级数是研究函数和进行数值计算的一个重要工具解读

合集下载

级数的基本概念

级数的基本概念

级数的基本概念什么是级数?级数是数学中的一个重要概念,它是指由无穷多个数相加或相减而得到的和。

级数由一列数项组成,数项依次排列并相加或相减,得到一个无穷序列的和。

级数可以有限或无限,取决于数项的个数。

级数的符号表示级数通常用求和符号 ∑ 表示,例如 ∑a n ∞n=1,其中 a n 是级数的数项,n 是求和的起始位置,∞ 表示无穷。

收敛和发散级数有两种可能的情况:收敛和发散。

收敛级数如果级数的部分和在无限次求和后趋于一个有限的数,那么这个级数被称为收敛级数。

例如,级数 ∑12n ∞n=1 是一个收敛级数,它的部分和为 1,32,74,158,…,当求和次数趋于无穷时,部分和趋近于2。

发散级数如果级数的部分和在无限次求和后无限增长或无限减小,则此级数被称为发散级数。

例如,级数 ∑n ∞n=1 是一个发散级数,它的部分和为 1,3,6,10,…,它的和不会收敛到一个有限的数。

级数的收敛性判别法判断一个级数是收敛还是发散的问题一直是数学中的研究重点。

以下是一些常见的级数收敛性判别法:正项级数判别法如果一个级数的所有数项都大于等于零,且部分和有上界(即有限),那么此级数必收敛。

比较判别法如果一个级数的绝对值数项与一个已知收敛或发散的级数的绝对值数项比较后,能够得出相同的收敛性结论,那么此级数与已知级数的收敛性相同。

部分和判别法如果一个级数的部分和构成的数列收敛,那么此级数也收敛。

积分判别法如果一个级数的数项能够表示成一个函数在一个区间上的积分形式,而这个函数的积分收敛,那么此级数收敛。

反之,如果这个函数的积分发散,那么此级数发散。

级数的应用级数作为数学中常见的概念,在各个领域中都有广泛的应用。

数值逼近级数可以用于数值逼近。

通过使用级数展开,我们可以将一个复杂的函数用一个级数来近似表示,从而提高计算的效率。

函数和级数可以用于计算函数和。

比如,级数 ∑x n ∞n=0 描述了一个等比级数,当 |x |<1时,级数收敛于 11−x ,这个结论在积分、微分等计算中非常有用。

同济大学(高数学)_第四篇_无穷级数

同济大学(高数学)_第四篇_无穷级数

第四篇 无穷级数第七章 无穷级数无穷级数是高等数学课程的重要内容,它以极限理论为基础,是研究函数的性质及进行数值计算方面的重要工具. 本章首先讨论常数项级数,介绍无穷级数的一些基本概念和基本内容,然后讨论函数项级数,着重讨论如何为将函数展开成幂级数和三角级数的问题,最后介绍工程中常用的傅里叶级数.第1节 常数项级数的概念与性质1.1常数项级数的概念一般的,给定一个数列,,,,,321n u u u u则由这数列构成的表达式+++++n u u u u 321叫做(常数项)无穷级数, 简称(常数项)级数, 记为∑∞=1n n u , 即3211⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n u u u u u ,其中第n 项n u 叫做级数的一般项.作级数∑∞=1n n u 的前n 项和n ni i n u u u u u s +⋅⋅⋅+++==∑= 3211称为级数∑∞=1n n u 的部分和. 当n 依次取1,2,3…时,它们构成一个新的数列11s u =,212s u u =+,3123s u u u =++,…,12...n n s u u u =+++,…根据这个数列有没有极限,我们引进无穷级数的收敛与发散的概念。

