列方程解行程问题例析
行程问题(只有多练习-见的题型多了-自然也就会了-书山有路勤为径-学海无涯苦作舟-功到自然成-加油吧
[客车][两地][相对]两列客车从两地相对开出,5小时后在距中点30千米处相遇,已知快车每小时行60千米,慢车每小时行若干好多千米?快车比慢车在5小时的时刻里多行了:30*2=60千米则每小时多行60/5=12千米慢车每小时行60-12=48千米设总距离为x x/(65+60)*(65-60)=20*2 x=1000 相遇时快车行驶距离:1000/125 *65=520km,慢车行驶:1000-520=480km 不懂hi我快车每小时行80 4小时相遇共行驶 320 因为是快车所以驶过中心 15 全长(320-15)*2= 610 慢车4小时共行驶 610-320=290 每小时行驶290/4=72.5 脑子乱套应该是这样吧!!!乙车的速度 = 65 * 12/13 = 60(千米/小时)从出发到相遇所用的时刻 = 2*20/(65-60)= 8 (小时)甲乙两地距离 = (65+60)* 8 = 1000(千米)一、明确行程问题中三个量的关系引例:从甲地到乙地,水路比公路近40千米,上午十时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地驶往乙地,结果同时到达终点。
已知轮船的速度是每小时24千米,汽车的速度是每小时40千米,求甲、乙两地水路、公路的长,以及汽车和轮船行驶的时间?三个基本量关系是:速度×时间=路程解:设水路长为x千米,则公路长为(x+40)千米等量关系:船行时间-车行时间=3小时答:水路长240千米,公路长为280千米,车行时间为7小时,船行时间为10小时依题意得:x=240解2 设汽车行驶时间为x小时,则轮船行驶时间为(x+3)小时。
等量关系:水路-公路=40依题意得:40x -24(x+3)= 40x=77+3=10 40×7=280 24 ×10=240答:汽车行驶时间为7小时,船行时间为10小时,公路长为280米,水路长240米。
引例:从甲地到乙地,水路比公路近40千米,上午十时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地驶往乙地,结果同时到达终点。
行程问题
行程问题常见题型分析一、行程问题中有三个基本量:速度、时间、路程。
路程=时间×速度速度=路程/时间时间=路程/速度二、行程问题常见类型1、普通相遇问题。
2、追及(急)问题。
3顺(逆)水航行问题。
4、跑道上的相遇(追急)问题三、行程问题中的等量关系顺水速度=静水速度+水流速度逆水速度=静水速度+水流速度相遇路程/速度和=相遇时间追急路程/速度差=追击时间四、分类举例例1 :小明每天早上要在7:50之前赶到距离家1000米的学校去上学。
小明以80米/分的速度出发,5分钟后小明的爸爸发现他忘了带语文书。
于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。
爸爸追小明用了多长时间?例2:甲乙两人在环形跑道上练习跑步。
已知环形跑道一圈长400米,乙每秒跑6米,甲的速度是乙的4/3倍。
⑴若甲、乙两人在跑道上相距8米处同时相向出发,经过几秒两人相遇?⑵若甲在乙前8米处同时同向出发,那么经过多长时间两人首次相遇例3:一货轮航行于A、B两个码头之间,水流速度为3km/小时,顺水需2.5小时,逆水需3小时,求两码头之间的距离。
例4:一列火车匀速前进,从开进入300米长的隧道到完全驶出隧道共用了20秒,隧道顶部一盏固定的聚关灯照射火车10秒,这列火车的长度是多少?练习:1:某行军纵队以9千米/时的速度进行,队尾的通讯员以15千米/时的速度赶到队伍前送一封信,送到后又立即返回队尾,共用20分钟,求这支队伍的长度?2:一船航行于A、B两码头之间,顺水航行需3小时,逆水航行需5小时,水流速度是4千米/时,求两码头之间距离。
方法一:利用轮船速度不变列方程方法二:利用码头之间距离不变量列方程3:一部稿件,甲打字员单独打20天可以完成,甲、乙打字员合作打12天完成。
现由两人合打7天后,余下部分由乙打,则乙还要多少天完成?4:甲、乙两人骑自行车分别在一与铁路平行的公路上背向而行,每小时都行15千米,现有一火车开来,火车从甲身边开过用30秒,从乙身边开过用20秒,求火车速度?5:一轮船从重庆到武汉要5昼夜,从武汉到重庆要7昼夜,试问一木排从重庆漂流到武汉要多长时间?6:甲、乙两人在圆形跑道上跑步,甲用40秒跑一圈;乙反向跑,每15秒与甲相遇一次,求乙跑一圈要多长时间?方法一:设乙跑一圈要x秒,速度要v米/秒。
小学奥数行程问题50题例题详解
这篇关于⼩学奥数⾏程问题50题例题详解,是特地为⼤家整理的,希望对⼤家有所帮助!1、甲、⼄⼆⼈以均匀的速度分别从A、B两地同时出发,相向⽽⾏,他们第⼀次相遇地点离A地4千⽶,相遇后⼆⼈继续前进,⾛到对⽅出发点后⽴即返回,在距B地3千⽶处第⼆次相遇,求两次相遇地点之间的距离. 解:第⼆次相遇两⼈总共⾛了3个全程,所以甲⼀个全程⾥⾛了4千⽶,三个全程⾥应该⾛4*3=12千⽶, 通过画图,我们发现甲⾛了⼀个全程多了回来那⼀段,就是距B地的3千⽶,所以全程是12-3=9千⽶, 所以两次相遇点相距9-(3+4)=2千⽶。
