发达,自动化程度越高,信息控制技术对传感器的依赖性就越大。

发展方向:开发新材料,采用微细加工技术,多功能集成传感器的研究,智能传感器研究,航天传感器的研究,仿生传感器的研究等。

1-3 传感器的静态特性指什么?衡量它的性能指标主要有哪些?答:传感器的静态特性是指被测量的值处于稳定状态时的输出—输入关系。

与时间无关。

主要性能指标有:线性度、灵敏度、迟滞和重复性等。

1-4 传感器的动态特性指什么?常用的分析方法有哪几种?答:传感器的动态特性是指其输出与随时间变化的输入量之间的响应特性。

常用的分析方法有时域分析和频域分析。

时域分析采用阶跃信号做输入,频域分析采用正弦信号做输入。

1-5 解释传感器的无失真测试条件。

答:对于任何一个传感器(或测试装置),总是希望它们具有良好的响应特性,精度高、灵敏度高,输出波形无失真的复现输入波形等。

传感器课后部分答案

传感器课后部分答案
倒车声纳雷达示意图
障碍物
障碍物
第八章作业解析 霍尔电流传感器
P118:2.请分析霍尔式交 直流钳型表的结构及原 理……
磁力线
磁力线
霍尔电流传感器原理及使用
提示:载流导线被夹持在电流传感器的铁芯中, 导线上的电流越大,产生的磁感应强度B 也越大,霍 尔元件产生的霍尔电势与被测导线中的电流成正比。 直流和交流电流均可产生霍尔电势,所以霍尔电流传 感器有取代电流互感器的趋势。
7题:1、 y 1 0.6x 0.02 x2 2、(略)
3、 s y x 0.6 0.04 x
4、K1=0.6-0.04×2=0.52;K2=0.6-0.04×8=0.28
8题:(略)。 9题:1、系统;2、系统;3、系统;4、系统;5、系统+随机;
6、系统;7、随机;8、系统;9、系统+随机;10、随机。
4、A、B 8、D
2题:(讲解)。
3题: 条件不足—差动全桥?差动半桥?(讲解)。
4题:1、查表知:α =0.00385。 2、Rt=100(1+0.00385×50)=119.25Ω 。 3、查表知:Rt(50)=119.40Ω 。 4、∆R=0.15 Ω ;(0.15/119.40)×100%=0.126%。
4题:1、1.6mm 2、T=20ms,f=50Hz 3、多次谐波的合成 4、2.5mm
6题:1、10mm 3、T=6.25mS;f=160Hz
2、5mm 4、x=5sin(wt)mm
一、选择题: 1、D.A 2、C
2题:
第四章作业
3、B 4、C.B 5、D.A 6、A
7、B.C
3题:1、不导电 2、距离小、电涡流大、等效电感小、输出频率大。

传感器原理与应用第二版课后答案

传感器原理与应用第二版课后答案

传感器原理与应用第二版课后答案1. 什么是传感器?传感器的作用是什么?传感器是一种能够感知、检测和接收外部信息并将其转化为可用信号的装置。

其作用在于将各种物理量、化学量、生物量等转换为电信号或其他所需形式的信号,以便进行测量、控制、记录、显示等。

2. 传感器的分类及其原理。

传感器根据测量的物理量不同可分为光学传感器、压力传感器、温度传感器、湿度传感器、位移传感器、力传感器等。

光学传感器是利用光的传播、反射、折射、吸收等现象进行探测的传感器。

压力传感器是利用介质受力变形的原理进行测量的传感器。

温度传感器是利用物体温度与某种物理特性(如电阻、电压、电流等)的关系进行测量的传感器。

湿度传感器是利用介质的吸湿性质进行测量的传感器。

位移传感器是利用物体位移与某种物理特性(如电容、电感、电阻等)的关系进行测量的传感器。

力传感器是利用受力物体的弹性变形与某种物理特性(如电阻、电容、电感等)的关系进行测量的传感器。

3. 传感器的应用领域。

传感器广泛应用于工业自动化、环境监测、医疗仪器、消费电子、智能家居、汽车电子、航空航天等领域。

在工业自动化领域,传感器用于测量和控制生产过程中的各种物理量,如温度、压力、流量、液位等,以实现自动化生产。

在环境监测领域,传感器用于监测大气、水质、土壤等环境参数,以实现环境保护和资源管理。

在医疗仪器领域,传感器用于监测患者的生理参数,如心率、血压、血氧饱和度等,以帮助医生进行诊断和治疗。

在消费电子领域,传感器用于手机、平板电脑、智能手表等设备中,实现智能化功能。

在智能家居领域,传感器用于监测室内环境,实现智能控制。

在汽车电子领域,传感器用于监测车辆的各种参数,保障行车安全。

在航空航天领域,传感器用于监测飞行器的各种参数,保障飞行安全。

4. 传感器的发展趋势。

随着科技的不断进步,传感器的发展呈现出以下几个趋势,小型化、智能化、多功能化、网络化、无线化。

传感器的小型化使其在各种设备中的应用更加方便灵活;智能化使传感器具有自主判断和处理能力,能够实现更复杂的功能;多功能化使传感器能够同时实现多种测量和控制功能;网络化使传感器能够实现远程监测和控制;无线化使传感器能够摆脱传统的有线连接,实现更灵活的布局和应用。