定义 如果级数∑∞=1n n u 的部分和数列}{n s 有极限s , 即s s n n =∞→lim , 则称无穷级数∑∞=1n nu收敛, 这时极限s 叫做这级数的和, 并写成3211+++++==∑∞=n n n u u u u u s ;如果}{n s 没有极限, 则称无穷级数∑∞=1n n u 发散.当级数∑∞=1n n u 收敛时, 其部分和n s 是级数∑∞=1n n u 的和s 的近似值, 它们之间的差值12n n n n r s s u u ++=-=++叫做级数∑∞=1n n u 的余项.例1 讨论等比级数(几何级数)n n aq ∑∞=0(a ≠0)的敛散性.解 如果1≠q , 则部分和qaq q a q aq a aqaq aq a s n n n n ---=--=+⋅⋅⋅+++=-111 12. 当1<q 时, 因为q a s n n -=∞→1lim , 所以此时级数n n aq ∑∞=0收敛, 其和为q a -1.当1>q 时, 因为∞=∞→n n s lim , 所以此时级数n n aq ∑∞=0发散.如果1=q , 则当1=q 时, n s na =→∞ , 因此级数n n aq ∑∞=0发散;当1-=q 时, 级数n n aq ∑∞=0成为+-+-a a a a ,因为n s 随着n 为奇数或偶数而等于a 或零, 所以n s 的极限不存在, 从而这时级数n n aq ∑∞=0发散.综上所述, 如果1<q , 则级数nn aq ∑∞=0收敛, 其和为q a -1; 如果1≥q , 则级数n n aq ∑∞=0发散.例2 判别无穷级数∑∞=+1)11ln(n n 的收敛性. 解 由于n n nu n ln )1(ln )11ln(-+=+=,因此)1(ln )ln )1(ln( )ln3ln4()ln2ln3()1ln 2(ln +=-++⋅⋅⋅+-+-+-=n n n s n ,而 ∞=∞→n n S lim ,故该级数发散.例3 判别无穷级数∑∞=+1)1(1n n n 的收敛性. 解 因为111)1(1+-=+=n n n n u n , 所以)1(1 431321211++⋅⋅⋅+⋅+⋅+⋅=n n s n111)111( )3121()211(+-=+-+⋅⋅⋅+-+-=n n n , 从而1)111(lim lim =+-=∞→∞→n s n n n , 所以这级数收敛, 它的和是1.1.2 收敛级数的基本性质根据无穷级数收敛、发散的概念,可以得到收敛级数的基本性质.性质1如果级数∑∞=1n n u 收敛于和s , 则它的各项同乘以一个常数k 所得的级数∑∞=1n n ku 也收敛, 且其和为ks .证明 设∑∞=1n n u 与∑∞=1n n ku 的部分和分别为n s 与n σ, 则) (lim lim 21n n n n ku ku ku ⋅⋅⋅++=∞→∞→σks s k u u u k n n n n ==⋅⋅⋅++=∞→∞→lim ) (lim 21,这表明级数∑∞=1n n ku 收敛, 且和为ks .性质2 如果级数∑∞=1n n u 、∑∞=1n n v 分别收敛于和s 、σ, 则级数)(1n n n v u ±∑∞=也收敛, 且其和为σ±s .证明 如果∑∞=1n n u 、∑∞=1n n v 、)(1n n n v u ±∑∞=的部分和分别为n s 、n σ、n τ, 则)]( )()[(lim lim 2211n n n n n v u v u v u ±+⋅⋅⋅+±+±=∞→∞→τ)] () [(lim 2121n n n v v v u u u +⋅⋅⋅++±+⋅⋅⋅++=∞→σσ±=±=∞→s s n n n )(lim .性质3 在级数中去掉、加上或改变有限项, 不会改变级数的收敛性.比如, 级数)1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n 是收敛的; 级数 )1(1 43132121110000⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅+n n 也是收敛的;级数)1(1 541431⋅⋅⋅+++⋅⋅⋅+⋅+⋅n n 也是收敛的.性质4 如果级数∑∞=1n n u 收敛, 则对这级数的项任意加括号后所成的级数仍收敛, 且其和不变.应注意的问题: 如果加括号后所成的级数收敛, 则不能断定去括号后原来的级数也收敛. 例如, 级数(1-1)+(1-1) +⋅ ⋅ ⋅收敛于零, 但级数1-1+1-1+⋅ ⋅ ⋅却是发散的.推论 如果加括号后所成的级数发散, 则原来级数也发散. 性质5 如果∑∞=1n n u 收敛, 则它的一般项n u 趋于零, 即0lim 0=→n n u .证明 设级数∑∞=1n n u 的部分和为n s , 且s s n n =∞→lim , 则0lim lim )(lim lim 110=-=-=-=-∞→∞→-∞→→s s s s s s u n n n n n n n n n .注: 级数的一般项趋于零并不是级数收敛的充分条件.例6 证明调和级数13121111⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n是发散的.证明 假若级数∑∞=11n n收敛且其和为s , ns 是它的部分和.显然有s s n n =∞→lim 及s s n n =∞→2lim . 于是0)(lim 2=-∞→n n n s s .但另一方面,2121 212121 21112=+⋅⋅⋅++>+⋅⋅⋅++++=-n n n n n n s s n n ,故0)(lim 2≠-∞→n n n s s , 矛盾. 这矛盾说明级数∑∞=11n n必定发散.习题7-11. 写出下列级数的前四项:(1) ∑∞=1!n n n n ; (2)∑∞=⎥⎦⎤⎢⎣⎡+---121)1(1)1(n n n n . 2. 写出下列级数的一般项(通项):(1) -+-+-8141211 ; (2)+-+-97535432a a a a ; (3) ++++7151311. 3. 根据级数收敛性的定义,判断下列级数的敛散性: (1)∑∞=⎪⎭⎫⎝⎛+111ln n n ; (2) ++++6sin 62sin 6sin πππn . 4. 判断下列级数的敛散性: (1)∑∞=+131n n ; (2) +++++n 31916131;(3)∑∞=+112n n n (4) +-+-+-+-2)1(2222n.第2节 常数项级数的收敛法则2.1 正项级数及其收敛法则现在我们讨论各项都是正数或零的级数,这种级数称为正项级数. 设级数+++++n u u u u 321 (7-2-1)是一个正项级数,它的部分和为n s .显然,数列{}n s 是一个单调增加数列,即:≤≤≤≤n s s s 21如果数列{}n s 有界,即n s 总不大于某一常数M ,根据单调有界的数列必有极限的准则,级数(7-2-1)必收敛于和s ,且M s s n ≤≤. 反之,如果正项级数(7-2-1)收敛于和s .根据有极限的数列是有界数列的性质可知,数列{}n s 有界. 因此,有如下重要结论:定理 1 正项级数∑∞=1n n u 收敛的充分必要条件是它的部分和数列{n s }有界.定理2 (比较审敛法) 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 且n n u v ≤ ),2,1( =n . 若级数∑∞=1n n v 收敛, 则级数∑∞=1n n u 收敛; 反之, 若级数∑∞=1n n u 发散, 则级数∑∞=1n n v 发散.证明 设级数∑∞=1n n v 收敛于和σ, 则级数∑∞=1n n u 的部分和),2,1(21321 =≤++≤++++=n v v v u u u u s n n n σ即部分和数列{}n s 有界, 由定理1知级数∑∞=1n n u 收敛.反之, 设级数∑∞=1n n u 发散, 则级数∑∞=1n n v 必发散. 因为若级数∑∞=1n n v 收敛, 由上已证明的结论, 将有级数∑∞=1n n u 也收敛, 与假设矛盾.推论 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果级数∑∞=1n n v 收敛, 且存在自然数N , 使当N n ≥时有)0(>≤k kv u n n 成立, 则级数∑∞=1n n u 收敛; 如果级数∑∞=1n n v 发散, 且当N n ≥时有)0(>≥k kv u n n 成立, 则级数∑∞=1n n u 发散.例1 讨论p -级数1413121111⋅⋅⋅++⋅⋅⋅++++=∑∞=p p p p p n n n 的收敛性, 其中常数0>p .解 设1≤p . 这时n n p 11≥, 而调和级数∑∞=11n n 发散, 由比较审敛法知, 当1≤p 时级数pn n11∑∞=发散.设1>p . 此时有⎪⎪⎭⎫⎝⎛---=≤=----⎰⎰11111)1(111111p p n n p n n p p n n p dx x dx n n ),3,2( =n . 对于级数⎪⎪⎭⎫⎝⎛----∞=∑1121)1(1p p n n n , 其部分和 111111)1(11)1(11 3121211------+-=⎪⎪⎭⎫ ⎝⎛+-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=p p p p p p n n n n s . 因为1)1(11lim lim 1=⎪⎪⎭⎫ ⎝⎛+-=-∞→∞→p n n n n s . 所以级数⎪⎪⎭⎫⎝⎛----∞=∑1121)1(1p p n n n 收敛. 从而根据比较审敛法的推论1可知, 级数pn n 11∑∞=当1>p 时收敛. 综上所述, p -级数p n n11∑∞=当1>p 时收敛, 当1≤p 时发散. 例2 证明级数∑∞=+1)1(1n n n 是发散的. 证明 因为11)1(1)1(12+=+>+n n n n , 而级数 11 3121111⋅⋅⋅+++⋅⋅⋅++=+∑∞=n n n 是发散的, 根据比较审敛法可知所给级数也是发散的.定理3 (比较审敛法的极限形式)设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果)0(lim +∞<<=∞→l l v u n nn , 则级数∑∞=1n n u 和级数∑∞=1n n v 同时收敛或同时发散.证明 由极限的定义可知, 对l 21=ε, 存在自然数N , 当N n >时, 有不等式l l v ul l n n 2121+<<-, 即n n n lv u lv 2321<<.再根据比较审敛法的推论1, 即得所要证的结论.例3 判别级数∑∞=11sinn n的收敛性. 解 因为111sin lim =∞→nn n , 而级数∑∞=11n n 发散, 根据比较审敛法的极限形式, 级数∑∞=11sin n n 发散.用比较审敛法审敛时,需要适当地选取一个已知其收敛性的级数∑∞=1n nv作为比较的基准.最常选用做基准级数的是等比级数和p -级数.定理4 (比值审敛法, 达朗贝尔判别法) 若正项级数∑∞=1n n u 的后项与前项之比值的极限等于ρ,即ρ=+∞→n n n u u 1lim,则当1<ρ时级数收敛;当1>ρ (或∞=+∞→nn n u u 1lim )时级数发散; 当1=ρ时级数可能收敛也可能发散.例4 判别级数∑∞=1!1n n 收敛性. 解 因为1011lim !1)!1(1lim lim1<=+=+=∞→∞→+∞→n n n u u n n nn n , 根据比值审敛法可知,所给级数收敛. 例5 判别级数∑∞=13!n nn 的收敛性.解 因为,31lim 3!3)!1(lim lim11+∞=+=+=∞→+∞→+∞→n n n u u n nn n nn n ,根据比值审敛法可知,所给级数发散. 定理5 (根值审敛法, 柯西判别法)设∑∞=1n n u 是正项级数, 如果它的一般项n u 的n 次根的极限等于ρ,即ρ=∞→n n n u lim ,则当1<ρ时级数收敛; 当1>ρ (或+∞=∞→nn n u lim )时级数发散; 当1=ρ时级数可能收敛也可能发散.定理6(极限审敛法)设∑∞=1n n u 为正项级数,(1)如果0lim >=∞→l nu n n (或+∞=∞→n n nu lim ),则级数∑∞=1n n u 发散;(2)如果1>p ,而l u n n pn =∞→lim (+∞<≤l 0),则级数∑∞=1n n u 收敛.证明 (1)在极限形式的比较审敛法中,取n v n 1=,由调和级数∑∞=11n n发散,知结论成立.(2)在极限形式的比较审敛法中,取p n n v 1=,当1>p 时,p -级数∑∞=11n p n收敛,故结论成立.例6 判定级数)11ln(12∑∞=+n n的收敛性.解 因)(1~)11ln(22+∞→+n n n ,故 11lim )11ln(lim lim 22222=⋅=+=∞→∞→∞→nn n n u n n n n n , 根据极限审敛法,知所给级数收敛.2.2 交错级数及其审敛法则下列形式的级数,4321 u u u u -+-称为交错级数. 交错级数的一般形式为n n n u ∑∞=--11)1(, 其中0>n u .定理7(莱布尼茨定理)如果交错级数n n n u ∑∞=--11)1(满足条件:(1) 1(1,2,3,)n n u u n +≥= ;(2) 0lim =∞→n n u ,则级数收敛, 且其和1u s ≤, 其余项n r 的绝对值1+≤n n u r .证明 设前n 项部分和为n s ,由)()()(21243212n n n u u u u u u s -+-+-=- ,及n n n n u u u u u u u u s 21222543212)()()(--+-+--=-- ,看出数列{}n s 2单调增加且有界)(12u s n ≤, 所以收敛.设)(2∞→→n s s n , 则也有)(12212∞→→+=++n s u s s n n n ,所以)(∞→→n s s n ,从而级数是收敛的, 且1u s <.因为 +-≤++21n n n u u r |也是收敛的交错级数, 所以1+≤n n u r .2.3 绝对收敛与条件收敛对于一般的级数:,21 ++++n u u u若级数∑∞=1n nu收敛,则称级数∑∞=1n nu绝对收敛;若级数∑∞=1n nu收敛, 而级数∑∞=1n nu发散, 则称级数∑∞=1n nu条件收敛.级数绝对收敛与级数收敛有如下关系: 定理8 如果级数∑∞=1n nu绝对收敛, 则级数∑∞=1n nu必定收敛.证明 令)(21n n n u u v +=),2,1( =n . 显然0≥n v 且n n u v ≤ ),2,1( =n .因级数∑∞=1n nu收敛,故由比较审敛法知道,级数∑∞=1n nv,从而级数∑∞=12n nv也收敛.而n n n u v u -=2,由收敛级数的基本性质可知:∑∑∑∞=∞=∞=-=1112n n n n n nu v u,所以级数∑∞=1n nu收敛.定理8表明,对于一般的级数∑∞=1n nu,如果我们用正项级数的审敛法判定级数∑∞=1n nu收敛,则此级数收敛.这就使得一大类级数的收敛性判定问题,转化成为正项级数的收敛性判定问题.一般来说,如果级数∑∞=1n nu发散, 我们不能断定级数∑∞=1n nu也发散. 但是, 如果我们用比值法或根值法判定级数∑∞=1n nu发散, 则我们可以断定级数∑∞=1n nu必定发散. 这是因为, 此时|u n |不趋向于零, 从而n u 也不趋向于零, 因此级数∑∞=1n nu也是发散的.例7 判别级数∑∞=12sin n nna 的收敛性.解 因为|221|sin n n na ≤, 而级数211n n ∑∞=是收敛的, 所以级数∑∞=12|sin |n nna 也收敛, 从而级数∑∞=12 sinn nna绝对收敛.例8判别级数∑∞=13nnna(a为常数)的收敛性.解因为)(1)1(33311∞→→⎪⎭⎫⎝⎛+=+=++naannnanauunnnn,所以当1±=a时,级数∑∞=±13)1(nnn均收敛;当1≤a时,级数∑∞=13nnna绝对收敛;当1>a时,级数∑∞=13nnna发散.习题7-21. 用比较审敛法判定下列级数的收敛性:(1)∑∞=+121 21n n;(2)∑∞=++1)2)(1(1nnn;(3)∑∞=+11n nn;(4)∑∞=12sinnnπ;(5)∑∞=> +1)0(11nnaa.2. 用比值审敛法判定下列级数的敛散性:(1)∑∞=1! 2nnn; (2)∑∞=⋅1!3nnnnn;(3)∑∞=+1)1 2(nnnn; (4)∑∞=+112tannnnπ.3. 判定下列级数的敛散性:(1)∑∞=12nnn; (2)∑∞=+1)1(nnnn;(3)∑∞=13sin 2nnnπ; (4)∑∞=14!nnn;(5)∑∞=+ +121)1 (nnnn.4. 判定下列级数是否收敛?若收敛,是绝对收敛还是条件收敛?(1)∑∞=+ -111)1(n nn; (2)∑∞=-+-11)1ln(1)1(nnn;(3)∑∞=--111sin)1(n nn; (4)∑∞=--11ln)1(nnnn.第3节 幂级数3.1 函数项级数的概念给定一个定义在区间I 上的函数列{})(x u n , 由这函数列构成的表达式+++++)()()()(321x u x u x u x u n ,称为定义在区间I 上的(函数项)级数, 记为∑∞=1)(n n x u .对于区间I 内的一定点0x , 若常数项级数∑∞=10)(n n x u 收敛, 则称点0x 是级数∑∞=1)(n n x u 的收敛点. 若常数项级数∑∞=10)(n nx u发散, 则称点0x 是级数∑∞=1)(n n x u 的发散点.函数项级数∑∞=1)(n n x u 的所有收敛点的全体称为它的收敛域, 所有发散点的全体称为它的发散域.在收敛域上, 函数项级数∑∞=1)(n n x u 的和是x 的函数)(x s ,)(x s 称为函数项级数∑∞=1)(n n x u 的和函数, 并写成∑∞==1)()(n n x u x s . 函数项级数)(x u n ∑的前n 项的部分和记作)(x s n , 即)()()()()(321x u x u x u x u x s n n ++++= .在收敛域上有)()(lim x s x s n n =∞→.函数项级数∑∞=1)(n n x u 的和函数)(x s 与部分和)(x s n 的差)()()(x s x s x r n n -=叫做函数项级数∑∞=1)(n n x u 的余项. 并有0)(lim =∞→x r n n .3.2 幂级数及其收敛性函数项级数中简单而常见的一类级数就是各项都是幂函数的函数项级数, 这种形式的级数称为幂级数, 它的形式是+++++=∑∞=n n n n nx a x a x a a x a22100,其中常数 ,,,,,210n a a a a 叫做幂级数的系数.定理1(阿贝尔定理) 对于级数∑∞=0n n nx a,当)0(00≠=x x x 时收敛, 则适合不等式0x x <的一切x 使这幂级数绝对收敛. 反之, 如果级数∑∞=0n n n x a 当0x x =时发散, 则适合不等式0x x >的一切x 使这幂级数发散.证 先设0x 是幂级数∑∞=0n nnx a的收敛点, 即级数∑∞=0n n n x a 收敛. 根据级数收敛的必要条件,有0lim 0=∞→nn n x a , 于是存在一个常数M , 使),2,1(0 =≤n M x a n n .这样级数∑∞=0n n nx a的的一般项的绝对值n n nn n n nn nn x x M x x x a x x x a x a ||||||||||0000⋅≤⋅=⋅=.因为当0x x <时, 等比级数nn x x M ||00⋅∑∞=收敛, 所以级数∑∞=0||n n n x a 收敛, 也就是级数∑∞=0n n nx a绝对收敛.定理的第二部分可用反证法证明.倘若幂级数当0x x =时发散而有一点1x 适合01x x >使级数收敛, 则根据本定理的第一部分, 级数当0x x =时应收敛, 这与所设矛盾. 定理得证.推论 如果级数∑∞=0n n nx a不是仅在点0=x 一点收敛, 也不是在整个数轴上都收敛,则必有一个完全确定的正数R 存在, 使得 当R x <时, 幂级数绝对收敛; 当R x >时, 幂级数发散;当R x =与R x -=时, 幂级数可能收敛也可能发散. 正数R 通常叫做幂级数∑∞=0n nn x a的收敛半径. 开区间),(R R -叫做幂级数∑∞=0n nnx a 的收敛区间. 再由幂级数在x R =±处的收敛性就可以决定它的收敛域. 幂级数∑∞=0n n nx a的收敛域是),(R R -或),[R R -、],(R R -、],[R R -之一.若幂级数∑∞=0n nnx a只在0=x 收敛, 则规定收敛半径0=R , 若幂级数∑∞=0n n n x a 对一切x 都收敛, 则规定收敛半径+∞=R , 这时收敛域为),(+∞-∞.定理2 如果ρ=+∞→||lim 1nn n a a , 其中n a 、1+n a 是幂级数∑∞=0n n n x a 的相邻两项的系数, 则这幂级数的收敛半径⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 10 R .证明|| ||||lim ||lim 111x x a a x a x a n n n nn n n n ρ=⋅=+∞→++∞→. (1) 如果+∞<<ρ0, 则只当1<x ρ时幂级数收敛, 故ρ1=R .(2) 如果0=ρ, 则幂级数总是收敛的, 故+∞=R .(3) 如果+∞=ρ, 则只当0=x 时幂级数收敛, 故0=R .例1 求幂级数 ∑∞=12n nnx 的收敛半径与收敛域.解 因为1)1(lim lim 221=+==∞→+∞→n n a a n nn n ρ,所以收敛半径为11==ρR . 即收敛区间为)1,1(-.当1±=x 时, 有221)1(n n n =±,由于级数∑∞=121n n 收敛,所以 级数∑∞=12n nnx 在1±=x 时也收敛.因此, 收敛域为]1,1[-.例2 求幂级数∑∞=0!1n nx n = !1 !31!21132⋅⋅⋅++⋅⋅⋅++++n x n x x x 的收敛域.解 因为0)!1(!lim !1)!1(1lim ||lim 1=+=+==∞→∞→+∞→n n n n a a n n n n n ρ,所以收敛半径为+∞=R , 从而收敛域为),(+∞-∞.例3 求幂级数∑∞=0!n n x n 的收敛半径. 解 因为+∞=+==∞→+∞→!)!1(lim ||lim 1n n a a n n n n ρ, 所以收敛半径为0=R , 即级数仅在0=x 处收敛. 例4 求幂级数∑∞=022)!()!2(n nx n n 的收敛半径. 解 级数缺少奇次幂的项, 定理2不能应用. 可根据比值审敛法来求收敛半径:幂级数的一般项记为nn x n n x u 22)!()!2()(=. 因为 21||4 |)()(|lim x x u x u n n n =+∞→, 当142<x 即21||<x 时级数收敛; 当142>x 即21||>x 时级数发散, 所以收敛半径为21=R .3.3 幂级数的运算 设幂级数∑∞=0n nn xa 及∑∞=0n n n x b 分别在区间),(R R -及),(R R ''-内收敛, 则在),(R R -与),(R R ''-中较小的区间内有加法: ∑∑∑∞=∞=∞=+=+000)(n n n n n n n n n n x b a x b x a .减法:∑∑∑∞=∞=∞=-=-00)(n n n n n nn n nn x b a x b xa .乘法: )()(00∑∑∞=∞=⋅n n n n nn x b x a ++++++=2021*********)()(x b a b a b a x b a b a b a+++++-nn n n x b a b a b a )(0110.除法: .221022102210+++++=++++++++++n n nn n n x c x c x c c x b x b x b b x a x a x a a 关于幂级数的和函数有下列重要性质:性质1 幂级数∑∞=0n n n x a 的和函数)(x s 在其收敛域I 上连续.性质2 幂级数∑∞=0n n n x a 的和函数)(x s 在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xnn xn nn x x n a dx x a dx x a dx x s )(I x ∈,逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑∞=0n n n x a 的和函数)(x s 在其收敛区间),(R R -内可导, 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='110)()()(n n n n n n n n n x na x a x a x s ()x R <,逐项求导后所得到的幂级数和原级数有相同的收敛半径.