2、甲、⼄、丙三⼈⾏路,甲每分钟⾛60⽶,⼄每分钟⾛67.5⽶,丙每分钟⾛75⽶,甲⼄从东镇去西镇,丙从西镇去东镇,三⼈同时出发,丙与⼄相遇后,⼜经过2分钟与甲相遇,求东西两镇间的路程有多少⽶? 解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270⽶,这距离是⼄丙相遇时间⾥甲⼄的路程差 所以⼄丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860⽶。
3、A,B两地相距540千⽶。
甲、⼄两车往返⾏驶于A,B两地之间,都是到达⼀地之后⽴即返回,⼄车较甲车快。
设两辆车同时从A地出发后第⼀次和第⼆次相遇都在途中P地。
那么两车第三次相遇为⽌,⼄车共⾛了多少千⽶? 解:根据总结:第⼀次相遇,甲⼄总共⾛了2个全程,第⼆次相遇,甲⼄总共⾛了4个全程,⼄⽐甲快,相遇⼜在P点,所以可以根据总结和画图推出:从第⼀次相遇到第⼆次相遇,⼄从第⼀个P点到第⼆个P点,路程正好是第⼀次的路程。
所以假设⼀个全程为3份,第⼀次相遇甲⾛了2份⼄⾛了4份。
第⼆次相遇,⼄正好⾛了1份到B地,⼜返回⾛了1份。
这样根据总结:2个全程⾥⼄⾛了(540÷3)×4=180×4=720千⽶,⼄总共⾛了720×3=2160千⽶。
列一元二次方程解应用题-行程问题
列一元二次方程解应用题——行程问题班级_________ 姓名________学号学习目标:1、回顾行程问题中的相遇问题、追及问题和航行问题以及它们常见的等量关系,进一步认识建立方程模型的作用,提高数学的应用意识,并能根据具体问题的实际意义,检验结果的合理性;2、进一步体会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力.典例精析:例1、(1) A、B两地相距40千米,甲从A地往B地,若每小时走x千米,那么需走______小时;如果每小时多走2千米,那么需走______小时,这样可比原先早______小时到达B地. (2)飞机在静风中速度为每小时a千米,风速为每小时b千米(a >b),则该飞机逆风飞行2小时能飞行千米;若顺风飞行120千米需小时.(3)小明与小李在我校400米的环行跑道上练习短跑,小明与小李的速度分别为5m/s,4m/s,两人同地同向而行,若小李先跑10秒,则经过______秒时两人首次相遇.例2、(1)甲、乙两人同时从A地出发,步行18千米到B地,甲每小时比乙多走1千米,结果比乙早到36分钟,求甲、乙两人的速度.(2)A、B两地相距18千米,甲、乙两人都从A地往B地,乙步行两小时后,甲骑自行车出发,结果甲比乙提前6分钟到达乙地,若甲速比乙速的3倍还多2千米,求乙的速度.(3)A、B两地相距18千米,甲、乙分别从A、B两地同时出发,相遇后甲再经过2.5小时到达B地,乙再经过1小时36分到达A地,求甲、乙两人的速度.(4)A、B两地相距18千米,某班同学要从A地去B地只有一辆汽车,全班分为两组.甲组先乘车,乙组先步行,同时出发,开到途中C地,甲组下车步行,汽车回头接乙组,把乙组送到B地时,甲组恰好也到达B地,设车速为60km/h,步行速度为4km/h,上、下车时间忽略不计.①求AC的距离;②两组各步行多少千米?例3、一艘轮船顺流航行130千米,又逆流航行66千米,共用去8小时,已知船在顺流航行时比在逆流航行时每小时多行4千米,求船在静水中的速度和水流速度.随堂练习:1、A地B地相距1600千米,经技术改造,列车实施了提速,提速后比提速前速度每小时增加了20千米,提速后,列车从A地到B地的时间减少了4小时,这条铁路在现有的条件下,要求安全行驶速度不超过140千米/时,问铁路是否可能再次提速度?1 / 42、《九章算术》“勾股”章有一题:“今有二人同所立.甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何?”大意是说:甲乙二人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向东北方向走了一段后与乙相遇,相遇时甲乙各走多远?3、某人骑自行车由A城向B城出发,到B城后立即返回,他以同样的速度往回骑了1小时后,休息了20分钟,继续上路后速度每小时增加4千米.已知A、B两地相距60千米,他从B返回A所用的时间和从A到B的时间一样,问自行车的原来速度是多少?4、某河的水流速度为2千米/时,A、B两地相距36千米,一动力橡皮船从A地出发,逆流而上去B地,出航后1小时,机器发生故障,橡皮船随水向下漂流,30分钟后机器修复,继续向B地开去,但船速比修复前每小时慢了1千米,到达B地比预定时间迟54分钟,求橡皮船在静水中的速度?5、《中华人民共和国道路交通安全法实施条例》中规定:超速行驶属违法行为,为确保行车安全,一段高速公路全程限速110千米/时(即任一时刻的车速都不能超过110千米/时).以下是张师傅和李师傅行驶完全程为400千米的高速公路的对话片段.张:“你的车速太快了,平均每小时比我多跑20千米,比我少一个小时就跑完了全程,应该慢点啊!”李:“虽然我的时速快,但是最大的时速不超过我平均时速的10%,可没有超速违法啊!”李师傅超速违法吗?为什么?课后作业:1、一只船在静水中速度为每小时a千米,水速为每小时b千米,则这只船顺流速度为____________千米/时,逆流速度为_________千米/时.2、甲、乙两人从A、B两地相向而行,甲的速度为a千米/时,乙的速度为b千米/时,经过t小时相遇,则A、B两地相距_________千米;二人相遇后,甲到达B地还需________小时,乙走完全程需_________小时.3、A、B两物体位于半径为r的圆周上的同一位置,它们分别以a米/秒,b米/秒的速度沿圆周运动(a>b).