《传感器原理与应用》课后答案解析

《传感器原理与应用》课后答案解析

第1章传感器基础理论思考题与习题答案1.1什么是传感器?(传感器定义)解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。

1.2传感器特性在检测系统中起到什么作用?解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。

通常把传感器的特性分为两种:静态特性和动态特性。

静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。

动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。

1.3传感器由哪几部分组成?说明各部分的作用。

解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。

其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图1.1所示。

1.4传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意义?动态参数有那些?应如何选择?解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。

衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。

意义略(见书中)。

动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。

1.5某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。

解:其灵敏度333001060510UkX--∆⨯===∆⨯1.6某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、S 2=2.0V/mV 、S 3=5.0mm/V ,求系统的总的灵敏度。

1.7某线性位移测量仪,当被测位移由4.5mm 变到5.0mm 时,位移测量仪的输出电压由3.5V减至2.5V ,求该仪器的灵敏度。

传感器(第四版) 课后习题答案(部分)

传感器(第四版) 课后习题答案(部分)
模电第四版课后答案传感器课后答案医用传感器课后答案课后习题答案网土力学课后习题答案传感器技术课后答案毛概课后习题答案概率论课后习题答案测量学课后习题答案雷雨课后习题答案
第四章 电容式传感器
1、改善单组式变极距型电容传感器非线性的方法: (1)可采用差动式结构,取两电容之差作为输出; (2)选择合适的测量电路,如运算放大器式电路。
(2)若两极板相对移动2mm,则电容变化量为
C kg b 0.0708pF / mm 2mm 0.1416pF
C

S
S
S


C0

Kg

C


C0


1

1

/

5、“驱动电缆”技术
芯线 传 感 器
单组式
差动式
单组式:
S S S

C





C0
Kg

C


C0


1

1

/

Kg

C0

1




2




3




4



2、解:
(1)传感器的电容C 0S 0ab
C 0ab b 0ab 0ab



则传感器的灵敏度为
kg

C b

0a

8.851012 F / m 4 103 m 0.5103 m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章概述1.什么是传感器?传感器定义为能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置,通常由敏感元件和转换元件组成。

1.2传感器的共性是什么?传感器的共性就是利用物理规律或物质的物理、化学、生物特性,将非电量(如位移、速度、加速度、力等)输入转换成电量(电压、电流、电容、电阻等)输出。

1.3传感器由哪几部分组成的?由敏感元件和转换元件组成基本组成部分,另外还有信号调理电路和辅助电源电路。

1.4传感器如何进行分类?(1)按传感器的输入量分类,分为位移传感器、速度传感器、温度传感器、湿度传感器、压力传感器等。

(2)按传感器的输出量进行分类,分为模拟式和数字式传感器两类。

(3)按传感器工作原理分类,可以分为电阻式传感器、电容式传感器、电感式传感器、压电式传感器、磁敏式传感器、热电式传感器、光电式传感器等。

(4)按传感器的基本效应分类,可分为物理传感器、化学传感器、生物传感器。

(5)按传感器的能量关系进行分类,分为能量变换型和能量控制型传感器。

(6)按传感器所蕴含的技术特征进行分类,可分为普通型和新型传感器。

1.5传感器技术的发展趋势有哪些?(1)开展基础理论研究(2)传感器的集成化(3)传感器的智能化(4)传感器的网络化(5)传感器的微型化1.6改善传感器性能的技术途径有哪些?(1)差动技术(2)平均技术(3)补偿与修正技术(4)屏蔽、隔离与干扰抑制 (5)稳定性处理第2章传感器的基本特性2.1什么是传感器的静态特性?描述传感器静态特性的主要指标有哪些?答:传感器的静态特性是指在被测量的各个值处于稳定状态时,输出量和输入量之间的关系。