例6 求幂级数∑∞=+011n nx n 的和函数.解 求得幂级数的收敛域为)1,1[-. 设和函数为)(x s , 即∑∞=+=011)(n n x n x s , )1,1[-∈x .显然1)0(=s . 在∑∞=++=0111)(n n x n x xs 的两边求导得: ()x x x n x xs n n n n -=='⎪⎭⎫⎝⎛+='∑∑∞=∞=+1111)(001.对上式从0到x 积分, 得)1ln(11)(0x dx x x xs x--=-=⎰.于是, 当0≠x 时, 有)1ln(1)(x xx s --=. 从而 [)()⎪⎩⎪⎨⎧=⋃∈--=,0 1 ,1,01,0- )1ln(1)(x x x xx s . 提示: 应用公式)0()()(0F x F dx x F x-='⎰, 即⎰'+=xdx x F F x F 0)()0()(.11132++++++=-n x x x x x. 习题7-31.求下列幂级数的收敛区间(1)∑∞=1n nnx ; (2)∑∞=-1)1(n nn x n ;(3)∑∞=⋅+12)2(n n n n x ; (4)∑∞=++-11212)1(n n n n x ; (5)∑∞=-1)5(n n n x ; (6)∑∞=+1212n n nx n ;(7)∑∞=-1)1(2n nn x n ; (8)∑∞=-1)5(n n n x . 2. 利用逐项求导法或逐项积分法,求下列级数的和函数 (1)∑∞=-1122n n nx1<x ; (2)∑∞=--11212n n n x .第4节 函数展开成幂级数4.1函数展开成幂级数给定函数)(x f , 要考虑它是否能在某个区间内“展开成幂级数”, 就是说, 是否能找到这样一个幂级数, 它在某区间内收敛, 且其和恰好就是给定的函数)(x f . 如果能找到这样的幂级数, 我们就说,函数)(x f 能展开成幂级数, 而该级数在收敛区间内就表达了函数)(x f .如果)(x f 在点0x 的某邻域内具有各阶导数),(),(x f x f ''' ),()(x f n ,则当∞→n 时, )(x f 在点0x 的泰勒多项式n n n x x n x f x x x f x x x f x f x p )(!)( )(!2)())(()()(00)(200000-+⋅⋅⋅+-''+-'+=成为幂级数)(!2)())(()(200000⋅⋅⋅+-''+-'+x x x f x x x f x f )(!)(00)(⋅⋅⋅+-+n n x x n x f这一幂级数称为函数)(x f 的泰勒级数.显然, 当0x x =时,)(x f 的泰勒级数收敛于)(0x f .需要解决的问题: 除了0x x =外, )(x f 的泰勒级数是否收敛? 如果收敛, 它是否一定收敛于)(x f ?定理 设函数)(x f 在点0x 的某一邻域)(0x U 内具有各阶导数, 则)(x f 在该邻域内能展开成泰勒级数的充分必要条件是)(x f 的泰勒公式中的余项)(x R n 当n →∞时的极限为零, 即lim ()0 n n R x →∞= 0(())x U x ∈. 证明 先证必要性. 设)(x f 在)(0x U 内能展开为泰勒级数, 即)(!)( )(!2)())(()()(00)(200000⋅⋅⋅+-+⋅⋅⋅+-''+-'+=n n x x n x f x x x f x x x f x f x f , 又设)(1x s n +是)(x f 的泰勒级数的前1+n 项的和,则在)(0x U 内)(1x s n +)(x f →)(∞→n .而)(x f 的n 阶泰勒公式可写成)()()(1x R x s x f n n +=+,于是=)(x R n 1()()0n f x s x +-→)(∞→n .再证充分性. 设)(0)(∞→→n x R n 对一切)(0x U x ∈成立.因为)(x f 的n 阶泰勒公式可写成)()()(1x R x s x f n n +=+, 于是=+)(1x s n )(x f )()(x f x R n →-,即)(x f 的泰勒级数在)(0x U 内收敛, 并且收敛于)(x f .在泰勒级数中取00=x , 得⋅⋅⋅++⋅⋅⋅+''+'+ !)0( !2)0()0()0()(2nn x n f x f x f f ,此级数称为)(x f 的麦克劳林级数.要把函数)(x f 展开成x 的幂级数,可以按照下列步骤进行: 第一步 求出)(x f 的各阶导数: ),(,),(),(),()(x f x f x f x f n ''''''.第二步 求函数及其各阶导数在00=x 处的值:),0(,),0(),0(),0()(n f f f f '''''' .第三步 写出幂级数!)0( !2)0()0()0()(2⋅⋅⋅++⋅⋅⋅+''+'+nn x n f x f x f f ,并求出收敛半径R .第四步 考察在区间(),(R R -内时是否)(0)(∞→→n x R n .1)1()!1()(lim )(lim ++∞→∞→+=n n n n n x n f x R ξ 是否为零. 如果)(0)(∞→→n x R n , 则)(x f 在),(R R -内有展开式!)0( !2)0()0()0()()(2+++''+'+=nn x n f x f x f f x f )(R x R <<-.例1 试将函数xe xf =)(展开成x 的幂级数. 解 所给函数的各阶导数为),2,1()()( ==n e x f x n , 因此),2,1(1)0()( ==n fn .得到幂级数⋅⋅⋅+⋅⋅⋅+++ !1 !2112n x n x x , 该幂级数的收敛半径+∞=R .由于对于任何有限的数ξ,x (ξ介于0与x 之间), 有)!1(||)!1( |)(|1||1+⋅<+=++n x e x n e x R n x n n ξ, 而0)!1(||lim1=++∞→n x n n , 所以0|)(|lim =∞→x R n n , 从而有展开式 2111 2!!x n e x x x n =+++⋅⋅⋅+⋅⋅⋅ ()x -∞<<+∞. 例2 将函数x x f sin )(=展开成x 的幂级数.解 因为⎪⎭⎫ ⎝⎛⋅+=2 sin )()(πn x x fn ),2,1( =n ,所以)0()(n f 顺序循环地取),3,2,1,0(,1,0,1,0 =-n , 于是得级数⋅⋅⋅+--+⋅⋅⋅-+--- )!12()1( !5!312153n x x x x n n , 它的收敛半径为+∞=R .对于任何有限的数ξ,x (ξ介于0与x 之间), 有11(1)sin ||2|()| 0(1)!(1)!n n n n x R x x n n πξ+++⎛⎫+⎪⎝⎭=≤→++ n →∞.因此得展开式35211sin(1)3!5!(21)!n n x x x x x n --=-+-+-+- ()x -∞<<+∞.例3 将函数mx x f )1()(+=展开成x 的幂级数, 其中m 为任意常数.解 )(x f 的各阶导数为1)1()(-+='m x m x f,)1)(1()(2-+-=''m x m m x f,)1)(1()2)(1()()(n m n x n m m m m x f -++---=所以),1()2)(1()0(,),1()0(,)0(,1)0()(+---=-=''='=n m m m m f m m f m f f n且()0n R x → 于是得幂级数++-⋅⋅⋅-++-++nx n n m m m x m m mx !)1( )1( !2)1(12. 以上例题是直接按照公式计算幂级数的系数,最后考察余项是否趋于零.这种直接展开的方法计算量较大,而且研究余项即使在初等函数中也不是一件容易的事.下面介绍间接展开的方法,也就是利用一些已知的函数展开式,通过幂级数的运算以及变量代换等,将所给函数展开成幂级数.这样做不但计算简单,而且可以避免研究余项.例4 将函数x x f cos )(=展开成x 的幂级数. 解 已知)!12()1( !5!3sin 12153 +--+-+-=--n x x x x x n n )(+∞<<-∞x .对上式两边求导得)( )!2()1( !4!21cos 242+∞<<-∞+-+-+-=x n x x x x n n . 例5 将函数)1ln()(x x f +=展开成x 的幂级数.解 因为x x f +='11)(, 而x +11是收敛的等比级数∑∞=-0)1(n n n x )11(<<-x 的和函数:)1( 11132⋅⋅⋅+-+⋅⋅⋅+-+-=+n n x x x x x.所以将上式从0到x 逐项积分, 得)1ln()(x x f +=⎰⎰+='+=xx dx xdx x 0011])1[ln(∑⎰∑∞=+∞=+-=-=01001)1(])1([n n nx n nn n x dx x )11(≤<-x .上述展开式对1=x 也成立, 这是因为上式右端的幂级数当1=x 时收敛, 而)1ln(x +在1=x 处有定义且连续. 常用展开式小结:211 1n x x x x=+++⋅⋅⋅++⋅⋅⋅- (11)x -<<, 2111 2!!xn e x x x n =+++⋅⋅⋅+⋅⋅⋅ ()x -∞<<+∞,35211sin (1) 3!5!(21)!n n x x x x x n --=-+-⋅⋅⋅+-+⋅⋅⋅- ()x -∞<<+∞, 242cos 1 (1) 2!4!(2)!n n x x x x n =-+-⋅⋅⋅+-+⋅⋅⋅ ()x -∞<<+∞, 2341ln(1) (1) 2341n n x x x x x x n ++=-+-+⋅⋅⋅+-+⋅⋅⋅+ (11)x -<≤,!2)1(1)1(2⋅⋅⋅+-++=+x m m mx x m (1) (1) !n m m m n x n -⋅⋅⋅-+++⋅⋅⋅(11)x -<<4.2 幂级数的展开式的应用4.2.1 近似计算有了函数的幂级数展开式,就可以用它进行近似计算,在展开式有意义的区间内,函数值可以利用这个级数近似的按要求计算出来.例6 计算5245的近似值(误差不超过410-).解 因为5/15555)321(323245+=+=, 所以在二项展开式中取51=m , 532=x ,即]. )32)(151(51!2132511[32452555⋅⋅⋅+-⋅-⋅+=.这个级数从第二项起是交错级数, 如果取前n 项和作为5245的近似值, 则其误差(也叫做截断误差),1+≤n n u r 可算得,103258352243||4910222-<⨯=⨯⨯⨯⨯=u 为了使误差不超过410-, 只要取其前两项作为其近似值即可. 于是有.0049.3)2432511(32455≈⋅+≈.例7 利用3!31sin x x x -≈ 求 9sin 的近似值, 并估计误差. 解 首先把角度化成弧度,91809⨯=π (弧度)20π=(弧度),从而()320!312020sin πππ-≈ . 其次, 估计这个近似值的精确度. 在x sin 的幂级数展开式中令20π=x , 得20!7120!5120!312020sin 753⋅⋅⋅+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=πππππ.等式右端是一个收敛的交错级数, 且各项的绝对值单调减少. 取它的前两项之和作为20sin π的近似值, 起误差为3000001)2.0(120120!51||552<⋅<⎪⎭⎫ ⎝⎛≤πr . 因此取157080.020≈π, 003876.0203≈⎪⎭⎫ ⎝⎛π.于是得 15643.09sin ≈,这时误差不超过510-. 例8 计算定积分dx e x ⎰-2122π的近似值, 要求误差不超过410-(取56419.01≈π).解 将xe 的幂级数展开式中的x 换成2x -, 得到被积函数的幂级数展开式!3)(!2)(!1)(1322222⋅+-+-+-+=-x x x ex 20(1)!n n n x n ∞==-∑ ()x -∞<<+∞. 于是, 根据幂级数在收敛区间内逐项可积, 得dx x n dx n x dx e n n n n n n x ⎰∑⎰∑⎰∞=∞=--=-=210202102021!)1(2]!)1([222πππ) !3721!25213211(1642 +⋅⋅-⋅⋅+⋅-=π.前四项的和作为近似值, 其误差为900001!49211||84<⋅⋅≤πr , 所以5295.0)!3721!25213211(12642212≈⋅⋅-⋅⋅+⋅-≈⎰-ππdx e x . 例9 计算积分dx x⎰+5.00411的近似值, 要求误差不超过410-.解 因为+-+-+-=+n n x x x x x)1(11132. 所以)1( 111412844+-++-+-=+nn x x x x x对上式逐项积分得dx x⎰+5.00411=dx x x x x n n ])1(1[412845.00 +-++-+-⎰ 5.0014139514)1(1319151⎥⎦⎤⎢⎣⎡++-++-+-=+ n nx n x x x x ++-++-+-=+141395)5.0(14)1()5.0(131)5.0(91)5.0(515.0n n n . 上面级数为交错级数,所以误差14)5.0(141++<n n n r ,经试算 00625.0)5.0(515≈⋅,00022.0)5.0(919≈⋅,000009.0)5.0(13113≈. 所以取前三项计算,即≈+⎰dx x 5.004110.49400.493970.0002200625.0-0.50000≈=+.4.2.2 欧拉公式设有复数项级数为,)()()(2211 +++++++n n iv u iv u iv u (7-4-1)其中n n v u , ),3,2,1( =n 为实常数或实函数.如果实部所成的级数++++n u u u 21 (7-4-2)收敛于和u ,并且虚部所成的级数++++n v v v 21 (7-4-3)收敛于和v ,就说级数(1)收敛且其和为iv u +.如果级数(7-4-1)各项的模所构成的级数+++++++2222222121n n v u v u v u收敛,则称级数(7-4-1)绝对收敛.如果级数(1)绝对收敛,由于),,2,1(,,2222 =+≤+≤n v u v v u u n n n n n n那么级数(7-4-2),(7-4-3)绝对收敛,从而级数(7-4-1)收敛.考察复数项级数+++++n z n z z !1!2112 )(iy x z += (7-4-4) 可以证明级数(7-4-4)在整个复平面上是绝对收敛的.在x 轴上)(x z =它表示指数函数x e ,在整个复平面上我们用它来定义复变量指数函数,记作z e ,于是z e 定义为=z e +++++n z n z z !1!2112 )(∞<z (7-4-5) 当0=x 时,z 为纯虚数iy ,(7-4-5)式成为++++++=n iyiy n iy iy iy e)(!1)(!31)(!21132 -++--+=5432!51!41!31!211y i y y i y iy)!51!31()!41!211(5342 -+-+-+-=y y y i y y y i y s i n c o s+= 把y 换写为x ,上式变为x i x e ixsin cos += (7-4-6)这就是欧拉公式. 应用公式(7-4-6),复数z 可以表示为指数形式:,)s i n (c o s θρθθρi e i z =+= (7-4-7) 其中z =ρ是z 的模,z arg =θ是z 的辐角在(7-4-6)式中把x 换成x -,又有x i x e ix sin cos -=-与(7-4-6)相加、相减,得⎪⎪⎩⎪⎪⎨⎧-=+=--ie e x e e x ix ixixix 2sin 2cos (7-4-8) 这两个式子也叫做欧拉公式.(7-4-6)式或(7-4-8)式揭示了三角函数与复变量指数函数之间的一种联系.最后,根据定义式(7-4-5),并利用幂级数的乘法,我们不难验证2121z z z z e e e =+.特殊地,取1z 为实数x ,2z 为纯虚数iy ,则有).sin (cos y i y e e e e x iy x iy x +==+这就是说,复变量指数函数ze 在iy x z +=处的值是模为xe 、辐角为y 的复数.习题7-41.将下列函数展开成x 的幂级数,并求展开式成立的区间:(1)xa y = )1,0(≠>a a ; (2)2)1(1x y +=;(3)3sin xy =; (4))2ln(x y -=; (5)211xy -=; (6))1ln()1(x x y ++=.2.将函数x x f ln )(=展开成)1(-x 的幂级数.3.将函数xx f 1)(=展开成)3(-x 的幂级数. 4.利用函数的幂级数展开式求3ln 的近似值(误差不超过0.0001)5.利用欧拉公式将函数x e xcos 展开成x 的幂级数.第5节 傅里叶级数5.1三角级数 三角函数系的正交性正弦函数是一种常见而简单的周期函数.例如描述简谐振动的函数)sin(ϕ+=wt A y ,就是一个以ωπ2为周期的正弦函数,其中y 表示动点的位置,t 表示时间,A 为振幅,ω为角频率,ϕ为初相.在实际问题中,除了正弦函数外,还会遇到非正弦函数的周期函数,它们反应了较复杂的周期运动.如电子技术中常用的周期为T 的矩形波,就是一个非正弦周期函数的例子.为了深入研究非正弦周期函数,联系到前面介绍过的用函数的幂级数展开式表示和讨论函数,我们也想将周期为T 的周期函数用一系列以T 为周期的正弦函数)sin(n n t n A ϕω+组成的级数来表示,记为)s i n ()(10n n nt n AA t f ϕω++=∑∞= (7-5-1)其中 ),3,2,1(,,0 =n A A n n ϕ都是常数.将周期函数按上述方式展开,它的物理意义是很明确的,这就是把一个比较复杂的周期运动看作是许多不同频率的简谐振动的叠加.在电工学上,这种展开称为是谐波分析.其中常数项0A 称为是)(t f 的直流分量;)sin(11ϕω+t A 称为一次谐波;而)sin(22ϕω+t A , ),sin(33ϕω+t A依次称为是二次谐波,三次谐波,等等.为了以后讨论方便起见,我们将正弦函数)sin(n n t n A ϕω+按三角公式变形,得)sin(n n t n A ϕω+=t n A n n ωϕcos sin +t n A n n ωϕsin cos ,并且令002A a =,n n n A a ϕsin =,n n n A b ϕcos =,lπω=,则(1)式右端的级数就可以改写为∑∞=++10)s i n c o s (2n n n ltn b l t n a a ππ (7-5-2) 形如(7-5-2)式的级数叫做三角级数,其中),3,2,1(,,0 =n b a a n n 都是常数. 令,x lt=π(7-5-2)式成为,)s i n c o s (21∑∞=++n n n nx b nx a a (7-5-3) 这就把以l 2为周期的三角级数转换为以π2为周期的三角级数.下面讨论以π2为周期的三角级数(7-5-3).我们首先介绍三角函数系的正交性. 三角函数系:,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nx nx x x x x (7-5-4)在区间],[ππ-上正交,就是指在三角函数系(7-5-4)中任何不同的两个函数的乘积在区间],[ππ-上的积分等于零,即 ⎰-=ππ0cos nxdx ),2,1( =n ,⎰-=ππ0s i n n x d x ),2,1( =n , ⎰-=ππ0cos sin nxdx kx ),2,1,( =n k , ⎰-=ππ0sin sin nxdx kx ),,2,1,(n k n k ≠= ,⎰-=ππ0cos cos nxdx kx ),,2,1,(n k n k ≠= . 三角函数系中任何两个相同的函数的乘积在区间],[ππ-上的积分不等于零, 即 ⎰-=πππ212dx , ⎰-=πππnxdx 2cos ),2,1( =n ,⎰-=πππn x d x 2s i n),2,1( =n .5.2 函数展开成傅里叶级数设)(x f 是周期为π2的周期函数, 且能展开成三角级数:∑∞=++=10)s i n c o s(2)(k k k kx b kx a a x f . (7-5-5) 那么系数 ,,,110b a a 与函数)(x f 之间存在着怎样的关系? 假定三角级数可逐项积分, 则]cos sin cos cos [cos 2cos )(1⎰⎰∑⎰⎰--∞=--++=ππππππππnxdx kx b nxdx kx a nxdx a nxdx x f k k k =πn a类似地⎰-=πππn b nxdx x f sin )(,可得⎰-=πππdx x f a )(10, ⎰-=πππnxdx x f a n cos )(1, ),2,1( =n ,⎰-=πππnxdx x f b n sin )(1, ),2,1( =n .系数 ,,,110b a a 叫做函数)(x f 的傅里叶系数.由于当0=n 时,n a 的表达式正好给出0a ,因此,已得结果可合并写成1()c o s ,(1,2,),1()s i n ,(1,2,).n n a f x n x d x n b f x n x d x n ππππππ--⎧==⎪⎪⎨⎪==⎪⎩⎰⎰ (7-5-6)将傅里叶系数代入(5)式右端,所得的三角级数∑∞=++10)sin cos (2n n n nx b nx a a 叫做函数)(x f 的傅里叶级数.一个定义在),(∞+-∞上周期为π2的函数)(x f , 如果它在一个周期上可积, 则一定可以作出)(x f 的傅里叶级数. 然而, 函数)(x f 的傅里叶级数是否一定收敛? 如果它收敛, 它是否一定收敛于函数? 一般来说, 这两个问题的答案都不是肯定的.定理1 (收敛定理, 狄利克雷充分条件) 设)(x f 是周期为π2的周期函数, 如果它满足: 在一个周期内连续或只有有限个第一类间断点, 在一个周期内至多只有有限个极值点, 则)(x f 的傅里叶级数收敛, 并且当x 是)(x f 的连续点时, 级数收敛于)(x f ;当x 是)(x f 的间断点时, 级数收敛于)]()([21+-+x f x f .由定理可知,函数展开成傅里叶级数的条件比展开成幂级数的条件低得多,若记⎭⎬⎫⎩⎨⎧+==+-)]()([21)(|x f x f x f x C ,在C 上就成立)(x f 的傅里叶级数展开式C x nx b nx a a x f n n n ∈++=∑∞=,)sin cos (2)(1. (7-5-7) 例1 设)(x f 是周期为π2的周期函数, 它在),[ππ-上的表达式为⎩⎨⎧<≤<≤--=ππx x x f 0 1 0 1)(,将)(x f 展开成傅里叶级数.解 所给函数满足收敛定理的条件, 它在点πk x = ),2,1,0( ±±=k 处不连续, 在其它点处连续, 从而由收敛定理知道)(x f 的傅里叶级数收敛, 并且当πk x =时收敛于0)11(21)]0()0([21=+-=++-x f x f , 当πk x ≠时级数收敛于)(x f . 傅里叶系数计算如下: ⎰⎰⎰=⋅+-==--πππππππ00c o s 11c o s )1(1c o s )(1n x d x n x d x n x d x x f a n ),2,1( =n ;⎰⎰⎰⋅+-==--πππππππ0sin 11sin )1(1sin )(1nxdx nxdx nxdx x f b n]1cos cos 1[1]cos [1]cos [100+--=-+=-πππππππn n n n nx n nxπn 2=[1-(-1)n]⎪⎩⎪⎨⎧⋅⋅⋅=⋅⋅⋅== 6, 4, 2,0 ,5 ,3 ,1 4n n n π.于是)(x f 的傅里叶级数展开式为] )12sin(121 3sin 31[sin 4)(⋅⋅⋅+--+⋅⋅⋅++=x k k x x x f π),2,,0;( ππ±±≠+∞<<-∞x x .例2 设)(x f 是周期为π2的周期函数, 它在],(ππ-上的表达式为⎩⎨⎧<<-≤≤=000 )(x x x x f ππ. 将)(x f 展开成傅里叶级数.解 所给函数满足收敛定理的条件, 它在点π)12(+=k x ),2,1,0( ±±=k 处不连续, 因此, )(x f 的傅里叶级数在π)12(+=k x 处收敛于。

