九年级上册《相似形》单元测试
沪科版九年级上册数学 第22章 相似形 单元测试卷
沪科新版九年级上册数学《第22章相似形》单元测试卷一.选择题1.若=,则等于()A.B.C.D.2.已知=,则的值为()A.B.C.D.3.下列四组线段中,不构成比例线段的一组是()A.1cm,2cm,3cm,6cm B.2cm,3cm,4cm,6cmC.1cm,cm,cm,cm D.1cm,2cm,3cm,4cm4.下列各组图形一定相似的是()A.两个矩形B.两个等边三角形C.各有一角是80°的两个等腰三角形D.任意两个菱形5.已知,那么下列等式中,不成立的是()A.B.C.(y≠﹣4a)D.4x=3y6.如图,在△ABC中,D,E两点分别在BC,AC上,且AD平分∠BAC,若∠ABE=∠C,BE与AD相交于点F,则图中与△ABD相似的是()A.△ABC B.△ABF C.△BFD D.△AEF7.如图,在△ABC中,D为AB上一点,若AC2=AD•AB,则()A.△ADC∽△CBD B.△BDC∽△BCA C.△ADC∽△ACB D.无法判断8.若△ABC∽△ADE,AB=9,AC=6,AD=3,则EC的长是()A.2B.3C.4D.59.如图,顶角为36°的等腰三角形,其底边与腰之比等于k,这样的三角形称为黄金三角形,已知腰AB=1,△ABC为第一个黄金三角形,△BCD为第二个黄金三角形,△CDE 为第三个黄金三角形以此类推,第2020个黄金三角形的周长()A.k2018B.k2019C.D.k2019(2+k)10.如图,点E是矩形ABCD的边CD上一点,作AF⊥BE于F,连接DF,若AB=6,DF =BC,则CE的长度为()A.2B.C.3D.二.填空题11.如果x:y=1:2,那么=.12.如图,△ABC的两条中线AD,BE交于点G,EF∥BC交AD于点F.若FG=1,则AD=.13.已知△ABC的三边分别是5,6,7,则与它相似△A′B′C′的最短边为10,则△A′B′C′的周长是.14.若x:y=5:2,则(x+y):y的值是.15.已知线段AB,点P是线段AB的黄金分割点,AP>BP,设以AP为边的正方形的面积为S1,以PB、AB为边的矩形的面积为S2,则S1S2(填<、≤、=、>或≥).16.某课外活动小组的同学在研究某种植物标本(如图所示)时,测得叶片①最大宽度是8cm,最大长度是16cm;叶片②最大宽度是7cm,最大长度是14cm;叶片③最大宽度约为6.5cm,请你用所学数学知识估算叶片③的完整叶片的最大长度,结果约为cm.17.如图,∠B=∠D,请你添加一个条件,使得△ABC∽△ADE,这个条件可以是.18.如果=,那么=.19.在1:40000的地图上,村犀路的距离是7厘米,则实际距离是千米.20.如图,在△ABC中,P为AB上的一点,补充条件,能使△APC∽△ACB,这个条件可以是.(写出一个即可)三.解答题21.已知==,且2x+3y﹣z=18,求x,y,z的值.22.已知,求m的值.23.已知,求的值.24.如图,a∥b∥c,直线m,n与直线a,b,c分别相交于点A,B,C和点D,E,F.若AB=3,BC=5,DE=4,求EF的长.25.已知==2,求和的值.26.阅读理解:如图1,点C将线段AB分成两部分,若=,则点C为线段AB的黄金分割点.某研究学习小组,由黄金分割点联想到“黄金分割线”,而给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果=,那么称直线l为该图形的黄金分割线.问题解决:如图2,在△ABC中,若点D是AB的黄金分割点.(1)研究小组猜想:直线CD是△ABC的黄金分割线,你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组探究发现:过点C作直线交AB于E,过D作DF∥CE,交AC于F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.27.如图1,将A4纸2次折叠,发现第一次的折痕与A4纸较长的边重合,如图2,将1张A4纸对折,使其较长的边一分为二,沿折痕剪开,可得2张A5纸.(1)A4纸较长边与较短边的比为;(2)A4纸与A5纸是否为相似图形?请说明理由.参考答案与试题解析一.选择题1.解:∵=,∴a=b,则==.故选:A.2.解:由=,得==.故选:D.3.解:A、1:2=3:6,即1cm,2cm,3cm,6cm成比例;B、2:3=4:6,即2cm,3cm,4cm,6cm成比例;C、1:=:,即1cm,cm,cm,cm成比例;D、四条线段中,任意两条的比都不相等,因而不成比例.故选:D.4.解:两个矩形对应边的比不一定相等,故不一定相似;两个等边三角形相似对应边的比相等,对应角相等,一定相似;各有一角是80°的两个等腰三角形对应角不一定相等,故不一定相似;任意两个菱形对应角不一定相等,故不一定相似;故选:B.5.解:A、∵,∴=,此选项正确,不合题意;B、∵,∴=﹣,此选项错误,符合题意;C、∵,∴=,此选项正确,不合题意;D、∵,∴4x=3y,此选项正确,不合题意;故选:B.6.解:在△ABE与△ACB中,∠ABE=∠C,∠BAE=∠CAB,∴△ABE∽△ACB,∴∠AEB=∠ABC,∵AD平分∠BAC,∴∠BAD=∠EAF,∴△ABD∽△AEF.故选:D.7.解:∵AC2=AD•AB,∴,∵∠A=∠A,且∠A为AD、AC和AB、AC的夹角,∴△ADC∽△ACB.故选:C.8.解:设EC=x,∵AC=6,∴AE=6﹣x,∵△ABC∽△ADE,∴,∴,解得:x=4,故选:C.9.解:∵AB=AC=1,∴△ABC的周长为2+k;△BCD的周长为k+k+k2=k(2+k);△CDE的周长为k2+k2+k3=k2(2+k);依此类推,第n个黄金三角形的周长为k n﹣1(2+k),∴第2020个黄金三角形的周长为k2019(2+k).故选:D.10.解:过D作DH⊥AF于点H,延长DH与AB相交于点G,∵四边形ABCD为矩形,∴AD=BC,∵DF=BC,∴DA=DF,∴AH=FH,∵AF⊥BE,∴DG∥BE,∴AG=BG=,∵矩形ABCD中,AB=DC=6,AB∥DC,∴四边形BEDG为平行四边形,∴DE=BG=3,∴CE=CD﹣DE=6﹣3=3.故选:C.二.填空题11.解:+1=+1,即=.故答案为:.12.解:∵△ABC的两条中线AD,BE交于点G,∴BD=CD,AE=CE,∵EF∥CD,∴==1,即AF=FD,∴EF为△ADC的中位线,∴EF=CD,∴EF=BD,∵EF∥BD,∴==,∴DG=2FG=2,∴FD=2+1=3,∴AD=2FG=6.故答案为6.13.解:∵△ABC∽△A′B′C′,△ABC的三边分别是5,6,7,△A′B′C′的最短边为10,∴相似比是:=,∴△A′B′C′的另外两条边是6×2=12,7×2=14,∴△A′B′C′的周长是:10+12+14=36,故答案为:36.14.解:由合比性质,得==,故答案为:.15.解:根据黄金分割的概念得:AP:AB=PB:AP,即AP2=PB•AB,则S1:S2=AP2:(PB•AB)=1,即S1=S2.故答案为:=.16.解:根据叶片①②的最大长度和宽度,可得出这种植物的叶片的最大宽度:最大长度=1:2.由此可得出完整的叶片③的最大长度应是6.5×2=13cm.故答案为:13.17.解:∵∠B=∠D,∴添加∠C=∠E或∠BAC=∠DAE或∠BAD=∠CAE或=,可证△ABC∽△ADE.故答案为:∠C=∠E或∠BAC=∠DAE或∠BAD=∠CAE或=.18.解:∵=,则x=y,∴===.故答案为:.19.解:因为实际距离=图上距离÷比例尺,则:7÷=280000(厘米)=2800(米)=2.8千米;答:这两地之间的实际距离是2.8千米.故答案为:2.8.20.解:∵∠PAC=∠CAB,∴当∠ACP=∠B时,△ACP∽△APC,故答案为:∠ACP=∠B(答案不唯一)三.解答题21.解:由==,得y=,z=2x.将y=,z=2x代入2x+3y﹣z=1中,得2x+﹣2x=18.解得x=4,y==6,z=2x=8.22.解:由可知:x+y=mz,y+z=mx,z+x=my.这几式相加可得:2(x+y+z)=m(x+y+z),当x+y+z≠0时,有m=2,当x+y+z=0时,有x+y=﹣z,y+z=﹣x,x+z=﹣y,m=﹣1.故m=2或﹣1.23.解:设===k,所以,a=3k,b=4k,c=5k,则==.24.解:∵a∥b∥c,∴,即,解得:EF=.25.解:因为==2,可得:a =2b ,c =2d , 所以=,=.26.解:(1)直线CD 是△ABC 的黄金分割线.理由如下:∵点D 是AB 的黄金分割点, ∴=, ∵=,=, ∴=,∴直线CD 是△ABC 的黄金分割线;(2)∵三角形的中线把AB 分成相等的两条线段,即AD =BD , ∴=,==1,∴三角形的中线不是该三角形的黄金分割线;(3)∵DF ∥CE ,∴S △FDE =S △FDC ,S △DEC =S △FEC ,∴S △AEF =S △ADC ,S 四边形BEFC =S △BDC , ∵=, ∴=,∴直线EF 是△ABC 的黄金分割线.27.解:(1)如图1,由折叠过程可以看到:第一次折叠,A 与D 重合,四边形ABDC 为正方形,折痕BC 为对角线,由勾股定理可得BC =AB ;第二次折叠,第一次的折痕与A 4纸较长的边重合,即BC 与较长边重合.所以,较长边=AB . ∴A 4纸较长边与较短边的比为:.故答案为:.(2)A4纸与A5纸是相似图形.理由:∵A4纸较长边与较短边的比为:,∴设A4纸较短边的长为a,则较长边为a.∵由图2可知:A5纸的长边与A4纸的短边重合,短边等于A4纸的长边的一半,∴A5纸的长边为a,短边为.∴A5纸的长边与短边的比为:=.∴A4纸较长边与较短边的比=A5纸的长边与短边的比.又∵A4纸与A5纸的四个角均为直角,∴A4纸与A5纸相似.。
九年级数学相似三角形单元测试的题目及答案详解
九年级数学相似单元测试一.选择题(每小题3分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A.1250km B.125km C. 12.5km D.1.25km 2.已知0432c b a ,则c b a的值为( )A.54B.45C.2D.213.已知⊿ABC 的三边长分别为2,6,2,⊿A ′B ′C ′的两边长分别是1和3,如果⊿ABC 与⊿A ′B ′C ′相似,那么⊿A ′B ′C ′的第三边长应该是( )A.2B.22C.26D.334.在相同时刻,物高与影长成正比。
如果高为 1.5米的标杆影长为 2.5米,那么影长为30米的旗杆的高为( ) A 20米 B 18米 C 16米 D 15米5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使⊿ABC ∽⊿CAD, 只要CD 等于( ) A.cb2B.ab2C.cabD.ca26.一个钢筋三角架三长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有( ) A.一种 B.两种 C.三种 D.四种7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( ) A 原图形的外部 B 原图形的内部 C 原图形的边上 D 任意位置8、如图,□ABCD 中,EF ∥AB ,DE ∶EA = 2∶3,EF = 4,则CD 的长()A .163B .8C .10D .169.已知a 、b 、c 为非零实数,设k=c ba bca a cb ,则k 的值为()A .2B .-1C .2或-1D .110、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ABC的边BC 上,△ABC 中边BC=60m ,高AD=30m ,则水池的边长应为( ) A 10m B 20m C 30m D 40m二.填空题(每小题3分,共30分)11、已知43yx,则._____yy x12、.已知点C 是线段AB 的黄金分割点,且AC>BC,则AC ∶AB= . 13、.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .14、如图,⊿ABC中,D,E分别是AB,AC上的点(DE BC),当或或时,⊿ADE与⊿ABC相似.15、在△ABC中,∠B=25°,AD是BC边上的高,并且2·,则∠BCA的度数为____________。
沪科版九年级数学上册《第二十二章相似形》单元测试卷-带参考答案
沪科版九年级数学上册《第二十二章相似形》单元测试卷-带参考答案一、单选题1.已知三个数1,2,4,若添一个数使得四个数成比例,这个数可以是( )A .8B .8-C .3D .3-2.已知35x y =,则x x y+的值为( ) A .25 B .38C .32 D .233.已知2a =3b (a≠0,b≠0),那么下列变形中错误的是( )A .23b a = B .32a b = C .32a b= D .b :a =2:34.若x 是3和6的比例中项,则x 的值为( )A .32B .32-C .23±D .32±5.如图,在△ABC 中,DE△BC ,AD =5,AB =12,AE =3,则EC 的长是( )A .365B .215C .20D .156.已知点P 是线段MN 的黄金分割点,MP >NP ,且MP=51)cm ,则NP 等于( )A .2cmB .(35cmC .5﹣1)cmD .5+1)cm7.如图,直线 123l //l //l ,一等腰 Rt ABC 的三个顶点 A 、 B 、 C 分别在直线 1l 、 2l 和 3l上, ACB 90∠=︒ , AC 交 2l 于点 D. 若 1l 与 2l 的距离为 1 , 1l 与 3l 的距离为 4 ,则ABBD的值是( )A 2B 34C 42D 528.如图,AD△BE△CF ,直线l 1、l 2这与三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB=1,BC=3,DE=2,则EF 的长为( )A .4B .5C .6D .89.如图,△ABC 中,AD 是中线,BC =8,△B =△DAC ,则线段AC 的长为( )A .4B .42C .6D .4 310.下列各组数中,能成比例的是( )A .3,4,5,6B .-1,-2, 2,4C .-3,1,3,0D .-1,2,-3,4二、填空题11.如图,已知AB CD EF ,若632AC CE DF ===,,,则BD 的长为 .12.如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是 .13.如图,在等腰直角△ABC 中,AB=4,点D 在边AC 上一点且AD=1,点E 是AB 边上一点,连接DE ,以线段DE 为直角边作等腰直角△DEF( D 、E 、F 三点依次呈逆时针方向),当点F 恰好落在BC 边上时,则AE 的长是 .三、解答题14.已知:如图,在△ABC 中,△ACB =90°,CD △AB ,垂足为D ,AD =3,BD =6,求CD 的长.15.如图,在矩形ABCD 中,E 是BC 的中点,DF△AE ,垂足为F .(1)求证:△ABE△△DFA . (2)若AB=6,BC=4,求DF 的长.16.在△ABC 中,点D 、E 分别边AB 、AC 上的点,若AD =2,DB =7,AE =3,EC =3,求DE :BC的值.17.如图,四边形ABCD 和四边形EFGH 相似,求△α、△β 的大小和EH 的长度.四、综合题18.在矩形 ABCD 中,点 O 是对角线 AC 、 BD 的交点,直角 EPF ∠ 的顶点 P 与 O 重合, OE 、 OF 分别与 AB 、 BC 边相交于 E 、 F ,连接 EF , BC k AB =⋅ ( k 为常数).(1)发现问题:如图1,若 1k = ,猜想:OEOF= ; (2)类比探究:如图2, 1k ≠ 探究线段 OE , OF 之间的数量关系,并说明理由;(3)拓展运用:如图3,在(2)的条件下,若 FO FC = , 2k =和 6OD =,求 EF 的长.19.如图,点C 、D 在线段AB 上,△PCD 是等边三角形,且CD 2=AD •BC .(1)求证:△APD △△PBC ; (2)求△APB 的度数.20.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,在四边形 ABCD 中 80ABC ∠=︒ , 140ADC ∠=︒ 对角线 BD 平分ABC ∠ .求证: BD 是四边形 ABCD 的“相似对角线”;(2)如图2,已知 FH 是四边形 EFGH 的“相似对角线” 30EFH HFG ∠=∠=︒ .连接EG ,若 EFG ∆ 的面积为 3,求 FH 的长.21.(教材呈现)下图是华师版九年级上册数学教材第78页的部分内容.例2 如图:在ABC 中,D 、E 分别是边BC 、AB 的中点, AD 、CE 相交于点G .求证:13GE GD CE AD ==. 证明:连接ED .(1)请根据教材提示,结合图①,写出完整的证明过程.(2)(结论应用)如图②,在ABC 中,D 、F 分别是边BC 、AB 的中点,AD 、CF 相交于点G ,GE AC 交BC 于点E ,GH AB 交BC 于点H ,则EGH 与ABC 的面积的比值为 .答案解析部分1.【答案】A【解析】【解答】解:设添加的数是x根据题意得 124x =:: 即24=1x ⨯⨯ 解得:=8x 故答案为:A .【分析】如果两个数的比值与另两个数的比值相等 就说这四个数成比例 据此解答即可.2.【答案】B【解析】【解答】解:∵35x y =∴设x=3k y=5k∴33358x k x y k k ==++故答案为:B .【分析】根据35x y = 设x=3k y=5k 再将x 、y 的值代入x x y+计算即可。
九年级数学相似三角形单元测试题(卷)和答案
九年级数学 相似 单元测试一.选择题(每小题3分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A.1250km B.125km C. 12.5km D.1.25km 2.已知0432≠==c b a ,则cb a +的值为( )A.54B.45C.2D.213.已知⊿ABC 的三边长分别为2,6,2,⊿A ′B ′C ′的两边长分别是1和3,如果⊿ABC 与⊿A ′B ′C ′相似,那么⊿A ′B ′C ′的第三边长应该是( )A.2B.22C.26D.334.在相同时刻,物高与影长成正比。
如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为 ( ) A 20米 B 18米 C 16米 D 15米 5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使⊿ABC ∽⊿CAD, 只要CD 等于 ( )A.cb 2B.ab 2C.cabD.ca 2 6.一个钢筋三角架三 长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ( ) A.一种 B.两种 C.三种 D.四种7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( ) A 原图形的外部 B 原图形的内部 C 原图形的边上 D 任意位置 8、如图,□ABCD 中,EF ∥AB ,DE ∶EA = 2∶3,EF = 4,则CD 的长( )A .163B .8C .10D .169.已知a 、b 、c 为非零实数,设k=cba b c a a c b +=+=+,则k 的值为() A .2 B .-1 C .2或-1 D .110、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ABC的边BC 上,△ABC 中边BC=60m ,高AD=30m ,则水池的边长应为( ) A 10m B 20m C 30m D 40m 二.填空题(每小题3分,共30分) 11、已知43=y x ,则._____=-yy x12、.已知点C 是线段AB 的黄金分割点,且AC>BC,则AC ∶AB= .13、.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .14、如图,⊿ABC中,D,E分别是AB,AC上的点(DE BC),当或或时,⊿ADE与⊿ABC相似.15、在△ABC中,∠B=25°,AD是BC边上的高,并且AD BD DC2 ·,则∠BCA的度数为____________。
沪科版九年级数学上册试题 第22章《相似形》单元测试卷(含答案详解)
第22章《相似形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P 是线段AB 上一点(AP >BP ),若满足,则称点P 是AB 的黄金分割点.黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x 米时恰好站在舞台的黄金分割点上,则x 满足的方程是( )A .(20﹣x )2=20xB .x 2=20(20﹣x )C .x (20﹣x )=202D .以上都不对2.如图,点D ,E ,F 分别在的边上,,,,点M 是的中点,连接并延长交于点N ,则的值是( )A .B .C .D .3.将含有的三角板按如图所示放置,点在直线上,其中,分别过点,作直线的平行线,,点到直线,的距离分别为,,则的值为( )BP APAP AB=ABC V 13AD BD =DE BC ∥EF AB ∥EF BM AC ENAC32029161730︒ABC A DE 15BAD ∠=︒B C DE FG HIB DE HI 1h 2h 12h hA .1 BCD4.如图,点D 是△ABC 中AB 边上靠近A 点的四等分点,即4AD =AB ,连接CD ,F 是AC 上一点,连接BF 与CD 交于点E ,点E 恰好是CD 的中点,若S △ABC =8,则四边形ADEF 的面积是( )A .4B .C .2D .5.如图,在边长为的小正方形组成的网格中,建立平面直角坐标系,的三个顶点均在格点(网格线的交点)上.以原点为位似中心,画使它与的相似比为,则点的对应点的坐标是( )A .B .C .或D .或6.如图,已知、,与相交于点,作于点,点是的中点,于点,交于点,若,,则值为( )11-1181171ABC V O 111A B C △ABC V 2B 1B ()42,()42--,()42,()42--,()42,()42,-AB BC ⊥DC BC ⊥AC BD O OM BC ⊥M E BD EF BC ⊥G AC F 4AB =6CD =OM EF -A.B .C .D .7.如图,在平面直角坐标系中,为原点,为平面内一动点,,连接,点是线段上的一点,且满足.当线段取最大值时,点的坐标是( )A .B .C .D .8.如图,四边形是矩形,平分,,、的延长线交于点,连接,连接交于点.下列结论错误的是()A .图中共有三个等腰直角三角形B .C .D .9.如图,在平面直角坐标系中,点,点B 是线段上任意一点,在射线上取一点C ,使,在射线上取一点D ,使.所在直线的关系式为,点F 、G分别为线段的中点,则的最小值是()751253525O OA OB ==C 32BC =AC M AC :1:2CM MA =OM M36,55⎛⎫ ⎪⎝⎭612,55⎛⎫ ⎪⎝⎭ABCD CE BCD ∠AE CE ⊥EA CB F DE BD CE G DGC EBC∠=∠AB AD CG CE⋅=⋅∽CDG CEBV V ()E OE OA OB BC =BC BD BE =OA 12y x =OC DE 、FGABC .D .4.810.如图所示,正方形由四个全等的直角三角形和一个小正方形组成,且内接于正方形,连接,.已知正方形与正方形面积之比为,若,则( )A BCD .二、填空题(本大题共8小题,每小题4分,共32分)11.已知,且,则 .12.在中,M ,N 分别是BC ,AC 边上一点,连接AM ,BN 交于点P ,若,,则 .13.正方形中,E ,F 分别是,上的点,连结交对角线于点G ,若恰好平分,,则的值为 .ABCD FGHI DE BE CE>ABCD FGHI 59DE CH ∥BECE=32::3:5:7a b c =10a b c -+=a b c ++=ABC V :2:3BM CM =:1:4AN CN =:AP MP =ABCD AD DC EF BD BE AEF ∠413DG GB =DE AE14.宽与长的比等于黄金比的矩形称为黄金矩形.古希腊很多矩形建筑中宽与长的比都等于黄金比,如图,矩形ABCD 为黄金矩形,AB <AD ,以AB 为边在矩形ABCD 内部作正方形ABEF ,若AD =1,则DF = .15.如图,矩形的两条对角线相交于点O ,,垂足为E ,F 是的中点,连接交于点P,那么.16.如图,中,,,,若正方形的顶点在上,顶点、都在上,射线交边于点,则长为 .17.如图:等腰直角三角形中,E 为边上一点,.将沿着翻折得到线段,连接,若.ABCD AC BD ,OE AB ⊥OC EF OB OPPB=ABC V 90ACB ∠=︒2BC =4AC =DEFC D AB F G AC AF BC H CH ABC BC 3BE CE =AB AE AD CD AB =CD =18.如图,在矩形中,,,点在直线上,从点出发向右运动,速度为每秒,点在直线上,从点出发向右运动,速度为每秒,相交于点,则的最小值为 .三、解答题19.(8分)如图,,于点D ,M 是的中点,交于点P ,.若,求的长.ABCD 5cm AB =6cm BC =E AD A 0.5cm F BC B 2cm BE AF 、G BG CG +cm AB AC =AD BC ⊥AD CM AB DN CP ∥6cm AB =PN20.(8分)如图,四边形ABCD 中,AB=AC=AD ,AC 平分∠BAD ,点P 是AC 延长线上一点,且PD ⊥AD .(1)证明:∠BDC=∠PDC ;(2)若AC 与BD 相交于点E ,AB=1,CE :CP=2:3,求AE 的长.21.(10分)如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.若铁塔底座宽CD=12m ,塔影长 m ,小明和小华的身高都是1.6m ,同一时刻小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,求塔高AB.18DE22.(10分)如图1,在,,,D 为上一点,连接,分别过点A 、B 作于点N ,于点M .