如果同向则需______秒首次相遇;如果反向,则需_____秒首次相遇.4、从A站到B站有120千米,一辆客车和一辆货车同时从A站出发,1小时后,客车在货车前面24千米;客车到达B站比货车早25分钟.求客车和货车每小时各走多少千米?2 / 45、一列货车要在一定时间内行驶840千米,但行驶到中点时,被阻30分钟,为按时到达,必须每小时多行2千米,求驶完全程原定时间为多少?6、雁塔中学全体同学到距学校15千米的科技馆参观,一部分同学骑自行车先走,40分钟后,其余同学乘汽车出发,结果他们同时到达科技馆.已知汽车的速度是自行车的3倍,求汽车的速度.7、甲、乙两地间的路,有一部分是上坡路,其余是下坡路.邮递员骑自行车从甲地到乙地需2小时40分,从乙地回到甲地少用20分钟.已知他骑自行车走下坡路比走上坡路每小时多走6千米,又甲、乙两地相距36千米,求他骑自行车上坡、下坡的速度以及甲地到乙地上、下坡的长度.8、一条公路干线上,有相距18千米的A、B两个村庄,A村的一辆汽车的速度为54千米/时,B村的一辆汽车的速度为36千米/时,如果两车分别从A、B两村同时同向而行,经过几小时后,两车相距45千米?9、东西两村相距120千米,甲从西村到东村,乙从东村到西村,两人同时出发,相遇后,甲继续走2小时到东村,乙继续走8小时到西村,求甲、乙两人的速度.10、A、B两地间的路程为15千米,早晨6时整,甲从A地出发步行前往B地,20分钟后,乙从B地出发骑车前往A地,乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B地.如果乙骑车比甲步行每小时多走10千米,问几点钟甲、乙两人同时到达B地?3 / 411、甲、乙两地相距252千米,中途有一中转站,汽车空载比重载每小时多走4千米;若一辆汽车从甲地载货到中转站,卸货后再空车到乙共需6小时30分,若从乙地载货到中转站,卸货后再空车到甲地共需6小时48分,求中转站到甲、乙两地的距离各是多少?(卸货时间不计)友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!4 / 4。
行程问题50题例题详解(五)
行程问题50题例题详解(五)
21.某人沿电车线路行走,没12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来。
假设两个起点站的发车间隔是相同的,求这个发车间隔?
解析:设两车的距离为单位1。
在车追人时,一辆车用12分钟追上距离为1的人。
所以车与人的速度差为
22.龟兔赛跑,全程5.2千米,兔子每小时跑20千米,乌龟每小时跑3千米,乌龟不停的跑;兔子边跑边玩,它先跑了1分钟后玩了15分钟,又跑了2分钟后玩15分钟,再跑3分钟后玩15分钟,......。
那幺先到达终点比后到达终点的快多少分钟?
解析:乌龟用时:5.2÷3x60=104分钟;兔子总共跑了:
5.2÷20x60=15.6分钟。
而我们有:15.6=1+2+3+4+5+0.6
按照题目条件,从上式中我们可以知道兔子一共休息了5次,共
15x5=75分钟。
所以兔子共用时:15.6+75=90.6分钟。
七年级下册第八章实际问题与二元一次方程组8.3航行问题
8.3航行问题知识讲解航行问题:航行问题也是行程问题中的一个重要考察点,它主要分为顺水与逆水,会综合一起考察。
①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速例1.两地相距300千米,一艘船在其间航行,顺流用10小时,逆流用15小时,求船在静水中的速度和水流速度。
例1【解析】:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:⎧⎨⎩15(x-y)=300①10(x+y)=300②解得:答:这艘轮船在静水中的速度30千米/小时、水流速度10千米/小时.例2.在地表面上方10千米高空有一条高速风带,假设有两架速度相同的飞机在这个风带飞行,其中一飞机从A地到B地,花了6.5小时:同时另一飞机从B地到A地用了5.2小时,已经知道A-B的距离是4000千米求飞机和风平均的速度各是多少?例2【解析】:设飞机的平均速度为xkm/h,风速为ykm/h。
由题意可列方程:4000 5.24000 6.5{x yx y+=÷-=÷解得:900013100013{xy==答:飞机和风平均的速度各是900013km/h、100013km/h。
(或列方程组5.2()40006.5()4000 {x yx y+=-=)练习1.两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
练习1:【答案】解:设船在静水中的速度为x千米/时,水速为y千米/时,则14()28020()280x yx y+=⎧⎨-=⎩,解得:173xy=⎧⎨=⎩答:船在静水中的速度为17千米/时,水速3千米/时。
五年级奥数行程问题(三)列方程解行程问题
,乙每分钟走45米。经过几分钟B地在甲、乙两人之间的中点处?
2,东、西两镇相距60千米。甲骑车行完全程要4小时,乙骑车行完全程要5小时。现在两人 同时从东镇到西镇去,经过多少小时后,乙剩下的路程是甲剩下路程的4倍?
3,老师今年32岁,学生今年8岁。再过几年老师的年龄是学生的3倍?