主要的性能指标主要有线性度、灵敏度、迟滞、重复性、精度、分辨率、零点漂移、温度漂移。

2.2传感器输入-输出特性的线性化有什么意义?如何实现其线性化?答:传感器的线性化有助于简化传感器的理论分析、数据处理、制作标定和测试。

常用的线性化方法是:切线或割线拟合,过零旋转拟合,端点平移来近似,多数情况下用最小二乘法来求出拟合直线。

2.3利用压力传感器所得测试数据如下表所示,计算其非线性误差、迟滞和重复性误差。

设压力为0MPa 时输出为0mV,压力为0.12MPa时输出最大且为16.50mV.非线性误差略正反行程最大偏差∆Hmax=0.1mV,所以γH=±∆Hmax0.1100%=±%=±0.6%YFS16.50重复性最大偏差为∆Rmax=0.08,所以γR=±∆Rmax0.08=±%=±0.48%YFS16.52.4什么是传感器的动态特性?如何分析传感器的动态特性?传感器的动态特性是指传感器对动态激励(输入)的响应(输出)特性,即输出对随时间变化的输入量的响应特性。

传感器的动态特性可以从时域和频域两个方面分别采用瞬态响应法和频率响应法来分析。

瞬态响应常采用阶跃信号作为输入,频率响应常采用正弦函数作为输入。

2.5描述传感器动态特性的主要指标有哪些?零阶系统常采用灵敏度K,一阶系统常采用时间常数τ、灵敏度K,二阶系统常采用固有频率ω0、阻尼比ζ、灵敏度K来描述。

2.6试解释线性时不变系统的叠加性和频率保持特性的含义及其意义。

当检测系统的输入信号是由多个信号叠加而成的复杂信号时,根据叠加性可以把复杂信号的作用看成若干简单信号的单独作用之和,从而简化问题。

如果已知线性系统的输入频率,根据频率保持特性,可确定该系统输出信号中只有与输入信号同频率的成分才可能是该输入信号引起的输出,其他频率成分都是噪声干扰,可以采用相应的滤波技术。

2.7用某一阶传感器测量100Hz的正弦信号,如要求幅值误差限制在±5%以内,时间常数应取多少?如果用该传感器测量50Hz的正弦信号,其幅值误差和相位误差各为多少?解:一阶传感器频率响应特性:H(jω)=11,幅频特性:A(ω)=τ(jω)+1+(ωτ)21≤5%+(ωτ),取τ=0.523ms由题意有A(jω)≤5%,即又ω=2π=2πf=200πT,所以0≺τ≺0.523ms(1/+(ωτ)2)−1幅值误差:∆A(ω)=×100%=−1.32%1相位误差:∆Φ(ω)=−arctan(ωτ)=−9.302.8某温度传感器为时间常数τ=3s的一阶系统,当传感器受突变温度作用后,试求传感器温差的三分之一和二分之一所需的时间。

温差为二分之一时,t=2.08s温差为三分之一时,t=1.22s2.9玻璃水银温度计通过玻璃温包将热量传给水银,可用一阶微分方程来表示。

现已知某玻璃水银温度计特性的微分方程是2dy,x代表输入+2y=2×10−3x,y代表水银柱高(m)dt温度(℃)。

求该温度计的时间常数及灵敏度。

τ=1s;K=1×10−32.10某传感器为一阶系统,当受阶跃函数作用时,在t=0时,输出为10mV,在t=5s时,输出为50mV;在t→∞时,输出为100mV。

试求该传感器的时间常数。

τ=8.5s2.11某一质量-弹簧-阻尼系统在阶跃输入激励下,出现的超调量大约是最终稳态值的40%。

如果从阶跃输入开始至超调量出现所需的时间为0.8s,试估算阻尼比和固有角频率的大小。

2.12在某二阶传感器的频率特性测试中发现,谐振发生在频率216Hz处,并得到最大的幅值比为1.4,试估算该传感器的阻尼比和固有角频率的大小。

1ω2ω解:二阶系统A(ω)={[1−()]+4ξ2()2}2ωnωn当ω=ωn时共振,则A(ω)max=1=1.4,ξ=0.362ξ所以:ω=ωn=2πf=2π×216=1357rad/s2.13设一力传感器可简化为典型的质量-弹簧-阻尼二阶系统,已知该传感器的固有频率f0=1000Hz,若其阻尼比为0.7,试问用它测量频率为600Hz、400Hz的正弦交变力时,其输出与输入幅值比A(ω)和相位差Φ(ω)各为多少?第三章电阻式传感器3.1应变电阻式传感器的工作原理是什么?电阻应变式传感器的工作原理是基于应变效应的。

当被测物理量作用在弹性元件上,弹性元件在力、力矩或压力等作用下发生形变,变换成相应的应变或位移,然后传递给与之相连的应变片,将引起应变敏感元件的电阻值发生变化,通过转换电路变成电量输出。