(1)求证:;(2)若点D 满足,求的长;(3)如图2,若点E 为中点,连接,求证:.图1 图2Rt ABC △90ACB ∠=︒1AC BC ==AB CD AN CD ⊥BM CD ⊥ACN CBM V V ≌21BDAD =∶∶DM AB EM 45EMN ∠=︒23.(10分)如图,在正方形中,点是对角线上一点,的延长线交于点,交的延长线于点,连接.(1)求证:;(2)求证:;(3)若的长.ABCD G BD CG AB E DA F AG CG AG =2AB BE DF =⋅GE =GC =EF24.(12分)如图,在平面直角坐标系中,点A 在轴的正半轴上,点在轴的负半轴上,点在轴的正半轴上,且,线段、的长是一元二次方程的两个根,且.(1)求点A 、点的坐标;(2)求点的坐标;(3)若直线过点A 交线段于点,且,求点坐标;(4)在平面内是否存在一点,使得以为直角顶点的与相似,若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.x B x C y 90ACB ∠=︒OB OA 213360x x -+=OB OA <B C l BC D :1:2ABD ADC S S =△△D P P APC △ABC V P答案一、单选题1.A【分析】点P 是AB 的黄金分割点,且PB <PA ,PB =x ,则PA =20−x ,则,即可求解.解:由题意知,点P 是AB 的黄金分割点,且PB <PA ,PB =x ,则PA =20−x ,∴,∴(20−x )2=20x ,故选:A .2.A【分析】过点F 作交AC 于点G,可证.同理,可得,,;由,得,于是;设,则,,,从而得.解:过点F 作交AC 于点G,∴∴.BP AP AP AB=BP AP AP AB =FG BN ∥EN GN =13AE AD EC DB ==3EC AE =13AE BF EC FC ==FG BN ∥13BF NG FC GC ==3GC NG =EN NG a ==3=GC a 5EC a =203AC a =320EN AC =FG BN ∥1EN EM GN FM==EN GN =∵,∴.∴.∵,∴.∵,∴.∴.设,则,∴∴.∴.∴.∴.故选:A3.B【分析】设交于点,由,得三角形BCM 为等腰直角三角形,再由含30度角直角三角形三边长比及等腰直角三角形的边长比,设BC 为x ,可得MA 为,再由平行线分线段成比例求解.解:设交于点,∵,,DE BC ∥13AE AD EC DB ==3EC AE =EF AB ∥13AE BF EC FC ==FG BN ∥13BF NG FC GC ==3GC NG =EN NG a ==3=GC a 5EC EN NG GC a=++=35EC AE a ==53AE a =520+533AC AE EC a a a =+==320203EN a AC a ==CE FG M 45DAC BAD CAB ∠=∠+∠=︒MA x =-CE FG M 30CAB ∠=︒15BAD ∠=︒∴,∵,∴,三角形为等腰直角三角形,在Rt △ABC 中,设长为,则,∵,∴,∴,∵,∴,故选:B .4.D【分析】过D 点作DG∥EF ,连接AE ,,GF =FC ,再计算△ADE 和△AEF 的面积即可.解:过D 点作DG ∥EF ,连接AE ,∵点E 恰好是CD 的中点,4AD =AB ,∴,GF =FC ,设AG =k ,则AF =4k ,GF =3k ,FC =3k ,∴,∵,S △ABC =8,∴,∴,∵,∴,∴=.45DAC BAD CAB ∠=∠+∠=︒//FG DE 45CMB DAC ∠=∠=︒BCM BC x CM BC x ==30CAB ∠=︒CA ==MA x =-////HI FG DE 121h MA h CM ===14AG AD AF AB ==14AG AD AF AB ==43AF FC =14ACD ABC S AD S AB ∆∆==124ACD ABC S S ∆∆==112ADE AEC ACD S S S ∆∆∆===43AEFCEF S AF S CF ∆∆==4477AEF AEC S S ∆∆==417ADE AEF ADEF S S S ∆∆=+=+四边形117故选:D .5.C【分析】直接利用位似图形的性质画出三角形顶点的对应点,再顺次连接即可画出图形,根据点的位置写出坐标即可.解:如图所示,当和在原点同侧时,∵与的相似比为2,,∴,即;如图所示,当和在原点两侧时,∵与的相似比为2,,∴,即;综上所述,或,故选C.1B ABC V 111A B C △111A B C △ABC V ()2,1B ()122,12B ⨯⨯()142B ,ABC V 111A B C △111A B C △ABC V ()2,1B ()122,12B -⨯-⨯()142B --,()142B --,()142B ,6.A【分析】证明,,,,求出,求出,,得出即可得出答案.解:、,,∴,,,∴,,∴,,∴,,∴,点是的中点,,,,∴,,∴,∴,故选:.7.DCOM CAB △∽△BOM BDC V V ∽OM CM AB BC =OM BM DC BC =125OM =132EG CD ==122FG AB ==1EF EG FG =-=AB BC ⊥ DC BC ⊥OM BC ⊥OM AB CD ∥∥COM CAB ∴V V ∽BOM BDC V V ∽OM CM AB BC =OM BM DC BC =4OM CM BC =6OM BM BC=125OM =EF BC ⊥ EG AB CD ∥∥ E BD BE DE ∴=BG CG ∴=CF AF ∴=132EG CD ==122FG AB ==1EF EG FG =-=75OM EF -=A【分析】由题意可得点在以点为圆心,为半径的上,在轴的负半轴上取点,连接,分别过、作,,垂足为、,先证,得,从而当取得最大值时,取得最大值,结合图形可知当,,三点共线,且点在线段上时,取得最大值,然后分别证,,利用相似三角形的性质即可求解.解:∵点为平面内一动点,,∴点在以点为圆心,为半径的上,在轴的负半轴上取点,连接,分别过、作,,垂足为、,∵∴∴,∵,∴,∵,∴,∴,∴当取得最大值时,取得最大值,结合图形可知当,,三点共线,且点在线段上时,取得最大值,C B 32OB x 0D ⎛⎫ ⎪ ⎪⎝⎭BD C M CF OA ⊥ME OA ⊥F E OAM DAC V V ∽23OM OA CD AD ==CD OM D B C B DC CD BDO CDF V V ∽AEM AFC V V ∽C 32BC =C B 32OB x 0D ⎛⎫ ⎪ ⎪⎝⎭BD C M CF OA ⊥ME OA ⊥F E OA OB ==AD OD OA =+=23OA AD =:1:2CM MA =23OA CM AD AC==OAM DAC ∠∠=OAM DAC V V ∽23OM OA CD AD ==CD OM D B C B DC CD∵∴,∴,∵,∴,∵轴轴,,∴,∵,∴,∴,解得同理可得,,∴,解得∴∴当线段取最大值时,点的坐标是,故选D .8.A【分析】根据矩形的性质以及角平分线的性质得,是等腰直角三角形,,是等腰直角三角形,由证明,可得,,则,是等腰直角三角形,由,可得,由三角形外角的性质可得,证明,列比例式并结合等量代换可得.OAOB ==OD =BD =152==9CD BC BD =+=23OM CD =6OM =y x ⊥CF OA ⊥90DOB DFC ∠∠==︒BDO CDF ∠∠=BDO CDF V V ∽OB BD CF CD =1529=CF =AEM AFC V V ∽23ME AM CF AC ==23=ME =OE ===OM M 45DCE BCE ∠=∠=︒CEF △45F DCE ∠=∠=︒ABF △SAS (SAS)≌EBF EDC V V FEB CED ∠=∠BE ED =90FEB CEB CEB CED ∠+∠=∠+∠=︒BED V EBF EDC △≌△FEB CED ∠=∠DGC EBC ∠=∠∽CDG CEB V V AB AD CG CE ⋅=⋅解:如图:四边形是矩形,,,,平分,,,,是等腰直角三角形,,,是等腰直角三角形,,,,,,,,是等腰直角三角形,是等腰直角三角形,故A 错误;,,,,故B 正确;,,故D正确;ABCD AB CD ∴=90ABC BCD ADC ∠=∠=∠=︒90ABF ∴∠=︒CE BCD ∠45DCE BCE ∴∠=∠=︒AE CE ⊥ 90FEC ∴∠=︒CEF ∴V EF CE ∴=45F ∠=︒ABF ∴V BF AB CD ∴==45F DCE ∠=∠=︒ (SAS)≌EBF EDC ∴V △FEB CED ∴∠=∠BE ED =90FEB CEB CEB CED ∴∠+∠=∠+∠=︒BE ED = BED ∴V DCH V 45EBD ∴∠=︒45DGC GCB CBG CBG ∠=∠+∠=︒+∠ 45EBC EBD CBG CBG ∠=∠+∠=︒+∠DGC EBC ∴∠=∠DCG ECB ∠=∠ ∽CDG CEB ∴V V,,,,,故C 正确.故选:A .9.A【分析】如图所示,连接,设射线交射线于H ,过点H 作于M ,连接,先根据三线合一定理得到,,进而证明四边形是矩形,得到,,故当点B 与点M 重合时,最小,即最小,最小值为,设,则,求出,利用相似三角形的性质求出(舍去),则的最小值为.解:如图所示,连接,设射线交射线于H ,过点H 作于M ,连接,∵,,点F 、G 分别为线段的中点,∴,,∵,∴,即,∴四边形是矩形,∴,,∴当最小时,最小,∴当点B 与点M 重合时,最小,即最小,最小值为,∵点H 在直线上,∴可设,∴,∵,CD CG CE CB∴=CD AB = BC AD =AB CG CE AD∴=AB AD CG CE ∴⋅=⋅BF BG ,ED OA HM OE ⊥BH BF OC BG DE ⊥,⊥OBF CBF DBG EBG ==∠∠,∠∠BFHG FG BH =90OHE ∠=︒BH FG HM ()2H m m ,2OM m HM m ==,OE =OMH HME △∽△m =0m =FG BF BG ,ED OA HM OE ⊥BH OB BC =BD BE =OC DE 、BF OC BG DE ⊥,⊥OBF CBF DBG EBG ==∠∠,∠∠180OBF CBF DBG EBG +++=︒∠∠∠∠90CBF DBG +=︒∠∠90FBG ∠=︒BFHG FG BH =90OHE ∠=︒BH FG BH FG HM 12y x =()2H m m ,2OM m HM m ==,()E∴∵,∴,又∵,∴,∴,∴∴(舍去),经检验,∴,故选A .10.A【分析】设,,则,根据正方形与正方形面积之比为,得到,求出,作交于点M ,作交于点P ,证明出,设,则然后利用相似三角形的性质得到,然后解方程求解即可.解:由题意可得,∴设,,则,∵,∴,OE =90MEH HOE MHO MOH +=︒=+∠∠∠∠MHO MEH =∠OMH HME =∠∠OMH HME △∽△OM HM HM ME=2m m =m =0m =m =FG CI DH a ==CH b =IH a b =+ABCD FGHI 59()22259a b a b +=+2BI CH a ==BM GH ⊥GH NE BM ⊥BM BPE ENC ∽V V CN m =IN BP a m ==+a m a a m +=BIC CHD ≌V V CI DH a ==CH b =IH a b =+90H ∠=︒22222CD CH DH a b =+=+∵正方形与正方形面积之比为,∴,即,∴整理得,∴,解得或(舍去),∴,∴,如图所示,作交于点M ,作交于点P ,由题意可得,,∵,∴四边形,是矩形,∴,,∴,∴设,则,∵,∴,∵,∴,∴,又∵,∴,ABCD FGHI 592259CD IH =()22259a b a b +=+222520a ab b -+=25220a a b b ⎛⎫-+= ⎪⎝⎭12a b =2a b=2b a =2BI CH a ==BM GH ⊥GH NE BM ⊥BM AGD DHC ≌V V ED CH ∥BINP ENHD 2PN BI a ==EN DH a ==PE PN EN a =-=CN m =IN BP a m ==+BE CE ⊥90BEP CEN ∠+∠=︒BP PN ⊥90BEP PBE ∠+∠=︒CEN PBE ∠=∠90BPE ENC ∠=∠=︒BPE ENC ∽V V∴,即,∴整理得,∴,∴解得,∴故选:A .二、填空题11.30【分析】设,,,根据得到,求得,从而得出,,,代入进行计算即可.解:,设,,,,,解得:,,,,,故答案为:30.12.【分析】过点M 作,交于点Q ,根据平行线分线段成比例可得,设,求出,即可求解.解:过点M 作,交于点Q ,BP PE BE EN CN CE ==a m a a m+=220a am m -+=210a a m m ⎛⎫-+= ⎪⎝⎭a m =BE CE =3a k =5b k =7c k =10a b c -+=35710k k k -+=2k =6a =10b =14c =::3:5:7a b c = ∴3a k =5b k =7c k =10a b c -+= 35710k k k ∴-+=2k =6a ∴=10b =14c =6101430a b c ∴++=++=5:8MQ BN ∥AC 23BM NQ CM CQ ==2,3NQ k CQ k ==54k AN =MQ BN ∥AC∵,∴,设,∴,∵,∴,则,∵,∴,故答案为:.13.或4【分析】延长交于R ,作于T ,不妨设,,,可证得是等腰三角形,可推出,进而表示出,然后解,从而求出x 的值,进而可得结果.解:如图,延长交于R ,作于T ,,不妨设,,则,设,MQ BN ∥23BM NQ CM CQ ==2,3NQ k CQ k ==5CN NQ CQ k =+=:1:4AN CN =154AN k =54k AN =MQ PN ∥55428kAP AN MP NQ k ===5:812EF BC GT DE ⊥4DG =13GB =4DE x =REB V 413EG DE DG RG BR BG ===EG DEG △EF BC GT DE ⊥ 413DG GB =∴4DG =13GB =17BD =4DE x =四边形是正方形,,,,,,恰好平分,,,,,在中,,由勾股定理得,解得,,当,当,综上所述,或4,故答案为:或4.14【分析】先根据黄金矩形求出AB ,再利用正方形的性质求出AF ,然后进行计算即可解答.解:∵矩形ABCD 为黄金矩形,AB <AD ,ABCD ∴BC AD ∥AD ==∴EBC AEB ∠=∠4AE AD DE x =-=413EG DE DG RG BR BG ===∴13BR x = BE AEF ∠∴AEB FEB ∠=∠∴EBC FEB ∠=∠∴13ER BR x ==∴4521717EG ER x ==Rt EGT V GT DT DG ===4ET DE DT x =-=-((22252417x x ⎛⎫+-= ⎪⎝⎭1x =2x =∴4DE x ==DE =AE ==∴4DE AE=DE =AE ==∴12DE AE =12DE AE =12∴∴∵四边形ABEF 是正方形,∴∴DF=AD -AF=15.【分析】根据矩形性质得到,利用三角形的三线合一得,过O 作交于点Q ,则有,,计算即可.解:∵是矩形,∴,∵F 是的中点,∴,又∵,∴,过O 作交于点Q ,∴,,∴,故答案为:.16.AB AD =AB AD ==1=13OA OB OC ==AE EB =OQ AB P EF OQF AEF V V ∽OQP BEP V V ∽ABCD OA OB OC ==OC 1122OF OC OA ==OA OB =OE AB⊥AE EB =OQ AB P EF OQF AEF V V ∽OQP BEP V V ∽13OP OQ OQ OF PB BE AE AF ====1343【分析】证明,,由相似三角形的性质得出 , ,设, 可得,, 从而可得出答案.解:∵四边形为正方形, ,∴,,∴,, ∴, , 设, ∴,, ∴, ∴, ∴.故答案为 .17.2【分析】如图,作,使,连接,,交于,过作于,可得,,可得,求解,,可得,由对折可得:,,,证明,可得,再证明,可得,有,,求解,可得,从而可得答案.解:∵等腰直角三角形,∴,如图,作,使,连接,,交于,过作于,△∽△ADG ABC AEF AHC V V ∽DG AG BC AC=EF AF CH AC =DG EF x ==24x AG =4x AG x CH +=DGFE 90ACB ∠=︒DG EF BC ∥∥DG EF =△∽△ADG ABC AEF AHC V V ∽DG AG BC AC=EF AF CH AC =DG EF x ==24xAG =4x AG x CH +=2AG x =24x x x CH +=43CH =43AH AE ⊥AH AE =DE EH CH DE K A AF BC ⊥F BAE CAH ∠=∠BC ==12AF CF BC ===()SAS BAE CAH ≌△△454590BCH ∠=︒+︒=︒BE CH ==CE EF ==AH AE ===52EH ==AB AD ==BAE DAE ∠=∠DE BE =45ADE ABE ∠=∠=︒()SAS AEC AHD V V ≌90ECH EDH ∠=∠=︒()Rt Rt HL HEC EHD V V ≌HED CHE ∠=∠CH DE ==EK HK =CK DK =EK HK ==CK DK ===HKE CKD V V ∽ABC AB =AB AC ==BC =AH AE ⊥AH AE =DE EH CH DE K A AF BC ⊥F∵等腰直角三角形,∴,,∴,∴,∴,,∴,∵,∴,,∴∴,由对折可得:,,,∵,∴,∴,∵,,∴,∴,∴,∴,∵,,∴,ABC 90BAC EAH ∠=︒=∠AB AC ==45B ACB ∠=∠=︒BAE CAH ∠=∠BC ==12AF CF BC ===()SAS BAE CAH ≌△△BE CH =45B ACH ∠=∠=︒454590BCH ∠=︒+︒=︒3BE CE =BE CH ==CE EF ==AH AE ===52EH =AB AD ==BAE DAE ∠=∠DE BE ==45ADE ABE ∠=∠=︒90BAC EAH ∠=∠=︒90BAE EAC DAE DAH ∠+∠=︒=∠+∠EAC DAH ∠=∠AE AH =AB AC AD ==()SAS AEC AHD V V ≌45ACE AHD ∠=∠=︒CE HD ==454590EDH ∠=︒+︒=︒90ECH EDH ∠=∠=︒EH EH =CE DH =()Rt Rt HL HEC EHD V V ≌∴,,∴,,由勾股定理可得:,∴,∴,∴,∴,,∴,∴,∴,故答案为:218.10【分析】过点作直线,分别交、于点,过点作直线,分别交、于点,易知四边形、、为矩形,证明,由相似三角形的性质可得;设两点运动时间为,则,,易得,;作点关于直线的对称点,由轴对称的性质可得,故当三点共线时,的值最小,即取最小值,此时,在中,由勾股定理求得的值,即可获得答案.解:如下图,过点作直线,分别交、于点,过点作直线,分别交、于点,HED CHE ∠=∠CH DE ==EK HK =CK DK =222EK CE CK =+222EK EK ⎫=-+⎪⎪⎭EK HK ==CK DK ===45DK CK EK HK ===HKE DKC ∠=∠HKE CKD V V ∽45CD CK HE HK ==4452552CD EH ==⨯=G MN BC ⊥AD BC M N 、G PQ CD ∥AB DC P Q 、ABNM PBNG GNCQ GAE GFB V V ∽AE GM BF GN =E F 、t 0.5AE t =2BF t =1cm GM =4cm GN =C PQ K CG KG =B G K 、、BG KG +BG CG +Rt BCK △BK G MN BC ⊥AD BC M N 、G PQ CD ∥AB DC P Q 、易知四边形、、为矩形,,∵四边形为矩形,∴,∴,,∴,∴,设两点运动时间为,则,,则有,即,∵,∴,,∵四边形为矩形,∴,作点关于直线的对称点,如图,则,,由轴对称的性质可得,当三点共线时,的值最小,即取最小值,此时,在中,,∴的最小值为.故答案为:10.三、解答题19.ABNM PBNG GNCQ 5cm MN AB ==ABCD AD BC ∥AB DC∥GAE GFB ∠=∠GEA GBF ∠=∠GAE GFB VV ∽AEGM BF GN=E F 、t 0.5AE t =2BF t =0.5124GM t GN t ==4GN GM =5cm MN =1cm GM =4cm GN =GNCQ 4cm QC GN ==C PQ K 4cm QK QC ==8cm KC QK QC =+=CG KG =B G K 、、BG KG +BG CG +Rt BCK △10cm BK ===BG CG +10cm解:∵,,∴,又∵,∴,∴,∵点M 是线段的中点,,∴,∴,∴,∵,∴.20.解:(1)证明:∵AB=AD ,AC 平分∠BAD ,∴AC ⊥BD ,∴∠ACD+∠BDC=90°,∵AC=AD ,∴∠ACD=∠ADC ,∴∠ADC+∠BDC=90°,∵PD ⊥AD ,∴∠ADC+∠PDC=90°,∴∠BDC=∠PDC ;(2)解:过点C 作CM ⊥PD 于点M ,AB AC =AD BC ⊥BD DC =DN CM ∥1BN BD PN DC==BN NP =AD DN CM ∥1AP AM PN MD==AP PN =13PN AB =6cm AB =()1162cm 33PN AB ==⨯=∵∠BDC=∠PDC ,∴CE=CM ,∵∠CMP=∠ADP=90°,∠P=∠P ,∴△CPM ∽△APD ,∴=,设CM=CE=x ,∵CE :CP=2:3,∴PC=x ,∵AB=AD=AC=1,∴=,解得:x=,故AE=1-=.21.解:如图,过点D 作,交AE 于点F ,过点F 作,垂足为点G.由题意得,,∴,∵,,∴,∴,答:塔高AB 为24m.CM AD PC PA32x 13x 23x 12+131323DF CD ⊥FG AB ⊥1.62DF DE =18 1.6214.4(m)DF =⨯÷=16m 2GF BD CD === 1.61AG GF =1.669.6(m)AG =⨯=14.49.624(m)AB =+=22.解:(1)证明:∵,,∴,,又∵,∴,∴∵,∴;(2)解:∵,,∴,∴,设,则,由(1)知,,∵,∴,∴,∴,∴,∴;(3)解:延长,相交于点H,AN CD ⊥BM CD ⊥90ANC ∠=︒90BMC ∠=︒90ACB ∠=︒90ACN BCM BCN CBM ∠+∠=∠+∠=︒ACN CBM∠=∠AC BC =()ACN CBM ASA V V ≌AND BMD ∠=∠ADN BDM ∠=∠AND BMD V V ∽12AN DN AD BM DM DB ===AN x =2BM x =AN CM x ==2BM CN x ==222AN CN AC +=()22221x x +=x =CM =CN =MN 2233DM MN ===ME AN∵E 为的中点,∴∵,,∴,∴,,∴,∴,又∵,∴,又∴,∴,∴.23.解:(1)证明:∵是正方形的对角线,∴,,在和中,,∴,∴;(2)证明:∵四边形是正方形,∴,,,AB AE BE=90ANM ∠=︒90BMN ∠=︒AN BM ∥HAE MBE ∠=∠AHE BME ∠=∠()AAS AHE BME V V ≌AH BM =BM CN =CN AH =CM AN=MN HN =45HMN ∠=︒45EMB ∠=︒BD ABCD 45C D B A D B ∠=∠=︒DC DA =CDG V ADG △DC DA CDG ADG DG DG =⎧⎪∠=∠⎨⎪=⎩()SAS CDG ADG ≌△△CG AG =ABCD 90CBE FDC ∠=∠=︒CB CD AB ==CB DF ∥∴,∴,∴,即,∴;(3)解:∵∴,∵四边形是正方形,∴,,,∴,∴,,∴,∴,设,则,∴,∵,∴,,∴,∴,∴,∴的长为24.(1)解:∵,∴.∴.∵点A 在轴的正半轴上,点在轴的负半轴上,BCE DFC ∠=∠BCE DFC ∽△△CB FD BE DC =AB FD BE AB=2AB BE DF =⋅GE =GC =CE CG GE =+=ABCD CD AB ∥CD AB =CB AD ∥BE CD ∥EBG CDG ∠=∠BEG DCG ∠=∠BEG DCG ∽△△BE GE DC GC ==BE =6CD x =(66AE AB BE CD BE x x =-=-==AF CB ∥FAE CBE ∠=∠AFE BCE ∠=∠AFE BCE △∽△EF AE EC BE==EF =EF 213360x x -+=(4)(9)0x x --=124,9x x ==x B x∴A 点坐标为,B 点坐标为,(2)∵A 点坐标为,B 点坐标为,∴,设点C 的坐标为,则,∵,,∴,∴,∴,∴,∴,解得,经检验,是方程的解且符合题意,∴点C 的坐标是;(3)过点D 作轴于点E ,轴于点F ,如图,则,∴,,∵,∴.∴;,∵,,∴;,()9,0()4,0-()9,0()4,0-9,4OA OB ==()0,t ()0t >OC t =90ACB ∠=︒90AOC COB ∠=∠=︒90OCB ACO OCB OBC ∠+∠=∠+∠=︒ACO OBC ∠=∠ACO CBO V V ∽OC AO OB OC=94tt =6t =6t =()0,6DE x ⊥DF y ⊥DE OC ∥DF OB∥BED BOC V V ∽CDF CBO V V ∽:1:2ABD ADC S S =△△:1:2BD DC =13DE BD OC BC ==23DF CD BO BC ==4OB =6OC =2DE =243DF =解得.∴.(4)解:存在,求解过程如下:设,由题意可得:,,当时,,即,,解得,或,即点坐标为或,当时,,即,,解得或,即点坐标为或,综上可知,满足条件的P 点为:或或或83DF =8,23D ⎛⎫- ⎪⎝⎭(,)P x y 13AB OB OA =+=BC ===AC ===AP =CP =APC ACB △∽△AP AC PC AC AB CB ==29AC AP AB===6AC CB CP AB ⨯===00x y =⎧⎨=⎩721310813x y ⎧=⎪⎪⎨⎪=⎪⎩P (0,0)72108,1313⎛⎫⎪⎝⎭APC BCA △∽△AP AC PC BC AB AC ==6AC BC AP AB ⨯===29AC CP AB===96x y =⎧⎨=⎩45133013x y ⎧=⎪⎪⎨⎪=-⎪⎩P ()9,64530,1313⎛⎫- ⎪⎝⎭(0,0)72108,1313⎛⎫ ⎪⎝⎭()9,64530,1313⎛⎫- ⎪⎝⎭。