例4: 快、慢两车同时从A地到B地,快车每小时行54千米,慢车每小时行48千米。途中快车 因故停留3小时,结果两车同时到达B地。求A、B两地间的距离。
分析与解答:
因为这位同学在前一半时间跑步的速度大于后一半时间跑步的速度,所以前一半时间所跑的 路程一定大于半圈180米,即在跑前半圈时的速度都是每秒5米,跑前半圈要用180÷5=36秒 。如果再求出跑一圈的时间,就能求出跑后半圈的时间了。为了方便计算,我们假设他按题 中跑法跑了2圈。
解:设跑一圈用X秒,则跑二圈共跑720米。 5X+4X=720 解得 X=80 80-36=44(秒) 答:他后一半路程用了44秒。
五年级奥数行程问题(三)列方 程解行程问题
专题分析:
很多稍复杂的应用题,运用算术方法解答有一定困难,列方程解答就比较容易。 方程解答行程问题的优点是可以使未知道的数直接参加运算,列方程时能充分利用我们熟 悉的数量关系。因此,对于一些较复杂的行程问题,我们可以用题中已知的条件和所设的未知 数,根据自己最熟悉的等量关系列出方程,方便解题。
好好学习
解:设乙车开出X小时和甲车相遇。
38×(X+0.5)+42X=259
解得
X=3
答:乙车开出3小时后和甲车相遇。
练习一
1,甲、乙两地相距658千米,客车从甲地开出,每小时行58千米。1小时后,货车从乙地开出,每 小时行62千米。货车开出几小时后与客车相遇?
五年级行程问题经典例题
行程问题〔一〕专题简析:行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。
行程问题的主要数量关系是:路程=速度×时间。
知道三个量中的两个量,就能求出第三个量。
例1 甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米"分析与解答从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64〔千米〕。
两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8〔千米〕。
64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用〔56+48〕×8就能得出。
32×2÷〔56-48〕=8〔小时〕〔56+48〕×8=832〔千米〕答:东、西两地相距832千米。
练习一1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。
学校到少年宫有多少米?2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。
甲、乙两地相距多少千米?例2 快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?分析与解答快车3小时行驶40×3=120〔千米〕,这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95〔千米〕。
此时,慢车行了95-25-7=63〔千米〕,因此慢车每小时行63÷3=21〔千米〕。
〔40×3-25×2-7〕÷3=21〔千米〕答:慢车每小时行21千米。
练习二1,兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
小学五年级下册数学思维训练(奥数) 《列方程解应用题(行程问题)》(含答案)
列方程解应用题(行程问题)专题解析相遇是行程问题的基本类型,在相遇问题中可以这样求全程:速度×时间=路程。
今天,我们学习此类问题。
例1 AB两地相距352千米.甲乙两辆汽车从A、B两地相对开出.甲车每小时行36千米,乙车每小时行44千米.乙车因有事,在甲车开出32千米后才出发,再出多少小时两车相遇?分析解答:要想求出两车的相遇时间,必须找到速度和、时间和总路程的数量关系式。
速度和×时间+甲先行的路程=总路程,其中甲车的速度,乙车的速度,甲先行的路和总路程已知,所以只要设时间为X小时,就可以列出方程。
解:设X小时两车相遇。
(36+44)×x+32=35280x+32=35280x=320x=4答:4小时后两车相遇。
随堂练习:甲乙两地相距300千米,客车从甲地开往乙地,每小时行40千米。
1小时后,货车从乙地开往甲地,每小时行60千米。
货车出发几小时后与客车相遇?例2 甲乙两人从A、B两地相向而行,甲乙两人从AB两地同时出发相向而行,甲每分钟行52米,乙每分钟行48米,两人走了10分钟后交叉而过,且相距64米,甲从A地到B地需多少分钟?分析解答:这道题目要求甲从A地到B地需要的时间,就发必须知道A、B两地相距的路程和甲的速度,现在甲的速度已知,所以这道题目的键就在于通过列方程求出A、B两地的相距的路程。
解:设A、B两会相距x米(52+48)×10-x=641000-x=64x=936936÷52=18(分)答:甲从A地到B地需18分钟。
随堂练习从A地到B地,水路比公路近40千米。
上午8时,一艘轮船从A地驶向B地,3小时后一辆汽车从A地到B地,它们同时到达B 地,轮船的速度是每小时24千米,汽车的速度是每小时40千米,求A地到B地水路、公路是多少千米?例3 小明和小童分别从一座桥的两端同时相向出发,往返于两端之间小明每分钟走60米,小童每分钟走75米,经过6分钟两人第二次相遇,这座桥长多少米?分析解答:第一次相遇就是行了一个全程,第二次相遇就是行了三个全程。
行程问题初一一元一次方程
初一一元一次方程的行程问题是指通过解一元一次方程来求解与行程有关的问题。
这类问题通常涉及到距离、时间和速度之间的关系。
我们可以用变量来表示未知数,并通过列方程的方式解决问题。
以下是一个例子:
问题:小明骑自行车从家骑行到学校,全程5公里。
他的速度是10公里/小时。
请问他骑行到学校需要多少时间?
