高考物理专题04回归基础专题训练磁场含解析
2024年高考物理热点磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)
磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型1.高考命题中,带电粒子在有界磁场中的运动问题,常常涉及到临界问题或多解问题,粒子运动轨迹和磁场边界相切经常是临界条件。
带电粒子的入射速度大小不变,方向变化,轨迹圆相交与一点形成旋转圆。
带电粒子的入射速度方向不变,大小变化,轨迹圆相切与一点形成放缩圆。
2.圆形边界的磁场,如果带电粒子做圆周运动的半径如果等于磁场圆的半径,经常创设磁聚焦和磁发散模型。
一、分析临界极值问题常用的四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速率v 一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长,(3)当速率v 变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,再根据几何关系求出半径及圆心角等(4)在圆形匀强磁场中,当运动轨远圆半径大于区域圆半径时,入射点和出射点为磁场直径的两个端点时轨迹对应的偏转角最大(所有的弦长中直径最长)。
二、“放缩圆”模型的应用适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP ′上界定方法以入射点P 为定点,圆心位于PP ′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法三、“旋转圆”模型的应用适用条件速度大小一定,方向不同粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为v 0,则圆周运动半径为R =mv 0qB。
如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P 为圆心、半径R =mv 0qB的圆上界定方法将一半径为R =mv 0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法四、“平移圆”模型的应用适用条件速度大小一定,方向一定,但入射点在同一直线上粒子源发射速度大小、方向一定,入射点不同,但在同一直线的带电粒子进入匀强磁场时,它们做匀速圆周运动的半径相同,若入射速度大小为v 0,则半径R =mv 0qB,如图所示轨迹圆圆心共线带电粒子在磁场中做匀速圆周运动的圆心在同一直线上,该直线与入射点的连线平行界定方法将半径为R =mv 0qB的圆进行平移,从而探索粒子的临界条件,这种方法叫“平移圆”法五、“磁聚焦”模型1.带电粒子的会聚如图甲所示,大量的同种带正电的粒子,速度大小相同,平行入射到圆形磁场区域,如果轨迹圆半径与磁场圆半径相等(R =r ),则所有的带电粒子将从磁场圆的最低点B 点射出.(会聚)证明:四边形OAO ′B 为菱形,必是平行四边形,对边平行,OB 必平行于AO ′(即竖直方向),可知从A 点发出的带电粒子必然经过B 点.2.带电粒子的发散如图乙所示,有界圆形磁场的磁感应强度为B ,圆心为O ,从P 点有大量质量为m 、电荷量为q 的正粒子,以大小相等的速度v 沿不同方向射入有界磁场,不计粒子的重力,如果正粒子轨迹圆半径与有界圆形磁场半径相等,则所有粒子射出磁场的方向平行.(发散)证明:所有粒子运动轨迹的圆心与有界圆圆心O 、入射点、出射点的连线为菱形,也是平行四边形,O 1A (O 2B 、O 3C )均平行于PO ,即出射速度方向相同(即水平方向).(建议用时:60分钟)一、单选题1地磁场能抵御宇宙射线的侵入,赤道剖面外地磁场可简化为包围地球一定厚度的匀强磁场,方向垂直该部面,如图所示,O为地球球心、R为地球半径,假设地磁场只分布在半径为R和2R的两边界之间的圆环区域内(边界上有磁场),磷的应强度大小均为B,方向垂直纸面向外。
高考物理电磁学知识点之磁场基础测试题及解析(6)
高考物理电磁学知识点之磁场基础测试题及解析(6)一、选择题1.如图所示,ABC 为与匀强磁场垂直的边长为a 的等边三角形,比荷为e m 的电子以速度v 0从A 点沿AB 边射出(电子重力不计),欲使电子能经过AC 边,磁感应强度B 的取值为A .B <03mv ae B .B <02mv aeC .B >03mv aeD .B >02mv ae2.如图所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,此时台秤读数为N 1,现在磁铁上方中心偏左位置固定一通电导线,电流方向如图,当加上电流后,台秤读数为N 2,则以下说法正确的是( )A .N 1>N 2,弹簧长度将变长B .N 1>N 2,弹簧长度将变短C .N 1<N 2,弹簧长度将变长D .N 1<N 2,弹簧长度将变短3.科学实验证明,足够长通电直导线周围某点的磁感应强度大小I B k l,式中常量k >0,I 为电流强度,l 为该点与导线的距离。
如图所示,两根足够长平行直导线分别通有电流3I 和I (方向已在图中标出),其中a 、b 为两根足够长直导线连线的三等分点,O 为两根足够长直导线连线的中点,下列说法正确的是( )A .a 点和b 点的磁感应强度方向相同B .a 点的磁感应强度比O 点的磁感应强度小C .b 点的磁感应强度比O 点的磁感应强度大D .a 点和b 点的磁感应强度大小之比为5:74.2019年我国研制出了世界上最大的紧凑型强流质子回旋加速器,该回旋加速器是我国目前自主研制的能量最高的质子回旋加速器。
如图所示为回旋加速器原理示意图,现将两个相同的回旋加速器置于相同的匀强磁场中,接入高频电源。
分别加速氘核和氦核,下列说法正确的是( )A.它们在磁场中运动的周期相同B.它们的最大速度不相等C.两次所接高频电源的频率不相同D.仅增大高频电源的频率可增大粒子的最大动能.其核心部分是分别与高频交流电源两极相连接的两5.回旋加速器是加速带电粒子的装置个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A.减小磁场的磁感应强度B.增大匀强电场间的加速电压C.增大D形金属盒的半径D.减小狭缝间的距离6.质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是()A.M带正电,N带负电B.M的速率大于N的速率C.洛伦磁力对M、N做正功D.M的运行时间大于N的运行时间7.如图所示,两相邻且范围足够大的匀强磁场区域Ⅰ和Ⅱ的磁感应强度方向平行、大小分别为B和2B。
天河区08届高三物理回归基础训练磁场部分
天河区08届回归基础训练----------- 磁场部分A 1、一个负离子,质量为m ,电量大小为q ,以速率V 垂直于屏S 经过小孔O 射入存在着匀强磁场的真空室中(如图1).磁感应强度B 的方向与离子的运动方向垂直,并垂直于图1中纸面向里.(1)求离子进入磁场后到达屏S 上时的位置与O 点的距离. (2)如果离子进入磁场后经过时间t 到达位置P ,证明:直线OP 与离子入射方向之间的夹角θ跟t 的关系是t mqB2=θ。