(必考题)初中数学九年级数学上册第四单元《图形相似》测试题(答案解析)
一、选择题1.如图,在平行四边形ABCD 中,E 是DC 上的点,:3:2DE EC =,连接AE 交BD 于点F ,则DEF 与DAF △的面积之比为( )A .2:5B .3:5C .4:25D .9:25 2.如图,////AB CD EF ,若3BF DF =,则AC CE 的值是( )A .2B .12C .13D .33.点B 把线段AC 分成两部分,如果BC AB AB AC ==k ,那么k 的值为( ) A .512+ B .51- C .5+1 D .5-1 4.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG 、GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足512MG GN MN MG -==,后人把512-这个数称为“黄金分割数”,把点G 称为线段MN 的“黄金分割点”.如图,在△ABC 中,已知AB =AC =3,BC =4,若点D 是边BC 边上的一个“黄金分割点”,则△ADC 的面积为( )A .55B .355C .205-D .1045-5.若2x =5y ,则x y的值是( ) A .25 B .52 C .45 D .546.如图,已知∠1=∠2,那么添加一个条件后,仍不能判定△ABC 与△ADE 相似的是( )A .∠C =∠AEDB .∠B =∠DC .AB BC AD DE = D .AB AC AD AE = 7.若275x y z ==,则2x y z x z +-+的值是( ) A .67 B .13C .49D .4 8.若34,x y =则x y=( ) A .34 B .74 C .43D .73 9.已知点P 是线段AB 的黄金分割点(AP PB >),2AB =,那么AP 的长约为( )A .0.618B .1.382C .1.236D .0.764 10.如图,矩形ABCD 中,6AB =,8BC =,动点P 从A 点出发,按A B C →→的方向在AB 和BC 上移动,记PA x =,点D 到直线PA 的距离为y ,则y 关于x 的函数图象大致是( )A .B .C .D .11.如图,E 是平行四边形ABCD 的BA 边的延长线上的一点,CE 交AD 于点F .下列各式:①AE AB =AF BC ;②AE AB =AF DF ;③AE AB =FE FC;④AE BE =AF BC .其中成立的是( )A .③B .③④C .②③④D .①②③④ 12.如图,在四边形ABCD 中,如果ADC BAC ∠=∠,那么下列条件中不能判定ADC 和BAC 相似的是( )A .DAC ABC ∠=∠B .CA 是BCD ∠的平分线C .AD DC AB AC= D .2AC BC CD =⋅ 二、填空题13.如图所示是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的半径为0.8m ,桌面距离地面1m ,若灯泡距离地面3m ,则地面上阴影部分的面积为_________m 2(结果保留)π.14.如图,已知在Rt ABC 中,C 90∠=︒,AC 3=,BC 4=,分别将Rt ABC 的三边向外平移2个单位并适当延长,得到111A B C △,则111A B C △的面积为______.15.如图,直线122y x =-+与坐标轴分别交于点,A B ,与直线12y x =交于点,C Q 是线段OA 上的动点,连接CQ ,若OQ CQ =,则点Q 的坐标为___________.16.如图,在平面直角坐标系中,点(0,6)A ,(8,0)B ,点C 是线段AB 的中点,过点C 的直线l 将AOB 截成两部分,直线l 交折线A O B --于点P .当截成两部分中有三角形与AOB 相似时,则点P 的坐标为__________.17.在Rt △ABC 中,AB =6,AC =5,点D 在边AB 上,且AD =2,点E 在边AC 上,当△ADE ∽△ABC 时,AE =____.18.已知点P 在线段AB 上,且AP ∶PB =2∶3,则PB ∶AB =____.19.如图,若ABC 与DEF 都是正方形网格中的格点三角形(顶点在格点上),则DEF 与ABC 的周长比为_________.20.如图所示,在矩形ABCD 中,3AB =6BC =E 在对角线BD 上,且1.8BE =,连结AE 并延长交DC 于点F ,则CF CD=________.三、解答题21.如图,正方形ABCD 中,6AB =,点E 在边CD 上,且3CD DE =.将ADE 沿AE 翻折至AFE △,延长EF 交边BC 于点G ,连接AG 、CF .(1)求证:BG GC =;(2)求CFG △的面积.22.如图,在平行四边形ABCD 中,点E 是AC 上一点,射线BE 与CD 的延长线交于点P ,与边AD 交于点F ,连接FC .(1)若∠ABF =∠ACF ,求证:CE 2=EF •EP ;(2)若点D 是CP 中点,BE =23,求EF 的长.23.体验:如图1,在四边形ABCD 中,AB ∥CD ,∠B =90°,点M 在BC 边上,当∠AMD =90°时,可知△ABM △MCD (不要求证明).探究:如图2,在四边形ABCD 中,点M 在BC 上,当∠B =∠C =∠AMD 时,求证:△ABM ∽△MCD .拓展:如图3,在△ABC 中,点M 是边BC 的中点,点D 、E 分别在边AB 、AC 上.若∠B =∠C =∠DME =45°,BC =2CE =6,求DE 的长.24.如图,Rt ABC 中,90,ACB AC BC ∠=︒=,P 为ABC 内部一点,且135APB BPC ∠=∠=︒.(1)求证:PAB PBC △∽△;(2)若2PA =,求PB ;(3)若点P 到三角形的边AB ,BC ,CA 的距离分别为123,,h h h ,请直接写出123,,h h h 之间满足关系.25.如图,在平面直角坐标系中,ABC 的三个顶点坐标分别为(1,3),(2,3),(2,1)A B C ----.(1)画出ABC 关于原点O 成中心对称的111A B C △,并写出点1C 的坐标; (2)以原点O 为位似中心,在x 轴上方画出ABC 放大2倍后的222A B C △,并直接写出点2C 的坐标.26.如图,在平面直角坐标系中,ABC 的顶点为()()()2,1,1,3,4,1A B C ,若111A B C △与ABC 是以坐标原点О为位似中心的位似图形,且1A 的坐标为()4,2,请画出111A B C △,并给出顶点11,B C 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由平行四边形的性质得出CD ∥AB ,进而得出△DEF ∽△BAF ,再利用相似三角形的性质可得35EF DE AF BA ==,然后利用高相同的三角形面积比等于底的比得出结果. 【详解】解:∵四边形ABCD 为平行四边形,∴CD ∥AB ,∴∠EDF=∠ABF ,∠DEF=∠BAF ,∴△DEF ∽△BAF .∵DE :EC=3:2, ∴33325DE BA ==+, ∴35EF DE AF BA ==, 设点D 到AE 的距离为h , ∴D 132152DEF AF EF h S S AF AF E h F ⋅===⋅. 故选择:B .【点睛】本题考查了相似三角形的性质与判定及平行四边形的性质,解题的关键是掌握同高三角形的面积比等于底的比.2.A解析:A【分析】由BF=3DF ,得BD=2DF ,使用平行线分线段成比例定理计算即可.【详解】∵BF=3DF ,∴BD=2DF ,∵////AB CD EF , ∴AC CE =BD DF , ∴AC CE =2DF DF=2, 故选A.【点睛】本题考查了平行线分线段成比例定理,熟练掌握定理,特别是定理的对应关系是解题的关键.3.B解析:B【分析】设AC=1,由题意得AB=k ,BC=2k ,由AC=AB+ BC=1得到关于k 的一元二次方程,解方程即可.【详解】设AC=1, ∵BC AB AB AC==k ,且0k >, ∴AB=k ,BC=2k ,∵AC=AB+ BC=1,∴21k k +=,即210k k +-=,∵1a =,1b =,1c =-,()224141150b ac =-=-⨯⨯-=>,∴12k -±=(负值舍去),∴k = 故选:B .【点睛】本题考查了比例线段,公式法解一元二次方程,由比例线段得到一元二次方程是解题的关键.4.A解析:A【分析】作AF ⊥BC ,根据等腰三角形ABC 的性质求出AF 的长,再根据黄金分割点的定义求出CD 的长度,利用三角形面积公式即可解题.【详解】解:过点A 作AF ⊥BC ,∵AB=AC ,∴BF=12BC=2, 在Rt ABF ,AF=2222325AB BF -=-=,∵D 是边BC 的两个“黄金分割”点, ∴51CD BC -=即514CD -=, 解得CD=252-,∴12ADC C AF S D ⨯⨯==()125252⨯-⨯=55-, 故选:A .【点睛】本题考查了“黄金分割比”的定义、等腰三角形的性质、勾股定理的应用以及三角形的面积公式,求出DC 和AF 的长是解题的关键.5.B解析:B【分析】利用内项之积等于外项之积进行判断.【详解】解:∵2x =5y ,∴52x y =. 故选:B .【点睛】本题考查了比例的性质:熟练掌握比例的性质(内项之积等于外项之积,合比性质,分比性质,合分比性质,等比性质).6.C解析:C【分析】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【详解】解:∵∠1=∠2∴∠DAE =∠BAC∴A ,B ,D 都可判定△ABC ∽△ADE选项C 中不是夹这两个角的边,所以不相似,故选:C .【点睛】本题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.7.C解析:C【分析】 根据275x y z k ===,则x =2k ,y =7k ,z =5k ,代入2x y z x z+-+进行计算即可. 【详解】 解:275x y z k ===(k≠0), 则x =2k ,y =7k ,z =5k , ∴2x y z x z+-+=2754495k k k k k +-+=, 故选:C .【点睛】 本题考查了比例的性质,解题的关键是掌握比例的性质进行解题.8.C解析:C【分析】根据比例的性质,两内项之积等于两外项之积进行计算即可求解.【详解】由比例的性质,由34,x y =得43x y =. 故选C .【点睛】本题考查了比例的性质,利用比例的性质是解题关键.9.C解析:C【分析】根据黄金分割点的定义,由题意知AP 是较长线段;则AP=15-+AB ,代入数据即可. 【详解】解:∵线段AB=2,点P 是线段AB 的黄金分割点(AP PB >), ∴AP=15-+AB=15-+≈1.236 故选:C 【点睛】本题考查了黄金分割点的概念,熟记黄金分割的比值是解题的关键.10.A解析:A【分析】①点P 在AB 上时,点D 到AP 的距离为AD 的长度,②点P 在BC 上时,根据同角的余角相等求出∠APB=∠PAD ,再利用相似三角形的列出比例式整理得到y 与x 的关系式,从而得解.【详解】解:①当点P 在AB 上运动时,D 到PA 的距离8y AD ==,∴当06x ≤≤时,8y =,②当P 在BC 上运动时,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD ,又∵∠B=∠DEA=90°,∴△ABP ∽△DEA ,∴AB AP DE AD=,即:68x y =, ∴当610x <≤时,48y x =,∴()()80648610x y x x ⎧≤≤⎪=⎨<≤⎪⎩, 即当06x ≤≤时,函数图象为平行于x 轴的线段,且8y =;当610x <≤时,函数图象为反比例函数,故选项A 符合题意,故选:A .【点睛】本题考查动点问题函数图象,解题关键是利用相似三角形的判定与性质,难点在于根据点P的位置分情况讨论.11.C解析:C【分析】根据平行四边形的性质得到AB ∥CD ,AB=CD ,由△AEF ∽△DCF 得到AE AF EF CD DF FC ==,用AB 等量代换CD ,得到AE AF EF AB DF FC==;再利用AF ∥BC ,由△AEF ∽△BEC 得AE AF BE BC=,由此可判断. 【详解】解:∵四边形ABCD 为平行四边形,∴AB ∥CD ,AB=CD ;∴△AEF ∽△DCF , ∴AE AF EF CD DF FC ==,而AB=CD , ∴AE AF EF AB DF FC== ∴②③正确;又∵AF ∥BC ,∴△AEF ∽△BEC , ∴AE AF BE BC=, ∴④正确,①不正确;故选:C .【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质.熟知相似三角形的判定定理是解答此题的关键.12.D解析:D【分析】已知∠ADC =∠BAC ,则A 、B 选项可根据有两组角对应相等的两个三角形相似来判定;C 选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;D 选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似.【详解】在△ADC 和△BAC 中,∠ADC =∠BAC ,如果△ADC ∽△BAC ,需满足的条件有:①∠DAC =∠ABC 或AC 是∠BCD 的平分线; ②AD DC AB AC=; 故选:D .【点睛】 此题主要考查了相似三角形的判定方法;熟记三角形相似的判定方法是解决问题的关键.二、填空题13.44π【分析】证明△OBQ ∽△OAP 根据相似三角形的性质求出AP 根据圆的面积公式计算得到答案【详解】解:如图由题意得OB=08mOQ=OP-PQ=3-1=2(m )BQ ∥AP ∴△OBQ ∽△OAP ∴即解解析:44π【分析】证明△OBQ ∽△OAP ,根据相似三角形的性质求出AP ,根据圆的面积公式计算,得到答案.【详解】解:如图,由题意得,OB=0.8m ,OQ=OP-PQ=3-1=2(m ),BQ ∥AP ,∴△OBQ ∽△OAP ,∴BQ OQ AP OP =,即0.823AP =, 解得,AP=1.2(m ), 则地面上阴影部分的面积=π×1.22=1.44π(m 2),故答案为:1.44π.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的判定定理和性质定理是解题的关键.14.54【分析】作于点D 作于点E 作于点F 分别证明△和△求出和再根据三角形面积公式求解即可【详解】解:作于点D 作于点E 作于点F ∵三边向外平移个单位∴∵∴∠且∠∴△∴又∵∠且∠∴△∴∴∴又∵△∴∴∴【点睛】 解析:54【分析】作11CD B C ⊥于点D ,作11BE B C ⊥于点E ,作11BF A B ⊥于点F ,分别证明△ACB BFG ∆∽和△1GHB ACB ∆∽,求出11A C 和11B C ,再根据三角形面积公式求解即可.【详解】解:作11CD B C ⊥于点D ,作11BE B C ⊥于点E ,作11BF A B ⊥于点F ,∵Rt ABC ∆三边向外平移个单位,∴1=22,2,C D CD BE GH BF ====,∵11//AB A B∴∠ABC AGC =∠且∠90ACB BFG =∠=︒∴△ACB BFG ∆∽ ∴103BG = 又∵∠11B A GC ABC =∠=∠,且∠190GHB ACB =∠=︒∴△1GHB ACB ∆∽ ∴1AC GH BC B H= ∴183B H = ∴1111C B CD DE EH HB =+++1082433=+++12=又∵△111ABC A B C ∆∽ ∴1111AC B C AC BC= ∴119A C = ∴111111112A B C S AC B C ∆=⨯⨯ 11292=⨯⨯ 54=【点睛】此题主要考查了相似三角形的性质与判定,能正确作出辅助线证明三角形是解答此题的关键.15.【分析】与联立组成方程组求出点C 的坐标为(21)从而可判断点C 是AB 的中点所以OC=AC 从而得到∠AOC=∠OAC 又因为所以∠AOC=∠OCQ 从而可判断△OCQ ∽△OAC 再根据相似三角形的性质可得最 解析:5,04⎛⎫ ⎪⎝⎭【分析】122y x =-+与12y x =联立组成方程组求出点C 的坐标为(2,1)从而可判断点C 是AB 的中点,所以OC=AC ,从而得到∠AOC=∠OAC ,又因为OQ CQ =,所以∠AOC=∠OCQ ,从而可判断△OCQ ∽△OAC ,再根据相似三角形的性质可得OQ OC OC OA =,最后把数值代入求出OQ 的长,从而得到Q 点的坐标.【详解】解:如图所示,依题意得:12212y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩解得:21x y =⎧⎨=⎩ ∴点C 的坐标为(2,1) 对于直线122y x =-+,令x=0,解得y=2, 令y=0,解得x=4.∴点A ,B 的坐标分别为(4,0),(0,2).∴点C 是AB 的中点.∵△OAB 为直角三角形,∴OC=AC ,∴∠AOC=∠OAC ,∵OQ CQ =,∴∠AOC=∠OCQ ,∴∠AOC=∠OCQ=∠OAC ,∴△OCQ ∽△OAC , ∴OQ OC OC OA = 又∵△OAB 为直角三角形,OA=4,OB=2,∴222224AB OB OA =+=+=25 ∴OC=AC=12AB =5 ∴55=, 解得:OQ=54, ∴点Q 的坐标为(54,0).故答案为:(54,0). 【点睛】 本题考查了一次函数与二元一次方程,等腰三角形的性质及相似三角形的判定和性质,掌握相关知识是解题的关键.16.或或【分析】分三种情况讨论当时则则当时由则当时则则再利用相似三角形的性质求解的坐标即可【详解】解:点是线段的中点当时则如图当时由如图当时则综上:或或故答案为:或或【点睛】本题考查的是坐标与图形三角形 解析:(0,3)或(4,0)或70,4⎛⎫ ⎪⎝⎭ 【分析】分三种情况讨论,当PC OA ⊥时,则//,PC OB 则APC AOB ∽,当PC AB ⊥时,由90,,PCB AOB PBC ABO ∠=∠=︒∠=∠ 则BCP BOA △∽△,当CP OB ⊥时,则//,PC OA 则,BCP BAO ∽ 再利用相似三角形的性质求解P 的坐标即可.【详解】解:()()06,8,0,A B , 点C 是线段AB 的中点, 226,8,6810,OA OB AB ∴===+= 15,2AC AB == 当PC OA ⊥时,则//,PC OB ∴ APC AOB ∽,,AP AC AO AB ∴= 162AP ∴=, ()3,0,3,AP P ∴=如图,当PC AB ⊥时,由90,,PCB AOB PBC ABO ∠=∠=︒∠=∠∴ BCP BOA △∽△,,BC BP BO BA∴= 5,810BP ∴= 25,4BP ∴= 2578,44OP ∴=-=7,0,4P ⎛⎫∴ ⎪⎝⎭如图,当CP OB ⊥时,则//,PC OA,BCP BAO ∴∽,BC BP BA BO∴= 1,28BP ∴= 4,BP ∴=4,OP ∴=()4,0.P ∴综上:()0,3P 或7,04P ⎛⎫ ⎪⎝⎭或()4,0.P 故答案为:()0,3P 或7,04P ⎛⎫⎪⎝⎭或()4,0.P 【点睛】本题考查的是坐标与图形,三角形相似的判定与性质,掌握以上知识是解题的关键. 17.【分析】根据相似三角形的对应边成比例求解即可求得答案【详解】解:∵△ADE ∽△ABC ∴即解得:AE =;故答案为:【点睛】此题考查了相似三角形的性质掌握相似三角形的性质是解题的关键 解析:53【分析】根据相似三角形的对应边成比例求解,即可求得答案.【详解】解: ∵△ADE ∽△ABC , ∴AD AE AB AC=,即265AE =, 解得:AE =53; 故答案为:53. 【点睛】此题考查了相似三角形的性质.掌握相似三角形的性质是解题的关键.18.3∶5(或)【分析】根据比例的性质直接求解即可【详解】解:由题意AP:PB=2:3∴PB:AB=PB:(AP+PB)=3:(2+3)=3:5;故答案是:3:5(或)【点睛】本题主要考查比例问题关键是解析:3∶5(或35) 【分析】根据比例的性质直接求解即可.【详解】解:由题意AP:PB=2:3,∴PB :AB = PB :(AP+PB)=3:(2+3)=3:5;故答案是:3:5(或35). 【点睛】本题主要考查比例问题,关键是根据比例的性质解答. 19.【分析】设正方形网格的边长为1根据勾股定理求出△EFD △ABC 的边长运用三边对应成比例则两个三角形相似这一判定定理证明△EDF ∽△BAC 即可解决问题【详解】解:设正方形网格的边长为1由勾股定理得:D【分析】设正方形网格的边长为1,根据勾股定理求出△EFD 、△ABC 的边长,运用三边对应成比例,则两个三角形相似这一判定定理证明△EDF ∽△BAC ,即可解决问题.【详解】解:设正方形网格的边长为1,由勾股定理得:DE 2=22+22,EF 2=22+42,∴DE=EF =同理可求:AC ,BC∵DF =2,AB =2,∴1EF DE DF BC AB AC ===∴△EDF ∽△BAC ,∴DEF 与ABC,.【点睛】本题主要考查了勾股定理和相似三角形的判定及其性质,熟练掌握相似三角形的判定与性质是解题的关键.20.【分析】根据勾股定理求出BD 的长度得到DE 的长根据相似三角形的性质得到对应线段成比例计算可求出DF 的长求出CF 计算得出CF 与CD 的比值即可【详解】解:∵四边形ABCD 是矩形∴∵∴∵∴∵∴∴解得:则∴ 解析:13【分析】根据勾股定理求出BD 的长度,得到DE 的长,根据相似三角形的性质得到对应线段成比例,计算可求出DF 的长,求出CF ,计算得出CF 与CD 的比值即可.【详解】解:∵四边形ABCD 是矩形,∴90BAD ∠=︒, ∵AB ==BC ∴3BD ==.∵ 1.8BE =,∴3 1.8 1.2DE =-=.∵//AB CD ,∴ABE FDE ∽△△ ∴ 1.21.8DF DE AB BE ==,解得:DF =,则CF CD DF =-=∴13CF CD ==. 故答案为:13. 【点睛】本题主要考查了矩形的性质、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.三、解答题21.(1)见解析;(2)18 5【分析】(1)由条件可以求出ED的值,设FG=x,则BG=FG=x,CG=6-x,EG=x+2,由勾股定理可以求出x的值,从而可以求出BG和CG的值,得出结论.(2)过点F作FN⊥CG于点N,可以得出∠FNG=∠DCG=90°,通过证明△GFN∽△GEC,得出GF FNGE EC=,可以求出FN的值,最后利用三角形的面积公式可以求出其面积.【详解】解:(1)证明:∵AB=6,CD=3DE,∴DC=6,∴DE=2,CE=4,∴EF=DE=2,设FG=x,则BG=FG=x,CG=6-x,EG=x+2,在Rt△ECG中,由勾股定理得,42+(6-x)2=(x+2)2,解得x=3,∴BG=FG=3,CG=6-x=3,∴BG=CG.(2)过点F作FN⊥CG于点N,则∠FNG=∠DCG=90°,又∵∠EGC=∠EGC,∴△GFN∽△GEC,∴GF FN GE EC=,∴354FN =,∴FN=125,∴S△CGF=12CG•FN=112325⨯⨯=185.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,勾股定理的运用及三角形面积公式的运用.在解答中注意相似三角形的对应顶点在对应的位置.22.(1)见解析;(2)EF=【分析】(1)由平行四边形的性质可得∠ABF BPC =∠,又∠ABF =∠ACF ,可得ACF BPC ∠=∠,又FEC PEC ∠=∠可证△FEC CEP ∆∽,从而可得结论;(2)证明△PFD PBC ∆∽得1122DF BC AD ==,由∠,AEB PEC ABE BPC =∠∠=∠可证明△ABE CPE ∆∽可求得PE =EF EP PF =-可得结论.【详解】解:(1)由题可知,∠ABF =∠ACF ,又∵四边形ABCD 为平行四边形,∴AB//CD∴∠ABF BPC =∠∴∠ABF ACF BPC =∠=∠∴∠,ACF BPC FEC PEC =∠∠=∠∴△FEC CEP ∆∽ ∴CE EP EF CE= 即CE 2=EF •EP ;(2)∵四边形ABCD 是平行四边形,∴AD//BC∴△PFD PBC ∆∽ ∴FD PD BC PC= ∵D 是CP 的中点, ∴PD=12PC ∴12FD BC = ∴1122DF BC AD == 即F 为AD 的中点,F 为BP 的中点∵∠,AEB PEC ABE BPC =∠∠=∠∴△ABE CPE ∆∽ ∴12BE AB PE CP ==∴22PE BE ==⨯=∴12EF EP PF BP =-= 1()2BE EP =+==故EF =【点睛】此题考查了平行四边形的性质以及相似三角形的判定与性质,此题难度适中,注意掌握数形结合思想.23.体验:∽;探究:△ABM ∽△MCD ;拓展:DE =103 【分析】体验:根据同角的余角相等得到∠BAM=∠DMC ,根据平行线的性质得到∠C=∠B=90°,根据两角相等的两个三角形相似证明结论;探究:根据三角形的外角性质、相似三角形的判定定理证明;拓展:根据相似三角形的性质求出BD ,根据等腰直角三角形的性质求出AD ,根据勾股定理计算,得到答案.【详解】解:体验:∵∠AMD =90°,∴∠AMB +∠DMC =90°,∵∠B =90°,∴∠AMB +∠BAM =90°,∴∠BAM =∠DMC ,∵AB ∥CD ,∠B =90°,∴∠C =∠B =90°,∴△ABM ∽△MCD ,故答案为:∽;探究:∵∠AMC =∠BAM +∠B ,∠AMC =∠AMD +∠CMD ,∴∠BAM +∠B =∠AMD +∠CMD .∵∠B =∠AMD ,∴∠BAM =∠CMD ,∵∠B =∠C ,∴△ABM ∽△MCD ;拓展:同探究的方法得出,△BDM ∽△CME , ∴BD CM =BM CE,∵点M 是边BC 的中点,∴BM =CM =,∵CE =6,∴=6, 解得,BD =163, ∵∠B =∠C =45°,∴∠A =180°﹣∠B ﹣∠C =90°,∴AC =AB =2BC =8, ∴AD =AB ﹣BD =8﹣163=83,AE =AC ﹣CE =2,在Rt △ADE 中,DE 103. 【点睛】 本题考查的是相似三角形的判定与性质、勾股定理、三角形内角和定理以及三角形外角性质,解本题的关键是判断出△ABM ∽△MCD .24.(1)见解析;(23)2123h h h =⋅【分析】(1)根据45PBA PBC PAB PBA ∠+∠=∠+∠=︒,利用两角分别相等的两个三角形相似即可证得结果;(2)由题意可得AB BC =1)的结论可得,AB PA BC PB=,从而即可求得PB ; (3)根据两角分别相等的两个三角形相似,可证得Rt AEP Rt CDP △△∽,求得322h h =,由PAB PBC △∽△可得32h ,从而得出结论.【详解】(1)∵90ACB ∠=︒,AC BC =,∴45ABC PBA PBC ∠=︒=∠+∠,又∵135APB ∠=︒,∴45PAB PBA ∠+∠=︒,∴PBC PAB ∠=∠,又∵135APB BPC ∠=∠=︒,∴PAB PBC △∽△;(2)由题可知,△ABC 为等腰直角三角形,∴AB BC=由(1)可知,AB PA BC PB =, ∴222BC PB PA AB ==⨯=; (3)如图,过点P 作PD BC ⊥,PE AC ⊥,PF BA ⊥,∴1PF h =,2PD h =,3PE h =,∵135135270CPB APB ∠+∠=︒+︒=︒,∴90APC ∠=︒,∴90EAP ACP ∠+∠=︒,又∵90ACB ACP PCD ∠=∠+∠=︒,∴EAP PCD ∠=∠,∴Rt Rt AEP CDP △∽△,由(1)可进一步得出,2PA PB =,2PB PC =, ∴2PA PC =,∴2PE AP DP PC==,即322h h =, ∴322h h =,∵PAB PBC △∽△,∴122h AB h BC== ∴122h h =,∴2212222322h h h h h h ==⋅=,即:2123h h h =⋅.【点睛】本题主要考查了等腰直角三角形的性质,相似三角形的判定和性质,综合性较强,有一定的难度.25.(1)画图见解析;1(2,1)C -;(2)画图见解析;2(4,2)C -.【分析】(1)根据题意得到A ,B ,C 关于原点O 的对称点连接即可;(2)根据位似图形的作图方法作图即可;【详解】解:(1)根据题意可得()11,3A -,()12,3B ,()12,1C -,如图,1(2,1)C -, (2)根据题意可得,()22,6A -,()24,6B ,()24,2C -连接即可,如图,2(4,2)C -.【点睛】本题主要考查了旋转变换和位似变换,准确作图是解题的关键.26.见解析,11(),(2,6)8,2B C【分析】根据点A 、1A 的坐标求出位似比为2:1,再利用位似图形的性质得出对应点的位置即可得出答案.【详解】111A B C △与ABC 是以坐标原点О为位似中心的位似图形,点A 坐标为()2,1,点1A 的坐标为()4,2∴111A B C △与ABC 的位似比为2:1∴如图所示:111A B C △即为所求;11(),(2,6)8,2B C .【点睛】本题考查了位似三角形的性质,在直角坐标系中作位似图形,解题关键是熟练掌握位似的性质.。