解决步骤:
假设骑行时间为t小时。
根据速度等于距离除以时间的公式,可以得到方程:
速度= 距离/ 时间
10 = 5 / t
通过距离除以速度,可以得到方程:
t = 5 / 10
简化计算,得到:
t = 1/2
因此,小明骑行到学校需要0.5小时,即30分钟的时间。
这是一个简单的初一一元一次方程行程问题的解决方法。
您可以使用类似的方法解决其他与行程相关的问题,根据已知的条件列方程,并求解未知数。
一元一次方程应用题专题——行程问题——学生版
例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇(2)两车同时开出,相背而行多少小时后两车相距600公里(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车例2.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
A、C两地之间的路程为10千米,求A、B两地之间的路程。
分析:这属于行船问题,这类问题中要弄清:(1)顺水速度=船在静水中的速度+水流速度;(2)逆水速度=船在静水中的速度-水流速度。
1.小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇2.小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米3.王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3分钟后赵文出发,几分钟后两人相遇4.两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。
7.甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,已知甲比乙每小时多行2千米,求两人的速度。
行程问题分类例析
行程问题分类例析行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追及,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流,回时则为逆流.一、相遇问题例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时? 分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程. 解答:设甲车共行使了xh ,则乙车行使了h x )(6025-.(如图1)依题意,有72x+48)(6025-x =360+100, 解得x=4.因此,甲车共行使了4h.说明:本题两车相向而行,相遇后继续行使100km ,仍属相遇问题中的距离,望读者仔细体会.例2:一架战斗机的贮油量最多够它在空中飞行4.6h,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回?分析:列方程求解行程问题中的顺风逆风问题.顺风中的速度=静风中速度+风速逆风中的速度=静风中速度-风速解答:解法一:设这架飞机最远飞出xkm 就应返回. 依题意,有642557525575.=-++x x 解得:x=1320.答:这架飞机最远飞出1320km 就应返回.解法二: 设飞机顺风飞行时间为th.依题意,有(575+25)t=(575-25)(4.6-t),解得:t=2.2.(575+25)t=600×2.2=1320.答:这架飞机最远飞出1320km 就应返回.说明:飞机顺风与逆风的平均速度是575km/h,则有645752.=x ,解得x=1322.5.错误原因在于图1飞机平均速度不是575km/h,而是)/(h km v v v v v x v x x574550600550600222≈+⨯⨯=+⋅=+逆顺逆顺逆顺 例3:甲、乙两人在一环城公路上骑自行车,环形公路长为42km ,甲、乙两人的速度分别为21 km/h 、14 km/h.(1) 如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇?(2) 如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇? 分析:这是环形跑道的行程问题.解答:(1)设经过xh 两人首次相遇.依题意,得(21+14)x=42,解得:x=1.2.因此,经过1.2小时两人首次相遇.(3) 设经过xh 两人第二次相遇.依题意,得21x-14x=42×2,解得:x=12.因此,经过12h 两人第二次相遇.说明:在封闭的环形跑道上同向运动属追及问题,反向运动属相遇问题.从同一地点出发,相遇时,追及路程或相隔路程就是环形道的周长,第二次相遇,追及路程为两圈的周长.。
应用题类型1 行程问题
行程问题行程问题是研究运动的物体,在某一段时间内运动的速度和经过的路程三者之间的相互关系。
大致可以分为一般行程问题(单车、单人的运动)、追及问题(双车、双人向相同方向运动状态)、相遇问题(双车、双人相对运动的状态)和行船问题。
行程问题的基本数量关系是:(1)路程=速度⨯时间(2)速度=路程÷时间 (3)时间=路程÷速度(一)一般行程问题例1、一艘船从相距420千米的A 地到B 地去,每小时行40千米,几小时到达? 解法1:根据路程÷时间,可求得时间为:420÷40=10.5(小时) 解法2:设x 小时可到达,列方程为40420x =,解得10.5x = 例2、小明从家到学校,如果每分走50米,就要迟到三分钟,如果每分走70米,提前5分钟到校。
小明家到学校的路程是多少? 解法1:设路程为x 米,根据小明从家出发离上课的时间保持不变, 可列方程为:355070x x -=+ 两边同乘最小公倍数350,得7105051750x x -=+移项,及合并同类项,得22800x = 系数化为1,得1400x =(米)解法2:设小明从家出发离上课还有x 分钟,根据小明家到学校的路程保持不变,可列方程为:50(3)70(5)x x +=- 去括号,得5015070350x x +=- 移项,及合并同类项,得20500x -=- 系数化为1,得25x =(分钟)所以,小明家到学校的路程为:50(253)50281400⨯+=⨯=(米)备注:解法1的等量关系是:时间 等于 时间(基本等量关系:同一个量可以用两种形式表达)。
假设小明从家出发的时间为7点半,上课时间为8点整,每分走50米,花50x分钟,迟到三分钟,说明如果花(350x -)分钟就不会迟到,即从家出发离上课还有(350x -)分钟;每分走70米,花70x分钟,提前5分钟到校,说明从家出发离上课还有(570x+)分钟。
初中列方程解应用题(行程问题)专题
初中列方程解应用题(行程问题)专题行程问题是指与路程、速度、时间这三个量有关的问题。
我们常用的基本公式是:路程=速度×时间;速度=路程÷时间;时间=路程÷速度.行程问题是个非常庞大的类型,多年来在考试中屡用不爽,所占比例居高不下。
原因就是行程问题可以融入多种练习,熟悉了行程问题的学生,在多种类型的习题面前都会显得得心应手。
下面我们将行程问题归归类,由易到难,逐步剖析。
1. 单人单程:例1:甲,乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从h km /80提高到h km /100,运行时间缩短了h 3。
甲,乙两城市间的路程是多少?【分析】如果设甲,乙两城市间的路程为x km ,那么列车在两城市间提速前的运行时间为h x 80,提速后的运行时间为h x 100. 【等量关系式】提速前的运行时间—提速后的运行时间=缩短的时间. 【列出方程】310080=-x x .例2:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共s 40。
求火车的速度和长度。
【分析】如果设火车的速度为x s m /,火车的长度为y m ,用线段表示大桥和火车的长度,根据题意可画出如下示意图:【等量关系式】火车min 1行驶的路程=桥长+火车长;火车s 40行驶的路程=桥长-火车长 【列出方程组】⎩⎨⎧-=+=yx y x 100040100060举一反三:1.小明家和学校相距km 15。
小明从家出发到学校,小明先步行到公共汽车站,步行的速度为60min /m ,再乘公共汽车到学校,发现比步行的时间缩短了min 20,已知公共汽车的速度为h km /40,求小明从家到学校用了多长时间。
2.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间由现在的2小时18分钟缩短为36分钟,其速度每小时将提高km 260.求提速后的火车速度。
一元二次方程--行程问题
【5+(5-2x)】÷2=(5-x)m/s, 所以x(5-x)
=5 整理得:x2-5x+5=0 解方程:得x= 5 5 x1≈3.6(不合,舍去),x2≈1.4(s) 2
答:刹车后汽车行驶到5m时约用1.4s.