1:解析:(1)离子的初速度与匀强磁场的方向垂直,在洛仑兹力作用下,做匀速圆周运动.设圆半径为r,则据牛顿第二定律可得:r V m B q V 2= ,解得Bqm Vr =如图2所示,离了回到屏S 上的位置A 与O 点的距离为:AO =2r 所以Bqm VAO 2=(2)当离子到位置P 时,圆心角(见图2):t mBq r Vt ==α 因为θα2=,所以t mqB2=θ.A 2 如图所示,在一倾角α=30的绝缘光滑斜面上,磁感应强度为4T ,垂直穿出斜面,要使一质量为0.1g ,带电量为q =⨯-2103的小球,在斜面上做半径为5cm 的匀速圆周运动,求:(1)应加什么方向的电场?大小如何? (2)小球运动速度的大小方向如何?1. (1)要使小球在斜面上做匀速圆周运动,应使小球受的下滑力与电场力平衡,即qE mg =sin30 ,E mg qN C ==⨯⨯⨯⨯=--sin ../300110101221002533(2)根据小球能做匀速圆周运动,则小球受洛仑兹力提供向心力由∑F ma =可得,qBv m v R =2,得v qBR m m s ==⨯⨯⨯⨯⨯=---210451001104323./B图1B图2A 3如图10所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a 、b 、c 和d ,外筒的外半径为r ,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B 。
磁聚焦与带电粒子在磁场中的回归现象 高中物理习题与解析
磁聚焦与带电粒子在磁场中的回归现象1.如图,ABCD 是边长为a 的正方形。
质量为m 、电荷量为e 的电子以大小为v 0的初速度沿纸面垂直于BC 变射入正方形区域。
在正方形内适当区域中有匀强磁场。
电子从BC 边上的任意点入射,都只能从A 点射出磁场。
不计重力,求:(1)此匀强磁场区域中磁感应强度的方向和大小;(2)此匀强磁场区域的最小面积。
2.如图所示,x 轴正方向水平向右,y 轴正方向竖直向上。
在xOy 平面内与y 轴平行的匀强电场,在半径为R 的圆内还有与xOy 平面垂直的匀强磁场。
在圆的左边放置一带电微粒发射装置,它沿x 轴正方向发射出一束具有相同质量m 、电荷量q(q >0)和初速度v 的带电微粒。
发射时,这束带电微粒分布在0<y <2R 的区间内。
已知重力加速度大小为g 。
(1)从A 点射出的带电微粒平行于x 轴从C 点进入有磁场区域,并从坐标原点O 沿y 轴负方向离开,求电场强度和磁感应强度的大小与方向。
(2)请指出这束带电微粒与x 轴相交的区域,并说明理由。
(3)在这束带电磁微粒初速度变为2v ,那么它们与x 轴相交的区域又在哪里?并说明理由。
xyRO /Ov带点微粒发射装置C3.如图3所示,一个质量为m,电荷量为+q的粒子,从A点正对着圆心O以速度0v射入半径为R的内壁光滑的绝缘圆筒中.圆筒内存在垂直纸面向里的匀强磁场,.要使带电粒子与圆筒内壁碰撞多次后仍从A点射出,求磁感应强度B的大小.(设粒子与圆筒内壁碰撞时无能量和电荷量损失,不计粒子的重力)4.电子质量为m,电荷量为e,从坐标原点O处沿xOy平面射入第一象限,射入时速度方向不同,速度大小,如图5所示.现在某一区域加一方向向外且垂直于xOy平面的匀强磁场,磁感应强度为B,若这些电均为v子穿过磁场后都能垂直射到荧光屏MN上,荧光屏与y轴平行,求:(1)荧光屏上光斑的长度;(2)所加磁场范围的最小面积.磁聚焦与带电粒子在磁场中的回归现象(参考答案)1.【答案】【解析】(1)设匀强磁场的磁感应强度的大小为B 。
高考物理带电粒子在磁场中的运动专题训练答案及解析
高考物理带电粒子在磁场中的运动专题训练答案及解析一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.如图所示,在竖直面内半径为R 的圆形区域内存在垂直于面向里的匀强磁场,其磁感应强度大小为B ,在圆形磁场区域内水平直径上有一点P ,P 到圆心O 的距离为2R,在P 点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不同的正离子. 已知离子的质量均为m ,电荷量均为q ,不计离子重力及离子间相互作用力,求:(1)若所有离子均不能射出圆形磁场区域,求离子的速率取值范围; (2)若离子速率大小02BqRv m=,则离子可以经过的磁场的区域的最高点与最低点的高度差是多少。
高考物理二轮总复习 专题过关检测 专题磁场(全含详细答案解析)
拾躲市安息阳光实验学校高考物理二轮总复习专题过关检测磁场(时间:90分钟满分:100分)第Ⅰ卷选择题一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.20世纪50年代,一些科学家提出了地磁场的“电磁感应学说”,认为当太阳强烈活动影响地球而引起磁暴时,磁暴在外地核中感应产生衰减时间较长的电流,此电流产生了地磁场.连续的磁暴作用可维持地磁场,则外地核中的电流方向为(地磁场N极与S极在地球表面的连线称为磁子午线)( )A.垂直磁子午线由西向东B.垂直磁子午线由东向西C.沿磁子午线由南向北D.沿磁子午线由北向南解析:地磁场由南向北,根据安培定则可判断,外地核中电流方向由东向西.答案:B2.如图11-1所示,两根平行放置的长直导线a和b载有大小相同、方向相反的电流,a 受到的磁场力大小为F1,当加入一与导线所在平面垂直的匀强磁场后,a 受到的磁场力的大小变为F2,则此时b受到的磁场力的大小变为( )图11-1A.F2B.F1-F2C.F2-F1D.2F1-F2解析:对a导线,原来b导线对a导线作用力为F1,方向向左,假设加入的匀强磁场垂直向里,如图甲所示,则a导线受外加匀强磁场的作用力为F′,则F1、F′、F2之间有下列关系:F2=F1-F′(F′=F1-F2)同理对b导线分析受力,如图乙所示,故此时导线b受磁场作用力:F=F1-F′=F1-(F1-F2)=F2本题正确的答案为A.答案:A3.带电体表面突出的地方电荷容易密集.雷雨天当带电云层靠近高大建筑物时,由于静电感应,建筑物顶端会聚集异种电荷,避雷针通过一根竖直导线接通大地而避免雷击.你若想知道竖直导线中的电流方向,进而判断云层所带电荷,安全可行的方法是( )A.在导线中接入电流表B.在导线中接入电压表C.在导线中接入小灯泡D.在导线旁放一可自由转动的小磁针解析:根据小磁针静止时N极的指向判断出其所在处的磁场方向,然后根据安培定则判断出电流方向,既安全又可行.答案:D4.下列关于磁感线的说法正确的是( )A.磁感线可以形象地描述磁场中各点的磁场方向,它每一点的切线方向都与小磁针放在该点静止时S极所指的方向相同B.磁感线总是从磁体的N 极出发,到磁体的S 极终止C.磁场的磁感线是闭合曲线D.磁感线就是细铁屑在磁铁周围排列成的曲线,没有细铁屑的地方就没有磁感线解析:磁感线的切线方向就是该点的磁场方向,磁场的方向规定为小磁针N 极受力的方向,也就是小磁针静止时N 极的指向,所以A 项错误.在磁体的外部,磁感线从N 极出发指向S 极,在磁体的内部,磁感线从S 极指向N 极,并且内、外形成闭合曲线,所以B 项错误,C 项正确.虽然磁感线是为了研究问题的方便人为引入的,我们也可以用细铁屑形象地“显示”磁感线,但不能说没有细铁屑的地方就没有磁感线,所以D 项是错误的. 答案:C 图11-25.如图11-2所示,一带负电的质点在固定的正点电荷作用下绕该正电荷做匀速圆周运动,周期为T 0,轨道平面位于纸面内,质点的速度方向如图中箭头所示.现加一垂直于轨道平面的匀强磁场,已知轨道半径并不因此而改变,则( ) A.若磁场方向指向纸里,质点运动的周期将大于T 0 B.若磁场方向指向纸里,质点运动的周期将小于T 0 C.若磁场方向指向纸外,质点运动的周期将大于T 0 D.若磁场方向指向纸外,质点运动的周期将小于T 0解析:因电荷在电场力作用下做匀速圆周运动,根据圆周运动知识有r T m F 2)2(π=电,若所加的磁场指向纸里,因电荷所受的洛伦兹力背离圆心,电荷所受的向心力减小,所以质点运动的周期将增大,大于T 0.