沪科版九年级数学上 第22章 相似形 单元综合测试(含解析)
九年级上册数学单元综合测试卷(第22章相似形)注意事项:本卷共23题,满分:150分,考试时间:120分钟.一.精心选一选(本大题共10小题,每小题4分,满分40分)1﹒如果x:(x+y)=3:5,那么x yx-的值是()A.13B.12C.23D.322﹒若ab c+=ba c+=ca b+=k,则直线y=kx+k一定经过()A.第一.二象限B.第二.三象限C.第三.四象限D.第一.四象限3﹒已知线段a=2,c=6,线段b是a.c的比例中项,则线段b的值为()A.±B.±4C.D.124﹒已知两点A(5,6).B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的12,得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)5﹒已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC BCB.BC2=AC BCC.AC BCD.BC AB6﹒如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则DEEF的值为()A.12B.2C.25D.35第6题图第7题图第8题图第9题图7﹒如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,若AB=2,DC=3,则△ABC与△DCA的面积比是()A.2:3B.2:5C.4:9D8﹒如图,在△ABC中,D.E分别是BC.AC上的点,AD与BE相交于点G,若AG:GD=4:1,BD:DC=2:3,则AE:EC的值是()A. 83B.32C.85D.439﹒如图,Rt△ABC中,∠C=90°,以点C为顶点向△ABC内做正方形DECF,使正方形的另三个顶点D,E,F分别在的边AB,BC,AC上.若BC=6,AB=10,则正方形DECF的边长为()第10题图 A .187 B .247C .43D .53 10.如图,在△ABC 中,AB =BC ,∠ABC =90°,BM 是AC 边 中线,点D ,E 分别在边AC 和BC 上,DB =DE ,EF ⊥AC 于点F ,以下结论:①△BMD ≌△DFE ;②△NBE ∽△DBC ; ③AC =2DF ;④EF AB =CF BC ,其中正确结论的个数是 ( )A .1B .2C .3D .4二.细心填一填(本大题共5小题,每小题4分,满分20分)11.如图,△ABC 中,D 为BC 上一点,∠BAD =∠C ,AB =6,BD =4,则CD 的长为_______.第11题图 第12题图 第13题图 第14题图12.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在边AB 上的点D 处,已知MN ∥AB ,MC =6,NC =MABN 的面积是___________.13.如图,在钝角△ABC 中,AB =6cm ,AC =12cm ,动点D 从点A 出发到B 点止,动点E 从点C 出发到A 点止,点D 运动的速度为1cm /s ,点E 运动的速度为2cm /s.如果两点同时运动,那么当以点A ,D ,E 为顶点的三角形与△ABC 相似时,运动的时间是_______________. 14.如图,正方形ABCD 中,△BPC 是等边三角形,BP .CP 的延长线分别交AD 于点E .F ,连接BD .DP .BD 与CF 相交于点H .给出下列结论:①△ABE ≌△DCF ;②FP PH =35;③DP 2=PH PB ;④BPD ABCD S S ∆正方形.其中正确的是________.(填写正确结论的序号) 三.(本大题共2小题,每小题8分,满分16分)15.已知实数x .y .z 满足430320x y y z -=⎧⎨-=⎩,试求22x y zx y z +--+的值.16.在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1,P2,P3,P4,P5是△DEF边上的5个格点,请你按要求完成下列各小题:(1)求证:△ABC是直角三角形;(2)判断△ABC与△DEF是否相似,并说明理由;(3)画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与△ABC相似(要求:用尺规作图,保留作图痕迹,不写作法与证明).四.(本大题共2小题,每小题8分,满分16分)17.已知,△ABC在直角坐标系内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长均为一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是______________;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是______________;(3)求△A2B2C2的面积是__________平方单位.18.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于点F.(1)图中△APD与哪个三角形全等?并说明理由;(2)求证:PC2=PE PF.五.(本大题共2小题,每小题10分,满分20分)19.已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD CE=CD DE.20.某市经济开发区建有B.C.D三个工厂,这三个工厂和开发区A处的自来水厂正好在一个矩形的四个顶点上(如图所示),他们之间有公路相通,且AB=CD=900米,AD=BC=1700米.自来水公司已经修好一条自来水主管道AN,B.C两厂之间的公路与自来水管道交于E处,EC=500米.若自来水主管道到各工厂的自来水管道由各厂负担,每米造价800元.(1)要使修建自来水管道的造价最低,这三个工厂的自来水管道路线应是怎样设计?请你在图中画出他们的路线;(2)求出各工厂所修建的自来水管道的最低的造价各是多少元?21.如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD,连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.七.(本题满分12分)22.如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B 匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值.23.如图,已知反比例函数y=kx(k>0,k为常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数的解析式;(2)求证:△ACB∽△NOM;(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.参考答案一.精心选一选(本题共10小题,每小题3分,共30分)二.细心填一填(本题共8小题,每小题3分,共24分)11. 5 . 12. 13. 3s 或4.8s . 14. ①③④ . 三.(本大题共2小题,每小题8分,满分16分)15.解答:∵x .y .z 满足430320x y y z -=⎧⎨-=⎩,∴4332x y y z=⎧⎨=⎩,∴x y =34,z y =32=64,∴3x =4y=6z =k ,∴x =3k ,y =4k ,z =6k , ∴22x y z x y z +--+=386646k k k k k k +--+=58kk=58.16.解答:(1)证明:由图形结合勾股定理可得:AB =AC BC =5, ∴AB 2+AC 2=BC 2,∴△ABC 是直角三角形; (2)△ABC 与△DEF 相似,由图形结合勾股定理可得:DE =DF =EF =,∴AB DE =AC DF =BCEF,∴△ABC ∽△DE ;(3)如图,△P 2P 4P 5为所画三角形,它与△ABC 相似.四.(本大题共2小题,每小题8分,满分16分) 17.解答:(1)如图所示,C 1(2,-2); (2)如图所示,C 2(1,0);(3)∵A 2C 22=20,B 2C 22=20,A 2B 22=40, ∴A 2C 22=B 2C 22,且A 2C 22+ B 2C 22=A 2B 22,∴△△A 2B 2C 2是等腰直角三角形,∴△A 2B 2C 2的面积是12=10(平方单位).18.解答:(1)图中△APD 与△CPD 全等,理由如下:∵四边形ABCD 是菱形,∴AD =CD ,∠ADP =∠CDP , 又∵PD =PD ,∴△APD ≌△CPD (SAS );(2)证明:由(1)知:△APD ≌△CPD , ∴∠DAP =∠DCP , ∵CD ∥AB ,∴∠DCF =∠DAP =∠CFB , 又∠FP A =∠FP A , ∴△APE ∽△FP A , ∴AP FP =PE PA,即P A 2=PE PF , 由△APD ≌△CPD 得,PC =P A , ∴PC 2=PE PF .五.(本大题共2小题,每小题10分,满分20分) 19.解答:(1)∵四边形ABCD 是平行四边形, ∴BO =DO =12BD , ∵OE =OB ,∴OE =OB =DO =12BD , ∴∠OBE =∠OEB ,∠ODE =∠OED , ∵∠OBE +∠OEB +∠ODE +∠OED =180°, ∴∠OEB +∠OED =90°,即∠BED =90°, ∴DE ⊥BE ;(2)∵OE ⊥CD ,∴∠CEO +∠DCE =∠CDE +∠DCE =90°, ∴∠CEO =∠CDE ,∵OB =OE ,∴∠DBE =∠CDE , ∵∠BED =∠BED , ∴△BDE ∽△DCE ,∴BD CD =DECE,即BD CE =CD DE . 20.解答:(1)过点B .C .D 分别向AN 作垂线段BH .CF .DG ,垂足分别为H .F .G ,则线段BH .CF .DG 即为所求的造价最低的管道的路线;画图如下:(2)由题意知:BE =BC -CE =1200米,由勾股定理得:AE 1500米, ∵四边形ABCD 是矩形,CF ⊥AN , ∴∠ABE =∠CFE =90°, 又∵∠AEB =∠CEF , ∴△ABE ∽△CFE ,∴CF AB =CEAE,即900CF =5001500,解得:CF =300(米),∵BH ⊥AN ,CF ⊥AN ,∴BH ∥CF , ∴△BHE ∽△CFE ,∴CF BH =CEBE,即300BH =5001200, 解得:BH =720(米),∵DG ⊥AN ,∴∠ABE =∠DGA =90°, ∵AD ∥BC ,∴∠AEB =∠DAG , ∴∴△ABE ∽△DGA ,∴AB DG =AEAD,即900DG =15001700, 解得:DG =1020(米),∴B .C .D 三个工厂所建自来水管道的最低造价分别为720×800=576000(元),300×800=240000(元),1020×800=816000(元). 六.(本题满分12分) 21.解答:(1)△BMN 是等腰直角三角形,证明:AB =AC ,点M 是BC 的中点, ∴AM ⊥BC ,AM 平分∠BAC , ∵AC ⊥BD ,∴∠AEB =90°, ∴∠BAE +∠ABE =90°, ∵BN 平分∠ABE ,∴∠ABN =12∠ABE , ∴∠MNB =∠NAB +∠ABN =12(∠BAE +∠ABE )=45°, ∴△BMN 是等腰直角三角形; (2)△MFN ∽△BDC ,证明:∵F ,M 分别是AB ,BC 的中点,∴FM ∥AC ,FM =12AC , ∵AC =BD ,∴FM =12BD ,即FMBD=12, ∵△BMN 是等腰直角三角形,∴NM =BM =12BC ,即NMBC=12, ∴FM BD =NM BC, ∵AM ⊥BC ,∴∠NMF +∠FMB =90°,∵FM ∥AC ,∴∠ACB =∠FMB , ∵∠CEB =90°,∴∠ACB +∠CBD =90°, ∴∠CBD +∠FMB =90°,∴∠NMF =∠CBD , ∴△MFN ∽△BDC . 七.(本题满分12分) 22.解答:(1)①△BPQ 与△ABC 相似时, 则BP BA =BQBC, ∵BP =5t ,QC =4t ,AC =6cm ,BC =8cm ,∴510t =848t -,解得:t =1; ②△BPQ 与△BCA 相似时,则BP BC =BQ BC ,即58t =8410t-,解得:t =3241,综合上述:当t =1或t =3241时,△BPQ 与△ABC 相似(2)过点P 作PM ⊥BC 于点M ,设AQ 与CP 相交于点N ,则有PB =3t ,MC =8-4t , ∵∠NAC +∠NCA =90°,∠PCM +∠NCA =90°,∴∠NAC =∠PCM ,又∵∠ACQ =∠CMP =90°, ∴△ACQ ∽CMP ,∴AC CM=CQ MP ,即684t -=43t t , 解得:t =78.八.(本题满分14分)23.解答:(1)∵反比例函数y =kx的图象经过点A (1,4),点B (m ,n ), ∴k =4,∴反比例函数的解析式为y =4x;(2)∵点A (1,4),点B (m ,n ),∴AC =4-n ,BC =m -1,ON =n ,OM =1,∴ACNO=4nn-=4n-1,∵点B(m,n)在y=4x上,∴4m=n,∴ACNO=m-1,而BCMO=11m-,∴ACNO=BCMO,又∵∠ACB=∠NOM=90°,∴△ACB∽△NOM;(3)∵△ACB与△NOM的相似比为2,∴m-1=2,∴m=3,∴B(3,43),设直线AB的解析式为y=kx+b,则4334k bk b⎧=+⎪⎨⎪=+⎩,解得:43163kb⎧=-⎪⎪⎨⎪=⎪⎩,∴AB所在直线的解析式为y=-43x+163.。
相似单元测试题及答案解析
相似单元测试题及答案解析一、选择题1. 以下哪项不是相似图形的特点?A. 形状相同B. 面积相等B. 边长成比例D. 角度相同答案:B解析:相似图形的特点是形状相同、边长成比例、角度相同,但面积不一定相等,而是面积比等于边长比的平方。
2. 如果两个三角形相似,它们的对应边长比为3:5,那么它们的对应角的度数比是多少?A. 1:1B. 3:5C. 5:3D. 无法确定答案:A解析:相似三角形的对应角相等,所以它们的对应角的度数比是1:1。
3. 一个矩形的长和宽分别是8厘米和6厘米,另一个矩形的长和宽分别是16厘米和12厘米。
这两个矩形是否相似?A. 是B. 不是C. 无法确定答案:A解析:两个矩形的长宽比分别为8:6和16:12,简化后都是4:3,所以它们是相似的。
二、填空题4. 如果两个图形的相似比为2:3,那么它们的面积比是________。
答案:4:9解析:相似图形的面积比等于相似比的平方,即(2:3)² = 4:9。
5. 在相似三角形中,如果一个三角形的高是另一个三角形高的1.5倍,那么它们的相似比是________。
答案:1.5:1解析:相似三角形的高之比等于相似比,所以相似比为1.5:1。
三、简答题6. 为什么两个相似三角形的对应边长比等于它们的对应角的正弦值之比?答案:在相似三角形中,对应角相等,根据正弦定理,对应角的正弦值与对应边长成比例,所以两个相似三角形的对应边长比等于它们的对应角的正弦值之比。
四、计算题7. 已知三角形ABC与三角形DEF相似,且AB:DE = 2:3,求三角形ABC的面积与三角形DEF的面积之比。
答案:4:9解析:根据相似三角形的性质,面积比等于边长比的平方,即(2:3)² = 4:9。
结束语:通过本单元的测试题,我们复习了相似图形的定义、性质以及相关计算方法。
希望同学们能够熟练掌握相似图形的相关知识,并在实际问题中灵活运用。
第22章 相似形数学九年级上册-单元测试卷-沪科版(含答案)
第22章相似形数学九年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,在四边形ABCD中,对角线AC与BD相交于点O,AC平分∠DAB,且∠DAC=∠DBC,那么下列结论不一定正确的是()A.△AOD∽△BOCB.△AOB∽△DOCC.CD=BCD.BC•CD=AC•OA2、如果点D、E,F分别在△ABC的边AB、BC,AC上,联结DE、EF,且DE∥AC,那么下列说法错误的是()A.如果EF∥AB,那么AF:AC=BD:ABB.如果AD:AB=CF:AC,那么EF∥ABC.如果△EFC∽△ABC,那么EF∥ABD.如果EF∥AB,那么△EFC∽△BDE3、如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.△PAB∽△PCAB.△PAB∽△PDAC.△ABC∽△DBAD.△ABC∽△DCA4、如图,在菱形ABCD中,∠A=60°,AB=2,点M为边AD的中点,连接BD交CM于点N,则BN的长是()A.1B.C.D.5、如图所示,△ABC∽△ACD,且AB=10cm,AC=8cm,则AD的长是()A.6.4cmB.6cmC.2cmD.4cm6、如图,线段CD两个端点的坐标分别为C(4,4)、D(6,2),以原点O为位似中心,在第一象限内将线段CD缩小为线段AB,若点B的坐标为(3,1),则点A的坐标为()A.(0,3)B.(1,2)C.(2,2)D.(2,1)7、已知= ,则下列结论一定正确的是()A.x=2,y=3B.2x=3yC.D.8、已知,下列变形错误的是()A. B. C. D.9、若△ABC∽△DEF,且对应中线比为2:3,则△ABC与△DEF的面积比为()A.3:2B.2:3C.4:9D.9:1610、若,则的值为( )A. B. C. D.11、如图,在四边形ABCD中,∠ABC=90°,AB=BC= ,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为 ( )A.2B.C.D.312、如图,过菱形ABCD的顶点C的直线与AB的延长线交于点E,与AD的延长线交于点F,若菱形的边长为x,BE=a,DF=b,则a,b,x满足的关系是()A.2x=a+bB.x 2=a•bC.x(a+b)=a•bD.2x 2=a 2+b 213、把△ABC的各边分别扩大为原来的3倍,得到△A′B′C′,下列结论不能成立的是()A.△ABC∽△A′B′C′B.△ABC与△A′B′C′的各对应角相等C.△ABC与△A′B′C′的相似比为D.△ABC与△A′B′C′的相似比为14、如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为( )A. B. C. D.115、下列命题中,①有一组邻边互相垂直的菱形是正方形②若2x=3y,则=③若(﹣1,a)、(2,b)是双曲线y= 上的两点,则a>b正确的有()个.A.1B.2C.3D.0二、填空题(共10题,共计30分)16、如图,矩形ABCD中,AB=4,AD=3,点Q在对角线AC上,且AQ=AD,连接DQ并延长,与边BC交于点P,则线段AP=________.17、如图,在Rt△ABC中,∠C=90°,点D在边AB上,线段DC绕点D逆时针旋转,端点C恰巧落在边AC上的点E处.如果=m,=n.那么m与n满足的关系式是:m=________(用含n的代数式表示m).18、小明身高是1.6m,影长为2m,同时刻教学楼的影长为24m,则楼的高是________.19、在△ABC中,AB=5,AC=4,BC=3,D是边AB上的一点,E是边AC上的一点(D,E均与端点不重合),如果△CDE与△ABC相似,那么CE=________20、如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为________米.21、已知线段AB=1,点C是线段AB的黄金分割点(AC>BC),则AC=________(精确到0.01)22、如图,在Rt△BEG中,∠BEG=90°,ED平分∠BEG,点H、F在EG上,∠CFG=2∠EDH,∠EBG=∠DEB+∠EDH,BD=CD=CG=2,则CF的长为________。
2019年沪科版九年级上册数学《第22章相似形》单元测试卷(解析版)