【练习2】一跳水运动员从距水面10m高的跳台向上跳起 0.8m,最后以14m/s的向下运动速度入水:
C B
练习:
如图,斜靠在墙上的一根竹竿长AB=6.5m, BC=2.5m,若A端沿垂直于地面的方向AC下 滑1m,问B端将沿CB方向移动多少m?
A
A’
C B B’
例 一辆汽车以20m/s的速度行驶, 司机发现前方路面有情况,紧急刹 车后汽车又滑行25m后停车,(1)从 刹车到停车用了多少时间? 2)从 刹车到停车平均每秒车速减少多 少? .(3)刹车后汽车滑行到 15m时约用了多少时间(精确到 0.1s)?
100 3
6
≈118.4
x2=200+
100 3
6 (不合题意,舍去)
所以,相遇时补给船大约航行了 118.4 海里.
O
N
C
O
1.如图,红点从O出发,以3米/秒的速度
向东前进,经过t秒后,红点离O的距离
ON= 3t
.
CO=40米,红点从C出发,其他条件不变, 经过t秒后,红点离O的距离 ON= |40-3t| .
练习:
1.一个小球以5m/s的速度在平 坦地面上开始滚动,并且均匀减 速,滚动10m后小球停下来.(1) 小球滚动了多少时间?(2)平均 每秒小球的运动速度减少多少? (3)小球滚动到5m时约用了多 少时间(精确到0.1s)?
(完整版)一元一次方程应用行程问题
:一元一次方程应用之--------------行程问题专题一、【根本概念】行程类应用题根本关系:路程=速度×时间速度=路程÷时间时间=路程÷速度相遇问题:甲、乙相向而行,那么:甲走地路程+乙走地路程=总路程.追及问题:①甲、乙同向不同地,那么:追者走地路程=前者走地路程+两地间地距离.②甲、乙同向同地不同时,那么:追者走地路程=前者走地路程环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快地必须多跑一圈才能追上慢地.②甲、乙两人在环形跑道上同时同地反向出发:两人相遇时地总路程为环形跑道一圈地长度.飞行〔航行〕问题、根本等量关系:①顺风〔顺水〕速度=无风〔静水〕速度+风速〔水速〕②逆风〔逆水〕速度=无风〔静水〕速度-风速〔水速〕顺风〔水〕速度-逆风〔水〕速度=2×风〔水〕速车辆〔车身长度不可忽略〕过桥问题:车辆通过桥梁〔或隧道等〕,那么:车辆行驶地路程=桥梁〔隧道〕长度+车身长度超车〔会车〕问题:超车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度差.会车过程中,车辆行驶路程等于车身长度和,相对速度为两车速度和.在行程问题中,按照题意画出行程图,可以使问题地分析过程更直观,更容易理解.特别是问题中运动状态复杂,涉及地量较多地时候,画行程图就成了理解题意地关键.所以画行程图是我们必须学会地一种分析手段.另外,由于行程问题中地根本量只有“路程〞、“速度〞和“时间〞三项,所以,列表分析也是解决行程问题地一种重要方法.二、【典型例题】〔一〕相遇问题相遇问题:甲、乙相向而行,那么:甲走地路程+乙走地路程=总路程.例1、甲、乙两站相距 600km,慢车每小时行40km,快车每小时行60km.⑴经过xh后,慢车行了km,快车行了 km,两车共行了km;⑵慢车从甲站开出,快车从乙站开出,相向而行,两车相遇共行了km, 如果两车同时开出,xh相遇,那么可得方程:;⑶如果两车相向而行,快车先行50km,在慢车开出yh后两车相遇,那么可得方程:;⑷如果两车相向而行,慢车先开50min,在快车开出th后两车相遇,那么可得方程:.例2、甲、乙两站地路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米.两车同时开出,相向而行,多少小时相遇?分析:1/3慢车的路程快车的路程甲站乙站两站相距450km例3、甲、乙两地相距376km,A车从甲地开往乙地,半小时后B车从乙地开往甲地,A车开出5h后与B车相遇,又知B车地时速是A车时速地倍,求B车地时速?例4、甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进.两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A、B两地间地路程.课堂练习1:电气机车和磁悬浮列车从相距298千米地两地同时出发相对而行,磁悬浮列车地速度比电气机车速度地5倍还快20千米/时,半小时后两车相遇.两车地速度各是多少?2、甲、乙两人从相距35km地两地同时出发,相向而行,甲步行每小时走4km,乙骑车小时后相遇,求乙地速度.3、甲步行,乙骑自行车,同时从相距 27km地两地相向而行,2h 相遇,乙比甲每小时多走5.5km,求甲、乙两人地速度.4、A、B两地相距153km,汽车从A地开往B地,时速为38km;摩托车从B地开往A地,时速为24km.摩托车开出小时后,汽车再出发.问汽车开出几小时后遇到摩托车?5、甲骑自行车从A地出发,以12km/h地速度驶向B地,同时,乙也骑自行车从B地出发,以14km/h 地速度驶向A地.两人相遇时,乙已超过A、B两地中点1.5km,求A、B两地地距离.〔二〕追及问题例1、甲、乙两地相距10km,A、B两人分别从甲、乙两地同时、同向出发,A在前,B在后,A地速度是每小时4km,B地速度是每小时5km,xh后A走了km,B走了km.