若所加的磁场指向纸外,因电荷所受的洛伦兹力指向圆心,电荷所受的向心力增大,所以质点运动的周期将减小,小于T 0,正确选项为A 、D.答案:AD6.在某地上空同时存在着匀强的电场与磁场,一质量为m 的带正电小球,在该区域内沿水平方向向右做直线运动,如图11-3所示.关于场的分布情况可能的是( ) 图11-3A.该处电场方向和磁场方向重合B.电场竖直向上,磁场垂直纸面向里C.电场斜向里侧上方,磁场斜向外侧上方,均与v 垂直D.电场水平向右,磁场垂直纸面向里解析:带电小球在复合场中运动一定受重力和电场力,是否受洛伦兹力需具体分析.A 选项中若电场、磁场方向与速度方向垂直,则洛伦兹力与电场力垂直,如果与重力的合力为零就会做直线运动.B 选项中电场力、洛伦兹力都向上,若与重力合力为零,也会做直线运动.C 选项电场力斜向里侧上方,洛伦兹力向外侧下方,若与重力合力为零,就会做直线运动.D 选项三个力合力不可能为零,因此本题选A 、B 、C. 答案:ABC7.如图11-4所示,水平正对放置的带电平行金属板间的匀强电场方向竖直向上,匀强磁场方向垂直纸面向里,一带电小球从光滑绝缘轨道上的a 点由静止释放,经过轨道端点P 进入板间后恰好沿水平方向做匀速直线运动.现在使小球从稍低些的b 点由静止释放,经过轨道端点P 进入两板之间的场区.关于小球和小球现在的运动情况,以下判断中正确的是( ) 图11-4A.小球可能带负电B.小球在电、磁场中运动的过程动能增大C.小球在电、磁场中运动的过程电势能增大D.小球在电、磁场中运动的过程机械能总量不变解析:如果小球带负电,则小球在金属板间受到向下的重力、向下的电场力、向下的洛伦兹力,则小球不能沿水平方向做匀速直线运动,所以小球只能带正电,此时洛伦兹力向上,电场力向上,且F 洛+F 电=mg ,当小球从稍低的b 点由静止释放时,小球进入金属板间的速度将减小,则F 洛减小,F 洛+F 电<mg ,小球将向下运动,电场力做负功,合外力做正功.所以小球在电磁场中运动的过程中动能增大,电势能增加,机械能减小,故B 、C 正确,A 、D 错.答案:BC8.如图11-5所示,两平行金属板的间距等于极板的长度,现有重力不计的正离子束以相同的初速度v 0平行于两板从两板正中间射入.第一次在两极板间加恒定电压,建立场强为E 的匀强电场,则正离子束刚好从上极板边缘飞出.第二次撤去电场,在两板间建立磁感应强度为B 、方向垂直于纸面的匀强磁场,正离子束刚好从下极板边缘飞出,则E 和B 的大小之比为( )图11-5A.045v B.021v C.041v D.v 0 解析:根据题意d =L ①两板间为匀强电场时,离子做类平抛运动.设粒子在板间的飞行时间为t ,则 水平方向:L =v 0t ② 竖直方向:222212t mqE at d ==③ 两板间为匀强磁场时,设偏转半径为r 由几何关系有222)2(L d r r +-=④又rvm B qv 20=⑤①②③④⑤联立得.450v B E = 答案:A9.如图11-6所示,空间有一垂直纸面向外的磁感应强度为0.5 T 的匀强磁场,一质量为0.2 kg 且足够长的绝缘塑料板静止在光滑水平面上.在塑料板左端无初速度放置一质量为0.1 kg 、带电荷量为+0.2 C 的滑块,滑块与绝缘塑料板之间的动摩擦因数为0.5,滑块受到的最大静摩擦力可认为等于滑动摩擦力.现对塑料板施加方向水平向左、大小为0.6 N 的恒力,g 取10 m/s 2,则( )图11-6A.塑料板和滑块一直做加速度为2 m/s 2的匀加速运动B.滑块开始做匀加速运动,然后做加速度减小的加速运动,最后做匀速直线运动C.最终塑料板做加速度为2 m/s 2的匀加速运动,滑块做速度为10 m/s 的匀速运动D.最终塑料板做加速度为3 m/s 2的匀加速运动,滑块做速度为10 m/s 的匀速运动解析:滑块随塑料板向左运动时,受到竖直向上的洛伦兹力,和塑料板之间的正压力逐渐减小.开始时,塑料板和滑块加速度相同,由F =(M +m )a 得,a =2 m/s 2,对滑块有μ(mg -qvB )=ma ,当v =6 m/s 时,滑块恰好相对于塑料板有相对滑动,开始做加速度减小的加速运动,当mg =qvB ,即v =10 m/s 时滑块对塑料板的压力为零F N =0,塑料板所受的合力为0.6 N,则2/3's m MFa ==,B 、D 正确.答案:BD10.环形对撞机是研究高能粒子的重要装置,其核心部件是一个高度真空的圆环状的空腔.若带电粒子初速度可视为零,经电压为U 的电场加速后,沿圆环切线方向注入对撞机的环状空腔内,空腔内存在着与圆环平面垂直的匀强磁场,磁感应强度大小为B.带电粒子将被限制在圆环状空腔内运动.要维持带电粒子在圆环内做半径确定的圆周运动,下列说法中正确的是 ( )A.对于给定的加速电压,带电粒子的比荷q /m 越大,磁感应强度B 越大B.对于给定的加速电压,带电粒子的比荷q /m 越大,磁感应强度B 越小C.对于给定的带电粒子和磁感应强度B ,加速电压U 越大,粒子运动的周期越小D.对于给定的带电粒子和磁感应强度B ,不管加速电压U 多大,粒子运动的周期都不变解析:带电粒子经过加速电场后速度为,2mUqv =带电粒子以该速度进入对撞机的环状空腔内,且在圆环内做半径确定的圆周运动,因此qB UmBq mv R 22==,对于给定的加速电压,即U 一定,则带电粒子的比荷q /m 越大,磁感应强度B 应越小,A 错误,B正确;带电粒子运动周期为BqmT π2=,与带电粒子的速度无关,当然就与加速电压U 无关,因此,对于给定的带电粒子和磁感应强度B ,不管加速电压U 多大,粒子运动的周期都不变.答案:BD第Ⅱ卷 非选择题二、填空计算题(共6题,每题10分,共60分)11.在原子反应堆中抽动液态金属时,由于不允许转动机械部分和液态金属接触,常使用一种电磁泵.如图11-7所示是这种电磁泵的结构示意图,图中A 是导管的一段,垂直于匀强磁场放置,导管内充满液态金属.当电流I 垂直于导管和磁场方向穿过液态金属时,液态金属即被驱动,并保持匀速运动.若导管内截面宽为a 、高为b ,磁场区域中的液体通过的电流为I ,磁感应强度为B ,求:图11-7(1)电流I 的方向;(2)驱动力对液体造成的压强差.解析:(1)驱动力即安培力方向与流动方向一致,由左手定则可判断出电流I 的方向由下向上.(2)把液体看成由许多横切液片组成,因通电而受到安培力作用,液体匀速流动,所以有安培力F =Δp ·S,,a BI ab BIb S F p ===∆即驱动力对液体造成的压强差为.aBI 答案:(1)电流方向由下向上 (2)aBI 12.一种半导体材料称为“霍尔材料”,用它制成的元件称为“霍尔元件”,这种材料有可定向移动的电荷,称为“载流子”,每个载流子的电荷量大小为q =1.6×10-19 C ,霍尔元件在自动检测、控制领域得到广泛应用,如录像机中用来测量录像磁鼓的转速、电梯中用来检测电梯门是否关闭以及自动控制升降电动机的电源的通断等.图11-8在一次实验中,一块霍尔材料制成的薄片宽ab =1.0×10-2 m 、长bc =4.0×10-2m 、厚h =1.0×10-3m,水平放置在竖直向上的磁感应强度B =2.0 T 的匀强磁场中,bc 方向通有I =3.0 A 的电流,如图11-8所示,由于磁场的作用,稳定后,在沿宽度方向上产生1.0×10-5V 的横向电压.(1)假定载流子是电子,ad 、bc 两端中哪端电势较高? (2)薄板中形成电流I 的载流子定向运动的速率为多大?(3)这块霍尔材料中单位体积内的载流子个数为多少?