2019年沪科版九年级上册数学《第22章相似形》单元测试卷一.选择题(共10小题)1.已知甲、乙两地图的比例尺分别为1:5000和1:20 000,如果甲图上A、B两地的距离与乙图上C、D两地的距离恰好一样长,那么A、B两地的实际距离与C、D两地的实际距离之比为()A.5:2B.2:5C.1:4D.4:12.已知==,则的值等于()A.B.C.D.3.点P把线段AB分割成AP和PB两段,如果AP是PB和AB的比例中项,那么下列式子成立的是()A.=B.=C.=D.=4.如图,在正方形ABCD中,AB=2,点E是DC中点,AF平分∠EAB,FH⊥AD交AE 于点G,则GH的长为()A.B.C.D.5.如图,l1∥l2∥l3∥l4∥l5,且l1,l2,l3,l4,l5中相邻两条直线之间的距离相等,△ABC 的顶点A,B,C分别在l1,l3,l5上,AB交l2于点D,BC交l4于点E,AC交l2于点F,若△DEF的面积是1,则△ABC的面积是()A.3.5B.4C.4.5D.56.如图,l1∥l2∥l3∥l4∥l5∥l6,每相邻两条直线之间的距离为1,点A,B,C分别在直线l1,l3,l6上,AB交l2于点D,BC交l4于点E,CA交l2于点F.若△DEF的面积为2,则△ABC的面积为()A.8B.9C.10D.127.若△ABC的各边都分别扩大到原来的2倍,得到△A1B1C1,下列结论正确的是()A.△ABC与△A1B1C1的对应角不相等B.△ABC与△A1B1C1不一定相似C.△ABC与△A1B1C1的相似比为1:2D.△ABC与△A1B1C1的相似比为2:18.下列说法中正确的是()①在两个边数相同的多边形中,如果各对应边成比例,那么这两个多边形相似;②两个矩形有一组邻边对应成比例,这两个矩形相似;③有一个角对应相等的平行四边形都相似;④有一个角对应相等的菱形都相似.A.①②B.②③C.③④D.②④9.已知△ABC∽△DEF,AB:DE=1:4,则△ABC与△DEF的面积之比是()A.1:2B.1:4C.1:16D.16:110.如图,在△ABC中,AB=9,BC=18,AC=12,点D在边AC上,且CD=4,过点D 作一条直线交边AB于点E,使△ADE与△ABC相似,则DE的长是()A.12B.16C.12或16D.以上都不对二.填空题(共8小题)11.已知,则=.12.已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=.13.已知线段MN=2,点P是线段MN的黄金分割点,MP>NP,则MP=.14.如图,已知l1∥l2∥l3,CH=1.2cm,DH=2.4cm,AB=3cm,那么AG=cm.15.下列说法中:①所有的等腰三角形都相似;②所有的正三角形都相似;③所有的正方形都相似;④所有的矩形都相似.其中说法正确的序号是.16.若△ABC∽△DEF,且△ABC与△DEF的相似比为1:2,则△ABC与△DEF的面积比为.17.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点E,F分别在边BC,AC上,沿EF所在的直线折叠∠C,使点C的对应点D恰好落在边AB上,若△EFC和△ABC 相似,则AD的长为.18.如图,在矩形ABCD中,∠ACB=30°,过点D作DE⊥AC于点E,延长DE交BC于点F,连接AF,若AF=,线段DE的长为.三.解答题(共8小题)19.解答下列各题:(1)解方程:(x+2)(x+3)=2x+16(2)已知a、b、c均为非零的实数,且满足==,求的值20.(1)已知a=4,c=9,若b是a,c的比例中项,求b的值.(2)已知线段MN是AB,CD的比例中项,AB=4cm,CD=5cm,求MN的长.并思考两题有何区别.21.若等腰三角形的顶角为36°,则这个三角形称为黄金三角形.如图,在△ABC中,BA =BC,D在边CB上,且DB=DA=AC.(1)如图1,写出图中所有的黄金三角形,并证明;(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB,AC于点N,E,如图2,试写出线段BN、CE、CD之间的数量关系,并加以证明.22.如图,矩形纸片ABCD,AB=8,AE=EG=GD=4,AB∥EF∥GH.将矩形纸片沿BE 折叠,得到△BA′E(点A折叠到A′处),展开纸片;再沿BA′折叠,折痕与GH,AD分别交于点M,N,然后将纸片展开.(1)连接EM,证明A′M=MG;(2)设A′M=MG=x,求x值.23.某校九年级数学兴趣小组在探究相似多边形问题时,他们提出了下面两个观点:观点一:将外面大三角形按图1的方式向内缩小,得到新三角形,它们对应的边间距都为1,则新三角形与原三角形相似.观点二:将邻边为6和10的矩形按图2的方式向内缩小,得到新的矩形,它们对应的边间距都为1,则新矩形与原矩形相似.请回答下列问题:(1)你认为上述两个观点是否正确?请说明理由.(2)如图3,已知△ABC,AC=6,BC=8,AB=10,将△ABC按图3的方式向外扩张,得到△DEF,它们对应的边间距都为1,求△DEF的面积.24.已知四边形ABCD中,AB=AD,AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,△DGC∽△ADC.(1)求证:CD=CF;(2)H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=5,DC=3,求的值.25.如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A(2,0),C (0,3),点P以每秒1个单位的速度从点C出发在射线CO上运动,连接BP,作BE ⊥PB交x轴于点E,连接PE交AB于点F,设运动时间为t秒.(1)当t=4时,求点E的坐标;(2)在运动的过程中,是否存在以P、O、E为顶点的三角形与△ABE相似.若存在,请求出点P的坐标;若不存在,请说明理由.26.如图,在平行四边形ABCD中,BE平分∠ABC,分别交AD、AC于点E、点F.点G 是BC上一点,连接AG交BE于点H,过点H作BC的平行线,交AC于点P.(1)若∠ABC=60°,AH=5,BH=6,求△ABH的面积;(2)若∠BAG=∠ACB,求证:AP=CF.2019年沪科版九年级上册数学《第22章相似形》单元测试卷参考答案与试题解析一.选择题(共10小题)1.已知甲、乙两地图的比例尺分别为1:5000和1:20 000,如果甲图上A、B两地的距离与乙图上C、D两地的距离恰好一样长,那么A、B两地的实际距离与C、D两地的实际距离之比为()A.5:2B.2:5C.1:4D.4:1【分析】根据题意,列比例式分别求出A、B和C、D两地的实际距离,再求得A、B两地的实际距离与C、D两地的实际距离之比的值.【解答】解:把图上距离看作单位1,设A、B和C、D两地的实际距离分别为x和y,则:1:5000=1:x,解得x=5000,1:20000=1:y,解得y=20000,∴x:y=5000:20000=1:4.故选:C.【点评】解此题的关键是可以把图上距离看作单位1,再根据比例尺分别表示其实际距离,进一步求得比值.2.已知==,则的值等于()A.B.C.D.【分析】设a=5k,b=7k,c=5k',d=7k',代入代数式进行计算即可.【解答】解:设a=5k,b=7k,c=5k',d=7k',则===,故选:A.【点评】本题主要考查了分式的求值,解决问题的关键是依据条件设a=5k,b=7k,c =5k',d=7k'.3.点P把线段AB分割成AP和PB两段,如果AP是PB和AB的比例中项,那么下列式子成立的是()A.=B.=C.=D.=【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值()叫做黄金比.【解答】解:∵点P把线段AB分割成AP和PB两段,AP是PB和AB的比例中项,∴根据线段黄金分割的定义得:=.故选:D.【点评】考查了黄金分割,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.4.如图,在正方形ABCD中,AB=2,点E是DC中点,AF平分∠EAB,FH⊥AD交AE 于点G,则GH的长为()A.B.C.D.【分析】在Rt△ADE中,根据勾股定理可求AE,设AG=x,可得GF=x,HG=2﹣x,根据相似三角形的性质列出方程求出x,进一步得到GH的长即可求解.【解答】解:∵在正方形ABCD中,AB=2,点E是DC中点,∴DE=1,在Rt△ADE中,AE==,∵AF平分∠EAB,∴∠GAF=∠BAF,∵FH⊥AD,∴AB∥HF∥CD,AB=HF,∴∠GFA=∠BAF,∴AG =GF ,设AG =x ,则GF =x ,GH =2﹣x ,则=,即=,解得x =,GH ═2﹣x =2﹣=. 故选:B .【点评】考查了勾股定理,相似三角形的性质,角平分线的性质,条件多而复杂,注意知识的综合运用与转化.5.如图,l 1∥l 2∥l 3∥l 4∥l 5,且l 1,l 2,l 3,l 4,l 5中相邻两条直线之间的距离相等,△ABC 的顶点A ,B ,C 分别在l 1,l 3,l 5上,AB 交l 2于点D ,BC 交l 4于点E ,AC 交l 2于点F ,若△DEF 的面积是1,则△ABC 的面积是( )A .3.5B .4C .4.5D .5【分析】每相邻两条直线之间的距离为1,△DEF 的面积为1,即可得到DF =1,再根据DF ∥BG ,即可得出BG =2,即可求得△ABC 的面积.【解答】解:如图,∵每相邻两条直线之间的距离为1,△DEF 的面积为2,∴×DF ×2=1,∴DF =1,∵DF ∥BG ,∴==,∴BG =2,∴S △ABC =S △ABG +S △BCG =×2×2+×2×2=4,故选:B .【点评】本题主要考查了平行线分线段成比例定理,平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.6.如图,l 1∥l 2∥l 3∥l 4∥l 5∥l 6,每相邻两条直线之间的距离为1,点A ,B ,C 分别在直线l 1,l 3,l 6上,AB 交l 2于点D ,BC 交l 4于点E ,CA 交l 2于点F .若△DEF 的面积为2,则△ABC 的面积为( )A .8B .9C .10D .12【分析】每相邻两条直线之间的距离为1,△DEF 的面积为2,即可得到DF =2,再根据DF ∥BG ,即可得出BG =4,即可求得△ABC 的面积.【解答】解:如图,∵每相邻两条直线之间的距离为1,△DEF 的面积为2,∴×DF ×2=2,∴DF =2,∵DF ∥BG ,∴==,∴BG =4,∴S △ABC =S △ABG +S △BCG =×4×2+×4×3=10,故选:C .【点评】本题主要考查了平行线分线段成比例定理,平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.7.若△ABC的各边都分别扩大到原来的2倍,得到△A1B1C1,下列结论正确的是()A.△ABC与△A1B1C1的对应角不相等B.△ABC与△A1B1C1不一定相似C.△ABC与△A1B1C1的相似比为1:2D.△ABC与△A1B1C1的相似比为2:1【分析】相似三角形的对应边之比等于相似比,据此即可解答.【解答】解:因为△ABC的各边都分别扩大到原来的2倍,得到△A1B1C1,那么△A1B1C1的各边为△ABC的2倍,即△ABC与△A1B1C1的相似比为1:2.故选:C.【点评】此题主要考查学生对相似三角形判定方法的运用.8.下列说法中正确的是()①在两个边数相同的多边形中,如果各对应边成比例,那么这两个多边形相似;②两个矩形有一组邻边对应成比例,这两个矩形相似;③有一个角对应相等的平行四边形都相似;④有一个角对应相等的菱形都相似.A.①②B.②③C.③④D.②④【分析】根据相似多边形的定义:各角对应相等,各边对应成比例的两个多边形叫做相似多边形判定则可.【解答】解:①虽然各对应边成比例,但是各对应角不一定相等,所以不相似,比如:所有菱形的对应边都成比例,但是它们不一定相似;②两个矩形有一组邻边对应成比例,就可以得出四条边对应成比例,并且它们的角都是90°,所以这两个矩形相似;③有一个角对应相等的平行四边形的对应边不一定成比例,所以不一定相似;④有一个角对应相等就可以得出菱形的其他角对应相等,并且菱形的对应边是成比例的,所以相似.故选:D.【点评】本题考查了相似多边形的判定,根据定义判定则可.注意:一定要满足各角对应相等,各边对应成比例两个条件,缺一不可.9.已知△ABC∽△DEF,AB:DE=1:4,则△ABC与△DEF的面积之比是()A.1:2B.1:4C.1:16D.16:1【分析】根据相似三角形的性质:相似三角形的面积之比等于相似比的平方,即可求出答案.【解答】解:∵△ABC∽△DEF,∴=,∵=,∴△ABC与△DEF的面积比是=1:16,故选:C.【点评】本题考查了相似三角形的性质的应用,注意:相似三角形的面积之比等于相似比的平方,而不等于相似比,题目比较典型,难度不大.10.如图,在△ABC中,AB=9,BC=18,AC=12,点D在边AC上,且CD=4,过点D 作一条直线交边AB于点E,使△ADE与△ABC相似,则DE的长是()A.12B.16C.12或16D.以上都不对【分析】为两种情况:①∠ADE=∠C,根据△ADE∽△ACB,得出=,代入求出DE即可;②∠ADE′=∠B,根据△ADE∽△ABC,得出=,代入求出AE>AB.【解答】解:∵∠A=∠A,分为两种情况:①DE∥BC(即∠ADE=∠C),∴△ADE∽△ACB,∴=,∴,∴DE=12,②∠ADE′=∠B,∵∠A=∠A,∴△ADE∽△ABC,∴=,∴=,∴AE=>AB,不合题意,故选:A.【点评】本题考查了相似三角形的性质的应用,关键是求出符合条件的所有情况,主要考查学生的理解能力和计算能力,用的数学思想是方程思想和分类讨论思想.二.填空题(共8小题)11.已知,则=.【分析】设=a,代入计算即可.【解答】解:设=a,则x=3a,y=4a,∴==,故答案为:.【点评】本题考查的是比例的性质,灵活运用参数思想是解题的关键.12.已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=2.【分析】根据比例中项的定义可得b2=ac,从而易求b.【解答】解:∵b是a、c的比例中项,∴b2=ac,即b2=4,∴b=±2(负数舍去).故答案是:2.【点评】本题考查了比例线段,解题的关键是理解比例中项的含义.13.已知线段MN=2,点P是线段MN的黄金分割点,MP>NP,则MP=.【分析】根据黄金分割的概念得到MP=MN,把MN=2代入计算即可.【解答】解:∵点P是线段MN的黄金分割点,MP>NP,∴MP=MN=×2=﹣1;故答案为:﹣1.【点评】本题考查了黄金分割的概念;熟练掌握黄金分割值是解题的关键.14.如图,已知l1∥l2∥l3,CH=1.2cm,DH=2.4cm,AB=3cm,那么AG=1cm.【分析】根据平行线分线段成比例定理得出=,代入得出=,求出AG 即可.【解答】解:∵l1∥l2∥l3,∴=,∵CH=1.2cm,DH=2.4cm,AB=3cm,∴=,解得:AG=1(cm),故答案为:1.【点评】本题考查了平行线分线段成比例定理的应用,注意:定理(一组平行线截两条直线,所截的线段对应成比例)中的对应成比例.15.下列说法中:①所有的等腰三角形都相似;②所有的正三角形都相似;③所有的正方形都相似;④所有的矩形都相似.其中说法正确的序号是②③.【分析】根据正方形、矩形、等边三角形、等腰三角形的性质进行判断即可.【解答】解:①所有的等腰三角形都相似,错误;②所有的正三角形都相似,正确;③所有的正方形都相似,正确;④所有的矩形都相似,错误.故答案为:②③.【点评】本题考查了相似图形的知识,熟练掌握各特殊图形的性质是解题的关键,难度一般.16.若△ABC∽△DEF,且△ABC与△DEF的相似比为1:2,则△ABC与△DEF的面积比为1:4.【分析】根据相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵△ABC∽△DEF,且△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:4,故答案为:1:4.【点评】本题考查的是相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.17.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点E,F分别在边BC,AC上,沿EF所在的直线折叠∠C,使点C的对应点D恰好落在边AB上,若△EFC和△ABC相似,则AD的长为或.【分析】△CEF与△ABC相似,分两种情况:①若CF:CE=3:4,此时EF∥AB,CD 为AB边上的高;②若CE:CF=3:4,由相似三角形角之间的关系,可以推出∠B=∠ECD与∠A=∠FCD,从而得到CD=AD=BD,即D点为AB的中点.【解答】解:若△CEF与△ABC相似,分两种情况:①若CF:CE=3:4,∵AC:BC=3:4,∴CF:CE=AC:BC,∴EF∥AB.连接CD,如图1所示:由折叠性质可知,CD⊥EF,∴CD⊥AB,即此时CD为AB边上的高.在Rt△ABC中,∵∠ACB=90°,AC=3,BC=4,∴AB==5,∴cos A==,∴AD=AC•cos A=3×=;②若CE:CF=3:4,∵AC:BC=3:4,∠C=∠C,∴△CEF∽△CBA,∴∠CEF=∠A.连接CD,如图2所示:由折叠性质可知,∠CEF+∠ECD=90°,又∵∠A+∠B=90°,∴∠B=∠ECD,∴BD=CD.同理可得:∠A=∠FCD,AD=CD,∴D点为AB的中点,∴AD=AB=;故答案为:或.【点评】本题考查的是相似三角形的性质、翻转变换的性质,掌握相似三角形的对应边的比相等、运用分类讨论及数形结合思想是解题的关键.18.如图,在矩形ABCD中,∠ACB=30°,过点D作DE⊥AC于点E,延长DE交BC于点F,连接AF,若AF=,线段DE的长为.【分析】由直角三角形的性质得出AD=CD,EF=CF,CD=CF,设CF=x,则AB=CD=x,BC=AD=CD=3x,得出BF=BC﹣CF=3x﹣x=2x,在Rt△ABF中,由勾股定理得(x)2+(2x)2=()2,解得x=,得出CF=,EF=,AD=3,证明△ADE∽△CFE,得出=,即可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∠ADC=∠B=∠BCD=90°,AB=CD,AD=BC,AD∥BC,∴∠DAC=∠ACB=30°,∴AD=CD,∠DCE=60°,∵DF⊥AC,∴EF=CF,∠CDF=30°,∴CD=CF,设CF=x,则AB=CD=x,BC=AD=CD=3x,∴BF=BC﹣CF=3x﹣x=2x,在Rt△ABF中,由勾股定理得:(x)2+(2x)2=()2,解得:x=,∴CF=,EF=,AD=3,∵AD∥BC,∴△ADE∽△CFE,∴=,即=,∴DE=;故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质、直角三角形的性质、勾股定理等知识;熟练掌握矩形的性质,证明三角形相似是解题的关键.三.解答题(共8小题)19.解答下列各题:(1)解方程:(x+2)(x+3)=2x+16(2)已知a、b、c均为非零的实数,且满足==,求的值【分析】(1)先展开,再合并同类项,根据因式分解法解方程即可求解.;(2)根据比例的等比性质解决分式问题.注意分两种情况:a+b+c≠0;a+b+c=0进行讨论.本题还可以设参数法解答.【解答】解:(1)(x+2)(x+3)=2x+16,x2+5x+6=2x+16,x2+3x﹣10=0,(x﹣2)(x+5)=0,解得x1=2,x2=﹣5;(2)若a+b+c≠0,由等比定理有====1,所以a+b﹣c=c,a﹣b+c=b,﹣a+b+c=a,于是有==8.若a+b+c=0,则a+b=﹣c,b+c=﹣a,c+a=﹣b,于是有==﹣1.【点评】考查了因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.同时考查了等比性质:若==…==k,则=k,(b+d+…+n≠0).特别注意条件的限制(分母是否为0).比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.20.(1)已知a=4,c=9,若b是a,c的比例中项,求b的值.(2)已知线段MN是AB,CD的比例中项,AB=4cm,CD=5cm,求MN的长.并思考两题有何区别.【分析】(1)根据比例中项的概念,a:b=b:c,则可求得b的值;(2)根据比例中项的概念,AB:MN=MN:CD,则可求得线段MN的值.【解答】解:(1)∵b是a,c的比例中项,∴a:b=b:c,∴b2=ac;b=±,∵a=4,c=9,∴b=±=±6,即b=±6;(2)∵MN是线段,∴MN>0;∵线段MN是AB,CD的比例中项,∴AB:MN=MN:CD,∴MN 2=AB•CD,∴MN=±;∵AB=4cm,CD=5cm,∴MN=±=±2;MN不可能为负值,则MN=2,通过解答(1)、(2)发现,c、MN同时作为比例中项出现,c可以取负值,而MN不可以取负值.【点评】本题考查了比例中项的概念,根据两条线段的比例中项的平方是两条线段的乘积,可得出方程求解.21.若等腰三角形的顶角为36°,则这个三角形称为黄金三角形.如图,在△ABC中,BA =BC,D在边CB上,且DB=DA=AC.(1)如图1,写出图中所有的黄金三角形,并证明;(2)若M为线段BC上的点,过M作直线MH⊥AD于H,分别交直线AB,AC于点N,E,如图2,试写出线段BN、CE、CD之间的数量关系,并加以证明.【分析】(1)由等腰三角形的性质和黄金三角形的定义即可得出结论;(2)证明△ANH≌△AEH(ASA),得出AN=AE,借助已知利用线段的和差可得CD=BN+CE.【解答】解:(1)△ABC和△ADC都是黄金三角形,理由如下:∵BA=BC,∴∠BAC=∠BCA,∵DB=DA,∴∠BAD=∠B,∵DA═AC,∴∠ADC=∠C=∠BAC=2∠B,又∵∠B+∠BAC+∠C=180°,∴∠B+2∠B+2∠B=180°,∴∠B=∠DAC=36°,∴△ABC和△ADC都是黄金三角形;(2)CD=BN+CE,理由如下;由(1)知,∠BAD=∠B=36°,∠CAD=36°=∠BAD,∴AD是∠BAC的平分线,在△ANH和△AEH中∴△ANH≌△AEH(ASA),∴AN=AE,即AB﹣BN=AC+CE,又∵BA=BC=BD+DC,AC=AD=BD,∴BC﹣BN=AD+CE∴BD+CD﹣BN=AD+CE,又∵AD=BD,∴CD﹣BN=CE,即CD=BN+CE.【点评】本题主要考查等腰三角形的判定和性质、黄金三角形的定义、全等三角形的判定与性质等知识;掌握等腰三角形的判定与性质,证明三角形全等是解题的关键.22.如图,矩形纸片ABCD,AB=8,AE=EG=GD=4,AB∥EF∥GH.将矩形纸片沿BE 折叠,得到△BA′E(点A折叠到A′处),展开纸片;再沿BA′折叠,折痕与GH,AD分别交于点M,N,然后将纸片展开.(1)连接EM,证明A′M=MG;(2)设A′M=MG=x,求x值.【分析】(1)证明Rt△EA'M≌Rt△EGM即可证明A′M=MG;(2)设A′M=MG=x,则MH=8﹣x,BH=8,BM=BA'+A'M=8+x,在Rt△BHM中,由BH2+HM2=BM2,即82+(8﹣x)2=(8+x)2,求出x即可.【解答】解:(1)证明:连接EM,如图.由折叠可知EA=EA',∵AE=EG,∠EA'B=∠A=90°∴A'E=EG,∵四边形ABCD为矩形,AB∥EF∥GH,∴∠EGM=90°∴∠EGM=∠EA'M,∴Rt△EA'M≌Rt△EGM(HL),∴A′M=MG;(2)∵AB=8,AE=EG=GD=4,AB∥EF∥GH,∴GH=8,A'B=AB=8,MH=8﹣x,BH=8,BM=BA'+A'M=8+x在Rt△BHM中,BH2+HM2=BM2,即82+(8﹣x)2=(8+x)2,解得x=2,即x的值为2.【点评】本题考查的是全等三角形的性质和勾股定理的应用,灵活运用定理、找准对应关系是解题的关键.23.某校九年级数学兴趣小组在探究相似多边形问题时,他们提出了下面两个观点:观点一:将外面大三角形按图1的方式向内缩小,得到新三角形,它们对应的边间距都为1,则新三角形与原三角形相似.观点二:将邻边为6和10的矩形按图2的方式向内缩小,得到新的矩形,它们对应的边间距都为1,则新矩形与原矩形相似.请回答下列问题:(1)你认为上述两个观点是否正确?请说明理由.(2)如图3,已知△ABC,AC=6,BC=8,AB=10,将△ABC按图3的方式向外扩张,得到△DEF,它们对应的边间距都为1,求△DEF的面积.【分析】(1)根据相似三角形以及相似多边形的判定定理来判定甲乙的观点是否正确;(2)首先根据勾股定理的逆定理求出∠C是直角,求出△ACB的内切圆半径,进而△DEF的内切圆的半径,根据相似三角形的性质以及面积公式即可求出△DEF的边长,进而求出△DEF的面积.【解答】解:(1)观点一正确;观点二不正确.理由:①如图(1)连接并延长DA,交FC的延长线于点O,∵△ABC和△DEF对应的边的距离都为1,∴AB∥DE,AC∥DF,∴∠FDO=∠CAO,∠ODE=∠OAB,∴∠FDO+∠ODE=∠CAO+∠OAB,即∠FDE=∠CAB,同理∠DEF=∠ABC,∴△ABC∽△DEF,∴观点一正确;②如图(2)由题意可知,原矩形的邻边为6和10,则新矩形邻边为4和8,∵,,∴,∴新矩形于原矩形不相似,∴观点二不正确;(2)如图(3),延长DA、EB交于点O,∵A到DE、DF的距离都为1,∴DA是∠FDE的角平分线,同理,EB是∠DEF的角平分线,∴点O是△ABC的内心,∵AC=6,BC=8,AB=10,∴△ABC是直角三角形,设△ABC的内切圆的半径为r,则6﹣r+8﹣r=10,解得r=2,过点O作OH⊥DE于点H,交AB于G,∵AB∥DE,∴OG⊥AB,∴OG=r=2,∴,同理,∴DF=9,EF=12,∴△DEF的面积为:..【点评】本题主要考查了相似三角形的综合题,主要涉及到相似三角形以及相似多边形的判定,熟练应用相似多边形的判定方法是解题关键.24.已知四边形ABCD中,AB=AD,AC平分∠DAB,过点C作CE⊥AB于点E,点F为AB上一点,且EF=EB,△DGC∽△ADC.(1)求证:CD=CF;(2)H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=5,DC=3,求的值.【分析】(1)求出∠DAC=∠BAC,根据全等三角形的判定得出△ADC≌△ABC,根据全等三角形的性质得出CD=CB即可;(2)根据相似三角形的性质和判定定理即可得到结论.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠BAC,在△ADC和△ABC中,∴△ADC≌△ABC(SAS),∴CD=CB,∵CE⊥AB,EF=EB,∴CF=CB,∴CD=CF;(2)解:∵△DGC∽△ADC,∴∠DGC=∠ADC,∵∠ADC=2∠HAG,∴∠DCG=2∠HAG,∵∠DGC=∠HAG+∠AHG,∴∠HAG=∠AHG,∴HG=AG,∵∠GDC=∠DAC=∠FAG,∠DGC=∠AGF,∴△DGC∽△AGF,∴△AGF∽△ADC,∴==,即=.【点评】本题考查了相似三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.25.如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A(2,0),C (0,3),点P以每秒1个单位的速度从点C出发在射线CO上运动,连接BP,作BE ⊥PB交x轴于点E,连接PE交AB于点F,设运动时间为t秒.(1)当t=4时,求点E的坐标;(2)在运动的过程中,是否存在以P、O、E为顶点的三角形与△ABE相似.若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)由相似三角形的性质求出BH=6,得出OE=8即可求出点E的坐标.(2)本题需先证出△BCP∽△BAE,求出AE=t,再分两种情况讨论,求出t的值,即可得出P点的坐标.【解答】解:(1)当t=4时,PC=4,过点E作CB的垂线,垂足为H,如图1所示:∵A(2,0),C(0,3),∴OA=2,OC=3,∵四边形OABC是矩形,∴AB=OC=3,BC=OA=2,∵∠BPC+∠PBC=90°,∠PBC+∠EBH=90°,∴∠BPC=∠EBH,∵∠EHB=∠BCP=90°,∴△PBC∽△BEH,∴=,即=,解得:BH=6,∴AE=BH=6,∴OE=OA+AE=2+6=8,∴点E的坐标是(8,0);(2)存在,理由如下:∵∠ABE+∠ABP=90°,∠PBC+∠ABP=90°,∴∠ABE=∠PBC,∵∠BAE=∠BCP=90°,∴△BCP∽△BAE∴=,∴=,∴AE=t,当点P在点O上方时,如图2所示:若=时,△POE∽△EAB,∵OP=3﹣t,OE=2+t,∴=,解得:t1=,t2=(舍去),∴OP=3﹣=,∴P的坐标为(0,),当点P在点O下方时,如图3所示:①若=,则△OPE∽△ABE,=,解得:t1=3+,t2=3﹣(舍去),OP=t﹣3=3+﹣3=,P的坐标为(0,﹣),②若=,则△OEP∽△ABE,=,整理得:t2=﹣9,∴这种情况不成立,综上所述,存在以P、O、E为顶点的三角形与△ABE相似,P的坐标为:(0,)或(0,﹣).【点评】本题主要考查了相似三角形的性质与判定,在解题时要根据已知条件再结合图形是解题的关键,注意分类讨论.26.如图,在平行四边形ABCD中,BE平分∠ABC,分别交AD、AC于点E、点F.点G 是BC上一点,连接AG交BE于点H,过点H作BC的平行线,交AC于点P.(1)若∠ABC=60°,AH=5,BH=6,求△ABH的面积;(2)若∠BAG=∠ACB,求证:AP=CF.【分析】(1)过点H作HN⊥AB于N,则∠ABH=30°,HN=BH=3,由勾股定理求得BN==3,AN==4,则AB=4+3,由三角形面积公式即可得出结果;(2)在BC上截取BM=AB,连接FM,证出∠AGB=∠BAC,得出∠AFB=∠AHF,则AH=AF,由SAS证得△ABF≌△MBF得出AF=FM,∠AFB=∠MFB,推出AH=FM,∠AHF=∠MFB,则AG∥FM得出∠HAP=∠MFC,由HP∥BC得出∠APH=∠FCM,由AAS证得△APH≌△FCM,即可得出结论.【解答】(1)解:过点H作HN⊥AB于N,如图1所示:∵BE平分∠ABC,∠ABC=60°,∴∠ABH=30°,∴HN=BH=3,BN===3,AN===4,∴AB=AN+BN=4+3,∴S=AB•HN=×(4+3)×3=6+;△ABH(2)证明:在BC上截取BM=AB,连接FM,如图2所示:∵∠BAG=∠ACB,∠AGB=∠ACB+∠CAG,∠BAC=∠BAG+∠CAG,∴∠AGB=∠BAC,∵∠AFB=180°﹣∠BAC﹣∠ABF,∠AHF=∠BHG=180°﹣∠AGB﹣∠CBF,∠ABF =∠CBF,∴∠AFB=∠AHF,∴AH=AF,在△ABF和△MBF中,,∴△ABF≌△MBF(SAS),∴AF=FM,∠AFB=∠MFB,∴AH=FM,∠AHF=∠MFB,∴AG∥FM,∴∠HAP=∠MFC,∵HP∥BC,∴∠APH=∠FCM,在△APH和△FCM中,,∴△APH≌△FCM(AAS),∴AP=CF.【点评】本题考查了全等三角形的判定与性质、平行四边形的性质、角平分线定义、平行线的判定与性质、等腰三角形的判定与性质、勾股定理、三角形面积公式等知识,熟练掌握平行线的性质、证明三角形全等是解题的关键.。