数学分析级数

数学分析级数

数学分析级数在数学的广袤天地中,级数是一个极其重要的概念。

它不仅在理论研究中有着深远的意义,还在实际应用中发挥着关键的作用。

首先,让我们来理解一下什么是级数。

简单来说,级数就是把一系列的数按照一定的顺序相加。

比如,1 + 2 + 3 + 4 +…… 就是一个级数。

级数可以分为数项级数和函数项级数。

数项级数就是由一个个常数组成的级数,而函数项级数则是由函数组成的。

在数项级数中,有一个非常重要的概念,那就是收敛与发散。

如果一个级数的和随着项数的增加逐渐趋近于一个确定的有限值,我们就说这个级数是收敛的;反之,如果这个和不断增大或者没有一个确定的极限,那这个级数就是发散的。

比如说,调和级数 1 + 1/2 + 1/3 + 1/4 +…… 就是发散的。

为什么呢?我们可以通过一些方法来证明。

假设它是收敛的,设其和为 S。

那么 1/2 + 1/4 + 1/6 + 1/8 +…… 就等于 S/2 。

但是 1 + 1/3 + 1/5+ 1/7 +…… 显然大于 1/2 + 1/4 + 1/6 + 1/8 +…… ,这就产生了矛盾,所以调和级数是发散的。

而对于等比级数,比如 1 + 1/2 + 1/4 + 1/8 +…… ,它是收敛的,其和为 2 。

这是因为当公比的绝对值小于 1 时,等比级数是收敛的。

级数的收敛性判断有很多方法。

比如,比较判别法,如果一个级数的每一项都小于另一个已知收敛的级数的对应项,那么这个级数也收敛;比值判别法,通过计算级数相邻两项的比值的极限来判断收敛性;根值判别法,计算级数通项的 n 次方根的极限来判断。