解析:(1)由左手定则可判断,电子受洛伦兹力作用偏向bc 边,故ad 端电势高. (2)稳定时载流子在沿宽度方向上受到的磁场力和电场力平衡abUq qvB =, (3)由电流的微观解释可得:I =nqvS .故n =I /qvS =3.75×1027个/m 3. 答案:(1)ad 端 (2)5×10-4m/s (3)3.75×1027个/m 313.将氢原子中电子的运动看做是绕氢核做匀速圆周运动,这时在研究电子运动的磁效应时,可将电子的运动等效为一个环形电流,环的半径等于电子的轨道半径r .现对一氢原子加上一个外磁场,磁场的磁感应强度大小为B ,方向垂直电子的轨道平面.这时电子运动的等效电流用I 1表示.现将外磁场反向,但磁场的磁感应强度大小不变,仍为B ,这时电子运动的等效电流用I 2表示.假设在加上外磁场以及外磁场反向时,氢核的位置、电子运动的轨道平面以及轨道半径都不变,求外磁场反向前后电子运动的等效电流的差,即|I 1-I 2|等于多少?(用m 和e 表示电子的质量和电荷量)解析:用r 表示电子的轨道半径,v 表示电子速度,则等效电流revI π2=①当加上一垂直于轨道平面的外磁场后,设顺着外磁场方向看,电子做逆时针转动,此时电子受到氢核对它的库仑力指向圆心,而受到洛伦兹力背向圆心.设此时速度为v 1,根据题意得rmv B ev r ke 21122=-②当外磁场反向后,轨道半径r 不变,此时运动速度变为v 2,此时电子受到氢核对它的库仑力不变,而洛伦兹力大小变为e Bv 2,方向变为指向圆心,根据牛顿运动定律可得rmv B ev r ke 22222=+③由②③式解得meBrv v =-12④ 由①④两式可得.2||221πm Be I I =-答案:πm Be 2214.在电子显像管内部,由炽热的灯丝上发射出的电子在经过一定的电压加速后,进入偏转磁场区域,最后打到荧光屏上,当所加的偏转磁场的磁感应强度为0时,电子应沿直线运动打在荧光屏的正中心位置.但由于地磁场对带电粒子运动的影响,会出现在未加偏转磁场时电子束偏离直线运动的现象,所以在精密测量仪器的显像管中常需要在显像管的外部采取磁屏蔽措施以消除地磁场对电子运动的影响.已知电子质量为m 、电荷量为e ,从炽热灯丝发射出的电子(可视为初速度为0)经过电压为U 的电场加速后,沿水平方向由南向北运动.若不采取磁屏蔽措施,且已知地磁场磁感应强度的竖直向下分量的大小为B ,地磁场对电子在加速过程中的影响可忽略不计.在未加偏转磁场的情况下,(1)试判断电子束将偏向什么方向;(2)求电子在地磁场中运动的加速度的大小;(3)若加速电场边缘到荧光屏的距离为l ,求在地磁场的作用下使到达荧光屏的电子在荧光屏上偏移的距离.解析:(1)根据左手定则,可以判断出电子束将偏向东方.(2)设从加速电场射出的电子速度为v 0,则根据动能定理有:eU mv =2021从加速电场射出的电子在地磁场中受到洛伦兹力的作用而做匀速圆周运动,设电子的加速度为a ,根据牛顿第二定律,ev 0B =ma 由以上各式解得(3)设电子在地磁场中运动的半径为R ,根据牛顿第二定律Rvm B ev 20=得eBmvR 0=设电子在荧光屏上偏移的距离为x ,根据图中的几何关系,有:22t R R x --=结合以上关系,得 答案:(1)东方 (2)meUm eB 2(3)22221l eBmU e mU B -- 15.回旋加速器的示意图如图11-9甲,置于真空中的金属D 形盒,其半径为R ,两盒间距为d ,在左侧D 形盒圆心处放有粒子源S,匀强磁场的磁感应强度为B ,方向如图所示.此加速器所接的高频交流电源如图11-9乙所示,电压有效值为U .粒子源射出的带电粒子质量为m 、电荷量为q .设粒子从粒子源S 进入加速电场时的初速度不计,且此时高频电源电压恰好达到最大值,忽略粒子在加速电场中的运动时间,加速粒子的电压按交流电的最大值且可近似认为保持不变.粒子在电场中的加速次数等于在磁场中回旋半周的次数.求: (1)粒子在加速器中运动的总时间t .(2)试推证当R >>d 时,粒子在电场中加速的总时间相对于在D 形盒中回旋的总时间可忽略不计(粒子在电场中运动时,不考虑磁场的影响).(3)粒子第1次和第n 次分别在右半盒中运动的轨道半径的比值R 1∶R n . 图11-9解析:由于加速粒子的电压按交流电的最大值且近似认为保持不变,故粒子在电场中做匀加速直线运动.(1)设粒子加速后的最大速度为v ,此时轨道半径最大为R ,由牛顿第二定律得:Rv m qvB 2=粒子的回旋周期为:vRT π2=粒子加速后的最大动能为:221mv E k =设粒子在电场中加速的次数为n ,则:E k =nqU m 高频电源电压的最大值U U 2m =又忽略粒子在加速电场中的运动时间,则运动的总时间2T nt = 联立解得:.422UBR t π=(2)粒子在电场中间断的加速运动,可等效成不间断的匀加速直线运动.粒子在电场中加速的总时间为:v ndv nd t 221==粒子在D 形盒中回旋的总时间:vR nt π=2故R dt t π221=,又R >>d ,所以121<<t t ,因此t 1可忽略不计.(3)设粒子第1、2、3……n 次在右半盒中运动的速度分别为v 1、v 2、v 3……v n ,则由动能定理得:qU m =mv 12/2 ……又Rv m qvB 2=联立解得12:1:1-=n R R n (n 取1,2,3,…). 答案:(1)UBR 422π (2)略(3)12:1-n16.(2010湖北部分重点中学高三二联,25)在xOy 平面内,x >0的区域存在垂直纸面向里的匀强磁场,磁感应强度为B =0.4 T ;x <0的区域存在沿x 轴正方向的匀强电场.现有一质量为m =4.0×10-9kg,带电荷量为q =2.0×10-7C 的正粒子从x 轴正方向上的M 点以速度v 0=20 m/s 进入磁场,如图11-10所示,v 0与x 轴正方向的夹角θ=45°,M 点与O 点相距为l =2 m.已知粒子能以沿着y 轴负方向的速度垂直穿过x 轴负半轴上的N 点,不计粒子重力.求:图11-10(1)粒子穿过y 轴正半轴的位置以及穿过y 轴正半轴时速度与y 轴的夹角; (2)x <0区域电场的场强;(3)试问粒子能否经过坐标原点O ?若不能,请说明原因;若能,请求出粒子从M 点运动到N 点所经历的时间.解析:(1)粒子在磁场中做匀速圆周运动时,由洛伦兹力提供向心力Bqv 0=mv 02/R得:R =1 m过M 点做初速度v 0的垂线交y 轴正方向于P 点,则PM =l /cos45° 得:PM =2 m=2R由几何关系得PM 为轨迹圆的直径,P 点即为粒子穿过y 轴正半轴的位置由圆的对称性得粒子经过此处时的速度与y 轴夹角为θ=45°. (2)设粒子由P 点到N 点历时t 1,则:x 轴方向:v 0sin45°-Eqt 1/m =0 y 轴方向:v 0t 1cos45°=OP联立求解,代入数据得:t 1=0.1 s,(3)粒子能到达O 点粒子在磁场中的运动周期为:T =2πm /Bq从M 点运动到O 点经过的轨迹如图经历的时间为:t =T /2+3T /4+2t 1代入数据得:t =(π/8+0.2) s≈0.59 s.答案:(1)45° (2)2.82 V/m (3)0.59 s。
高考物理电磁学知识点之磁场解析含答案(7)
高考物理电磁学知识点之磁场解析含答案(7)一、选择题1.在绝缘水平面上方均匀分布着方向与水平向右成60︒斜向上的匀强磁场,一通有如图所示的恒定电流I的金属方棒,在安培力作用下水平向右做匀速直线运动。
已知棒与水平面间的动摩擦因数3μ=。