人教版数学九年级图形的相似(单元测试卷)
班级小组姓名成绩(满分120)一、填空题(每空4分,共44分)1、如果两个三角形相似,相似比为2∶3,则它们对应边上的中线比为。
2、如果两个相似三角形的面积比为3∶4,则它们的周长比为。
3、把一个三角形改成与它相似的三角形,若边长扩大4倍,则面积扩大倍。
4、如图所示,要证ABC ACD∽,已经具备了A A∆∆∠=∠,还需添加的条件是或。
5、两个相似三角形的一对对应边分别为20㎝和8㎝,它们的周长相差60㎝,则这两个三角形的周长分别为和。
6、已知两数4和8,试写出第三个数,使这三个数中,其中一个数是其余两数的比例中项,第三个数是(只需写出一个即可).7、已知D、E分别是△ABC的边AB、AC上的点,请你添加一个条件,使△ABC与△AED相似.你添加的条件是(只需添加一个你认为适当的条件即可).8、下列说法:①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有等腰直角三角形都相似;④所有的直角三角形都相似.其中正确的是(把你认为正确的说法的序号都填上).9、如图,在平行四边形ABCD中,AB=8cm,AD=4cm,E为AD的中点,在AB上取一点F,使△CBF ∽△CDE,则AF=cm。
二、选择题(每题4分,共24分)10、已知A、B两地的实际距离AB=5千米,画在图上的距离A B=2cm,则该地图的比例尺是()A、2∶5B、1∶2500C、250000∶1D、1∶25000011、已知线段a,b,且23ab ,则下列说法错误的是()12、在比例尺为1∶20的图纸上画出的某个零件的长是32mm,这个零件的实际长是()A、64mB、64dmC、64cmD、64mm13、如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形()A、1对B、2对C、3对D、4对14、△ABC中,DE∥BC,且AD∶DB=2∶1,那么DE∶BC等于()A、2∶1B、1∶2C、2∶3D、3∶215、如图,P是Rt△ABC的斜边BC上异于B、C的一点,过点P做直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()A、1条B、2条C、3条D、4条三、解答题(16、17每题9分,其他题目每题10分)16、如图,△ABC与△ADB中,∠ABC=∠ADB=90°,AC=5cm,AB=4cm,若图中的两个直角三角形相似,求AD的长。
九年级上册数学单元测试卷-第1章 图形的相似-青岛版(含答案)
九年级上册数学单元测试卷-第1章图形的相似-青岛版(含答案)一、单选题(共15题,共计45分)1、如图,在△ABC中,点,分别在边,上,连接,交于点,且DE∥BC,,,,则的长为( )A. B. C. D.2、已知两个相似三角形的相似比为4:9,则它们周长的比为()A.2:3B.4:9C.3:2D.16:813、下列说法正确的是()A.两个多边形的对应角相等则它们是相似形B.两个多边形的对应边的比相等则两个多边形相似C.所有的等腰直角三角形是相似形D.有两组对应边相等的两个等腰三角形是相似形.4、如图,在矩形ABCD中,点E为AD中点,BD和CE相交于点F,如果DF=2,那么线段BF的长度为()A.2B.3C.4D.55、如图所示的是两个三角形是位似图形,它们的位似中心是()A.点B.点C.点D.点6、如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A. B. C. D.7、一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则其它两边的和是()A.17B.19C.21D.248、如图,四边形与四边形位似,点O为位似中心,已知,则四边形与四边形的面积比为()A.1:4B.1:2C.1:9D.1:39、如图,在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;④MG•MH=,其中正确结论为()A.①②③B.①③④C.①②④D.①②③④10、如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A. B. C. D.11、如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8B.12C.14D.1612、如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,﹣4)C.(2,﹣1)D.(8,﹣4)13、如图,梯形ABCD的对角线AC、BD相交于O,G是BD的中点.若AD = 3,BC = 9,则GO: BG =().A.1 : 2B.1 : 3C.2 : 3D.11 : 2014、如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,若AC=2a,则AD的长是()A.( -1)aB.( +1)aC. aD. a15、如图,PA=PB,OE⊥PA,OF⊥PB,则以下结论:①OP是∠APB的平分线;②PE=PF③CA=BD;④CD∥AB;其中正确的有()个.A.4B.3C.2D.1二、填空题(共10题,共计30分)16、如图,数学兴趣小组测量校园内旗杆的高度,小华拿一支刻有厘米分划的小尺,站在距旗杆30米的地方,手臂向前伸直,小尺竖直,看到尺上约12个分划恰好遮住旗杆,已知臂长60cm,则旗杆高为________米.17、如图是两个形状相同的红绿灯图案,则根据图中给出的部分数值,得到x的值是________18、如图,过锐角△ABC的顶点A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延长线于点F.在AF上取点M,使得AM= AF,连接CM并延长交直线DE于点H.若AC=2,△AMH的面积是,则的值是________.19、下列说法:①位似图形都相似;②两个等腰三角形一定相似;③任意两个菱形一定相似;④任意两个含30°角的直角三角形一定相似;⑤两个相似多边形的面积比为4:9,则周长比为16:81;⑥若一个三角形的三边分别比另一个三角形的三边长2cm,则这两个三角形一定相似.其中正确的说法有________(填写序号).20、如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点为位似中心,将△ABC缩小,使变换得到的△DEF与△ABC对应边的比为1∶2,则线段AC的中点P 变换后对应点的坐标为________.21、在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AD=1cm,DB=2cm,则AC=________ cm.22、如图,点G是△ABC的重心,连结AG并延长交BC于点D,过点G作EF∥AB交BC与E,交AC与F ,若EF=8,那么AB=________.</p>23、如图,在直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,△AOB为正三角形,射线OC⊥AB,在OC上依次截取点P1, P2, P3,…,P n,使OP1=1,P1P2=3,P2P3=5,…,P n﹣1P n=2n﹣1(n为正整数),分别过点P1, P2, P3,…,P n向射线OA作垂线段,垂足分别为点Q1, Q2, Q3,…,Q n,则点Q n的坐标为________ .24、如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF;EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为________.25、在锐角△ABC中,∠BAC=60º,BD、CE为高,F为BC的中点,连接DE、DF、EF,则结论:①DF=EF;②AD∶AB=AE∶AC;③△DEF是等边三角形;④BE+CD=BC;⑤当∠ABC=45º时,BE=DE中,一定正确的有________.三、解答题(共5题,共计25分)26、如图,已知△ABC中,AB=4,AC=6,BC=9,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.27、亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部,颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置,.然后测出两人之间的距离,颖颖与楼之间的距离(,,在一条直线上),颖颖的身高,亮亮蹲地观测时眼睛到地面的距离.你能根据以上测量数据帮助他们求出住宅楼的高度吗?28、如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,若DE=4,BC=AE=6,求EC 的长.29、如图,∠1=∠2,,求证:∠C=∠D.30、如图,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x轴上行驶,从原点O出发.(1)汽车行驶到什么位置时离A村最近?写出此点的坐标;(2)汽车行驶到什么位置时离B村最近?写出此点的坐标;(3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?参考答案一、单选题(共15题,共计45分)1、B2、B4、C5、D6、B7、D8、C9、C10、B11、D12、A13、A14、A15、A二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
九年级数学相似三角形单元测试题及答案
九年级数学 相似 单元测试(1)一.选择题(每小题3分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25,则甲,乙的实际距离是( )2.已知0432≠==c b a ,则cb a +的值为 ( )A.54 B.45 C.2 D.213.已知⊿的三边长分别为2,6,2,⊿A ′B ′C ′的两边长分别是1和3,如果⊿及⊿A ′B ′C ′相似,则⊿A ′B ′C ′的第三边长应该是 ( )A.2B.22C.26 D.33 4.在相同时刻,物高及影长成正比。
如果高为1.5米的标杆影长为2.5米,则影长为30米的旗杆的高为 ( )A 20米B 18米C 16米D 15米 5.如图,∠∠90°,要使⊿∽⊿,只要等于 ( )A.cb 2B.ab 2C.cabD.ca 26.一个钢筋三角架三 长分别为20,50,60,现要再做一个及其相似的钢筋三角架,而只有长为30和50的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ( )A.一种B.两种C.三种D.四种7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( )A 原图形的外部B 原图形的内部C 原图形的边上D 任意位置8、如图,□中,∥,∶ = 2∶3, = 4,则的长( ) A . B .8 C .10 D .169、如图,一束平行的光线从教室窗户射入教室的平面示意图,测得光线及地面所成的角∠=︒AMC 30,窗户的高在教室地面上的影长23米,窗户的下檐到教室地面的距离1米(点M 、N 、C 在同一直线上),则窗户的高为 ( )A .3米B .3米C .2米D .1.5米10、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△的边上,△中边60m ,高30m ,则水池的边长应为( )A 10mB 20mC 30mD 40m 二.填空题(每小题3分,共30分) 11、已知43=yx ,则._____=-yy x12、.已知点C 是线段的黄金分割点,且>,则∶.13、.把一矩形纸片对折,如果对折后的矩形及原矩形相似,则原矩形纸片的长及宽之比为.14、如图,⊿中分别是上的点(),当或或时,⊿及⊿相似.15、在△中,∠B=25°,是边上的高,并且2 ·,则∠的度数为。
浙教版数学九年级上册第四章相似三角形 单元测试(含答案)
浙教版数学九年级上册第四章相似三角形一、选择题1.已知c 是a 和b 的比例中项,a =2,b =18,则c =( )A .±6B .6C .4D .±32.如图,DE ∥BC ,在下列比例式中,不能成立的是()A .AD DB =AEECB .DE BC =AEEC C .AB AD =AC AED .DB EC =ABAC3.如果两个相似三角形的周长之比为5:7,那么这两个三角形的面积之比为( )A .5:7B .7:5C .25:49D .49:254.如图,已知AB ∥CD ∥EF ,AE =9,AC =6,BD =4,则BF 的长是( )A .5B .6C .7D .85.小明在测量楼高时,先测出楼房落在地面上的影长BA 为15米(如图),然后在A 处树立一根高2米的标杆,测得标杆的影长AC 为3米,则楼高为( )A .10米B .12米C .15米D .22.5米6.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC 相似的是( )A .B .C.D.7.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为( ).A.1:2B.1:3C.1:4D.1:58.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为5,则下列结论中正确的是( )A.m=5B.m=45C.m=35D.m=109.如图,已知AB=AC,∠B<30°,BC上一点D满足∠BAD=120°,BDCD =73,则ADAC的值为( )A.12B.33C.13D.3210.如图,在边长为2的正方形ABCD中,对角线AC与BD相交于点O,点P是BD上的一个动点,过点P作EF∥AC,分别交正方形的两条边于点E,F,连接OE,OF,设BP=x,△OEF的面积为y,则能大致反映y与x之间的函数关系的图像为( )A .B .C .D .二、填空题11.如图,线段AC 、BD 交于点O ,请你添加一个条件: ,使△AOB ∽△COD .12.如图,点G 为△ABC 的重心,GE ∥AC ,若DE =2,则DC = .13.在某市建设规划图上,城区南北长为120cm ,该市城区南北实际长为36km ,则该规划图的比例尺是 .14.如图,在Rt △ABC 中,∠ABC =90°,AB =4,AC =5,AE 平分∠BAC ,点D 是AC 的中点,AE 与BD交于点O ,则的值AOOE .15.如图, EB 为驾驶员的盲区,驾驶员的眼睛点 P 处与地面 BE 的距离为1.6米,车头 FACD 近似看成一个矩形,且满足 3FD =2FA ,若盲区 EB 的长度是6米,则车宽 FA 的长度为 米.16.如图,在△ABC中,点D是AC边上一点,将△ABD沿BD翻折得到△EBD,BE与AC交于点F,设AF=x,EF=y.(1)当BE⊥AC,x=9,y=3时,AD的长是 ;(2)当BD=BF,2x=7y时,△DEF与△ABD的面积之比是 .三、解答题17.如图,已知D、E分别是△ABC的边AB、AC上的点,DE∥BC,ADBD =32,求DEBC的值.18.如图,在△ABC中,D为BC上一点,∠BAD=∠C.(1)求证:△ABD∽△CBA;(2)若AB=6,BD=3,求CD的长.19.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的(全身)的高度比,可以增加视觉美感,按比例,如果雕像的高为2m,那么它的下部设计为多高?(结果保留小数点后两位)参考数据:2=1.414,3=1.732,5=2.23620.如图,在矩形ABCD中,AB=6,BC=4,E是边BC上的一点(不与B、C重合),DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;S△ABE,求BE的长.(2)若S△DFA=1321.如图,在△ABC中,AD是BC上的高,且BC=3,AD=2,矩形EFGH的顶点F、G在边BC上,顶点E、H分别在边AB、AC上.(1)设EF=x(0<x<2),矩形EFGH的周长为y,求y关于x的函数解析式;(2)当EFGH为正方形时,求正方形EFGH的面积.22.如图,矩形ABCD中,点M在对角线BD上,过点A、B、M的圆与BC交于点E.(1)若AM=4,EB=EM=3,求BM.(2)若AB=6,BC=8,①求AM:ME.②若BM=7,求BE.23.如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长交BC于点E,过点Q作QF//AC,交BD于点F,设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形;(2)设五边形OECQF的面积为S(c m2),试确定S与t的函数关系式;(3)在运动过程中,当S五边形OECQF:S△ACD=9:16时.直接写出t的值.答案解析部分1.【答案】A2.【答案】B3.【答案】C4.【答案】B5.【答案】A6.【答案】A7.【答案】C8.【答案】B9.【答案】A10.【答案】C11.【答案】AB∥CD(答案不唯一)12.【答案】6.13.【答案】1:3000014.【答案】9415.【答案】12716.【答案】5;1417.【答案】3518.【答案】(1)证明:∵∠BAD=∠C,∠B=∠B,∴△ABD∽△CBA(2)解:设DC=x,∵△ABD∽△CBA,∴ABBD=BCAB,∴63=2+x6,解得,x=9;即CD=719.【答案】1.24米.20.【答案】(1)证明:∵四边形ABCD是矩形,AB=6,BC=4,∴∠B=90°,AD∥BC,AD=BC=4,∴∠AEB=∠DAF,∵DF⊥AE,∴∠DFA=90°,∴∠B=∠DFA,∴△ABE∽△DFA;(2)解:∵△ABE∽△DFA,S△DFA=13S△ABE,∴(AEAD )2=S△ABES△DFA=3,∴AEAD=3或AEAD=−3(负数不符合题意,舍去),∴AE=3AD=43,∴BE=AE2−AB2=(43)2−62=12=23,∴BE的长为23.21.【答案】(1)解:设AD,EH交于点M,∵矩形EFGH,∴EH∥BC,AM⊥EH,∴△ABC∼△AEH,∴EHBC=AMAD∵EF=DM=x,AD=2∴AM=2−x∴EH3=2−x2∴EH=32(2−x)∴y=2(EH+EF)=2(3−32x+x)=−x+6(0<x<2)∴y关于x的函数解析式为∴y=−x+6(0<x<2)(2)解:当EFGH为正方形时,∴EF=EH,由(1)得:EF =x ,EH =32(2−x),∵EF =EH ,∴x =3(2−x)2,∴x =65,即EF =65.正方形EFGH 的面积=65×65=3625.22.【答案】(1)245(2)①43,②17423.【答案】(1)解:在矩形ABCD 中,AB =6cm ,BC =8cm ,∴AC =10,①当AP =PO =t ,如图1,过P 作PM ⊥AO 于点M ,∴AM =12AO =52,∵∠PMA =∠ADC =90°,∠PAM =∠CAD ,∴△APM∽△ACD ,∴AP AC =AM AD,∴AP =t =258,②当AP =AO =t =5,∴当t 为258或5时,△AOP 是等腰三角形;(2)解:如图2,过点O 作OH ⊥BC 交BC 于点H ,则OH =12CD =12AB =3cm ,由矩形的性质可知∠PDO =∠EBO ,DO =BO ,又得∠DOP =∠BOE ,∴△DOP≌BOE(ASA),∴BE =PD =8−t ,则S △BOE =12BE ⋅OH =12×3(8−t)=12−32t.∵FQ//AC ,∴△DFQ∽△DOC ,相似比为DQ DC =t6,∴S △DFQ S △DOC =t 236,∵S △DOC =14S 矩形ABCD =14×6×8=12c m 2,∴S △DFQ =12×t 236=t 23,∴S 五边形OECQF =S △DBC −S △BOE −S △DFQ =12×6×8−(12−32t)−t 23=−13t 2+32t +12;∴S 与t 的函数关系式为S =−13t 2+32t +12;(3)t =3或32。
全新苏教版九年级数学上册第六章《相似三角形形》单元测试卷 附答案(7)
全新苏教版九年级数学上册第六章《相似三角形形》单元测试卷一、选择题:(本题共10小题,每小题3分,共30分)1.若=,则的值为()A.1 B.C.D.2.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长()A.18cm B.5cm C.6cm D.±6cm3.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A. B.C. D.4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C. = D. =5.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:26.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4 B.7 C.3 D.127.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2) B.(1,1) C.(,)D.(2,1)8.如图,已知△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB=9,BD=3,则CF 等于( )A .1B .2C .3D .49.如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( )A .4.5米B .6米C .7.2米D .8米10.如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A→B→A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为( )A .2B .2.5或3.5C .3.5或4.5D .2或3.5或4.5二、填空题:(本题共8小题,每小题3分,共24分)11.如果在比例尺为1:1 000 000的地图上,A 、B 两地的图上距离是3.4厘米,那么A 、B 两地的实际距离是 千米.12.如图,已知:l 1∥l 2∥l 3,AB=6,DE=5,EF=7.5,则AC= .13.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是.14.如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=3,则点A到BC的距离为.15.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB= m.16.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为时,△ADP和△ABC相似.17.如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k= .18.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、解答题:(本大题共10大题,共76分)19.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.(1)求证:△ADE∽△MAB;(2)求DE的长.20.如图,在△ABC中,DE∥BC,EF∥AB,若S△ADE=4cm2,S△EFC=9cm2,求S△ABC.21.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.22.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.23.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?24.如图,把△ABC沿边BA平移到△DEF的位置,它们重叠部分(即图中阴影部分)的面积是△ABC面积的,若AB=2,求△ABC移动的距离BE的长.25.如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线AB与x轴相交于点C,AD ⊥x轴于点D.(1)m= ;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.26.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.27.