如果这时刚好B追上A,那么可列方程:.例2、甲、乙两人都从A地出发到B地,甲先走5km后乙再出发,甲速度是4km/h,乙速度是5km/h.如果A、B两地相距xkm,那么甲先走地时间是h,乙走地时间是h, 假设两人同时到达B地,那么可列方程:.例3、甲、乙两人同时以4km/h地速度从A地前往B地,走了后,甲要回去取一份文件.他以6km/h 地速度往回走,在办公室耽误了15min后,仍以6km/h地速度追赶乙,结果两人同时到达B地.求A、B两地间地距离.分析:你能求出第二段甲乙所用时间为h吗?假设设A、B两地间地距离为xkm,可以用表示第四段甲乙所用时间.课堂练习1:跑得快地马每天走240里,跑得慢地马每天走150里.慢马先走12天,快马几天可以追上慢马?课堂练习2:一辆每小时行30km地卡车由甲地驶往乙地,1h后,一辆每小时行40km地摩托车也由甲地驶往乙地,问卡车开出几h后摩托车可追上卡车?家庭练习:1、甲、乙两人相距18km,乙出发后甲再出发,甲在后,乙在前同向而行,甲骑车每小时行8km,乙步行每小时行5km,问甲出发几h后追上乙?2、甲每小时走5km,出发2h后乙骑车追甲.⑴如乙地速度为每小时20km,问乙多少分钟追上甲?⑵如果要求乙出发14km时追上甲,问乙地速度是多少?3、从甲地到乙地走水路比走公路近20km,上午10时,一条轮船甲地从驶往乙地,下午1时一2/3辆汽车也从甲地驶向乙地,结果汽车与轮船同时到达乙地.轮船时速20km,汽车时速60km,求甲地到乙地地水路和公路地长.4、同村地甲、乙两人都去县城,甲比乙早走1h,却迟到半小时,甲每小时走4km,乙每小时走5km.问村庄到县城地距离是多少?〔三〕环形跑道问题例1、某城举行环城自行车赛,骑得最快地人在出发后 35min就遇到骑得最慢地人,骑得最慢地人地车速是骑得最快地人地车速地5,环城一周是6km,求骑得最快地人地车速.7例2、一环形公路周长是24千米,甲乙两人从公路上地同一地点同一时间出发,背向而行,3小时后他们相遇.甲每小时比乙慢千米,求甲、乙两人速度各是多少?家庭练习:1、甲、乙两人在400m环形跑道上练竞走,乙每分钟走80m,甲地速度是乙地速度地11倍,现4甲在乙前面100m,问多少分钟后两人可首次相遇?2、运动场地跑道一圈长 400m.甲练习骑自行车,平均每分骑350m;乙练习跑步,平均每分钟跑250m.两人从同一处同时反向出发 ,经过多少时间首次相遇?又经过多少时间再次相遇?〔四〕航行〔飞行〕问题例1、一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了小时.水流速度是3千米/时,求船在静水中地平均速度.例2、一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机地航速和两城之间地航程.课堂练习1:一艘船从A港到B港顺流行驶,用了5小时;从B港返回A港逆流而行,用了小时,水流速度是3千米/小时,求船在静水中地速度.课堂练习2:有A、B、C三个码头,BC相距24km,某船从B顺水而下到达A后,立即逆水而上到达C.共用8h,水流速度为5km/h,船在静水中地速度为20km/h,求A、B之间地距离.1、客机和战斗机从相距600km地两个机场起飞,30min相遇,客机顺风飞行,战斗机逆风飞行,如果在静风中战斗机地速度是客机地3倍,风速是每小时24km,问两机地速度各是多少?2、船在静水中地速度是14km/h,水流速度是2km/h,船先顺流由一码头开出,再逆流返回,假设要船在3h30min内返回,那么船最远能开出多远?3、甲船从A地顺流下行,乙船同时从B地逆水上行,12h后相遇,此时甲船已走了全程地一半多9km,甲船在静水中地速度是每小时4km,乙船在静水地速度是每小时5km,求水流地速度.〔五〕错车问题例1.甲乙两人辞别后,沿着铁轨反向而行.此时,一列火车匀速地向甲迎面驶来,列车从甲身旁开过,用了15s;然后从乙身旁开过用了17s.两人地速度都是3.6km/h,这列火车有多长?随堂练习:1.某部队执行任务,以6km/h地速度前进,通信员在队尾接到命令后把命令传给了排头,然后立即返回队尾,通讯员来回地速度是10km/h,共用7.5min,求队伍地长度.2.在高速公路上,一辆长4米,速度为110千米/时地轿车准备超越一辆长12米,速度为100千米/时地卡车,那么轿车从开始超越到超越卡车需要花费地时间约是多少?3.某隧道长500m,现有一列火车从隧道内通过,测得火车通过隧道〔即从车头进入入口到车尾地离开出口〕共用30s,而整列火车完全在隧道内地时间为10s,求火车地速度和火车地长.4.一列火车用26s地时间通过一个长256m地隧道〔即从车头进入隧道到车尾离开隧道〕,这列火车又以同样地速度用16s地时间通过了另一个长96m地隧道,求这列火车地长度3/3。
行程问题93020
1、一艘轮船从河的上游甲港顺流到达下游的丙港,然后调头逆流向上到达中游的乙港,共用了12小时。
已知这条轮船的顺流速度是逆流速度的2倍,水流速度是每小时2千米,从甲港到乙港相距18千米。
则甲、丙两港间的距离为()A.44千米B.48千米C.30千米D.36千米解析:【答案】A。
顺流速度-逆流速度=2×水流速度,又顺流速度=2×逆流速度,可知顺流速度=4×水流速度=8千米/时,逆流速度=2×水流速度=4千米/时。