若磁场方向由图示方向开始沿逆时针缓慢转动至竖直向上的过程中,棒始终保持匀速直线运动,设此过程中磁场方向与水平向右的夹角为θ,则关于磁场的磁感应强度的大小B与θ的变化关系图象可能正确的是()A.B.C.D.2.2019年我国研制出了世界上最大的紧凑型强流质子回旋加速器,该回旋加速器是我国目前自主研制的能量最高的质子回旋加速器。
如图所示为回旋加速器原理示意图,现将两个相同的回旋加速器置于相同的匀强磁场中,接入高频电源。
分别加速氘核和氦核,下列说法正确的是()A.它们在磁场中运动的周期相同B.它们的最大速度不相等C.两次所接高频电源的频率不相同D.仅增大高频电源的频率可增大粒子的最大动能3.如图所示,两相邻且范围足够大的匀强磁场区域Ⅰ和Ⅱ的磁感应强度方向平行、大小分别为B和2B。
一带正电粒子(不计重力)以速度v从磁场分界线MN上某处射入磁场区域Ⅰ,其速度方向与磁场方向垂直且与分界线MN成60︒角,经过t1时间后粒子进入到磁场区域Ⅱ,又经过t 2时间后回到区域Ⅰ,设粒子在区域Ⅰ、Ⅱ中的角速度分别为ω1、ω2,则( )A .ω1∶ω2=1∶1B .ω1∶ω2=2∶1C .t 1∶t 2=1∶1D .t 1∶t 2=2∶14.如图所示,边长为L 的等边三角形导线框用绝缘细线悬挂于天花板,导线框中通一逆时针方向的电流,图中虚线过ab 边中点和ac 边中点,在虚线的下方有一垂直于导线框向里的匀强磁场,此时导线框通电处于静止状态,细线的拉力为F 1;保持其他条件不变,现虚线下方的磁场消失,虚线上方有相同的磁场同时电流强度变为原来一半,此时细线的拉力为F 2 。
已知重力加速度为g ,则导线框的质量为A .2123F F g +B .212 3F F g -C .21F F g -D .21 F F g+ 5.如图甲是磁电式电流表的结构图,蹄形磁铁和铁芯间的磁场均匀辐向分布。
2020年高考回归复习—电磁感应综合解答题 含解析
1 / 29高考回归复习—电磁感应综合解答题1.如图甲,在水平桌面上固定着两根相距L =20cm 、相互平行的无电阻轨道P 、Q ,轨道一端固定一根电阻R =0.02Ω的导体棒a ,轨道上横置一根质量m =40g 、电阻可忽略不计的金属棒b ,两棒相距也为L =20cm 。
该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中。
开始时,磁感应强度B 0=0.1T 。
设棒与轨道间的最大静摩擦力等于滑动摩擦力,g 取10m/s 2。
(1)若保持磁感应强度B 0的大小不变,从t =0时刻开始,给b 棒施加一个水平向右的拉力,使它由静止开始做匀加速直线运动。
此拉力F 的大小随时间t 变化关系如图乙所示。
求b 棒做匀加速运动的加速度及b 棒与轨道间的滑动摩擦力大小;(2)若从t =0开始,磁感应强度B 随时间t 按图丙中图像所示的规律变化,求从t =0到金属棒b 将要运动所经历的时间。
2.如图所示,平行导轨宽为L 、倾角为θ,处在垂直导轨平面向下的匀强磁场中,磁感强度为B ,CD 为磁场的边界,导轨左端接一电流传感器,CD 右边平滑连一足够长的导轨。
质量为m 、电阻为R 的导体棒ab 长也为L ,两端与导轨接触良好,自导轨上某处由静止滑下。
其余电阻不计,不计一切摩擦和空气阻力,重力加速度为g 。
(1)棒ab 上的感应电流方向如何?(2)棒ab 在磁场内下滑过程中,速度为v 时加速度为多大?(3)若全过程中电流传感器指示的最大电流为I 0。
求棒ab 相对于CD 能上升的最大高度。
3.如图,光滑水平桌面上等间距分布着4个条形匀强磁场,磁场方向竖直向下,磁感应强度B =1T ,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为d =0.5m 。
桌面上现有一边长l =0.1m 、质量m =0.2kg 、电阻R =0.1Ω的单匝正方形线框abcd ,在水平恒力F =0.3N 作用下由静止开始从左侧磁场边缘垂直进入磁场,在穿出第4个磁场区域过程中的某个位置开始做匀速直线运动,线框ab边始终平行于磁场边界,取g=10m/s2,不计空气阻力。
2024年高考物理专题04回归基础专题训练__磁场含解析
专题04 回来基础专题训练——磁场一、单项选择题1.如图1所示,两根长直导线m 、n 竖直插在光滑绝缘水平桌面上的小孔P 、Q 中,O 为P 、Q 连线的中点,连线上a 、b 两点关于O 点对称,导线中通有大小、方向均相同的电流I 。
下列说法正确的是( )图1A .O 点的磁感应强度为零B .a 、b 两点磁感应强度的大小B a >B bC .a 、b 两点的磁感应强度相同D .n 中电流所受安培力方向由P 指向Q【解析】选A 依据安培定则,m 在O 点产生的磁场方向垂直ab 连线向里,n 在O 点产生的磁场方向垂直ab 连线向外,依据对称性,磁感应强度大小相等,磁场矢量和等于0,选项A 对。
依据对称性,m 、n 在a 、b 两点产生的合磁场大小相等,但是方向不同,选项B 、C 错。
同向电流相互吸引,n 中电流所受安培力方向由Q 指向P ,选项D 错。
2.如图2所示,在xOy 坐标系的第一象限中有一半径为r =0.1 m 的圆形磁场区域,磁感应强度B =1 T ,方向垂直纸面对里,该区域同时与x 轴、y 轴相切,切点分别为C 、A 。
现有大量质量为1×10-18kg(重力不计),电量大小为2×10-10C ,速率均为2×107m/s 的带负电的粒子从A 处垂直磁场进入第一象限,速度方向与y 轴夹角为 θ,且0<θ<180°,则下列说法错误的是( )图2A .粒子的轨迹圆和磁场圆的半径相等B .这些粒子轨迹圆的圆心构成的圆和磁场圆的半径相等C .部分粒子的运动轨迹可以穿越坐标系进入其次象限D .粒子的轨迹可以覆盖整个磁场圆【解析】选C 依据Bqv =m v 2r得:r =0.1 m ,所以A 正确;由题意知,所以粒子的轨迹,相当于把半径r =0.1 m 的圆以A 点为中心顺时针转动,如图所示,所以粒子轨迹圆的圆心构成的圆的圆心在A 点,半径等于AB ,即与磁场圆的半径相等,且粒子的轨迹可以覆盖整个磁场圆,所以B 、D 正确;由图知,粒子离开磁场区域后进入第四象限做匀速直线运动,不行能进入其次象限,所以C 错误。
高考物理带电粒子在磁场中的运动解题技巧分析及练习题(含答案)含解析
高考物理带电粒子在磁场中的运动解题技巧分析及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()222113r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t =,212qE h t m =在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭3.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。
高考物理电磁学知识点之磁场基础测试题含解析(4)
高考物理电磁学知识点之磁场基础测试题含解析(4)一、选择题1.如图所示,地面附近某真空环境中存在着水平方向的匀强电场和匀强磁场,已知磁场方向垂直纸面向里,一个带正电的油滴,沿着一条与竖直方向成α角的直线MN运动,由此可以判断A.匀强电场方向一定是水平向左B.油滴沿直线一定做匀加速运动C.油滴可能是从N点运动到M点D.油滴一定是从N点运动到M点2.如图所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,此时台秤读数为N1,现在磁铁上方中心偏左位置固定一通电导线,电流方向如图,当加上电流后,台秤读数为N2,则以下说法正确的是()A.N1>N2,弹簧长度将变长B.N1>N2,弹簧长度将变短C.N1<N2,弹簧长度将变长D.N1<N2,弹簧长度将变短3.2019年我国研制出了世界上最大的紧凑型强流质子回旋加速器,该回旋加速器是我国目前自主研制的能量最高的质子回旋加速器。