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.28.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD 于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF :S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.全新苏教版九年级数学上册第六章《相似三角形形》单元测试卷参考答案与试题解析一、选择题:(本题共10小题,每小题3分,共30分)1.若=,则的值为()A.1 B.C.D.【考点】比例的性质.【专题】计算题.【分析】根据合分比性质求解.【解答】解:∵ =,∴==.故选D.【点评】考查了比例性质:常见比例的性质有内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.2.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长()A.18cm B.5cm C.6cm D.±6cm【考点】比例线段.【分析】由c是a、b的比例中项,根据比例中项的定义,列出比例式即可得出线段c的长,注意线段不能为负.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得c=±6(线段是正数,负值舍去),故选C.【点评】此题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.3.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A. B.C. D.【考点】黄金分割.【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.【解答】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=2﹣2.故选A.【点评】本题考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.熟记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的是解题的关键.4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C. = D. =【考点】相似三角形的判定.【分析】分别利用相似三角形的判定方法判断得出即可.【解答】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.【点评】此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.5.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:2【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2,故选:D.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方是解题的关键.6.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4 B.7 C.3 D.12【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由EF∥AB,根据平行线分线段成比例定理,即可求得,则可求得AB的长,又由四边形ABCD是平行四边形,根据平行四边形对边相等,即可求得CD的长.【解答】解:∵DE:EA=3:4,∴DE:DA=3:7∵EF∥AB,∴,∵EF=3,∴,解得:AB=7,∵四边形ABCD是平行四边形,∴CD=AB=7.故选B.【点评】此题考查了平行线分线段成比例定理与平行四边形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2) B.(1,1) C.(,)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】首先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,ky),进而求出即可.【解答】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,1).故选:B.【点评】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.8.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A.1 B.2 C.3 D.4【考点】相似三角形的判定与性质;等边三角形的性质.【专题】几何图形问题.【分析】利用两对相似三角形,线段成比例:AB:BD=AE:EF,CD:CF=AE:EF,可得CF=2.【解答】解:如图,∵△ABC和△ADE均为等边三角形,∴∠B=∠BAC=60°,∠E=∠EAD=60°,∴∠B=∠E,∠BAD=∠EAF,∴△ABD∽△AEF,∴AB:BD=AE:EF.同理:△CDF∽△EAF,∴CD:CF=AE:EF,∴AB:BD=CD:CF,即9:3=(9﹣3):CF,∴CF=2.故选:B.【点评】本题考查了相似三角形的判定与性质和等边三角形的性质.此题利用了“两角法”证得两个三角形相似.9.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米【考点】相似三角形的应用.【专题】压轴题;转化思想.【分析】由于人和地面是垂直的,即和路灯到地面的垂线平行,构成两组相似.根据对应边成比例,列方程解答即可.【解答】解:如图,GC⊥BC,AB⊥BC,∴GC∥AB,∴△GCD∽△ABD(两个角对应相等的两个三角形相似),∴,设BC=x,则,同理,得,∴,∴x=3,∴,∴AB=6.故选:B.【点评】本题考查相似三角形性质的应用.在解答相似三角形的有关问题时,遇到有公共边的两对相似三角形,往往会用到中介比,它是解题的桥梁,如该题中的“”.10.如图,Rt△ABC中,∠A CB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为()A.2 B.2.5或3.5 C.3.5或4.5 D.2或3.5或4.5【考点】相似三角形的判定与性质;含30度角的直角三角形.【专题】压轴题;动点型.【分析】由Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,可求得AB的长,由D为BC的中点,可求得BD的长,然后分别从若∠DEB=90°与若∠EDB=90°时,去分析求解即可求得答案.【解答】解:∵Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,∴AB=2BC=4(cm),∵BC=2cm,D为BC的中点,动点E以1cm/s的速度从A点出发,∴BD=BC=1(cm),BE=AB﹣AE=4﹣t(cm),若∠BED=90°,当A→B时,∵∠ABC=60°,∴∠BDE=30°,∴BE=BD=(cm),∴t=3.5,当B→A时,t=4+0.5=4.5.若∠BDE=90°时,当A→B时,∵∠ABC=60°,∴∠BED=30°,∴BE=2BD=2(cm),∴t=4﹣2=2,当B→A时,t=4+2=6(舍去).综上可得:t的值为2或3.5或4.5.故选D.【点评】此题考查了含30°角的直角三角形的性质.此题属于动点问题,难度适中,注意掌握分类讨论思想与数形结合思想的应用.二、填空题:(本题共8小题,每小题3分,共24分)11.如果在比例尺为1:1 000 000的地图上,A 、B 两地的图上距离是3.4厘米,那么A 、B 两地的实际距离是 34 千米.【考点】比例线段.【专题】计算题.【分析】实际距离=图上距离:比例尺,根据题意代入数据可直接得出实际距离.【解答】解:根据题意,3.4÷=3400000厘米=34千米.即实际距离是34千米.故答案为:34.【点评】本题考查了比例线段的知识,注意掌握比例线段的定义及比例尺,并能够灵活运用,同时要注意单位的转换.12.如图,已知:l 1∥l 2∥l 3,AB=6,DE=5,EF=7.5,则AC= 15 .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得出比例式,代入求出BC 的值,即可得出答案.【解答】解:∵:l 1∥l 2∥l 3,∴=,∵AB=6,DE=5,EF=7.5,∴BC=9,∴AC=AB+BC=15,故答案为:15.【点评】本题考查了平行线分线段成比例定理的应用,能根据定理得出正确饿比例式是解此题的关键.13.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是(9,0).【考点】位似变换.【专题】网格型.【分析】位似图形的主要特征是:每对位似对应点与位似中心共线.【解答】解:直线AA′与直线BB′的交点坐标为(9,0),所以位似中心的坐标为(9,0).【点评】本题考查位似中心的找法,各对应点所在直线的交点即为位似中心.14.如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=3,则点A到BC的距离为9 .【考点】平行线分线段成比例;三角形的重心.【专题】数形结合.【分析】根据题意作图,利用重心的性质AD:GD=3:1,同时还可以求出△ADE∽△GDH,从而得出AD:GD=AE:GH=3:1,根据GH=3即可得出答案.【解答】解:设BC的中线是AD,BC的高是AE,由重心性质可知:AD:GD=3:1,∵GH⊥BC,∴△ADE∽△GDH,∴AD:GD=AE:GH=3:1,∴AE=3GH=3×3=9,故答案为9.【点评】本题主要考查了作辅助线,重心的特点,全等三角形的性质,难度适中.15.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB= 5.5 m.【考点】相似三角形的应用.【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【解答】解:∵∠DEF=∠BCD=90°∠D=∠D∴△DEF∽△DCB∴=∵DE=40cm=0.4m,EF=20cm=0.2m,AC=1.5m,CD=8m,∴=∴BC=4米,∴AB=AC+BC=1.5+4=5.5米,故答案为:5.5.【点评】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.16.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为4或9 时,△ADP和△ABC相似.【考点】相似三角形的判定.【分析】分别根据当△ADP∽△ACB时,当△ADP∽△ABC时,求出AP的长即可.【解答】解:当△ADP∽△ACB时,∴=,∴=,解得:AP=9,当△ADP∽△ABC时,∴=,∴=,解得:AP=4,∴当AP的长度为4或9时,△ADP和△ABC相似.故答案为:4或9.【点评】此题主要考查了相似三角形的判定与性质,利用倒推法以及分类讨论得出是解题关键.=21,求17.如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BODk= 8 .【考点】反比例函数系数k的几何意义;相似三角形的判定与性质.【分析】过A 作AE ⊥x 轴于点E ,根据反比例函数的比例系数k 的几何意义可得S 四边形AECB =S △BOD ,根据△OAE ∽△OBC ,相似三角形面积的比等于相似比的平方,据此即可求得△OAE 的面积,从而求得k 的值.【解答】解:过A 作AE ⊥x 轴于点E .∵S △OAE =S △OCD ,∴S 四边形AECB =S △BOD =21,∵AE ∥BC ,∴△OAE ∽△OBC ,∴==()2=,∴S △OAE =4,则k=8.故答案是:8.【点评】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.18.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG =S △FGH ;④AG +DF=FG .其中正确的是 ①③④ .(把所有正确结论的序号都选上)【考点】相似形综合题.【专题】综合题.【分析】由折叠性质得∠1=∠2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可计算出AF=8,所以DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x=,即ED=;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,于是可对①进行判断;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D和≠,可判断△ABG与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D, ==, =,∴≠,∴△ABG 与△DEF 不相似,所以②错误;∵S △ABG =•6•3=9,S △FGH =•GH •HF=×3×4=6,∴S △ABG =S △FGH ,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF ,所以④正确.故答案为①③④.【点评】本题考查了相似形综合题:熟练掌握折叠和矩形的性质、相似三角形的判定方法;会运用勾股定理计算线段的长.三、解答题:(本大题共10大题,共76分)19.如图,在矩形ABCD 中,AB=4,BC=6,M 是BC 的中点,DE ⊥AM 于点E .(1)求证:△ADE ∽△MAB ;(2)求DE 的长.【考点】相似三角形的判定与性质;矩形的性质.【分析】(1)先根据矩形的性质,得到AD ∥BC ,则∠DAE=∠AMB ,又由∠DEA=∠B ,根据有两角对应相等的两三角形相似,即可证明出△DAE ∽△AMB ;(2)由△DAE ∽△AMB ,根据相似三角形的对应边成比例,即可求出DE 的长.【解答】(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DAE=∠AMB ,又∵∠DEA=∠B=90°,∴△DAE ∽△AMB ;(2)由(1)知△DAE ∽△AMB ,∴DE :AD=AB :AM ,∵M 是边BC 的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE :6=4:5,∴DE=.【点评】此题主要考查了相似三角形的判定与性质,矩形的性质.(1)中根据矩形的对边平行进而得出∠DAE=∠AMB 是解题的关键.20.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,若S △ADE =4cm 2,S △EFC =9cm 2,求S △ABC .【考点】相似三角形的判定与性质.【分析】首先求出△ADE ∽△ECF ,得出S △ADE :S △ECF =(AE :EC )2,进而得出AE :EC=2:3,在得出S △ABC :S △ADE =(5:2)2,求出答案即可.【解答】解:∵DE ∥BC ,EF ∥AB ,∴∠A=∠FEC ,∠AED=∠C ,∴△ADE ∽△ECF ;∴S △ADE :S △ECF =(AE :EC )2,∵S △ADE =4cm 2,S △EFC =9cm 2,∴(AE :EC )2=4:9,∴AE :EC=2:3,即EC :AE=3:2,∴(EC+AE ):AE=5:2,即AC :AE=5:2.∵DE ∥BC ,∴∠C=∠AED ,又∵∠A=∠A ,∴△ABC ∽△ADE ,∴S △ABC :S △ADE =(AC :AE )2,∴S △ABC :4=(5:2)2,∴S △ABC =25cm 2.【点评】此题主要考查了相似三角形的判定与性质,根据已知得出S △ABC :S △ADE =(AC :AE )2进而求出是解题关键.21.如图,△ABC 中,CD 是边AB 上的高,且=.(1)求证:△ACD ∽△CBD ;(2)求∠ACB 的大小.【考点】相似三角形的判定与性质.【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD ∽△CBD ;(2)由(1)知△ACD ∽△CBD ,然后根据相似三角形的对应角相等可得:∠A=∠BCD ,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD 是边AB 上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD ∽△CBD ;(2)解:∵△ACD ∽△CBD ,∴∠A=∠BCD ,在△ACD 中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.22.已知:如图△ABC 三个顶点的坐标分别为A (0,﹣3)、B (3,﹣2)、C (2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC 向上平移6个单位得到的△A 1B 1C 1;(2)以点C 为位似中心,在网格中画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且△A 2B 2C 2与△ABC 的位似比为2:1,并直接写出点A 2的坐标.【考点】作图-位似变换;作图-平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置进而得出.【解答】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求,A 2坐标(﹣2,﹣2).【点评】此题主要考查了位似变换和平移变换,根据题意正确得出对应点位置是解题关键.23.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?【考点】相似三角形的应用.【分析】先求出墙上的影高CD落在地面上时的长度,再设树高为h,根据同一时刻物高与影长成正比列出关系式求出h的值即可.【解答】解:过D作DE∥BC交AB于点E,设墙上的影高CD落在地面上时的长度为xm,树高为hm,∵某一时刻测得长为1m的竹竿影长为0.9m,墙上的影高CD为1.2m,∴=,解得x=1.08(m),∴树的影长为:1.08+2.7=3.78(m),∴=,解得h=4.2(m).答:测得的树高为4.2米.【点评】本题考查的是相似三角形的应用,解答此题的关键是正确求出树的影长,这是此题的易错点.24.如图,把△ABC沿边BA平移到△DEF的位置,它们重叠部分(即图中阴影部分)的面积是△ABC面积的,若AB=2,求△ABC移动的距离BE的长.【考点】平移的性质.【分析】根据平移的性质得到EF∥AC,证得△BEG∽△BAC,由相似三角形的性质得到==,即可得到结论.【解答】解:∵把△ABC沿边BA平移到△DEF的位置,∴EF∥AC,∴△BEG∽△BAC,∴==,∵AB=2,∴BE=.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于求证△ABC与阴影部分为相似三角形.25.如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线AB与x轴相交于点C,AD ⊥x轴于点D.(1)m= 4 ;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.【考点】反比例函数综合题.【分析】(1)有点A的坐标结合反比例函数图象上点的坐标特征,即可得出m的值;(2)由反比例函数的解析式结合反比例函数图象上点的坐标特征即可得出点B的坐标,利用待定系数法即可求出直线AB的解析式,再领y=0求出x值即可得出点C的坐标;(3)假设存在,设点E的坐标为(n,0),分∠ABE=90°、∠BAE=90°以及∠AEB=90°三种情况考虑:①当∠ABE=90°时,根据等腰三角形的性质,利用勾股定理即可找出关于n的一元二次方程,解方程即可得出结论;②当∠BAE=90°时,根据∠ABE>∠ACD可得出两三角形不可能相似;③当∠AEB=90°时,根据A、B的坐标可得出AB的长度,以AB为直径作圆可知圆与x轴无交点,故该情况不存在.综上即可得出结论.【解答】解:(1)∵点A(1,4)在反比例函数y=(x>0)的图象上,∴m=1×4=4,故答案为:4.(2)∵点B(2,a)在反比例函数y=的图象上,∴a==2,∴B(2,2).设过点A、B的直线的解析式为y=kx+b,∴,解得:,∴过点A、B的直线的解析式为y=﹣2x+6.当y=0时,有﹣2x+6=0,解得:x=3,∴点C的坐标为(3,0).(3)假设存在,设点E的坐标为(n,0).①当∠ABE=90°时(如图1所示),∵A(1,4),B(2,2),C(3,0),∴B是AC的中点,∴EB垂直平分AC,EA=EC=n+3.由勾股定理得:AD2+DE2=AE2,即42+(x+1)2=(x+3)2,解得:x=﹣2,此时点E的坐标为(﹣2,0);②当∠BAE=90°时,∠ABE>∠ACD,故△EBA与△ACD不可能相似;③当∠AEB=90°时,∵A(1,4),B(2,2),∴AB=,2>,∴以AB为直径作圆与x轴无交点(如图3),∴不存在∠AEB=90°.综上可知:在x轴上存在点E,使以A、B、E为顶点的三角形与△ACD相似,点E的坐标为(﹣2,0).【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征、待定系数法求函数解析式以及勾股定理,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出m值;(2)根据待定系数法求出直线AB的解析式;(3)分∠ABE=90°、∠BAE=90°以及∠AEB=90°三种情况考虑.本题属于中档题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.26.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】几何综合题.【分析】(1)由四边形ABCD 为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND 与三角形CNB 相似,由相似得比例,得到DN :BN=1:2,设OB=OD=x ,表示出BN 与DN ,求出x 的值,即可确定出BD 的长;(2)由相似三角形相似比为1:2,得到CN=2MN ,BN=2DN .已知△DCN 的面积,则由线段之比,得到△MND 与△CNB 的面积,从而得到S △ABD =S △BCD =S △BCN +S △CND ,最后由S 四边形ABNM =S △ABD ﹣S △MND 求解.【解答】解:(1)∵平行四边形ABCD ,∴AD ∥BC ,AD=BC ,OB=OD ,∴∠DMN=∠BCN ,∠MDN=∠NBC ,∴△MND ∽△CNB ,∴=,∵M 为AD 中点,∴MD=AD=BC ,即=,∴=,即BN=2DN ,设OB=OD=x ,则有BD=2x ,BN=OB+ON=x+1,DN=x ﹣1,∴x+1=2(x ﹣1),解得:x=3,∴BD=2x=6;(2)∵△MND ∽△CNB ,且相似比为1:2,∴MN :CN=DN :BN=1:2,∴S △MND =S △CND =1,S △BNC =2S △CND =4.∴S △ABD =S △BCD =S △BCN +S △CND =4+2=6∴S 四边形ABNM =S △ABD ﹣S △MND =6﹣1=5.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.27.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,点D 为边CB 上的一个动点(点D 不与点B 重合),过D 作DO ⊥AB ,垂足为O ,点B′在边AB 上,且与点B 关于直线DO 对称,连接DB′,AD .(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.【考点】相似形综合题.【分析】(1)由∠DOB=∠ACB=90°,∠B=∠B,容易证明△DOB∽△ACB;(2)先由勾股定理求出AB,由角平分线的性质得出DC=DO,再由HL证明Rt△ACD≌Rt△AOD,得出AC=AO,设BD=x,则DC=DO=8﹣x,由勾股定理得出方程,解方程即可;(3)根据题意得出当△AB′D为等腰三角形时,AB′=DB′,由△DOB∽△ACB,得出=,设BD=5x,则AB′=DB′=5x,BO=B′O=4x,由AB′+B′O+BO=AB,得出方程,解方程求出x,即可得出BD.【解答】(1)证明:∵DO⊥AB,∴∠DOB=∠DOA=90°,∴∠DOB=∠ACB=90°,又∵∠B=∠B,∴△DOB∽△ACB;(2)解:∵∠ACB=90°,∴AB===10,∵AD平分∠CAB,DC⊥AC,DO⊥AB,∴DC=DO,在Rt△ACD和Rt△AOD中,,∴Rt△ACD≌Rt△AOD(HL),∴AC=AO=6,设BD=x,则DC=DO=8﹣x,OB=AB﹣AO=4,在Rt△BOD中,根据勾股定理得:DO2+OB2=BD2,即(8﹣x)2+42=x2,解得:x=5,∴BD的长为5;(3)解:∵点B′与点B关于直线DO对称,∴∠B=∠OB′D,BO=B′O,BD=B′D,∵∠B为锐角,∴∠OB′D也为锐角,∴∠AB′D为钝角,∴当△AB′D为等腰三角形时,AB′=DB′,∵△DOB∽△ACB,∴==,设BD=5x,则AB′=DB′=5x,BO=B′O=4x,∵AB′+B′O+BO=AB,∴5x+4x+4x=10,解得:x=,∴BD=.【点评】本题是相似形综合题目,考查了相似三角形的判定与性质、勾股定理、全等三角形的判定与性质、角平分线的性质等知识;本题难度较大,综合性强,特别是(2)(3)中,需要根据题意列出方程,解方程才能得出结果.28.(2016•青岛)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点0.点P 从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;。
九年级数学相似三角形单元测试题及答案