函数项级数在数学分析中也有着重要的地位。

比如幂级数,它是形如∑aₙ(x x₀)ⁿ的级数。

幂级数在其收敛区间内具有很好的性质,可以进行逐项求导和逐项积分。

通过对级数的研究,我们可以解决很多实际问题。

比如在物理学中,求解一些复杂的物理量时,常常会用到级数展开;在工程学中,对信号的处理和分析也会用到级数的知识。

经管类专业学生如何学好_微积分_李晓辉

经管类专业学生如何学好_微积分_李晓辉

时代教育1把握好学习《微积分》的几个环节学习《微积分》包括预习、听课、练习与复习四个主要环节。

预习是指在课前将课本上的有关知识内容进行阅读思考。

一般而言,进行预习应先对最近学过的内容进行复习,然后将教师下一堂课要讲授的内容逐字逐句地阅读思考。

在阅读过程中应注意这么几个问题:一是新概念是如何引出来的,这往往是通过需要解决一个问题来引出;二是新概念的内涵界定,这需借助已学过的概念,并对各种具体问题进行一般抽象归纳;三是与新概念相关的定理、法则的条件与结论,这是用新知识解决问题的理论和方法基础;四是新知识的应用,这是用新概念及其相关定理和法则解决问题举例。

比如关于导数概念的预习,应弄清三个问题:一是为什么及如何引进导数这一概念,二是导数是如何定义的,三是导数的作用是什么。

引进导数是为了研究因变量即函数相对自变量的变化快慢程度的需要,通过研究变速直线运动物体的速度及切线斜率问题来引出导数概念;导数是当自变量改变量趋于零时,函数改变量与自变量改变量之比的极限,它是一种特殊形式的极限,这是导数的本质;导数主要用来研究有关变化率的问题。

当完成了以上的阅读思考之后,找一些相关习题来练习,检验预习效果。

在预习中不免会碰到很难理解的知识,此时一方面应做好记号,待重点听讲或向老师请教,另一方面若时间许可的话,应反复阅读,结合实例或采用几何图示等直观方法认真领会琢磨。

听课是指在教师的讲解下理解和掌握知识。

听课时必须集中精力,跟着教师的思路积极思考,同时针对关键点、重点、难点做好笔记,特别要注意在预习时还没有弄清的地方。

听课时要做到眼看、耳听、脑想、手写相结合,不能只写不听,也不能只听不想。

听课在整个学习过程中是最关键的一环,也是效率最高的一个环节。

无论如何听课一定要坚持到底,若有某个细节没有听懂,可做上记号,暂时搁置,等做课堂练习时或课后向老师请教,如何提高听课效率非常重要。

练习是指对已学过的知识和方法在训练中加以巩固和消化。

数项级数的概念与基本性质

数项级数的概念与基本性质

数项级数的概念与基本性质8.1 数项级数的概念与基本性质教学目的:理解级数的概念和基本性质。

教学重点:级数的基本性质,收敛的必要条件,几何级数。

教学难点:有限项相加与无穷项相加的差异。

教学过程:1.导入我们以前研究的加法是将有限个数相加,这种加法易于计算但无法满足应用的需要。

在许多技术问题中,常要求我们将无穷多个数相加,这种加法叫做无穷级数。

无穷级数是表示函数、研究函数性质以及进行数值计算的一种工具。

无穷级数分为常数项级数和函数项级数,常数项级数是函数项级数的特殊情况,是函数项级数的基础。

2.讲授新课2.1 常数项级数的概念定义8.1:设给定数列{an},我们把形如a1+a2+。

+an+。

=∑an (n=1,2.)的式子称为一个无穷级数,简称级数。

其中第n项an称为级数∑an的通项(或一般项)。

如果级数中的每一项都是常数,我们称此级数为数项级数。

例如,等差数列各项的和a1+(a1+d)+(a1+2d)+。

+[a1+(n-1)d]+。

称为算术级数。

等比数列各项的和XXX.称为等比级数,也称为几何级数。

级数2n-1+。

+1111+。

=∑(2n-1)/(3n) (n=1,2.)称为调和级数。

级数(8.1.1)的前nXXX:XXX,k=1,2.n称Sn为级数∑an的前n项部分和,简称部分和。

2.2 常数项级数收敛与发散定义8.2:若级数(8.1.1)的部分和数列{Sn}的极限存在,即limSn=S (常数)n→∞则称极限S为无穷级数∑an的和。

记作S=∑an=a1+a2+。

+an+。

此时称级数∑an收敛;如果数列{Sn}没有极限,则称级数∑XXX发散,这时级数没有和。

显然,当级数收敛时,其部分和Sn是级数和S的近似值,它们之间的差rn=S-Sn=an+1+an+2+。

叫做级数的余项。

用近似值Sn代替S所产生的误差是这个余项的绝对值,即误差为|rn|。

例1:讨论几何级数∑aq^(n-1)=a+aq+aq^2+。

高数大一下知识点总结级数

高数大一下知识点总结级数

高数大一下知识点总结级数高数是大学数学中的一门重要课程,对于大一学生来说,学好高数才能够为接下来的学习打下坚实的基础。

下面我将对高数大一下的知识点进行总结,希望对同学们的学习有所帮助。

一、级数的概念与性质在高数中,级数是一个非常重要的概念。

级数由一列数相加而得,可以用于近似计算以及描述实际问题。

级数的概念为我们后续学习提供了很多方便。

1.级数的定义级数是指把同一个数列的各个项按照顺序相加得到的和。

级数由无穷个项相加而成,表示为∑(an)。

2.级数的收敛和发散级数的收敛与发散是级数的一个重要性质。

级数是收敛的,当且仅当其部分和数列有极限。

级数是发散的,当其部分和数列趋向于无穷大或无穷小。

3.级数的收敛性判别法在判断一个级数是否收敛时,我们可以使用不同的收敛性判别法,如比较判别法、比值判别法、根值判别法、积分判别法等。

这些判别法可以帮助我们快速判断级数的收敛性。

二、常见的级数及其性质在高数中,有很多常见的级数,我们需要了解它们的性质以及求和的方法。

1.等差数列求和等差数列的求和在高中已经学过了,这里只是简单地进行回顾。

等差数列的首项为a,公差为d,第n项为an,前n项和为Sn,有公式Sn = (n/2)(a + an)。

2.等比数列求和等比数列的求和也是高中知识。

等比数列的首项为a,公比为q,第n项为an,前n项和为Sn,有公式Sn = a(1-q^n)/(1-q)。

需要注意的是,当|q|<1时,等比数列的和存在有限值。

3.幂级数幂级数是一种特殊的级数,对于形如∑(an*x^n)的级数,我们称之为幂级数。

在实际问题中,幂级数在分析函数的性质和展开函数等方面有着广泛应用。

三、级数的运算在高数中,我们常常需要进行级数的运算,如级数的加减、乘除以及级数与函数的运算等。

1.级数的加减级数的加减比较简单,只需要将级数的对应项相加或相减即可。

若级数∑(an)收敛,则其加减之和∑(an±bn)也收敛。

级数——研究函数最重要的工具

级数——研究函数最重要的工具

级数——研究函数最重要的工具
盛立刚;李海根;王文初;曾小和
【期刊名称】《大学数学》
【年(卷),期】1993(000)0S1
【摘要】级数是分析数学的重要组成部分,是研究函数的重要工具.级数是产生新函数的重要方法,同时它又是对已知函数表示、逼近的有效方法.在近似计算中它发挥着举足轻重的作用. 早在牛顿和莱布尼兹发明微积分的同时,他们就引进无穷级数表示函数.迄今,级数已在分析数学乃至其它数学分支中扮演重要的角色.
【总页数】15页(P142-156)
【作者】盛立刚;李海根;王文初;曾小和
【作者单位】
【正文语种】中文
【中图分类】O1
【相关文献】
1.关于应用幂级数定义正弦函数和余弦函数的教学研究 [J], 熊开明;
2.也谈“一个重要函数的Fourier级数” [J], 赵云其
3.一个重要函数的Fourier级数 [J], 徐志学
4.高等数学中一类幂级数求和函数的重要方法 [J], 吕海翠;宋佳;王艳丽
5.函数列及函数项级数一致收敛概念研究
——基于概念转变学习理论 [J], 李荣玲
因版权原因,仅展示原文概要,查看原文内容请购买。