输出的电量大小反映了被测物理量的大小。

3.2电阻应变片的种类有哪些?各有何特点?按组成材料有金属和半导体之分,金属应变片受力时,主要是基于应变效应,是引起应变片的外形变化进而引起电阻值变化,而半导体应变片时基于压阻效应工作的,当受力时,引起应变片的电阻率变化进而引起电阻值变化。

按结构形式有丝式和箔式之分。

丝式是应变金属丝弯曲成栅式结构,工艺简单,价钱便宜。

箔式是采用光刻和腐蚀等工艺制成的,工艺复杂,精度高,价钱较贵。

3.3引起电阻应变片温度误差的原因是什么?电阻应变片的温度补偿方法是什么?一是电阻温度系数,二是线膨胀系数不同。

单丝自补偿应变片,双丝组合式自补偿应变片,补偿电路3.4试分析差动测量电路在应变式传感器中的好处。

灵敏度提高一倍,非线性得到改善。

3.5如果将100Ω应变片粘贴在弹性元件上,试件截面积S=0.5×10−4m2,弹性模量E=2×1011N/m2,若5×104N的拉力引起应变计电阻变化为1Ω,求该应变片的灵敏度系数。

解:K=∆R∆R1/ε,已知∆R=1Ω,所以=RR100F50×103292σ==N/m=1×10N/m,−4A0.5×10σ1×109−3由σ=Eε得ε===5×10,E2×1011所以K=∆R/R1/100==2ε5×10−33.6一个量程为10kN的应变式测力传感器,其弹性元件为薄壁圆筒轴向受力,外径20mm,内径18mm,在其表面粘贴八个应变片,四个沿轴向粘贴,四个沿周向粘贴,应变片的电阻值均为120Ω,灵敏度为2.0,泊松比为0.3,材料弹性模量为2.1×1011Pa,要求:(1)绘出弹性元件贴片位置及全桥电路。

(2)计算传感器在满量程时,各应变片电阻变化。

(3)当桥路的供电电压为10V时,计算传感器的输出电压。

解:(2)A=π(R2−r2)=59.7×10−6m2∆R1=∆R2=∆R3=∆R4=kFR=0.191ΩAE∆R5=∆R6=∆R7=∆R8=−µ∆R1=−0.0573Ω(3)U0=1mV3.7图3.5中,设负载电阻为无穷大(开路),图中,E=4V,解:(1)U0=E[R1+∆R1R31011−]=4×(−)V≈0.01V(R1+∆R1)+R2R3+R42012(2)U0=E[R1+∆R1R31011−]=4×(−)V=0V(R1+∆R1)+(R2+∆R2)R3+R42012(3)当R1受拉应变,R2受压应变时,U0=E[R1+∆R1R31011−=4×(−)V=0.02V(R1+∆R1)+(R2−∆R2)R3+R42002当R1受压应变,R2受拉应变时,U0=E[R1−∆R1R3991−=4×(−)V=−0.02V(R1−∆R1)+(R2+∆R2)R3+R420023.8图3-11中,设电阻应变片R1的灵敏度系数K=2.05,未受应变时,R1=120Ω。

当试件受力为F时,应变片承受平均应变ε=800µm/m,试求:(1)应变片的电阻变化量∆R1和电阻相对变化量∆R1/R1。

2)将电阻应变片R1置于单臂测量电桥,电桥电源电压为直流3V,求电桥输出电压及其非线性误差。

(3)如果要减小非线性误差,应采取何种措施?分析其电桥输出电压及非线性误差的大小。

解:(1)∆R1/R1=Kε=2.05×800×10−6=1.64×10−3∆R1=Kε×R1=1.64×10−3×120=0.197Ω(2)U0=E∆R13×=×1.64×10−3=1.23mV4R14∆R1/R11.64×10−3γL===0.08%−32+∆R1/R12+1.64×10(3)若要减小非线性误差,一是要提高桥臂比,二是要采用差动电桥。

第4章电感式传感器4.1根据工作原理的不同,电感式传感器可分为哪些种类?可分为变磁阻式(自感式)、变压器式和涡流式(互感式)4.2试分析变气隙厚度变磁阻式电感式传感器的工作原理。

当被测位移变化时,衔铁移动,气隙厚度发生变化,引起磁路中磁阻变化,从而导致线圈的电感值变化。

通过测量电感量的变化就能确定衔铁位移量的大小和方向。

4.3已知变气隙厚度电感式传感器的铁芯截面积S=1.5cm2,磁路长度L=20cm,相对磁导率µr=5000,气隙δ0=0.5cm,∆δ=±0.1mm,真空磁导率µ0=4π×10−7H/m,线圈匝数W=3000,求单线圈式传感器的灵敏度∆L/∆δ。

相关文档
最新文档