九年级数学 相似 单元测试一.选择题(每小题3分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A .1250km ﻩ B.125k m C.ﻩ12.5k m D.1.25km 2.已知0432≠==c b a ,则cb a +的值为ﻩ ﻩﻩ( )A.54 ﻩﻩﻩB.45 ﻩ C .2D.213.已知⊿A BC 的三边长分别为2,6,2,⊿A ′B ′C′的两边长分别是1和3,如果⊿AB C与⊿A′B′C′相似,那么⊿A ′B ′C ′的第三边长应该是ﻩﻩﻩ( )A.2 ﻩB.22 ﻩﻩC.26 ﻩﻩ D.334.在相同时刻,物高与影长成正比。
如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为ﻩﻩ ﻩ ﻩﻩﻩ ﻩﻩ( )A 20米ﻩB 18米ﻩ ﻩC 16米ﻩﻩﻩ D 15米5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB =c,要使⊿ABC ∽⊿CAD, 只要CD 等于 ﻩﻩ ﻩﻩ ﻩ ﻩ( )A.c b 2 ﻩ B.a b 2 ﻩ C.cab ﻩﻩﻩ D.c a 26.一个钢筋三角架三 长分别为20c m,50cm,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ﻩﻩﻩﻩﻩﻩ ( ) A.一种 ﻩ B.两种 C.三种 ﻩﻩD.四种7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( ) A 原图形的外部 B 原图形的内部ﻩ C 原图形的边上 D 任意位置8、如图,□AB CD中,EF ∥A B,DE ∶EA = 2∶3,EF = 4,则CD 的长( ) A .\F (16,3) ﻩ B .8 C.10 D.169.已知a 、b 、c为非零实数,设k=cba b c a a c b +=+=+,则k 的值为() A.2 B.-1 C .2或-1 D.110、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ABC的边BC 上,△ABC 中边BC =60m,高AD=30m ,则水池的边长应为( ) A 10m ﻩﻩ B 20m ﻩﻩ C 30m ﻩﻩ D 40m二.填空题(每小题3分,共30分) 11、已知43=y x ,则._____=-y y x12、.已知点C 是线段AB 的黄金分割点,且AC>BC,则AC ∶AB= .13、.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .当或或时,⊿ADE与⊿ABC相似.15、在△ABC中,∠B=25°,AD是BC边上的高,并且AD BD DC2 ·,则∠BCA的度数为____________。
湘教版九年级上册数学第三章 图形的相似 单元测试题(含答案)
湘教版九年级数学上册第三章图形的相似单元检测试卷一、单选题(共10题;共30分)1.在相同的时刻,太阳光下物高与影长成正比.如果高为1.5米的人的影长为2.5米,那么影长为30米的旗杆的高是().A. 18米B. 16米C. 20米D. 15米2.△ABC∽△A,B,C,,相似比为3:4,那么面积的比是_____。
A. 3:4B. 9:16C. 6:8D. 4:53.如图,在长为8cm、宽为4cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下的矩形面积是()A. 2 cm2B. 4 cm2C. 8 cm2D. 16 cm24.在上科学课时,老师让同学利用手中的放大镜对蜗牛进行观察,同学们在放大镜中看到蜗牛与实际的蜗牛属于什么变换()。
A. 相似变换B. 平移变换C. 旋转变换D. 轴对称变换5.如图,在△ABC中,DE∥BC ,,DE=4,则BC的长是()A. 8B. 10C. 11D. 126.若相似△ABC与△DEF的相似比为1 :3,则△ABC与△DEF的面积比( )A. 1 :3B. 1 :9C. 3 :1D. 1 :7.如图,在ΔABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN的长为()A. B. C. D.8.如图,在平面直角坐标系中,点P的坐标为(0,2),直线y= 与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为()A. 3B. 4C. 5D. 69.若△ABC∽△A′B′C′,且△ABC与△A′B′C′的相似比为1:2,则△ABC与△A′B′C′的面积比是()A. 1:1B. 1:2C. 1:3D. 1:410.若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A. 1:2B. 2:1C. 1:4D. 4:1二、填空题(共10题;共30分)11.已知8:x =6:9,则x的值等于________。
九年级数学上册 第22章 相似形 单元测试卷(沪科版 2024年秋)
九年级数学上册第22章相似形单元测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.已知2x =3y (y ≠0),则下面结论成立的是()A.x y =32B.x 3=2yC.x y =23D.x 2=y 32.下列四组线段中,成比例的是()A .a =1,b =2,c =3,d =4B .a =3,b =6,c =9,d =18C .a =1,b =3,c =2,d =8D .a =1,b =2,c =4,d =63.如图,在△ABC 中,DE ∥BC ,AD =2,BD =3,AC =10,则AE 的长为()A .3B .4C .5D .6(第3题)(第5题)4.已知线段AB =2,点P 是线段AB 的黄金分割点(AP >BP ),则线段AP 的长为()A.5+1B.5-1C.5+12D.5-125.如图,下列条件中不能判定△ACD ∽△ABC 的是()A .∠ADC =∠ACB B.AB BC =AC CDC .∠ACD =∠BD .AC 2=AD ·AB6.如图,在△ABC 中,AB ∥DE ,若AE CE =23,则△ECD 与△ACB 的面积之比为()A.35B.925C.45D.1625(第6题)(第7题)7.如图,小明在A 时测得某树的影长为3m ,B 时测得该树的影长为2m ,若两次日照的光线互相垂直,则树的高度为()A .±6mB.6mC .6mD.5m8.若一个三角形能够分成两个与原三角形都相似的三角形,就把这样的三角形称为和谐三角形,则下列选项中属于和谐三角形的是()A .等边三角形B .等腰三角形C .直角三角形D .等腰三角形或直角三角形9.如图,在△ABC 中,∠ABC =90°,以点A 为圆心,AB 长为半径作弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,连接DE ,则下列结论正确的是()A .DE 垂直平分ACB .△ABE ∽△CBAC .BD 2=BC ·BED .CE ·AB =BE ·CA(第9题)(第10题)10.如图,在正方形ABCD 中,F 为AB 上一点,E 是BC 延长线上一点,且AF =EC ,连接EF ,DE ,DF ,M 是EF 的中点,连接MC ,设EF 与BD 和DC 分别相交于点G 和N ,下列结论:①△FGD ∽△BGE ;②若BF =4,则CE =22;③∠CME =∠CDE ;④DG 2=GN ·GE ,其中正确的是()A .①②③B .①③④C .②③④D .①②④二、填空题(本大题共4小题,每小题5分,满分20分)11.已知△ABC ∽△A ′B ′C ′,AD 和A ′D ′是它们的对应中线,若AD =8,A ′D ′=6,则△ABC 与△A ′B ′C ′的周长比是________.12.如图,在平面直角坐标系中,矩形OABC 的顶点坐标分别是O (0,0),C (6,0),B (6,4),A (0,4),已知矩形OA ′B ′C ′与矩形OABC 位似,位似中心是原点O ,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,则点B ′的坐标是____________.(第12题)(第13题)13.如图,线段AB ,CD 的端点都在正方形网格的格点上,它们相交于点M .若每个小正方形的边长都是1,则MCMD的值是________.14.如图,在矩形ABCD 中,AB =4,点E 为边AD 上一点,AE =3,F 为BE 的中点.(第14题)(1)EF =________;(2)若CF ⊥BE ,CE ,DF 相交于点O ,则OCCE=________.三、(本大题共2小题,每小题8分,满分16分)15.已知x +y x=32.(1)求yx 的值;(2)求x -y x +y的值.16.如图,直线l 1∥l 2∥l 3,AC 分别交l 1,l 2,l 3于点A ,B ,C ,DF 分别交l 1,l 2,l 3于点D ,E ,F ,AC 与DF 交于点O .已知DE =3,EF =6,AB =4.(第16题)(1)求AC的长;(2)若OE:OF=1:3,求OB:AB.四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,每个小正方形的边长都是1个单位,△ABC的顶点都在格点上.(第17题)(1)以原点O为位似中心,在第三象限内画出将△ABC放大为原来的2倍后的位似图形△A1B1C1;(2)△A1B1C1的面积为______.18.如图,在△ABC中,AB=AC,∠A=36°,BD为∠ABC的平分线.求证:AD2=AC·DC.(第18题)五、(本大题共2小题,每小题10分,满分20分)19.某校同学参与“项目式学习”综合实践活动,小明所在的数学活动小组利用所学知识测量旗杆EF的高度.如图,他在距离旗杆40m的D处立下一根3m 高的竖直标杆CD,然后调整自己的位置,当他与标杆的距离BD为4m时,他的眼睛、标杆顶端和旗杆顶端在同一直线上,若小明的眼睛离地面的高度AB为1.6m,求旗杆EF的高度.(第19题)20.如图,将等边三角形ABC折叠,使点A落在BC边上的点D处(不与B,C 重合),折痕为EF.(1)求证:△BDE∽△CFD;(2)若BD=6,DC=2,求BE的长(第20题)六、(本题满分12分)21.如图,在矩形ABCD中,E是CD边的中点,且BE⊥AC于点F,连接DF.求证:(1)AD=DF;(2)DF2=BE·BF.(第21题)七、(本题满分12分)22.阅读下列材料,并完成相应的任务.规定:在一个三角形中,若一个内角是另一个内角度数的n 倍,则称三角形为“n 倍角三角形”.当n =1时,称为“1倍角三角形”,显然等腰三角形是“1倍角三角形”;当n =2时,称为“2倍角三角形”.小康通过探索后发现,“2倍角三角形”的三边有如下关系:在△ABC 中,∠BAC ,∠B ,∠C 所对的边分别为a ,b ,c ,若∠BAC =2∠B ,则a 2-b 2=bc .下面是小康的两种探索证明过程:证法1:如图①,作∠BAC 的平分线AD ,则∠BAD =∠CAD =12∠BAC .∵∠BAC =2∠B ,∴∠BAD =∠CAD =∠B .∴AD =BD .∵∠ACD =∠BCA ,∴△ACD ∽△BCA ,∴AC BC =DC AC =AD AB.设DC =x ,则AD =BD =a -x .(第22题)∴b a =x b =a -x c ,∴b 2=ax ,a 2-ax =bc ,∴a 2-b 2=bc .证法2:如图②,延长CA 到点D ,使得AD =AB =c ,连接BD ,∴∠ABD =∠D .……任务:(1)上述材料中的证法1是通过作辅助线,构造出________三角形来加以证明的(填“全等”或“相似”);(2)请补全证法2剩余的部分.八、(本题满分14分)23.如图,在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,F,E是AC 上两点,连接BE,DF交于△ABC内一点G,且∠EGF=45°.(1)求证:∠FDC=∠AEB;(2)若AE=3CE=6,求BG的长;(3)连接AG,求证:∠EAG=∠ABE.(第23题)答案一、1.A 2.B 3.B4.B5.B6.B7.B8.C9.D 点拨:由题意得AB =AD ,AP 平分∠BAC ,∴∠EAB =∠EAD .在△ABE 与△ADE =AE ,EAB =∠EAD ,=AD ,∴△ABE ≌△ADE ,∴BE =ED ,∠ADE =∠ABC =90°.∴∠EDC =90°=∠ABC .又∵∠C =∠C ,∴△EDC ∽△ABC ,∴CE CA =EDAB,∴CE ·AB =ED ·CA .∵ED =BE ,∴CE ·AB =BE ·CA .A ,B ,C 选项无法证明.故选D.10.B 二、11.4:312.(3,2)或(-3,-2)13.12714.(1)52(2)3239三、15.解:由x +y x=32可得,x =2y .(1)y x =y 2y =12.(2)x -y x +y =2y -y 2y +y =13.16.解:(1)∵l 1∥l 2∥l 3,∴DE ∶DF =AB ∶AC ,即3∶(3+6)=4∶AC ,解得AC =12.(2)∵l 2∥l 3,∴OB ∶OC =OE ∶OF =1∶3,∴OC =3OB .∵AB =4,AC =12,∴BC =8,即OC +OB =8,∴4OB =8,∴OB =2,∴OB ∶AB =2∶4=1∶2.四、17.解:(1)如图,△A 1B 1C 1即为所求.(第17题)(2)1418.证明:∵∠A=36°,AB=AC,∴∠ABC=∠C=72°.∵BD为∠ABC的平分线,∴∠ABD=∠DBC=36°,∴∠ABD=∠A,∠BDC=∠A+∠ABD=72°,∴BD=AD,∠C=∠BDC,∴BC=BD=AD.∵∠DBC=36°=∠A,∠C=∠C,∴△BCD∽△ACB.∴BCAC=CDCB,∴ADAC=CDAD,∴AD2=AC·DC.五、19.解:过点A作AH⊥EF,交CD于点G,交EF于点H.由题意易得HF=DG=AB=1.6m,AG=BD=4m,HG=FD=40m,∴CG=CD-DG=3-1.6=1.4(m).易知CD∥EF,∴△AGC∽△AHE,∴AGAH=CGEH,∴44+40=1.4EH,∴EH=15.4m,∴EF=EH+HF=15.4+1.6=17(m).答:旗杆EF的高度为17m.20.(1)证明:∵△ABC是等边三角形,∴∠B=∠C=∠A=60°.由折叠的性质可得∠EDF=∠A=60°.∵∠FDB=∠C+∠DFC=∠EDF+∠EDB,∴∠EDB=∠DFC,∵∠B=∠C,∴△BDE∽△CFD.(2)解:∵BD=6,DC=2,∴BC=BD+DC=8.∵△ABC是等边三角形,∴AB=AC=BC=8.由折叠的性质可知AE=ED,AF=FD,∴△BDE 的周长为BD +DE +BE =BD +AE +BE =BD +AB =6+8=14,△CFD 的周长为CD +DF +FC =CD +AF +FC =CD +AC =2+8=10.∵△BDE ∽△CFD ,∴BE CD =1410=75.∵DC =2,∴BE 2=75,∴BE =2.8.六、21.证明:(1)过点D 作DG ∥BE 交AB 于点G ,交AC 于点H ,如图所示.(第21题)∵四边形ABCD 为矩形,∴AB ∥CD ,AB =CD ,∴四边形BEDG 为平行四边形,∴DE =BG .∵点E 为CD 的中点,∴DE =12CD ,∴易得BG =AG .∵DG ∥BE ,∴AH HF =AG GB=1,∴点H 为AF 的中点.∵BE ⊥AC ,∴∠AFB =90°.∵DG ∥BE ,∴∠DHF =∠AFB =90°,∴DH 垂直平分AF ,∴AD =DF .(2)∵四边形ABCD 为矩形,∴AD =BC ,∠BCE =90°.∵AD =DF ,∴DF =BC .∵BE ⊥AC ,∴∠BFC =90°,∴∠BFC =∠BCE .∵∠CBF =∠EBC ,∴△BCF ∽△BEC ,∴BC BE =BF BC,∴BC 2=BE ·BF ,∴DF 2=BE ·BF .七、22.解:(1)相似(2)补全证法2剩余的部分如下:∴∠BAC =∠ABD +∠D =2∠D .又∵∠BAC =2∠ABC ,∴∠ABC =∠D .又∵∠ACB =∠BCD ,∴△ACB ∽△BCD ,∴AC BC =BC DC,∴BC 2=AC ·DC ,∴a2=b(b+c),∴a2-b2=bc.八、23.(1)证明:∵∠BAC=90°,AB=AC,∴∠C=45°.∵∠BGD=∠EGF=45°,∴∠C=∠BGD.∵∠FDC=∠EBC+∠BGD,∠AEB=∠EBC+∠C,∴∠FDC=∠AEB.(2)解:∵AE=3CE=6,∴CE=2,∴AB=AC=8.∵∠BAC=90°,∴BE=AB2+AE2=10,BC=AB2+AC2=8 2.∵D为BC的中点,∴BD=4 2.∵∠BGD=∠C,∠DBG=∠EBC,∴△BGD∽△BCE,∴BGBC=BDBE,即BG82=4210,∴BG=325.(3)证明:连接AD.∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADB=∠CAB=90°.∵∠ABD=∠CBA,∴△ABD∽△CBA,∴ABBC=BDAB,∴AB2=BD·BC.由(2)知BGBC=BDBE,∴BG·BE=BD·BC,∴AB2=BG·BE,∴ABBE=BGAB.∵∠ABG=∠EBA,∴△ABG∽△EBA,∴∠AGB=∠BAE=90°,∴∠EAG+∠BAG=∠BAG+∠ABE=90°,∴∠EAG=∠ABE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级(上)数学《相似形》单元测试题
一、选择题(每小题4分,共40分)
1.若两个相似三角形的面积之比为1:9,则它们的周长之比为( ) A.1:2 B.1:3 C.1:9 D.1:81
2.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于A 、C 、E 、B 、D 、F ,AC=4,CE=6,BD=2,则DF 的值是( ) A.4 B.3 C.5 D.7
3.如图,在△ABC 中,DE ∥BC ,DE=2,BC=6,AD :DB=( ) A.1:3 B.1:2 C.2:1 D.3:1
4.如果a:b=1:3,b 是a 、c 的比例中项,则下列结论正确的是( ) A.a :c=1:3 B.a:c=3:1 C.b:c=1:3 D.b:c=3:1
5.如图,D 为△ABC 边BC 上一点,则△ABD ∽△CBA ,应该具备下列条件中的( ) A.BD AB CD AC = B.AD BC CD AB = C.AB BD CB AB = D.AC
CB
CD AC =
6.已知:如图,小明在打网球时,要使球恰好能打过网,而且落在离网5米的位置上,则球拍的高度h 应为( ) A.2.7m B.1.8m C.0.9m D.6m
7.如图,内外两个矩形相似,且对应边平行,则下列结论正确的是( ) A.
1y x = B.b a y x = C.a
b
y x = D.以上结论都不对 8.如图,四边形ABCD 为矩形纸片,把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF ,若AB=6,则AF 等于( ) A.34 B.33 C.24 D.8
9.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA'B'C'与矩形OABC 关于点O 位似,且矩形OA'B'C'
的面积等于矩形OABC 面积的4
1
,那么点B'的坐标是( )
A.(3,2)
B.(-2,-3)
C.(2,3)或(-2,-3)
D.(3,2)或(-3,-2)
10.如图,已知矩形ABCD 的长AB 为5,宽BC 为4,E 是BC 边上的一个动点,AE ⊥EF ,EF 交CD 于F 。
设BE=x ,FC=y ,则E 从点B 运动到C 时,能表示y 与x 的函数关系的大致图象是( )
二、填空题(每题5分,共20分)
11.若2x-5y=0,则=+x
y
x . 12.如图,已知点C 是线段AB 的黄金分割点,且BC >AC.若S 1表示以BC 为边的正方形面积,S 2表示长为AB 、宽为AC 的矩形面积,则S 1与S 2的大小关系为.
13.阳光下,东东和爸爸到广场散步,爸爸的身高是176cm ,东东身高是156cm ,在同一时刻爸爸的影长是88cm ,那么东东的影长是.
14.如图,将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B',折痕为EF. 已知AB=AC=3,BC=4,若以点B'、F 、C 为顶点的三角形与△ABC 相似,那么BF 的长度是.
三、(本题共2小题,每小题8分,满分16分)
15.如图,已知AB ∥DC ,OA=2,AD=9,OB=5, CD=12.求AB 、OC 的长.
16.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)
(1)将△ABC 以O 为位似中心放大2倍,得到△A 1B 1C 1,请画出△A 1B 1C 1;
(2)请画出一个格点△A 2B 2C 2,使△A 2B 2C 2∽△
A 1
B 1
C 1,且相似比为1:
2.
四、(本题共2小题,每小题8分,满分16分)
17.如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,判断△ABC与△DEF是否相似,并证明你的结论.
18.如图,D是△ABC的边AC上的一点,连接BD,已知
∠ABD=∠C,AB=6,AD=4,求线段CD的长.
五、(本题共2系统,每小题10分,满分20分)
19.如图,矩形ABCD中,AB=3,AD=5,点E在AD上,且AE:ED=1:4,连接BE,射线EF⊥BE,交DC于点F。
求CF的长。
20.如图,△ABC中,CD平分∠ACB交AB于D,DE∥BC交AC于E,若AD:DB=4:5,AC=9.
(1)求DE长;
(2)若∠ADE=∠EDC,求AD长.
六、(本题满分12分)
21.如图,是一山谷的横断面示意图,宽AA'为15m,用曲尺(两直尺相交成直角)从山谷两侧测量出OA=1m,OB=3m,O'A'=0.5m,O'B'=3m(点A、O、O'、A'在同一条水平线上),求该山谷的深h为多少m
七、(本题满分12分)
22.已知:如图,△ABC中,∠BAC=45°,AD是高,BD=2,CD=3,在AD上作DE=BD,DC=DF,
(1)求证:△ABE∽△CAF;
(2)求出△ABC的面积。
八、(本题满分14分)
23.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P 从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).
(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;
(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积
最大时,求线段BP的长;
(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t
的值;若不存在,请说明理由.
答案:1~10 BBBCC ACADA 11.7
5 12.S 1=S 213.78cm 14.127
或2 15.AB=
247
OC=
352
16.
17.△ABC ∽△DEF 证明(略)18.CD=5 19.5
3
20.(1)DE=5 (2)AD=6
21.如图,过谷底D 作DC ⊥AA ´于点C ,由题意知OB ∥CD ∥O ´B ´,△ABO∽△ADC,△A´B ´O ´∽△A´DO ,利用相似比求出h=30m 22.(1)∵AD ⊥BC ,∴∠ADB=∠ADC=90°,又BD=DE ,∴∠BED=∠DBE=45°,同理:∠CFD=∠FCD=45°∴∠AEB=∠CFA=135°,又∠BAE+∠CAF=∠BAC=45°,∠BAE+∠ABE=∠BED=45°,∴∠ABE=∠CAF ,∴△ABE ∽△CAF.(2)∵DE =BD =2, DF= CD =3,∴BE=2 CF=3 AD=x ,则AE=x-2,AF =x-3,∵△ABE ∽△CAF ,∴
AE CF
=BE AF
,∴3 2
=2 2x−3
.x=6,∴AD=6,S△ABC=12
BC ∙AD =12
×5×6=15.
23.(1)证明:当t =2时,DH =AH =4,则H 为AD 的中点,如答图1所示. 又∵EF ⊥AD ,∴EF 为AD 的垂直平分线,∴AE =DE ,AF =DF . ∵AB =AC ,AD ⊥BC 于点D ,∴AD ⊥EF ,∠B =∠C . ∴EF ∥BC ,∴∠AEF =∠B ,∠AFE =∠C , ∴∠AEF =∠AFE ,∴AE =AF ,
∴AE =AF =DE =DF ,即四边形AEDF 为菱形.
(2)解:如答图2所示,由(1)知EF ∥BC ,
∴△AEF ∽△ABC , ∴
,即
,解得:EF =10﹣t .
S △PEF =EF •DH =(10﹣t )•2t =﹣t 2+10t =﹣(t ﹣2)2+10 ∴当t =2秒时,S △PEF 存在最大值,最大值为10,此时BP =3t =6. (3)解:存在.理由如下:
①若点E 为直角顶点,如答图3①所示, 此时PE ∥AD ,PE =DH =2t ,BP =3t . ∵PE ∥AD ,∴
,即
,此比例式不成立,故此种情形不存在;
②若点F 为直角顶点,如答图3②所示, 此时PF ∥AD ,PF =DH =2t ,BP =3t ,CP =10﹣3t . ∵PF ∥AD ,∴
,即
,解得t =
;
③若点P 为直角顶点,如答图3③所示.
过点E 作EM ⊥BC 于点M ,过点F 作FN ⊥BC 于点N ,则EM =FN =DH =2t ,EM ∥FN ∥A D . ∵EM ∥AD ,∴
,即
,解得BM =t ,∴PM =BP ﹣BM =3t ﹣t =t .同理:CN =
t ,∴PN =BC ﹣BP ﹣CN =10﹣3t ﹣t =10﹣
t .∵∠EPF=90°,∴∠EPM+∠FPN=90°,又
∠EMP= ∠FNP=90°,∴∠FPN=∠PEM ,∴ △PEM ∽△FPN ,
∴FN
MP PN EM ,即t
2t 47
t 4
17-10t
2 ,
解得t 1=0(舍去),t 2=183
280
综上所述,当t =秒或t =秒时,△PEF 为直角三角形.。