高等数学(三)第11章 无穷级数

高等数学(三)第11章 无穷级数

无穷级数是高等数学的一个重要内容,是无限个常量或变量之和的数学模型,它是表示函数、研究函数性态以及进行数值计算的一种有效工具,在数学理论以及工程技术中都有广泛的应用.11.1 数项级数的概念及性质11.1.1 数项级数的概念 实例1 小球运动的时间小球从1米高处自由落下, 每次跳起的高度减少一半, 问小球运动的总时间. 解 由自由落体运动方程221gt s =知g s t 2=.设k t 表示第k 次小球落地的时间, 则小球运动的总时间为+++++=k t t t t T 222321.这里出现了无穷多个数依次相加的式子.在物理、化学等许多学科中,也常能遇到这种无穷多个数或函数相加的情形,在数学上称之为无穷级数.上述级数的定义只是一个形式上的定义,怎样理解无穷级数中无穷多个数相加呢?我们可以从有限项出发,观察它们的变化趋势,由此来理解无穷多个数量相加的含义.令n n u u u S +++= 21,称n S 为级数(11.1.1)的部分和.当n 依次为1,2,3,…,时,得到一个数列1S ,2S ,…,n S ,…,称为级数(11.1.1)的部分和数列.从形式上不难知道∑∞=1n n u =n n S ∞→lim ,所以我们可以根据部分和数列的收敛与发散来定义级数的敛散性. 当级数∑∞=1n n u 收敛于S 时,常用其部分和S n 作为和S 的近似值,其差∑∑∑∞+==∞==-=-111n k knk k k k n u u u S S叫做该级数的余项,记为n r .用部分和S n 近似代替和S 所产生的绝对误差为| r n |.例11.1.1 判定级数 ++⋅++⋅+⋅)1(1321211n n 的敛散性.解 所给级数的一般项为111)1(1+-=+=n n n n u n ,部分和)1(1321211+⋅++⋅+⋅=n n S n 111)111()3121()211(+-=+-++-+-=n n n ,所以1)111(lim lim =+-=∞→∞→n S n n n ,故该级数收敛于1,即1)1(11=+∑∞=n n n . 例11.1.2 考察波尔察诺级数∑∞=--11)1(n n 的敛散性.解 它的部分和数列是1, 0, 1, 0, … ,显然n n S ∞→lim 不存在,∑∞=--11)1(n n 发散.例11.1.3 讨论几何级数(也称等比级数)∑∞=0n naq +++++=n aq aq aq a 2的敛散性,其中a ≠ 0, q 称为级数的公比.解 该几何级数前n 项的部分和21(1),11 ,1n n n a q q qS a aq aq aq na q -⎧-≠⎪-=++++=⎨⎪=⎩, 当q = 1时,由于lim lim n n n S na →∞→∞==∞,所以级数发散;当q = -1时,级数变为 +-+-a a a a ,显然lim n n S →∞不存在,所以级数发散;当| q | > 1时,由于lim n n S →∞=∞,所以级数发散;当| q | < 1时,由于lim 1n n a S q →∞=-,所以级数收敛于1a q-.因此,几何级数0n n aq ∞=∑当| q | < 1时收敛于qa-1;当| q | ≥ 1时发散. 几何级数的敛散性非常重要,许多级数敛散性的判别,都要借助几何级数的敛散性来实现.11.2 .2 数项级数的性质根据级数敛散性的概念,可以得到级数的几个基本性质.12()n n n ku k u u u kS ++=+++=,112)()k k k n k u u u u u u +++++++-+++S S -lim .从性质1的证明可以看出,如果n S 没有极限且k ≠0,则n σ也不可能有极限.换句话说,级数的每一项同乘以一个非零常数,其敛散性不改变.例如,47412)31(1313213231(32(3)1(2111=-=---+-=-+=-+∑∑∑∞=∞=∞=nn nn n n n n .由性质4知,若级数加括号后发散,则原级数必发散.但加括号后收敛的级数,去括号后未必收敛.例如,级数⋅⋅⋅+-+-+-)11()11(11()收敛,但去括号后级数⋅⋅⋅+-+-+-111111却发散.由级数收敛的必要条件可知,如果0lim ≠∞→n n u 或不存在,则级数一定发散.因此可用性质5判定级数∑∞=1n n u 发散性,有时性质5也称为“级数发散的第n 项判别法”.例11.1.4 判定级数∑∞=+112n n n 的敛散性.解 由于02112limlim ≠=+=∞→∞→n n u n n n ,故此级数发散.例11.1.5 证明调和级数 +++++n131211发散. 证明 将调和级数的两项、两项、四项、…、2m 项、… 加括号,得到一个新级数++++++++++++++++)21221121()81716151()4131()211(1m m m .因为 2141414131 ,21211=+>+>+, ,218181818181716151=+++>+++,21212121212211211111=+++>+++++++++m m m m m m , 所以新级数前m + 1项的和大于21+m ,故新级数发散.由性质4知,调和级数发散. 由于调和级数的一般项)(01∞→→=n nu n ,因此例5说明:级数的一般项u n 趋于零仅仅是级数收敛的必要条件,并非充分条件.所以,不可用性质5来判定级数的收敛性.例11.1.6 有甲,乙,丙三人按以下方式分一个苹果:先将苹果分成4份,每人各取一份;然后将剩下的一份又分成4份,每人又取一份;按此方法一直下去.那么最终每人分得多少苹果?解 依题意,每人分得的苹果为+++++n 4141414132. 它是41==q a 的等比级数,因此其和为 3141141=-=S . 即最终每人分得苹果的31.习题 11.11.写出下列级数的一般项.(1) -+-+-5645342312; (2) +-+-97535432a a a a .2.判断下列级数的敛散性. (1))1(1n n n -+∑∞=; (2)∑∞=16sinn n π; (3) ++⋅-++⋅+⋅)12()12(1531311n n ; (4) +++++++41312110021;(5)n n n n-∞=-+-∑)11()1(11; (6))31(1n n n+∑∞=.11.2 数项级数的审敛法11.2.1正项级数及其审敛法对于正项级数∑∞=1n n u ,其部分和S n = S n -1 + u n ≥ S n -1 (n = 2, 3, …),即部分和数列{S n }单调递增.若数列{S n }有界,则由单调有界数列必有极限的准则知,数列{S n }收敛,所以正项级数∑∞=1n n u 必收敛,设其和为S ,则有S n ≤ S .反之,若正项级数∑∞=1n n u 收敛于S ,则由收敛数列必有界的性质知,数列{S n }必有界.于是我们得到下述重要结论:例11.2.1证明正项级数 +++++=∑∞=!1!21!111!10n n n 收敛.证明 因为),2,1( 2122211211!11 ==⋅⋅⋅⋅≤⋅⋅⋅=-n n n n , 于是对任意的n ,有2221212111)!1(1!21!111-+++++≤-++++=n n n S,3213211211121<-=--+=--n n即正项级数∑∞=0!1n n 的部分和数列有界,故级数∑∞=0!1n n 收敛.利用定理11.2.1,可导出正项级数的若干审敛法,这里只介绍其中较为重要的两个.例11.2.2讨论广义调和级数(又称p —级数) +++++=∑∞=pppn pn n13121111 (其中p为常数)的敛散性.解 当 p ≤ 1时,有n n p 11≥,由于∑∞=11n n发散,由定理2.2知,p 级数发散. 当p >1时,取n x n ≤<-1,有ppx n 11≤,得到11111d d (2,3,)n n p pp n n x x n n n x --=≤=⎰⎰ 于是p 级数的部分和111123n p p p S n=++++231211111d d d np p pn x x x x x x -≤++++⎰⎰⎰1111111d 1(11,11n p p x x p n p -=+=+-<+--⎰即部分和数列{S n }有界,由定理11.2.1知,p 级数收敛.综上所述,当p > 1时,p 级数收敛 ;当p ≤ 1时,p 级数发散,以后我们常用p 级数作为比较审敛法时使用的级数.例11.2.3 判定下列级数的敛散性. (1) 2111n n ∞=+∑; (2)n ∞=. 解 (1) 因为22111n n u n ≤+=,而级数∑∞=121n n为p = 2 > 1的p 级数,故收敛,所以由比较审敛法知,级数∑∞=+1211n n 也收敛. (2) 因为n n n u n 111122=≥-=,而调和级数∑∞=11n n 发散,故级数∑∞=-1211n n 也发散.使用比较审敛法时,需要找到一个敛散性已知的正项级数来与所给正项级数进行比较,这对有些正项级数来说是很困难的.自然提出这样的问题:能否仅通过级数自身就能判定级数的敛散性呢?如果正项级数的一般项中含有乘积、幂或阶乘时,常用比值审敛法判定其敛散性. 例11.2.4 判定下列级数的敛散性:(1) 2132nnn n ∞=∑; (2) 11(1)!n n ∞=-∑; (3)11(21)n n n ∞=+∑. 解 (1) 因为123)1(23lim 322)1(3lim lim 2221211>=+=⋅+=∞→++∞→+∞→n n n n u u n n n n n n nn n ,所以级数∑∞=1223n n n n 发散.(2) 因为101lim !)!1(lim lim1<==-=∞→∞→+∞→n n n u u n n nn n ,所以级数∑∞=-1)!1(1n n 收敛. (3) 因为1)32)(1()12(lim lim1=+++=∞→+∞→n n n n u u n nn n ,此时比值审敛法失效,必须改用其他方法判别此级数的敛散性.由于22121)12(1n n n n u n <<+=,而级数∑∞=121n n为p = 2 > 1的p 级数,故收敛,所以由比较审敛法可知,级数∑∞=+1)12(1n n n 也收敛.11.2.2 交错级数及其审敛法交错级数的特点是正负项交替出现.关于交错级数敛散性的判定,有如下重要定理. 例11.2.5 判定交错级数 +-++-+--nn 1)1(41312111的敛散性.解 此交错级数的n u n 1=,且满足 1111+=+>=n n u n n u 且01lim lim ==∞→∞→n u n n n ,由定理11.2.4知,该交错级数收敛,其和小于1.11.2.3 任意项级数及其审敛法设有级数∑∞=1n n u ,其中u n ( n = 1, 2,…)为任意实数,称此级数为任意项级数.对于任意项级数,如何来研究其敛散性?除了用级数定义来判断外,还有什么办法?为此要介绍绝对收敛与条件收敛概念.1,2,)的级数,称为交错级例如,级数2111)1(n n n ∑∞=--绝对收敛,级数n n n 1)1(11∑∞=--条件收敛.定理11.2.5说明,对于任意项级数∑∞=1n n u ,如果它所对应的级数∑∞=1||n n u 收敛,则该级数必收敛,从而将任意项级数的敛散性判别问题转化为正项级数来讨论.但应注意,如果级数∑∞=1||n n u 发散,不能判定级数∑∞=1n n u 也发散.例11.2.6 判定级数∑∞=12)sin(n nn α的敛散性,其中α为常数. 解 由于n nn 212)sin(0≤≤α,而级数∑∞=121n n 是收敛的,由比较审敛法可知,级数∑∞=12)sin(n n n α收敛,即级数∑∞=12)sin(n n n α绝对收敛,由定理11.2.5知,级数∑∞=12)sin(n n n α收敛. 例11.2.7讨论交错p-级数p n n n 1)1(11∑∞=--的绝对收敛与条件收敛性,其中p 为常数.解 当p ≤ 0时,pn n nu 1)1(1--=不趋于)(0∞→n ,故该级数发散.当p >1时,有ppn n n11)1(1=--,且级数∑∞=11n p n收敛,故该级数绝对收敛.当0<p ≤ 1时,级数∑∞=11n p n 发散,但p n n n 1)1(11∑∞=--是交错级数,且满足定理11.2.4的条件,故所给级数条件收敛.习题11.21.用比较审敛法判定下列级数的敛散性. (1) ∑∞=-+133)1(n n n ;(2) )0(111>+∑∞=a an n .2.用比值审敛法判定下列级数的敛散性.(1) ∑∞=⋅1!2n n nnn ; (2) ∑∞=123n n n .3.判定下列级数是否收敛?若收敛,是条件收敛还是绝对收敛?(1) ;3)1(111-∞=-∑-n n n n (2) ∑∞=13sin n nn α. 11.3 幂 级 数11.3.1函数项级数的概念 实例1存款问题设年利率为r (实际上其随时间而改变),依复利计算,想要在第一年末提取1元,第二年末提取4元,第三年末提取9元,第n 年末提取2n 元,要能永远如此提取,问至少需要事先存入多少本金?分析:这里本金为存入的钱,设为A ,则一年后本金与利息之和为一年的本利和,即为)1(r A +,两年后的本利和为2)1(r A +,n 年后的本利和为n r A )1(+.解 若本金A 为n r -+)1(元,n 年后可提取本利和1)1()1(=+⋅+-n n r r (元).从而 若要n 年后提取本利和2n 元,则本金应为n r n -+)1(2元.所以为使第一年末提1元本利和,则要有本金1)1(-+r ;第二年末能提取本利和22=4元,则要有本金22)1(2-+r 元;第三年末能提取本利和32=9元,则要有本金32)1(3-+r 元,…第n 年末能提取2n 元本利和,则要有本金n r n -+)1(2元;如此下去,所需本金总数为∑∞=-+12)1(n n r n.令r x +=11,得∑∑∞=∞=-=+1212)1(n n n nx n r n .实例2中的∑∞=12n n x n 即为一个无穷级数,但通项不再是我们前面所学的常数,而是函数,称为函数项无穷级数.对于区间I 上的任意确定值x 0,函数项级数(3.1)便成为数项级数++++)()()(00201x u x u x u n . (11.3.2) 如果数项级数(11.3.2)收敛,则称点x 0为函数项级数(11.3.1)的收敛点;如果数项级数 (11.3.2)发散,则称点x 0为函数项级数(3.1)的发散点.函数项级数(11.3.1)的全体收敛点(或发散点)的集合叫做该级数的收敛域(或发散域).设函数项级数(11.3.1)的收敛域为D ,则对于任意的x ∈D ,函数项级数(11.3.1)都收敛,其和显然与x 有关,记作S (x ),称为函数项级数(11.3.1)的和函数,并记作D x x u x u x u x S n ∈++++=,)()()()(21 .例如,级数201n n n x x x x ∞==+++++∑的收敛域为(-1,1),和函数为x-11,即 01(1, 1)1n n x x x ∞==∈--∑.把函数项级数(11.3.1)的前n 项的和记作S n (x ),则在收敛域上有)()(lim 1x S x S un n n n==∞→∞=∑.将 r n (x ) = S (x ) -S n (x )称作该函数项级数的余项,则0)(lim =∞→x r n n .11.3.2 幂级数及其收敛性特别地,当x 0 = 0时,+++++=∑∞=n n n nn x a x a x a a x a 22100(11.3.4)称为关于x 的幂级数.本节主要讨论幂级数(11.3.4),幂级数(11.3.3)可通过代换t = x – x 0化成幂级数(11.3.4)来研究.下面首先讨论幂级数(11.3.4)的收敛域问题,即x 取数轴上哪些点时幂级数(11.3 .4) 收敛.0,1,2,),因此.定理11.3.1表明,如果幂级数(11.3.4)在x= x0处收敛(发散),则对于开区间(-| x0 |, | x0 |)内(闭区间[-| x0 |, | x0 |]外)的一切x,幂级数(11.3.4)都收敛(发散) .这样的正数R称为幂级数(11.3.4)的收敛半径.由于幂级数(11.3.4 )在区间(-R, R)一定是绝对收敛的,所以我们把(-R, R)称为幂级数(11.3.4)的收敛区间.幂级数在收敛区间内部有很好的性质.幂级数(11.3.4)在区间(-R, R)的两个端点x = ±R处可能发散也可能收敛,需要把x = ±R代入幂级数(11.3.4),化为数项级数来具体讨论.一旦知道了x =±R处幂级数(3.4)的敛散性,则幂级数(11.3.4)的收敛域为下面四个区间(-R, R), [-R, R) , (-R, R ], [-R, R ]之一.若幂级数(11.3.4)仅在x = 0处收敛,则规定收敛半径R = 0,此时收敛域退缩为一点,即原点;若对一切实数x,幂级数(11.3.4)都收敛,则规定收敛半径R = +∞,此时收敛区间与收敛域都是(-∞, +∞).下面给出幂级数(11.3.4)的收敛半径的求法.例11.3.1求下列幂级数的收敛半径.(1) 1(1)31nn n n x ∞=-+∑ (2) 0!n n x n ∞=∑; (3) 202n n n x ∞=∑.解 (1) 因311313lim 13)1(13)1(lim lim1111=++=+-+-==+∞→++∞→+∞→n n n n n n n n nn n a a ρ,故收敛半径31==ρR . (2) 因011lim !1)!1(1lim lim1=+=+==∞→∞→+∞→n n n a a n n nn n ρ,故收敛半径R = + ∞.(3) 因为该级数缺少奇次幂的项,定理3.2失效,换用比值审敛法求收敛半径.由于2(1)121212limlim 22n n n n n n nnx u x x u +++→∞→∞==,因此,由正项级数的比值审敛法知,当2112x <,即2||<x 时该幂级数绝对收敛;当2112x >,即2||>x 时该幂级数发散.故收敛半径2=R . 例11.3.2 求下列幂级数的收敛区间和收敛域.(1) 11(1)n nn x n +∞=-∑; (2) 21(2)n n x n ∞=-∑. 解 (1) 因为11lim )1(1)1(lim lim121=+=-+-==∞→++∞→+∞→n nnn a a n n n n nn n ρ, 所以收敛半径11==ρR ,收敛区间是(-1, 1),即该级数在(-1, 1)内绝对收敛.在端点x = 1处,级数成为交错级数∑∞=+-11)1(n n n ,这是收敛的级数.在端点x = -1处,级数成为∑∞=-11n n,这是发散的级数,故该级数的收敛域为(-1, 1].(2) 令t = x -2,则所给级数变成∑∞=12n n nt .因为 ,1)1(lim 1)1(1lim lim22221=+=+==∞→∞→+∞→n n n n a a n n nn n ρ故级数∑∞=12n n n t 的收敛半径11==ρR ,即级数∑∞=12n n nt 在区间(-1, 1)内绝对收敛.在端点t = 1处,级数∑∞=12n n n t 变成p 级数∑∞=121n n ,故收敛;在t = -1处,级数∑∞=12n n n t 变成交错级数∑∞=-121)1(n n n 也收敛.因此,幂级数∑∞=12n n n t 的收敛区间为(-1,1),收敛域为[-1, 1],从而级数∑∞=-12)1(n nn x 的收敛区间为(1,3),收敛域为[1, 3].(因为-1 ≤ t ≤ 1,即-1 ≤ x - 2 ≤ 1,所以13x ≤≤).11.3.3幂级数的运算 1. 四则运算设幂级数∑∞=0n n n x a 和∑∞=0n n n x b 的收敛半径分别为R 1和R 2,它们的和函数分别为S 1(x )和S 2( x ),令R = min{ R 1, R 2},则在(-R , R )内有(1) 加法运算(2) 乘法运算2. 分析运算设幂级数∑∞=0n n n x a 的收敛半径为(0)R R >),在(-R , R )内的和函数为S (x ),则有(1) 幂级数∑∞=0n n n x a 的和函数S ( x )在其收敛区间 (-R , R ) 内连续.(2) 幂级数∑∞=0n n n x a 的和函数S ( x )在其收敛区间 (-R , R ) 内可导,且有逐项求导公式:(3) 幂级数∑∞=0n n n x a 的和函数S ( x )在其收敛区间 (-R , R ) 内可积,且有逐项积分公式:注意:逐项求导和逐项积分前后,两幂级数具有相同的收敛半径和收敛区间. 例11.3.3 求下列幂级数的和函数. (1)11(11)n n nx x ∞-=-<<∑; (2)10(11)1n n x x n ∞+=-<<+∑.解 (1) 设11(), (1, 1)n n S x nx x ∞-==∈-∑,两端积分,得111()d d 1xxn n n n xS x x nx x x x∞∞-=====-∑∑⎰⎰, 上式两端对x 求导,得21(), (1, 1)(1)S x x x =∈--.(2) 设10(), (1, 1)1n n x S x x n ∞+==∈-+∑,两端对x 求导,得 ∑∑∞=∞=+-=='+='10111)1()(n n n n x x n n x S .上式两端从0到x 积分,得01()(0)d ln(1)1xS x S x x x-==---⎰, 而S ( 0 ) = 0,所以()ln(1), (1, 1)S x x x =∈---.例11.3.4求幂级数20, (1, 1)21nn x x n ∞=∈-+∑的和函数,并计算()2011212nn n ∞=+∑的值.解 设20(), (1, 1)21nn x S x x n ∞==∈-+∑,两端同时乘以x ,得,12)(012∑∞=++=n n n x x xS 两端对x 求导,得 ,1112])([202012x x n x x xS n nn n -=='⎪⎭⎫ ⎝⎛+='∑∑∞=∞=+ 上式两端从0到x 积分,得 20111()ln ,211xx x x x xx S +==--⎰d 所以 11()ln , (1, 1)21x S x x x x+=∈--.因为21=x 在(-1, 1)内部,代入上式,得 3ln 211211ln21212112120=-+⨯=⎪⎭⎫ ⎝⎛+∑∞=nn n . 习题 11.31.求下列幂级数的收敛区间.(1) +⋅⋅+⋅+64242232x x x ; (2)∑∞=++-11212)1(n n nn x ;(3)∑∞=--122212n n nx n ; (4)∑∞=-1)5(n n n x .2.利用逐项求导或逐项积分,求下列级数在收敛区间内的和函数. (1) )11( 14014<<-+∑∞=+x n x n n ; (2)∑∞=+<<-+0)1(2)11( )1(2n n x x n ,并求级数∑∞=-+01221n n n 的和. 11.4 函数展开成幂级数前面我们讨论了幂级数在收敛域内求和函数的问题,在实际应用中常常遇到与之相反的问题,就是对一个给定的函数,能否在一个区间内展开成幂级数?如果可以,又如何将其展开成幂级数?其收敛情况如何?本节就来解决这些问题.11.4.1泰勒(Taylor)级数如果函数f (x )在点x 0的某邻域U ( x 0, δ )内有定义,且能展开成x - x 0的幂级数,即对于任意的x ∈U ( x 0, δ ),有+-++-+-+=n n x x a x x a x x a a x f )()()()(0202010 . (11.4.1)由幂级数的分析性质知,函数f (x )在该邻域内一定具有任意阶导数,且 ),2,1( )()!1(!)(01)( =+-++=+n x x a n a n x fn n n . (11.4.2)在式(11.4.1)和式(11.4.2)中,令x = x 0,得)(00x f a =,!1)(01x f a '=,,!2)(02x f a ''= ,!)(,0)(n x f a n n =. (11.4.3) 将式(11.4.3)代入式(11.4.1)中,有+-++-''+-'+=n n x x n x f x x x f x x x f x f x f )(!)()(!2)()(!1)()()(00)(200000.这说明,如果函数f (x )在x 0的某邻域U ( x 0, δ )内能用形如式(11.4.1)右端的幂级数表示,则其系数必由式(11.4.3)确定,即函数f (x )的幂级数展开式是唯一的.函数f (x )的泰勒级数(11.4.4)的前n + 1项之和记为S n +1(x ),即n n n x x n x f x x x f x x x f x f x S )(!)()(!2)()(!1)()()(00)(2000001-++-''+-'+=+ ,并把差式f (x )- S n +1(x )叫做泰勒级数(4.4)的余项,记作R n ( x ),即)()()(1x S x f x R n n +-=.显然,只要函数f (x )在点x 0的某邻域U ( x 0,δ )内具有任意阶导数,则它的泰勒级数(11.4.4) 就已经确定,问题是级数(11.4.4)是否在x 0的某邻域内收敛?若收敛,是否以f (x )为其和函数?为此有下面的定理.显然,使用定理11.4.1来进行收敛性的判定是困难的.下面直接给出余项R n (x )的表达式称上式为拉格朗日型余项.在实际应用,若取常数x 0 = 0,此时泰勒级数(11.4.4)变成称为f (x )的麦克劳林(Maclaurin)级数,其余项为11.4.2函数展开成幂级数将函数)(x f 展开成0x x -或x 的幂级数,就是用其泰勒级数或麦克劳林级数表示)(x f .下面结合例题来研究如何将函数展开成幂级数.1. 直接展开法直接利用麦克劳林公式将函数f (x )展开为x 的幂级数的方法称为直接展开法,可以按照下列步骤进行(展开为(x -x 0)的幂级数与之类似):第一步 求出函数f ( x )在x = 0处的各阶导数 ),0(,),0(),0(),0()(n ff f f '''.若函数在x = 0处的某阶导数不存在,就停止进行,该函数不能展开为x 的幂级数.例如,在点x = 0处,37)(x x f =的三阶导数不存在,它就不能展开为x 的幂级数.第二步 写出幂级数+++''+'+nn x n f x f x f f !)0(!2)0()0()0()(2并求出收敛半径R 及收敛区间(-R , R ).第三步 在收敛区间(-R , R )内,考察余项R n ( x )的极限1)1()!1()(lim )(lim ++∞→∞→+=n n n n n x n f x R ξ(ξ介于0与x 之间), 是否为零?如果为零,第二步所写出的幂级数就是函数f ( x )在(-R , R )内的展开式,即),(,!)0(!2)0()0()0()()(2R R x x n f x f x f f x f nn -∈+++''+'+= .如果不为零,第二步写出的幂级数虽然收敛,但它的和并不是所给的函数f ( x ). 例11.4.1将下列函数展开为x 的幂级数.(1) ()e x f x =; (2) x x f sin )(=; (3) m x x f )1()(+=(m 为任意常数). 解 (1) 因为f (x ) = e x ,故f (n )(0 ) = 1( n = 0,1, 2,…).从而e x 的麦克劳林级数为++++++!!3!2132n x x x x n . 容易求得它的收敛半径R = +∞,下面考察余项1e ()(1)!n n R x x n ξ+=+, (ξ介于0与x 之间). 因为ξ介于0与x 之间,所以||e e x ξ<,因而有||11e e |()|||||(1)!(1)!x n n n R x x x n n ξ++=<++. 对于任一确定的x 值,e |x |是一个确定的常数,而级数++++++!!3!2132n x x x x n是绝对收敛的,由级数收敛的必要条件可知0)!1(||lim 1=++∞→n x n n , 所以 1||||lime 0(1)!n x n x n +→∞=+.由此可得,0)(lim =∞→x R n n ,这表明级数收敛于e x ,所以23e 1 ()2!3!!n x x x x x x n =++++++-∞<<+∞.(2) 因为x x f sin )(=,所以),2,1( )2sin()()( =+=n n x x f n π,则 ,)1()0(,0)0(,,1)0(,0)0(,1)0(,0)0()12()2(n n n ff f f f f -==-='''=''='=+.于是sin x 的麦克劳林级数为++-++-+-+)!12()1(!7!5!312753n x x x x x n n .它的收敛半径R = + ∞,考察余项的绝对值)(0)!1(||)!1()21sin()(11∞→→+≤+++=++n n x n x n x R n n n πξ.于是得展开式)( )!12()1(!5!3sin 1253+∞<<-∞++-+-+-=+x n x x x x x n n.(3) 用同样的方法,可以推得牛顿二项展开式)11( !)1()1(!2)1(1)1(2<<-++--++-++=+x x n n m m m x m m mx x nm .这里m 为任意实数.当m 为正整数时,就退化为中学所学的二项式定理.最常用的是12m =±的情形,读者可自己写出这两个式子.2.间接展开法以上几个例子是用直接展开法把函数展开为麦克劳林级数,直接展开法虽然步骤明确,但运算常常过于繁琐,尤其最后一步要考察n →∞时余项R n ( x )是否趋近于零,这不是一件容易的事.下面我们从一些已知函数的幂级数展开式出发,利用变量代换或幂级数的运算求得另外一些函数的幂级数展开式,这种将函数展开成幂级数的方法叫间接展开法.例11.4.2将下列函数展开为x 的幂级数. (1) x x f cos )(=; (2) )1ln()(x x f +=.解(1) 由例1中的(2)知,)( )!12()1(!5!3sin 1253+∞<<-∞++-+-+-=+x n x x x x x n n,两边对x 逐项求导,得).( !2)1(!4!21cos 242+∞<<-∞+-+-+-=x n x x x x nn )( (2) 由牛顿二项展开式得)11( )1(11132<<-+-++-+-=+x x x x x xn n .上式两端从0到x 逐项积分,得)11( 1)1(432)1ln(1432<<-++-++-+-=++x n x x x x x x n n . 又因为当x = -1时该级数发散,当x = 1时该级数收敛,故有)11(11)1()1ln(10≤<-+-=++∞=∑x x n x n n n.例11.4.3将下列函数展开为x - 1的幂级数: (1) x x f ln )(=; (2) 2)(2--=x x x x f . 解 (1) )]1(1ln[ln )(-+==x x x f ,利用)1ln(x +的展开式得),111( 1)1()1(3)1(2)1()1(ln 132≤-<-++--+--+---=+x n x x x x x n n 即 )20(1)1()1(ln 1≤<+--=+∞=∑x n x x n n n.(2) ⎪⎭⎫ ⎝⎛--+=--=--=x x x x x x x x x f 221131)1)(2(2)(2 ][)1(12)211(2131----+=x x . 由)11( )1(110<<--=+∑∞=x x x n n n ,得 )1211( 21)1(212112111 2<-<-+⎪⎭⎫ ⎝⎛--+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--=-+x x x x x nn . )111( )1()1()1(1)1(112<-<-+-++-+-+=--x x x x x n . 于是⎥⎦⎤⎢⎣⎡----=--∑∑∞=∞=002)1(2)21()1(21312n n n n n x x x x x n n n n x )1(22)1(3101-⎥⎦⎤⎢⎣⎡--=∑∞=+,)20(<<x . 习题 11.41.将下列函数展开成x 的幂级数,并指出其收敛区间. (1) xx f -=31)(; (2) x x f 2cos )(=; (3) x x f arcsin )(=. 2.将函数231)(2++=x x x f 展开成(x + 4)的幂级数.11.5幂级数展开式的应用利用函数的幂级数展开式,可以进行近似计算,即展开式成立的区间内,函数值用级数的部分和按规定的精度要求近似计算.例11.5.1计算2的近似值( 精确到小数点四位,即误差不超过0.0001).解 由于 ++--++-+⋅+=+n x n n x x x !)1()1(!2)1(!11)1(2ααααααα21)211(2242-=-=根据上一节二项式展开式,取21-=x ,21=α 21)211(2242-=-=)21!453121!33121!21211(28642 -⋅⋅-⋅---=取前四项的和作为近似值,其差(称截断误差)为4r )21!5753121!4531(2108 +⋅⋅⋅+⋅⋅=0098.025225))21()21(211(21!45312910328≈=⋅=++++⋅⋅< 于是,近似值为≈24219.1)21!33121!21211(2642≈⋅---=.由“四舍五入”引起的误差叫做舍入误差. 计算时取五位小数,四舍五入后误差不会超过小数点后四位.本题如果用下面做法,展开的级数收敛很快,同样取前四项计算,误差很小.2150114.12-⎪⎭⎫ ⎝⎛-⨯=⎥⎦⎤⎢⎣⎡+⋅+⋅+⋅+⋅+⨯= 43250112835501165501835012114.1取前四项来作计算, 则4142.1]50116550183501211[4.1232≈⋅+⋅+⋅+⨯≈前四项的截断误差⎪⎭⎫ ⎝⎛++⨯⨯< 544501*********.1r ⎪⎭⎫ ⎝⎛+++⨯⨯⨯= 245015011501128354.1 83341025.65012814950128354.14950501128354.1-⨯≈⨯=⨯⨯⨯=⨯⨯⨯=例11.5.2 计算2ln 的近似值(精确到小数点后第4位). 解 将展开式)11()1(432)1ln(1432≤<-+-++-+-=+-x nx x x x x x nn 中的x 换成x -,得)11(432)1ln(432<≤--------=-x nx x x x x x n两式相减,得到不含有偶次幂的展开式)11(7531211ln 753<<-⎪⎪⎭⎫ ⎝⎛+++=-+x x x x x x x令211=-+xx ,解出31=x .以31=x 代入得⎪⎭⎫⎝⎛+⋅+⋅+⋅+⋅= 753317131513131311122ln若取前四项作为2ln 的近似值,则误差为0001.0700001341911132])91(911[32)31131311113191(2||911211131194<<⨯=-⨯=+++<+⨯+⨯+⨯= r于是取 6931.0317131513131311122ln 753≈⎪⎭⎫⎝⎛⋅+⋅+⋅+⋅≈.例11.5.3 利用x sin 求12sin 的近似值(精确到小数点后第6位). 解 由于展开式+--+-+-=--!)12()1(!5!3sin 12153n x x x x x n n (+∞<<∞-x ) 是交错级数,取前n 项部分和做近似估计,误差!)12(!)12()(1212+=+≤++n x n x x R n n n (+∞<<∞-x )151801212ππ=⨯== x ,取前三项能满足精度要求,于是53)15(!51)15(!311515sin12sin ππππ+-≈= 20791170.0)20943951.0(1201)20943951.0(6120943951.053≈+-≈ 精确到六位小数,207912.012sin ≈.例11.5.4 计算定积分⎰=10sin dx x xI 的近似值,精确到0.0001.解 因1sin lim0=→xxx ,所给积分不是广义积分,若定义函数在0=x 处的值为1,则它在区间]1,0[上连续.由前一节知,被积函数的展开时为+--+-+-=--!)12()1(!5!31sin )1(2142n x x x x x n n (∞<<∞-x ) 在区间]1,0[上逐项积分,得⎰10sin dx x x+-⋅--++⋅-⋅+⋅-=-!)12()12(1)1(!771!551!33111n n n这是交错级数,因为第四项5109.2352801!771-⨯<=⋅,所以取前三项的和作为积分的近似值就能满足精度要求.0.9461!551!3311≈⋅+⋅-≈I 例11.5.5 在爱因斯坦(Einstein )的狭义相对论中,速度为v 的运动物体的质量为220/1cv m m -=其中0m 为静止着的物体的质量,c 为光速.物体的动能是它的总动能与它的静止能量之差202c m mc K -=(1)证明在v 与c 相比很小时,关于K 的表达式就是经典牛顿物理学中的动能公式2021v m K =(2)估计s m v /100≤时,这两个动能公式的差别.解 (1)]1)1[(212220202--=-=-cv c m c m mc K ,记22c v x -=,展开成泰勒级数,有]1)16583211[(66442220-+⋅+⋅+⋅+= cv c v c v c m K)1658321(66442220 +⋅+⋅+⋅=cv c v c v c m当cv 很小时,2022202121v m c v c m K =⋅⋅≈.(2) 由解(1)可见,泰勒公式中一阶余项为(22cv x -=)252240225202252021)-(83)1(83)1(83!2)()(v c cv m x x c m x x c m x x f x r =+≤+=''=θθ(10<<θ).因为s m c /1038⨯=,s m v /100≤,则252240225201)(83)1(83)(v c cv m x x c m x r +=-≤010252283840)107.4(]100-103[8)103(1003m m -⨯<⨯⨯⨯⨯≤)()(.可见,误差极小,说明两个公式极为接近.习题 11.51.利用函数的幂级数展开式求下列各函数的近似值: (1)ln 3(误差不超过0.0001); (2)cos2︒(误差不超过0.0001);2.利用函数的幂级数展开式求下列定积 分的近似值:(1)0.54011dx x +⎰(误差不超过0.0001); (2)0.5arctan xdx x⎰(误差不超过0.001); 11.6傅里叶级数实例1振动问题一根弹簧受力后产生振动,如不考虑各种阻尼,其振动方程为)sin(ϕω+=t A y ,其中A 为振幅,ω为频率,ϕ为初相,t 为时间,称为简谐振动.人们对它已有充分的认识.如果遇到复杂的振动,能否把它分解为一系列简谐振动的叠加,从而由简谐振动去认识复杂的振动呢?实例2正弦波问题在电子线路中,对一个周期性的脉冲)(t f ,能否把它分解为一系列正弦波的叠加,从而由正弦波去认识脉冲)(t f 呢?实际上科学技术中其他一些周期运动也有类似的问题,这些问题的解决都要用到一类重要的函数项级数―傅里叶级数.为了研究傅里叶级数,我们先来认识下面一个概念—三角级数.它在数学与工程技术中有着广泛的应用.三角级数的一般形式是)sin cos (210nx b nx a a n n n ++∑∞=, 其中n n b a a ,,0 ( n = 1,2,…)都是常数,称为三角级数的系数.特别地,当a n = 0 ( n = 0,1,2,…)时,级数只含正弦项,称为正弦级数;当b n = 0 ( n = 1,2,…)时,级数只含常数项和余弦项,称为余弦级数.对于三角级数,我们讨论它的收敛性以及如何把一个周期为2l 的周期函数展开为三角级数的问题.11.6.1 以2π为周期的函数展开成傅里叶级数 1三角函数系 函数列,sin cos , ,2sin ,2cos ,sin ,cos 1nx nx x x x x ,, (11.6.1)称作三角函数系.三角函数系(11.6.1)有下列重要性质.这个定理的证明很容易,只要通过积分的计算即可验证,请读者自己进行.设两个函数ϕ和φ在[,]a b 上可积,且满足⎰=bax x x 0d )()(φϕ,则称函数ϕ和φ在[,]a b 上正交.由定理11.6.1,三角函数系(11.6.1)在[,]ππ-上具有正交性,称为正交函数系.-π2 周期为2π的函数的傅里叶级数设函数f (x )是周期为2π的周期函数,且能展开成三角级数,即设)sin cos (2)(10nx b nx a a x f n n n++=∑∞= (11.6.2)为了求出式(11.6.2)中的系数,假设式(11.6.2)可逐项积分,把它从-π到π逐项积分,得1()(cos sin ),2n n k a f x x x a nx x b nx x ππππππππ∞----==++∑⎰⎰⎰⎰d d d d 由三角函数系的正交性知,上式右端除第一项外均为0,所以0(),2a f x x x a πππππ--==⎰⎰d d 于是得01(),a f x x πππ-=⎰d 为求a n ( n = 1,2,…),先用cos kx 乘以式(5.2)两端,再从-π到π逐项积分,得1()cos cos (cos cos sin cos )2n n k a f x kx x kx x a nx kx x b nx kx x ππππππππ∞----==++∑⎰⎰⎰⎰d d d d .由三角函数系正交性知,上式右端除k = n 的一项外其余各项均为0,所以2()cos cos ,n n f x nx x a nx x a πππππ--==⎰⎰d d于是得1()cos (1,2,3,) n a f x nx x n πππ-==⎰d .类似地,为求b n ( n = 1,2,…),用sin kx 乘以式(11.6.2)两端,再从-π到π逐项积分,得1()sin (1,2,3,). n b f x nx x n πππ-==⎰d显然,当f (x )为奇函数时,公式(5.3)中的a n = 0 (n = 0, 1, 2, 3,…);当f (x )为偶函数时,公式(11.6.3)中的b n = 0 (n = 1, 2, 3,…),所以有(1) 当f (x )是周期为2π的奇函数时,其傅里叶级数为正弦级数nx b n n sin 1∑∞=,其中2()sin (1,2,3,) n b f x nx x n πππ-==⎰d ;(2) 当)(x f 是周期为2π的偶函数时,其傅里叶级数为余弦级数nx a a n n cos 21∑∞=+,其中 2()cos (1,2,3,) n a f x nx x n πππ-==⎰d .3 傅里叶级数的收敛性对于给定的函数)(x f ,只要)(x f 能使公式(5.3)的积分可积,就可以计算出)(x f 的傅里叶系数,从而得到)(x f 的傅里叶级数.但是这个傅里叶级数却不一定收敛,即使收敛也不一定收敛于)(x f .为了确保得出的傅里叶级数收敛于)(x f ,还需给)(x f 附加一些条件.对此有下面的定理.2,3,)2,3,)例11.6.1 正弦交流电i (x ) = sin x 经二极管整流后变为(如图11.6.1)⎩⎨⎧+<≤<≤-=ππππ)12(2,sin 2)12(,0)(k x k x k x k x f ,其中k 为整数.把函数f (x )展开为傅里叶级数.解 函数)(x f 满足收敛定理的条件,且在整个数轴上连续,因此)(x f 的傅里叶级数处处收敛于)(x f .函数f (x )的傅里叶系数为00112()sin a f x x x x ππππππ-===⎰⎰d d ,图11.6.120,11()cos d sin cos d 2,1)n n a f x nx x x nx x n n ππππππ-⎧⎪===⎨-⎪-⎩⎰⎰为奇数为偶数(, 00,111()sin d sin sin d 1, 12n n b f x nx x x nx x n πππππ-≠⎧⎪===⎨=⎪⎩⎰⎰.所以)(x f 的傅里叶展开式为)142cos 356cos 154cos 32cos (2sin 211)(2 +-++++-+=k kx x x x x x f ππ,)(+∞<<-∞x . 例11.6.2 如图11.6.2所示,一矩形波的表达式为⎩⎨⎧+<≤<≤--=ππππ)12(2,12)12(,1)(k x k k x k x f ,k 为整数.求函数)(x f 的傅里叶级数展开式.图11.6.2解 函数)(x f 除点x = k π ( k 为整数)外处处连续,由收敛定理知,在连续点(x ≠ k π)处,)(x f 的傅里叶级数收敛于)(x f .在不连续点(x = k π)处,级数收敛于02)1(1=-+.又因)(x f 是周期为2π的奇函数,因此,函数)(x f 的傅里叶系数为0 (0,1,2,3,)n a n ==,004,22()sin d 1sin d 0, n n n b f x nx x nx x n πππππ⎧⎪==⋅=⎨⎪⎩⎰⎰为奇数为偶数.所以)(x f 的傅里叶展开式为)( )12)12sin(55sin 33sin (sin 4)(为整数,k k x k xk x x x x f ππ≠+--++++= .该例中)(x f 的展开式说明:如果把)(x f 理解为矩形波的波函数,则矩形波可看作是由一系列不同频率的正弦波叠加而成.4 [-,]ππ或[0,]π上的函数展开成傅里叶级数在实际应用中,经常会遇到函数)(x f 只在[-π, π]上有定义,或虽在[-π, π]外也有定义但不是周期函数,而且函数)(x f 在[-π, π]上满足收敛定理的条件,要求把其展开为傅里叶级数.由于求)(x f 的傅里叶系数只用到)(x f 在[-π, π]上的部分,所以我们仍可用公式(11.6.3)求()f x 的傅里叶系数,至少)(x f 在(-π,π)内的连续点处傅里叶级数是收敛于)(x f的,而在x =±π处,级数收敛于)]0()0([21+-+-ππf f .类似地,如果)(x f 只在[0, π]上有定义且满足收敛定理条件,要得到)(x f 在[0, π]上的傅里叶级数展开式,可以任意补充)(x f 在[-π, 0]上的定义(只要公式(11.6.3)中的积分可积),称为函数的延拓,常用的两种延拓办法是把)(x f 延拓成偶函数或奇函数(称为奇延拓或偶延拓),然后将奇延拓或偶延拓后的函数展开成傅里叶级数,再限制x 在[0, π]上,此时延拓后的函数F (x )≡f (x ),这个级数必定是正弦级数或余弦级数,这一展开式至少在(0, π)内的连续点处是收敛于)(x f 的.这样做的好处是可以把)(x f 展开成正弦级数或余弦级数.例11.6.3 将函数f (x ) = x, x ∈[0, π ]分别展开成正弦级数和余弦级数.解 为了把)(x f 展开成正弦级数,先把)(x f 延拓为奇函数F (x ) = x, x ∈[-π, π],如图11.6.3所示,则1222()sin sin (1)n n b F x nx x x nx x nππππ+==⋅=-⎰⎰d d . 由此得F (x )在(-π, π)上的展开式,也即)(x f 在[0, π)上的展开式为)0( )sin )1(33sin 22sin (sin 21π<≤+-+-+-=+x nnxx x x x n . 在x = π处,上述正弦级数收敛于 图11.6.30)(21)]0()0([21=+-=-++-ππππf f . 为了把)(x f 展开成余弦级数,把)(x f 延拓为偶函数||)(x x F =, x ∈[-π, π],如图11.6.4所示,则0022()a F x x x x πππππ===⎰⎰d d ,222()cos d cos d 4, (1,2,)0,n a F x nx x x nx xn n n n πππππ==-⎧⎪==⎨⎪⎩⎰⎰为奇数时为偶数时 于是得到)(x f 在[0, π]上的余弦级数展开式为 图11.6.4。