方法1、方程法:设甲、丙两港间距离为X千米,可列方程X÷8+(X-18)÷4=12 解得X=44。
方法2、往返乙、丙所用时间=12-18÷8=39/4,从乙到丙顺水所用时间是逆水的1/2,顺水航行时间=39/4×1/3=13/4,则乙丙距离=13/4×8=26,故所求距离=18+26=44。
例2:李明家在山上,爷爷家在山下,李明从家出发一每分钟90米的速度走了10分钟到了爷爷家。
回来时走了15分钟到家,则李明往返平均速度是多少?()A.72米/分B.80米/分C.84米/分 D90米/分【答案】A。
解析:李明往返的总路程是90×10×2=1800(米),总时间为10+15=25分钟,则他的平均速度为1800÷25=72米/分。
例2、正方形操场四周栽了一圈树,每两棵树相隔5米。
甲、乙从一个角上同时出发,向不同的方向走去(如图),甲的速度是乙的2倍,乙在拐了一个弯之后的第5棵树与甲相遇。
操场四周栽了多少棵树?A 45B 60C 90D 80解析:方法一:如果按我们之前没有介绍封闭路线的解法时的思路是这样解得,设每条边有树x棵,则根据题意得2×[5(x-1)+5×5]=3×5(x-1)-25,解得x=16。
故总共有16×2+14×2=60棵树。
二元一次方程组解决实际问题经典例题
经典例题透析类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 求汽车、拖拉机各自的速度?提示:(根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略)举一反三:【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
分析:船顺流速度=静水中的速度+水速, 船逆流速度=静水中的速度-水速类型二:列二元一次方程组解决——工程问题2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:甲、乙两组工作一天,商店应各付多少元?类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。
价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?思路点拨:做此题的关键要知道:利润=进价×利润率类型四:列二元一次方程组解决——银行储蓄问题4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)类型五:列二元一次方程组解决——生产中的配套问题5.某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?类型六:列二元一次方程组解决——增长率问题6. 某工厂去年的利润(总产值—总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列方程解行程问题例析
列方程解行程问题既是初中的重点,又是难点,所以学好列方程解行程问题除了掌握好路程s,速度v和时间t三者之间的基本关系()外,最重要的是要学会找出题目中的相等关系,然后根据题意选出一个相等关系作题设,另一个相等关系作方程,用这种思路和方法解行程问题,对学生来说是比较容易的。
下面举例谈谈。
一. 相遇问题
例1. 电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车的5倍还快20千米/时,半小时后两车相遇,两车的速度各是多少?
分析:本题有以下相等关系:
(1)千米(作方程)
(2)小时(已知量)
(3)(作题设)
解:设电气机车速度为x千米/时,则磁悬浮列车速度为千米/时,依题意得:
<<<1234&&&解得
答:电气机车的速度为96千米/时,磁悬浮列车的速度为500千米/时。
二. 追及问题
例2. 跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?
分析:从同一地方出发,追上的话二者所行路程相等,有以下相等关系:
(作方程)
(已知量)
(作题设)
<<<1234&&&解:设快马x天可以追上慢马,依题意得
解得
答:快马20天可以追上慢马。
三. 水(空)中航行问题
例3. 一艘轮船从甲地逆水航行到乙地,然后顺水航行返回甲地。
已知水流速度是2千米/时,回来时所需的时间是去时的时间的4/5,求轮船在静水中的速度。
分析:把甲乙两地距离看作1有以下相等关系:
(1)(已知量)
(2)(作题设)
(3)(作方程)
解:设船在静水中速度为x千米/时,则在顺水中的速度为千米/时,在逆水中的速度为千米/时。
<<<1234&&&依题意得,
解得。
经检验是原方程的解。
答:轮船在静水中的速度为18千米/时。
四. 环形跑道问题
例4. 运动场的跑道一圈长400m,甲练习骑自行车,平均每分骑350m,乙练习跑步平均每分跑250m,两人从同一处同时同向出发,经过多长时间两人首次相遇?
分析:在环形跑道上两人同时同地同向出发,当两人第1次相遇时,快者比慢者刚好多跑一圈,故本题有如下相等关系:
(1)(作方程)
(2)(已知量)
(3)(作题设)
解:设x分钟后两人首次相遇,依题意得;
解得
答:4分钟两人首次相遇。
<<<1234&&&。