如图所示为回旋加速器原理示意图,现将两个相同的回旋加速器置于相同的匀强磁场中,接入高频电源。
分别加速氘核和氦核,下列说法正确的是()A.它们在磁场中运动的周期相同B.它们的最大速度不相等C.两次所接高频电源的频率不相同D.仅增大高频电源的频率可增大粒子的最大动能.其核心部分是分别与高频交流电源两极相连接的两4.回旋加速器是加速带电粒子的装置个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A.减小磁场的磁感应强度B.增大匀强电场间的加速电压C.增大D形金属盒的半径D.减小狭缝间的距离5.如图所示,有abcd四个离子,它们带等量的同种电荷,质量不等.有m a=m b<m c=m d,以不等的速度v a<v b=v c<v d进入速度选择器后有两种离子从速度选择器中射出,进入B2磁场,由此可判定( )A.射向P1的是a离子B.射向P2的是b离子C.射到A1的是c离子D.射到A2的是d离子6.质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是()A.M带正电,N带负电B.M的速率大于N的速率C.洛伦磁力对M、N做正功D.M的运行时间大于N的运行时间7.为了降低潜艇噪音可用电磁推进器替代螺旋桨。
(新高考专用)2024届高考物理易错题真题分层训练——磁场
(新高考专用)2024届高考物理易错题真题分层训练——磁场易错点一:误认为洛伦兹力不做功,也不能改变电荷的运动状态,共分力也不做功1对洛伦兹力的理解特点(1)洛仑兹力的大小正比于的大小,方向垂直于的方向,随着(方向、大小)同时改变,具有被动性的特点(2)洛仑兹力的方向垂直于的方向,不做功,只改变的方向不改变的大小易错点二:带电粒子在磁场中运动的时间确定错误直线边界,粒子进出磁场具有对称性(如图所示)图a中粒子在磁场中运动的时间t==图b中粒子在磁场中运动的时间t=(1-)T=(1-)=图c中粒子在磁场中运动的时间t=T= 平行边界存在临界条件,图a中粒子在磁场中运动的时间t1=,t2==图b中粒子在磁场中运动的时间t=图c中粒子在磁场中运动的时间t=(1-)T=(1-)=图d 中粒子在磁场中运动的时间t=T=易错点三:混淆磁偏转和电偏转 带电粒子在组合场中运动分析思路1.带电粒子在组合场中运动的分析思路第1步:粒子按照时间顺序进入不同的区域可分成几个不同的阶段。
第2步:受力分析和运动分析,主要涉及两种典型运动,如第3步中表图所示。
第3步:用规律2.“电偏转”与“磁偏转”的比较垂直电场线进入匀强电场(不计重力)垂直磁感线进入匀强磁场(不计重力)受力情况电场力F E =qE ,其大小、方向不变,与速度v 无关,F E 是恒力洛伦兹力F B =qvB ,其大小不变,方向随v 而改变,F B 是变力轨迹抛物线圆或圆的一部分运动轨迹示例求解方法利用类平抛运动的规律求解:v x =v 0,x =v 0t ,v y =·t ,y =··t 2偏转角φ满足:tan φ==半径:r =周期:T =偏移距离y 和偏转角φ要结合圆的几何关系利用圆周运动规律讨论求解运动时间t =t =T =动能变化不变易错点四:不能正确分析带电粒子在磁场中的临界问题1.解题关键点(1)关注题目中的“恰好”“最大”“最高”“至少”等关键词语,作为解题的切入点.(2)关注涉及临界点条件的几个结论:①粒子刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切;②当速度一定时,弧长越长,圆心角越大,则粒子在有界磁场中运动的时间越长;③当速度变化时,圆心角越大,对应的运动时间越长.2.一般思维流程.【易错点提醒一】误认为洛伦兹力不做功,也不能改变电荷的运动状态;.误认为洛伦兹力不做功,所以洛伦兹力分力也不能做功。
2024年新高考物理二轮热点题型归纳:磁场的性质 带电粒子在磁场中的运动(解析版)
磁场的性质 带电粒子在磁场中的运动目录题型一磁场的叠加题型二磁场对通电导体作用及安培定则的综合问题题型三安培力作用下导体的平衡问题题型四带电粒子在有界匀强磁场中的运动题型一磁场的叠加【题型解码】对于多个电流在空间某点的合磁场方向,首先应用安培定则判断出各电流在该点的磁场方向(磁场方向与该点和电流连线垂直),然后应用平行四边形定则合成.1(2023上·山西吕梁·高三校考阶段练习)如图所示,现有两根通电长直导线分别固定在正方体ABCD -A B C D 的两条边BB 和BC 上且彼此绝缘,电流方向分别由B 流向B 、由B 流向C ,两通电导线中的电流大小相等,在A 点形成的磁场的磁感应强度大小为B 。
已知通电长直导线在周围空间某位置产生磁场的磁感应强度大小为B =kI r ,其中k 为常数,I 为电流大小,r 为该位置到长直导线的距离,则A 点的磁感应强度大小为()A.22BB.33BC.32BD.62B 【答案】C【详解】设正方体棱长为l ,通电导线中的电流大小为I ,两条边BB 和BC 上通电导线在A 点产生的感应强度大小均为B 0=kI l方向分别沿AD 方向和A A 方向,互相垂直。
则A 点磁感应强度大小为B=B20+B20=2B0=2k IlA 点的磁感应强度大小为2+k I l 2=62k I l=32BB =k I2l故选C。
2(2024·全国·高三专题练习)有两根长直导线a、b互相平行放置,如图所示为导线的截面图。
在图示的平面内,O点为两根导线连线的中点,M、N为两根导线附近的两点,它们在两导线连线的中垂线上,且与O点的距离相等。
若两导线中通有大小相等、方向垂直纸面向外的恒定电流I,则下列关于线段MN上各点的磁感应强度的说法正确的是()A.M点和N点的磁感应强度大小相等,方向相同B.M点和N点的磁感应强度大小不等,方向相反C.在线段MN上各点的磁感应强度都不可能为零D.在线段MN上只有一点的磁感应强度为零【答案】D【详解】AB.根据安培定则判断可知,两根通电导线产生的磁场方向均沿逆时针方向,M、N关于O 点对称,两根通电导线在M、N两点产生的磁感应强度大小相等,根据平行四边形定则进行合成可得,M点和N点的磁感应强度大小相等,M点磁场方向向下,N点磁场方向向上,故A、B错误。
高考物理专题 磁场、复合场练习及参考答案
高三物理磁场、带电粒子在磁场、复合场中的运动专题练习一、选择题。
本题共8小题。
(第1—5题在每小题给出的四个选项中,只有一项符合题目要求,第6—8题有的有多项符合题目要求。
)1、为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I 引起的。
在下列四个图中,正确表示安培假设中环形电流方向的是( )2、如图所示为水平放置的两根等高固定长直细导线的截面图,O 点是两导线间距离的中点,a 、b 是过O 点的竖直线上与O 点距离相等的两点,两导线中通有大小相等、方向相反的恒定电流 下列说法正确的是( ) A.O 点的磁感应强度为零B.O 点的磁感应强度方向竖直向下C.两导线之间存在相互吸引的安培力D.a 、b 两点的磁感应强度大小相等、方向相反3、如图所示,21q q 和为两带电粒子,其中q 1带正电,q 2带负电 某时刻,它们以相同的速度垂直进入同一磁场,此时所受洛伦兹力分别为F 1、F 2则( )A. F 1、F 2的方向均向右B.F 1、F 2的方向均向左C.F 1的方向向左,F 2的方向向右D.F 1的方向向右,F 2的方向向左4、如图所示,质量m =0.1kg 的AB 杆放在倾角030=θ的光滑轨道上,轨道间距L =0.2m ,电流I =0.5A 当加上垂直于杆AB 的某一方向的匀强磁场后,杆AB 处于静止状态,则所加磁场的磁感应强度不可能为(取2/10s m g =)( )A. 4TB. 5TC. 7TD. 10T5、平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。