级数_百度百科

级数_百度百科
这样便可直观地把无穷级数同无穷积分进行比较而得到积分判别法:
公式4而且,一旦这样转到连续变量,就可以利用连续变量的变换于积分而进一步得到指数变换判别法(叶尔马科夫判别法): 公式5由此易见,p
阶调和级数级数以及对数调和级数级数都是在p>1时收敛,在p≤1时发散。
编辑本段正项级数的运算
编辑本段交错级数
正项级数之外,如果一个级数没有正项,或者只有有限个正项,或者只有有限个负项,则其收敛问题都可以归结到一个正项级数的收敛问题,所以只需考虑一个级数既有无限个正项又有无限个负项的情形。在这种级数中,结构最简单的是正负号逐项相间的级数,叫做交错级数:
公式7对此有 莱布尼茨定理 若一交错级数的项的绝对值单调趋于零,则这级数收敛。 显然,一个交错级数在形式上可以看成两个正项级数之差
一类重要的函数级数是形如∑an(x-x0)^n的级数,称之为幂级数 。它的结构简单
,收敛域是一个以为中心的区间(不一定包括端点),并且在一定范围内具有类似多项式的性质,在收敛区间内能进行逐项微分和逐项积分等运算。例如幂级数∑(2x)^n/x的收敛区间是[-1/2,1/2],幂级数∑[(x-21)^n]/(n^2)的收敛区间是[1,3],而幂级数∑(x^n)/h 实习小编任务为我推荐
新闻网页贴吧知道MP3图片视频百科 帮助设置 首页 自然 文化 地理 历史 生活 社会 艺术 人物 经济 科技 体育 核心用户 五周年 NBA
正项级数在运算过程中很像有限和。它不仅具有一般的线性性质(5),而且它的项可以无限次交换,
其中p(n)指自然数序列的任一排列,级数指对第一象限中坐标为自然数的点的任一排列(成一序列)进行求和(成一级数)。
公式6其中p(n)指自然数序列的任一排列,指对第一象限中坐标为自然数的点的任一排列(成一序列)进行求和(成一级数)。 绝对收敛 收敛性的一种强化形式。

常数项级数的概念和性质

常数项级数的概念和性质

的说法.从数学的角度上看,这就是
111 248
1 2n
1.
1.1 常数项级数的概念
再如,计算半径为 R 的圆面积 A,具体做法如下:如图所示,作圆的内接正六 边形,算出这六边形的面积 a1 ,它是圆面积 A 的一个粗糙的近似值.为了比较准确 地计算出 A 的值,我们以这个六边形的每一边为底分别作一个顶点在圆周上的等腰 三角形,算出这六个等腰三角形的面积之和为 a2 ,那么 a1 a2 (即内接正十二边形 的面积)就是 A 的一个较好的近似值.同样地,再在正十二边形的每一边上分别作 一个顶点在圆周上的等腰三角形,算出这十二个等腰三角形的面积之和为 a3 ,那么 a1 a2 a3 (即内接正二十四边形的面积)是 A 的一个更好的近似值.如此继续下 去,内接正 n 边形的面积就逐步逼近圆的面积,即
高等数学
常数项级数的概念和性质
无穷级数是高等数学的一个重要组成部分,是表示函数、研究函数性质以 及用简单函数逼近复杂函数进行数值计算的有力工具.无穷级数在自然科学、 工程技术和数学的许多分支中都有着广泛的应用.像其他数学理论一样,无穷 级数理论也是在科学技术的发展和推动下,逐渐形成和完善起来的.早在魏晋 时代,我国数学家刘徽就已经用无穷级数的思想来计算圆的面积了.直到19世 纪,极限理论的建立,才给无穷级数奠定了理论基础.
a
;如果| q |
1,则级数 aqn
n0
1 q
n0
发散.
1.1 常数项级数的概念
例 2 证明级数
1 2 3 n 是发散的.
证明 此级数的部分和为
Sn 1 2 3
n n(n 1) . 2
显然,
lim
n
Sn
,因此所给级数是发散的.

数学分析中的级数展开

数学分析中的级数展开

数学分析中的级数展开级数展开是数学分析中一个重要的概念,它在数学理论和实际问题中都有着广泛的应用。

级数展开可以将一个函数表示为无穷级数的形式,从而方便进行计算和研究。

在本文中,我们将介绍级数展开的基本概念、原理和应用,帮助读者更好地理解和掌握这一重要的数学工具。

### 1. 级数展开的基本概念在数学分析中,级数展开是将一个函数表示为无穷级数的形式的过程。

一般来说,一个函数可以在某个区间内展开为幂级数、三角级数或其他类型的级数。

级数展开的基本思想是利用级数的收敛性质,将函数表示为级数的形式,从而方便进行计算和研究。

### 2. 幂级数展开幂级数是一种常见的级数展开形式,它可以表示为形如$\sum_{n=0}^{\infty} a_n(x-a)^n$的级数。

其中,$a_n$是系数序列,$a$是展开点。

通过幂级数展开,我们可以将一个函数在展开点附近表示为幂级数的形式,从而进行函数的近似计算和分析。

### 3. 泰勒级数展开泰勒级数是一种特殊的幂级数展开形式,它可以将一个函数在某个点附近展开为幂级数。

泰勒级数展开的公式为$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$,其中$f^{(n)}(a)$表示函数$f(x)$在点$a$处的$n$阶导数。

泰勒级数展开在数学分析和物理学中有着广泛的应用,可以用来近似计算函数的值和导数。

### 4. 应用举例级数展开在数学分析、物理学、工程学等领域都有着重要的应用。

例如,在微积分中,级数展开可以用来计算函数的积分、导数和极限;在物理学中,级数展开可以用来描述物理现象和解决物理问题;在工程学中,级数展开可以用来建立数学模型和进行工程计算。

总之,级数展开是一个强大的数学工具,可以帮助我们更好地理解和应用数学知识。

### 结语通过本文的介绍,我们了解了数学分析中级数展开的基本概念、原理和应用。

级数展开是数学分析中一个重要的概念,它可以将一个函数表示为无穷级数的形式,方便进行计算和研究。

级数知识点总结

级数知识点总结

级数知识点总结数学中的级数是指“项数无限”的无穷级数,是数学分析中的一个重要概念。

级数在实际问题中具有广泛的应用,特别是在数值计算中,大量的数值方法都具有涉及级数的计算步骤。

因此,在掌握级数相关的知识点是数学学习的重要一步。

一、级数的定义级数是指数列的和数列,也就是无穷个数相加所得到的结果。

一般地,设a_1, a_2, a_3, ...是一个数列,称∑a_n为无穷级数,其中∑表示求和。

当级数的通项数列收敛时称之为收敛级数,反之称为发散级数。

二、收敛判别法1.正项级数收敛定理:若数列an≥0,an≥0,且ΣanΣan收敛,则ΣanΣan绝对收敛。

2.比值判别法:对于正项级数∑an∑an,如果存在极限limn→∞(an+1)/an>1limn→∞(an+1)/an>1,那么级数发散;如果存在极限limn→∞(an+1)/an<1limn→∞(an+1)/an<1,那么级数绝对收敛;如果存在极限limn→∞(an+1)/an=1limn→∞(an+1)/an=1,那么该方法不适用。

3.根值判别法:对于正项级数∑an∑an,若存在极限limn→∞n√an>1limn→∞n√an>1,那么级数发散;若存在极限limn→∞n√an<1limn→∞n√an<1,那么级数绝对收敛;如果存在极限limn→∞n√an=1limn→∞n√an=1,那么该方法不适用。

4.积分判别法:若f(x)是R中非负连续函数,且单调递减,则当an=f(n)f(n)时,正项级数∑an∑an与积分∫1+∞f(x)dx的敛散性相同。

三、级数的性质1.收敛级数的性质:(1)级数后面的项任何一个加数的变动都不能影响其收敛状态。

(2)收敛级数的和唯一。

(3)若把有限项移位后,收敛级数的和仍不变。

2.发散级数的性质:(1)级数后面的项任何一个加数的变动都不能影响其发散状态。

(2)级数的任何一个有限部分的和都是有限的。

硕士数学知识点总结

硕士数学知识点总结

硕士数学知识点总结一、数学分析1. 极限与连续极限的概念是数学分析的基础,是分析函数的重要工具。

连续性是极限的重要应用,用来描述函数在点上的连续性。

在数学分析中,极限与连续是最基本的概念之一。

2. 微分与积分微分和积分是数学分析的重要分支,微分主要研究函数的变化规律,积分主要研究函数的面积和曲线长度。

微分和积分是数学分析的核心内容,也是物理、工程、经济等领域中最常见的数学工具。

3. 函数和级数函数是数学分析中的一个重要概念,级数是分析中的另一个重要概念。

函数是数学分析中研究的基本对象,级数是分析中用来研究无穷和的工具。

4. 泛函分析泛函分析是数学分析的重要分支之一,主要研究无穷维空间中的函数和算子。

泛函分析是抽象数学的重要分支,在数学分析及其应用中有着重要的作用。

5. 复变函数复变函数是数学分析中的一个重要分支,主要研究复数域上的函数。

复变函数是数学分析的重要组成部分,又是其他数学领域的重要工具。

6. 偏微分方程偏微分方程是数学分析中研究的一个重要对象,主要研究多元函数的变化规律。

偏微分方程是数学分析的重要应用,是物理、工程、经济等领域中最常见的数学工具之一。

二、代数学1. 线性代数线性代数是代数学的一个重要分支,主要研究向量空间及其上的线性运算。

线性代数是数学中的一门重要基础课,也是其他数学领域的重要工具。

2. 抽象代数抽象代数是代数学的一个重要分支,主要研究抽象代数结构及其性质。

抽象代数是现代数学的一个重要分支,与实际生活和工程实践有着密切的联系。

3. 群论群论是代数学的一个重要分支,主要研究群及其作用。

群论是现代数学的一个重要分支,对于代数、几何、拓扑等领域有着重要的应用。

4. 环论环论是代数学的一个重要分支,主要研究环及其作用。

环论是现代数学的一个重要分支,对于代数、几何、拓扑等领域有着重要的应用。

5. 域论域论是代数学的一个重要分支,主要研究域及其作用。

域论是现代数学的一个重要分支,对于代数、几何、拓扑等领域有着重要的应用。

高等数学中的级数与数值计算

高等数学中的级数与数值计算

高等数学中的级数与数值计算引言:高等数学是大学数学的重要组成部分,其中级数与数值计算是一个重要的主题。

级数是一种无穷求和的数学概念,而数值计算则是利用计算机等工具对数学问题进行近似求解的方法。

本文将从级数的定义、性质和应用以及数值计算的基本原理和方法等方面进行论述,旨在帮助学生深入理解和应用这一领域的知识。

一、级数的定义与性质1.1 级数的定义级数是指将一列数按照一定顺序相加所得到的和。

我们可以用符号∑来表示级数,如∑an表示将数列an的每一项相加所得到的和。

1.2 级数的收敛与发散级数的收敛与发散是级数理论中的重要概念。

一个级数如果存在有限的和,我们称其为收敛的;如果不存在有限的和,我们称其为发散的。

1.3 级数的性质级数具有许多重要的性质,如级数的线性性质、级数的比较性质、级数的收敛判别法等。

这些性质为我们研究级数提供了重要的工具和方法。

二、级数的应用2.1 级数在数学分析中的应用级数在数学分析中有广泛的应用,如函数展开成幂级数、级数求和的应用、级数收敛速度的估计等。

这些应用使我们能够更深入地研究函数的性质和行为。

2.2 级数在物理学中的应用级数在物理学中也有重要的应用,如波动方程的解法、电磁场的计算等。

通过将物理问题转化为级数问题,我们可以更好地理解和解决实际问题。

三、数值计算的基本原理与方法3.1 数值计算的基本原理数值计算是利用计算机等工具对数学问题进行近似求解的方法。

其基本原理是将数学问题转化为离散的数值计算问题,通过逼近和迭代等方法得到近似解。

3.2 数值计算的常用方法数值计算中常用的方法包括数值积分、数值微分、数值代数方程的求解等。

这些方法通过将连续的数学问题转化为离散的数值计算问题,可以得到较为准确的近似解。

3.3 数值计算的误差分析数值计算中存在着各种误差,如舍入误差、截断误差等。

误差分析是数值计算中的重要内容,它帮助我们评估数值计算结果的准确性和可靠性。

结论:级数与数值计算是高等数学中的重要内容,它们在数学分析和实际应用中都有广泛的应用。

初三数学级数概念理解

初三数学级数概念理解

初三数学级数概念理解级数是数学中一个重要的概念,它在初三数学学科中经常被讲解和应用。

理解级数的概念对于学习数学和解决实际问题至关重要。

本文将介绍级数的定义、级数的性质以及级数的应用等方面内容,旨在帮助初三学生更好地理解级数。

1. 级数的定义在数学中,级数是由一个数列的各个项之和组成的无穷和。

数列的各项依次相加得到一个新的数列,这个新的数列就是级数。

级数通常用符号∑表示,例如∑an。

2. 级数的性质(1) 部分和:级数的部分和即为前n项的和。

部分和用Sn来表示,可以使用公式Sn = a1 + a2 + ... + an计算得到。

(2) 收敛与发散:如果级数的部分和Sn在n趋于无穷大时趋于一个有限的数,我们称该级数是收敛的。

如果Sn无穷大或者不存在极限,我们称该级数是发散的。

(3) 收敛级数的性质:如果级数∑an收敛,则其部分和Sn构成一个收敛数列。

此外,对于任意正整数m和n(m < n),级数的部分和S(n) – S(m)等于从第m + 1项到第n项的和。

(4) 发散级数的性质:如果级数∑an发散,则其部分和Sn构成一个发散数列。

3. 级数的应用级数在数学中的应用十分广泛,其中包括以下几个方面的应用:(1) 数列极限的计算:对于某些特定的数列,可以通过级数来计算其极限。

例如,当n趋于无穷大时,可以使用级数∑(1/n)计算出数列1/n的极限为0。

(2) 无穷几何级数:无穷几何级数是一种特殊的级数,其特点是每一项与前一项的比值相等。

例如,级数∑(1/2^n)即为一个无穷几何级数,其部分和S(n)等于1 - (1/2)^n。

(3) 级数应用于实际问题:级数在数学的实际应用中起着重要的作用。

例如,通过级数可以计算无穷等比数列的和,从而解决与金融、工程等领域相关的实际问题。

在学习级数的过程中,需要注意以下几点:(1) 掌握级数的定义和性质,包括级数的部分和、收敛与发散等。

(2) 理解级数的计算方法,例如使用级数∑(1/n)计算数列1/n的极限等。

级数思想及其在数学分析中的应用。

级数思想及其在数学分析中的应用。
故收敛域为[ 3,3 .
(2)因为 = = ,所以收敛半径 =2,
由 <2得,收敛区间为( 3,1),
当 时,级数为 ,发散,
当 =1时,级数为 ,发散,
故级数的收敛域为( 3,1).
(3)幂级数 缺少奇次项,直接用比值判别法有 = =0,
收敛半径 = ,收敛域为( ).
小结如果幂级数属于 或 形式,其收敛半径可按公式 = 求得.若不属于标准形式,缺奇次(或偶次)项,则可用比值判别法求得.

称其为 在 处的泰勒展开式,也称为 关于 的幂级数.
当 时,有
称为函数 的麦克劳林展开式.
(7) 常用初等函数的麦克劳林展开式

② ③


其中 为任意实常数

3.傅里叶级数
⑴ 以 为周期的函数 展开成傅里叶级数
①设 是周期为 的函数,则 的傅里叶系数的公式为


由 的傅里叶系数所确定的三角级数
称为 的傅里叶级数.
类似地,如果 只在 上有定义且满足狄利克雷收敛定理的条件,我们在 内补充 的定义,得到定义在 上的函数 ,使它在 上成为奇函数(偶函数)( 按这种方式拓广函数的定义的过程称为奇延拓(偶延拓)).然后把奇延拓(偶延拓)后的函数 展开成傅里叶级数,这个级数必定是正弦级数(余弦级数).
⑷ 以 为周期的函数,且在 上满足狄利克雷收敛定理的条件,得到 的傅里叶级数展开式为
3.求幂级数的和函数的方法
例3利用逐项求导和逐项微分,求下列级数在其收敛区间的和函数
(1) ,(2) .
解(1)由于幂级数的系数含有幂指数加1的因子,所以采用“先积后微”的方法,
设 = , = = = , ,于是
= = = ,

高等数学(下)第3章 无穷级数

高等数学(下)第3章  无穷级数

②若
发散 ,则
发散
36
例 3 .7(夹逼准则) 设 收敛 ,且 an ≤ cn ≤ bn 证明 收敛 .
证明 因为an ≤ cn ≤ bn ,故 0 ≤ cn - an ≤ bn - an .又因为 收敛 ,故 收敛 ,根据正项级数比较判别法得 收 敛
37
图3.4
38
推论 2 (比较判别法极限形式) 设 是两个正项级数 ,

12
例3.2 计算本节开始提出的球弹跳过程所需 的时间(引例).
13
例3.3 讨论级数
的敛散性
14
3.1.2
无穷级数的基本性质
性质1(级数收敛的必要条件) 若收敛,则有 证明 因为

15
例3.4 判断的敛散性. 解 因为

16
例3.5 判断级数的敛散性. 解 如果级数收敛,则
但另一方面:
称{sn}为无穷级数(3.1)的部分和数列
8
定义 设的部分和数列为{sn},若 ,则称级数收敛,且把极限值s称
为级数的和,记作;若部分和数列
{sn}极限不存在,则称级数发散.
9
例3.1 讨论几何级数
的敛散性
解 (1)当r=1时,
发散
10
(2)当r=-1时因为源自不存在发散11
(3)当|r|≠1时,因为
17
性质2 若收敛于s,c为任意常数 则也收敛,且有
18
推论1
具有相同的敛散性. 性质3 若级数 都收敛,且其和分别为s和ζ,则级数
钞也收敛,
19
性质4 级数具有相同的敛
散性,其中N为某自然数. 证明 设sn,sk分别为 的部分和,则
20
性质5 收敛级数的项中任意加括号后所成的级 数仍收敛于原级数和. 证明 设,其部分和为sn.如果

高等数学级 数

高等数学级 数
则 lim n lim sn k lim sk s s . k
类似地可以证明在级数前面加上有限项不 影响级数的敛散性.
n
n
n
性质 4
收敛级数加括弧后所成的级数仍然收敛
于原来的和.
注意
收敛级数去括弧后所成的级数不一定收敛.
例如 (1 1) (1 1)
n n n
注意
1.如果级数的一般项不趋于零,则级数发散;
例如 1 2 2 3 3 4 ( 1)
n 1
n n1

发散
2.必要条件不充分.
例如调和级数 1 1 2
n

1 3

1 n

有 lim un 0, 但级数是否收敛?
讨论
s2 n sn 1 n1 1 n 2 1 2n
n
3. 基本性质 3.按基本性质.
练习题
一、填空题: 1、若 a n 2、若 a n
1 3 ( 2n 1) 2 4 2n
,则 a n =____________;
n 1
5
n! n
n
,则 a n =______________________;
n 1
5
3、若级数为
n n 0

x

x
x
则 a n _______;
三、由定义判别级数 1 1 1 1 的收敛性. 1 3 3 5 5 7 ( 2n 1)( 2n 1) 四、判别下列级数的收敛性: 1 1 1 1 ; 1、 3 6 9 3n 1 1 1 1 1 1 1 1 2、 ( ) ( 2 2 ) ( 3 3 ) ( n n ) ; 2 3 2 3 2 3 2 3 1 1 1 1 1 1 n . 3、 2 10 4 20 10n 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 级数级数是研究函数和进行数值计算的一个重要工具,在本章中,主要介绍幂级数和Fourier 级数。

第一节 级数的概念和性质一、级数的概念给定一个无穷级数{}n u :12n u u u ,,,,,称其和式:12n u u u ++++为数项级数或无穷级数,记作1nn u∞=∑,即:121nn n uu u u ∞==++++∑,其中n u 为级数的通项,而级数的前n 项和:12n u u u +++,称为级数的前n 项部分和,简称部分和,记作n S 。

这样,级数1nn u∞=∑的部分和可以组成数列{}n S :11S u =,212S u u =+,,123n n S u u u u =++++,称为级数的部分和数列,那么,由{}n S 的收敛和发散,我们可以引入级数1nn u∞=∑的收敛和发散的概念。

定义 若级数1nn u∞=∑的部分和数列{}n S 收敛于S ,即li m n n S S →∞=,则称级数1nn u∞=∑收敛,记作1nn uS ∞==∑(也称S 为级数的和);反之,如果部分和数列发散,则称级数发散。

另,当级数1nn u∞=∑收敛时,称12n n n n r S S u u ++=-=++为级数的余项。

例1、讨论等比级数2n a aq aq aq +++++的敛散性。

解:级数的前n 项部分和21(1)1n n n a q S a aq aq aqq--=++++=- 1)当1q <时,lim 0na q →∞=,于是1n aS q=-,即级数收敛。

2)当1q >时,nq →∞,于是lim n n S →∞=∞,这是级数发散。

3)当1q =时,101n n q S na n q S a a a a a n ==→∞⎧⎪⎧⎨=-=-+-+=⎨⎪⎩⎩为偶数为奇数,所以级数发散。

例2、判别级数11111(1)1223(1)n n n n n ∞==+++++⋅⋅+∑的敛散性。

解:二、级数的基本性质性质1 若级数1nn u∞=∑收敛,a 为一任意常数,则1nn au∞=∑亦收敛,且有11nn n n aua u ∞∞===∑∑。

证明:设级数1nn u∞=∑的部分和为n S ,由假设lim n n S S →∞=,又设级数1nn au∞=∑的部分和为n S ',显然n n S aS '=。

根据数列极限的性质可知:lim lim n n n n S aS aS→∞→∞'==。

所以11nn n n auaS a u ∞∞====∑∑。

性质2 若两个级数1nn u∞=∑和1nn v∞=∑都收敛,则1()nn n uv ∞=±∑也收敛,且有:111()nn n n n n n uv u v ∞∞∞===±=±∑∑∑。

利用数列极限的运算法则即可证明此性质。

性质3(夹逼定理)如果n n n u v w ≤≤,且1nn u∞=∑和1nn w∞=∑都收敛,则1nn v∞=∑也收敛。

性质4 在级数前增加或减去有限项,或者改变级数的有限项,不改变级数的敛散性。

性质5(收敛的必要条件)若级数1nn u∞=∑收敛,则0n u →()n →∞。

证明:设级数1nn u∞=∑的部分和数列为{}n S ,且lim n n S S →∞=,由于1n n n u S S -=-,可得:1lim lim()0n n n n n u S S S S -→∞→∞=-=-=。

注:0n u →()n →∞是级数收敛的必要条件,不是充分条件,即若n u →0,级数发散。

例如:级数231111111111223331nn nnn ++++++++++++++,它的一般项0n u →()n →∞,但此级数是发散的。

例3、判别级数112(1)23(1)n n nn n ∞==++++++∑的敛散性。

第二节 数项级数收敛性的判定一、正项级数收敛性的判定如果0n u ≥(123)n =,,,则称级数1nn u∞=∑为正项级数。

首先,我们讨论一下正项级数收敛性的判定方法。

定理 正项级数收敛的充要条件是它的部分和数列有界。

证明:因为正项级数有0n u ≥,所以它的部分和数列为单调数列,即:1231n n S S S S S +≤≤≤≤≤≤,根据数列极限的存在定理,单调数列的极限存在的充要条件为数列有界。

所以,级数收敛的充要条件为部分和数列{}n S 有界。

比较判别法 若1nn u∞=∑和1nn v∞=∑均为正项级数:1、若n n u v ≤(12)n =,,,而1nn v∞=∑收敛,则1nn u∞=∑收敛;2、若n n u v ≥(12)n =,,,而1nn v∞=∑发散,则1nn u∞=∑发散。

例1、讨论级数1112nn ∞=+∑的收敛性。

例2、讨论级数11p n n ∞=∑的收敛性(0)p >,这个级数通常称为p -级数。

在讨论正项级数的收敛性时,可用等比级数和p -级数作为比较级数。

例3、讨论级数2112n n ∞=+∑的收敛性。

例4、讨论级数n ∞=比值判别法(达朗贝尔判别法)如果正项级数1n n u ∞=∑满足条件:1limn n nu u ρ+→∞=,则当1ρ<时级数收敛,1ρ>时级数发散。

证明:当1ρ<时,取正数γ,使1ργ<<,当n 大于某个整数m 时,有1n nu u γ+<,所以有:1m m u u γ+<,221m m m u u u γγ++<<, 332m m m u u u γγ++<<,,这样,级数123m m m u u u ++++++的各项就小于等比级数21nm m m n u u u γγγ∞→=++∑的对应项,因为01γ<<,级数1nmn u γ∞→∑收敛,有定理可知1m nn u∞+→∑收敛,再由性质3可知,级数1nn u∞=∑收敛。

当1ρ>时,n 取足够大时,有11n nu u +>,即1n n u u +>,所以lim 0n n u →∞≠,所以级数1nn u∞=∑发散。

注意:当1ρ=时,比值法失效,无法判断级数的收敛性。

例5、讨论下列级数的敛散性。

(1)12!nn n ∞=∑(2)1!n n n n ∞=∑ (3)1nn x n∞=∑(0)x ≥ 解:(1)(2)由于11(1)!1lim lim lim 1(1)!(1)n n n n n n n n nu n n n u n n n e ++→∞→∞→∞+=⋅==<++,所以级数收敛。

(3)根值判别法(柯西判别法)设正项级数1nn u∞=∑的一般项n u 的n次方根有:n ρ=,则当1ρ<时级数收敛,1ρ>(或n =∞)时级数发散。

同样,当1ρ=时,无法判断级数收敛与否。

此判别法的证明过程与比值判别法的证明类似,只要将原来的不等式1n nu u γ+<改为γ<,就可得到n n u γ<,其余推导过程都是相同的,这里不再赘述。

例6、判别级数1()21nn n n ∞=+∑的收敛性。

二、任意项级数收敛性的判定如果级数是正负相间的,即形如:11234(1)n n u u u u u +-+-+-+的级数,其中0n u >(1,2,)n =,我们称为交错级数。

对于交错级数,有如下定理:交错级数收敛判别法 如果一个交错级数11(1)n n n u ∞+=-∑的项满足以下两个条件:1、单调减少,即1n n u u +≤(1,2,)n =;2、lim 0n n u →∞=则级数11(1)n n n u ∞+=-∑收敛且其和1S u ≤,余项n r 的绝对值1n n r u +≤。

证明:因为1n n u u +≤,所以10n n u u +-≥,而21234212()()()n n n S u u u u u u -=-+-++-,故数列{}2n S 为单调递增数列;由212345222121()()()n n n n S u u u u u u u u u --=--------≤可知{}2n S 有界,所以{}2n S 极限存在,有21lim n n S S u →∞=≤;又因为21221n n n S S u ++=+,而lim 0n n u →∞=,所以有21221lim lim()n n n n n S S u S ++→∞→∞=+=,即1lim n n S S u →∞=≤。

级数的余项123()n n n n r u u u +++=±-+-,绝对值为123n n n n r u u u +++=-+-也满足判别法,其和nr 存在且1n n r u +≤。

三、绝对收敛和条件收敛如果将级数1nn u∞=∑的每一项加上绝对值后所组成的正项级数1nn u∞=∑收敛,则称级数1nn u∞=∑为绝对收敛;若1nn u∞=∑发散,但1nn u∞=∑收敛,则称级数1nn u∞=∑为条件收敛。

例如,级数11(1)n n n +∞=-∑就是一个条件收敛的级数。

定理 绝对收敛的级数必为收敛级数。

证明:()n n n n u u u u =+-,因为n n u u ≤,所以02n n n u u u ≤+≤,而12nn u∞=∑收敛,由比较判别法可知1()nn n uu ∞=+∑收敛,再由级数的性质2可知,级数11[()]n nn n n n u uu u ∞∞===+-∑∑收敛。

第三节 幂级数一、幂级数的概念定义1 如果级数121()()()()nn n u x u x u x u x ∞==++++∑的各项都是定义在某个区间上的函数,则称之为函数项级数,其中()n u x 称为函数项级数的一般项。

定义2 当x 在区间I 中取某个特定值0x 时,级数1()n n u x ∞=∑就是一个数项级数,如果这个数项级数收敛,则称0x 为级数的一个收敛点;如果发散,则称0x 为这个级数的发散点。

一个级数的收敛点的全体称为它的收敛域,发散点的全体称为它的发散域。

对于收敛域内的任意一个数x ,函数项级数成为一个收敛域内的数项级数,因此有一个确定的和S 。

这样,在收敛域上,函数项级数的和是x 的函数()S x ,通常称()S x 为函数项级数的和函数,即:12()()()()n S x u x u x u x =++++。

其中,x 是收敛域内的任意一点。

我们将函数项级数的前n 项和记作()n S x ,则在收敛域上有lim ()()n n S x S x →∞=。

例如公比为x 的等比级数201n n n x x x x ∞==+++++∑是一个在区间(,)-∞+∞上的函数项级数。

当1x <时。

相关文档
最新文档