一带电粒子的质量为m ,电荷量为q (q >0)。
粒子沿纸面以大小为v 的速度从PM 的某点向左上方射入磁场,速度与OM 成30°角。
已知粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。
高考回归复习—电磁学之带电粒子在磁场中运动求磁场面积模型 (word 含答案)
高考回归复习—电磁场之带电粒子在磁场中运动求磁场面积问题模型1.如图,xoy为平面直角坐标系,y>0的区域内有一个底边与x轴重合的等腰直角三角形,在该等腰直角三角形区域内存在着垂直于坐标平面向里的匀强磁场,y<0的区域内存在着沿y轴正方向的匀强电场。
一v沿x轴正方向运动,由质量为m、电荷量为+q(q >0)的带电粒子(不计重力)从电场中P(0,-h)点以速度v通过P点并重复上述运动。
求:Q(2h,0)点进入磁场,经磁场偏转后再次射人电场,恰能以同样的速度(1)电场强度的大小;(2)磁感应强度的大小;(3)粒子连续两次通过P点的时间间隔;(4)等腰三角形磁场区域的最小面积。
2.在如图所示的平面直角坐标系中存在一个半径R=0.2 m的圆形匀强磁场区域,磁感应强度B=1.0 T,方向垂直纸面向外,该磁场区域的右边缘与坐标原点O相切.y轴右侧存在电场强度大小为E=1.0×104N/C的匀强电场,方向沿y轴正方向,电场区域宽度L=0.1 m.现从坐标为(-0.2 m,-0.2 m)的P 点发射出质量m=2.0×10-9kg、带电荷量q=5.0×10-5C的带正电粒子,沿y轴正方向射入匀强磁场,速度大小v0=5.0×103m/s.重力不计.(1)求该带电粒子射出电场时的位置坐标;(2)为了使该带电粒子能从坐标为(0.1 m,-0.05 m)的点回到电场,可在紧邻电场的右侧一正方形区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和正方形区域的最小面积.3.电子对湮灭是指电子e-和正电子e+碰撞后湮灭,产生伽马射线的过程,电子对湮灭是正电子发射计算机断层扫描(PET)及正电子湮灭能谱学(PAS)的物理基础。
如图所示,在平面直角坐标系xOy上,P点在x 轴上,且OP=2L,Q点在负y轴上某处。
在第Ⅰ象限内有平行于y轴的匀强电场,在第Ⅰ象限内有一圆形区域,与x、y轴分别相切于A、C两点,OA=L,在第Ⅰ象限内有一未知的矩形区域(图中未画出),未知矩形区域和圆形区域内有完全相同的匀强磁场,磁场方向垂直于xOy平面向里。
高考物理电磁学知识点之磁场基础测试题附答案解析
A.粒子一定带负电
B.粒子的速度大小 v=B/E
C.若粒子速度大小改变,粒子将做曲线运动
D.若粒子速度大小改变,电场对粒子的作用力会发生改变 15.一回旋加速器当外加磁场一定时,可把质子加速到 v,它能把氚核加速到的速度为
()
A.v
B.2v
C. v
D. 2v
3
3
16.如图所示,空间中存在在相互垂直的匀强电场和匀强磁场,有一带电液滴在竖直面内
2.C
解析:C 【解析】
【详解】
粒子在回旋加速器中的最大半径为
D
形盒的半径,由
qυm B
m
υ2 R
,故最大动能为
Ekm
1 2
mυm2
q2B2R2 2m
A.由以上推导可知,增大磁感应强度可以增大最大动能,故 A 错误;
பைடு நூலகம்
B.增加加速电压对最大动能无影响,故 B 错误;
右两侧对称位置放置两个闭合金属圆环,铝环和铜环的形状、大小相同,已知铜的电阻率
较小,则合上开关 S 的瞬间( )
A.两个金属环都向左运动 B.两个金属环都向右运动 C.从左侧向右看,铝环中感应电流沿顺时针方向 D.铜环受到的安培力小于铝环受到的安培力 20.如图所示,完全相同的甲、乙两个环形电流同轴平行放置,甲的圆心为 O1,乙的圆心 为 O2,在两环圆心的连线上有 a、b、c 三点,其中 aO1=O1b=bO2=O2c,此时 a 点的磁 感应强度大小为 B1,b 点的磁感应强度大小为 B2.当把环形电流乙撤去后,c 点的磁感应 强度大小为
直 MN 且垂直磁场方向射入磁场,经 t1 时间从 b 点离开磁场.之后电子 2 也由 a 点沿图示
方向以相同速率垂直磁场方向射入磁场,经
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理专题04回归基础专题训练磁场含解析专题04 回归基础专题训练——磁场一、单项选择题1.如图1所示,两根长直导线m、n竖直插在光滑绝缘水平桌面上的小孔P、Q中,O为P、Q连线的中点,连线上a、b两点关于O点对称,导线中通有大小、方向均相同的电流I。
下列说法正确的是( )图1A.O点的磁感应强度为零B.a、b两点磁感应强度的大小B a>B bC.a、b两点的磁感应强度相同D.n中电流所受安培力方向由P指向Q【解析】选A 根据安培定则,m在O点产生的磁场方向垂直ab连线向里,n在O点产生的磁场方向垂直ab连线向外,根据对称性,磁感应强度大小相等,磁场矢量和等于0,选项A对。
根据对称性,m、n在a、b两点产生的合磁场大小相等,但是方向不同,选项B、C错。
同向电流相互吸引,n中电流所受安培力方向由Q指向P,选项D错。
2.如图2所示,在xOy坐标系的第一象限中有一半径为r=0.1 m的圆形磁场区域,磁感应强度B=1 T,方向垂直纸面向里,该区域同时与x轴、y轴相切,切点分别为C、A。
现有大量质量为1×10-18kg(重力不计),电量大小为2×10-10 C,速率均为2×107 m/s的带负电的粒子从A处垂直磁场进入第一象限,速度方向与y轴夹角为θ,且0<θ<180°,则下列说法错误的是( )图2A.粒子的轨迹圆和磁场圆的半径相等B.这些粒子轨迹圆的圆心构成的圆和磁场圆的半径相等C.部分粒子的运动轨迹可以穿越坐标系进入第二象限D.粒子的轨迹可以覆盖整个磁场圆【解析】选C 根据Bqv =m v 2r 得:r =0.1 m ,所以A 正确;由题意知,所以粒子的轨迹,相当于把半径r =0.1 m 的圆以A 点为中心顺时针转动,如图所示,所以粒子轨迹圆的圆心构成的圆的圆心在A 点,半径等于AB ,即与磁场圆的半径相等,且粒子的轨迹可以覆盖整个磁场圆,所以B 、D 正确;由图知,粒子离开磁场区域后进入第四象限做匀速直线运动,不可能进入第二象限,所以C 错误。
3.空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R ,磁场方向垂直于横截面。
一质量为m 、电荷量为q (q >0)的粒子以速率v 0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°。
不计重力,该磁场的磁感应强度大小为( )图3A.3mv 03qRB.mv 0qRC.mv 02qRD.3mv 0qR【解析】选A 根据粒子运动的轨迹,由几何关系可得,粒子运动的半径r =3R ,根据粒子受到的洛伦兹力提供向心力可得,qv 0B =m v 20r ,解得,B =3mv 03qR,选项A 正确。
4.如图4所示,无限长导线,均通以恒定电流I 。
直线部分和坐标轴接近重合,弯曲部分是以坐标原点O 为圆心的相同半径的一段圆弧,已知直线部分在原点O 处不形成磁场,则图5中O 处磁感应强度和图4中O 处磁感应强度相同的是( )图4图5【解析】选A 可以采用填补法,在题图中相当于一个顺时针方向的环形电流取其Ⅱ、Ⅳ象限的一半,在选项A中,显然Ⅱ、Ⅳ象限的电流产生的磁场相互抵消,Ⅰ、Ⅲ象限的仍然相当于一个顺时针方向的环形电流的一半,因此圆心O处的磁感应强度与题图中的相同。
在选项B中,则相当于是一个完整的顺时针方向的环形电流,圆心O处的磁感应强度与题图中的相比方向相同,大小则是2倍。
在选项C中,Ⅰ、Ⅲ象限的电流产生的磁场相互抵消,Ⅱ、Ⅳ象限的电流相当于一个逆时针方向的环形电流的一半,圆心O处的磁感应强度与题图中的相比大小相同,但方向相反。
在选项D中,Ⅱ、Ⅳ象限的电流产生的磁场相互抵消,Ⅰ、Ⅲ象限的电流相当于一个逆时针方向的环形电流的一半,圆心O处的磁感应强度与题图中的相比大小相同,但方向相反,故只有选项A正确。
5.如图6所示,有理想边界的匀强磁场方向垂直纸面向外,磁感应强度大小为B,某带电粒子的比荷(电荷量与质量之比)大小为k,由静止开始经电压为U的电场加速后,从O点垂直射入磁场,又从P点穿出磁场。
下列说法正确的是(不计粒子所受重力) ( )图6A.如果只增加U,粒子可以从dP之间某位置穿出磁场B.如果只减小B,粒子可以从ab边某位置穿出磁场C.如果既减小U又增加B,粒子可以从bc边某位置穿出磁场D.如果只增加k,粒子可以从dP之间某位置穿出磁场【解析】选D 设粒子被电场加速后的速度为v,在磁场中运动的半径为R,则电场加速过程,有qU=1 2mv2,在磁场中有qvB=mv2R,R=mvqB,联立得R=1B2mUq=1B2Uk。
如果只增大U,半径R增大,选项A错误;如果只减小B,半径R增大,粒子向下偏,不可能从ab边某位置穿出磁场,选项B错误;如果既减小U又增加B,半径R减小,粒子不可能从bc边某位置穿出磁场,选项C错误;如果只增加k,半径R减小,粒子可从dP 之间某位置穿出磁场,选项D 正确。
6.如图7所示,在圆形区域内,存在垂直纸面向外的匀强磁场, ab 是圆的一条直径。
一带电粒子从a 点射入磁场,速度大小为2v ,方向与ab 成30°时恰好从b 点飞出磁场,粒子在磁场中运动的时间为t ;若仅将速度大小改为v ,则粒子在磁场中运动的时间为(不计带电粒子所受重力)( )图7A .3t B.32t C.12t D .2t【解析】选D 当粒子的速度为2v 时,半径为r 1,由题意知,轨迹对应的圆心角为60°,所以运动的时间t =16T ,当速度为v 时,根据Bqv =m v 2r 得:r =mv Bq ,故半径r 2=12r 1,由几何关系知,轨迹的圆心角为120°,故时间t ′=13T =2t ,所以D 正确。
7.如图8所示为质谱仪测定带电粒子质量的装置的示意图。
速度选择器(也称滤速器)中场强E 的方向竖直向下,磁感应强度B 1的方向垂直纸面向里,分离器中磁感应强度B 2的方向垂直纸面向外。
在S 处有甲、乙、丙、丁四个一价正离子垂直于E 和B 1入射到速度选择器中,若m 甲=m 乙<m 丙=m 丁,v 甲<v 乙=v 丙<v 丁,在不计重力的情况下,则分别打在P 1、P 2、P 3、P 4四点的离子分别是( )图8A .甲、乙、丙、丁B .甲、丁、乙、丙C .丙、丁、乙、甲D .甲、乙、丁、丙【解析】选B 四种离子,只有两个离子通过速度选择器,只有速度满足v =E B,才能通过速度选择器。
所以通过速度选择器进入磁场的离子是乙和丙,根据qvB =m v 2R ,得R =mvqB,乙的质量小于丙的质量,所以乙的半径小于丙的半径,则乙打在P 3点,丙打在P 4点。
甲的速度小于乙的速度,即小于EB,洛伦兹力小于电场力,离子甲向下偏转,打在P 1点。
丁的速度大于乙的速度,即大于EB,洛伦兹力大于电场力,离子向上偏转,打在P 2点,故B 正确,A 、C 、D 错误。
8.图9为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B =2.0×10-3T ,在x 轴上距坐标原点L =0.50 m 的P 处为离子的入射口,在y 轴上安放接收器,现将一带正电荷的粒子以v =3.5×104m/s 的速率从P 处射入磁场,若粒子在y 轴上距坐标原点L =0.50 m 的M 处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m ,电量为q, 不计其重力。
则上述粒子的比荷q m是( )图9A .3.5×107C/kg B .4.9×107C/kg C .5.3×107 C/kgD .7×107C/kg【解析】选B 设粒子在磁场中的运动半径为r ,画出粒子的轨迹图如图所示,依题意MP 连线即为该粒子在磁场中做匀速圆周运动的直径, 由几何关系得r =22L ,由洛伦兹力提供粒子在磁场中做匀速圆周运动的向心力,可得qvB =mv 2r ,联立解得:q m=4.9×107C/kg ,故选项B 正确。
9.如图10所示,在边长为L 的正方形区域内有垂直于纸面向里的匀强磁场,有一带正电的电荷,从D 点以v 0的速度沿DB 方向射入磁场,恰好从A 点射出,已知电荷的质量为m ,带电量为q ,不计电荷的重力,则下列说法正确的是( )图10A .匀强磁场的磁感应强度为mv 0qLB .电荷在磁场中运动的时间为πLv 0C .若电荷从CD 边界射出,随着入射速度的减小,电荷在磁场中运动的时间会减小 D .若电荷的入射速度变为2v 0,则粒子会从AB 中点射出【解析】选A 由几何关系可知,粒子在磁场中做匀速圆周运动的圆心恰好在C 点,可知半径为L ,根据qvB =mv 2L 可知,磁感应强度大小B =mv 0qL ,A 正确;电荷在磁场中运动的路程s =πL2,因此运动的时间t=s v 0=πL2v 0,B 错误;若从CD 边界射出,则在磁场中运动的时间恰好为半个周期,而粒子在磁场中运动的周期T =2πm qB,与粒子运动的速度无关,因此若电荷从CD 边界射出,虽然入射速度减小,但电荷在磁场中运动的时间总是12T =πm qB ,保持不变,C 错误;若电荷的入射速度变为2v 0,则根据qvB =mv2L 可知轨道半径为2L ,则根据几何关系可以求出射出点距B 的距离为s =2L (1-cos 30°)=0.27L ,D 错误。
10.如图11所示,带异种电荷的粒子a 、b 以相同的动能同时从O 点射入宽度为d 的有界匀强磁场,两粒子的入射方向与磁场边界的夹角分别为30°和60°,且同时到达P 点,则( )图11A .粒子a 、b 的电量之比是2∶3B .粒子a 、b 的电量之比是8∶3C .粒子a 、b 的质量之比是4∶3D .粒子a 、b 的质量之比是3∶4【解析】选D 粒子在磁场中的运动轨迹如图所示:由几何关系可以看出,两粒子的轨道半径之比为R a ∶R b =1∶3,由牛顿第二定律得Bqv=m v 2R ,由题意可知12m a v 2a =12m b v 2b ,根据图示可得到两粒子运动轨迹的长度之比为s a ∶s b =2πR a 3∶πR b3=2∶3,因两粒子同时到达P 点,故可解得v a ∶v b =2∶3,联立后求得粒子质量比m a ∶m b =3∶4,电荷量之比为q a ∶q b =3∶2,由选项可以看出,只有选项D 正确,其它均错误。
二、多项选择题11.如图12所示为垂直纸面方向的圆形匀强磁场,半径为R 。
有甲、乙两个质量和电荷量大小都相同的异种带电粒子沿直径方向分别由A 、B 两点射入磁场,并且都从C 点射出磁场,C 点到AB 的距离为32R ,若带电粒子只受洛伦兹力,下列说法正确的是( )图12A .甲、乙速度之比2∶1B .甲、乙运动时间之比1∶2C .甲、乙路程之比3∶2D .甲、乙半径之比2∶1【解析】选BC 由几何知识知,C 点到AB 的距离为32R ,所以甲的偏转角为60°;乙的偏转角为120°。