SQ109 药代动力学研究

合集下载

大分子药物药代动力学研究中的生物分析策略

大分子药物药代动力学研究中的生物分析策略

Academy
Mil Med Sci
生物技术
生物技术:有机体的操作技术。可以分为传 统生物技术与新生物技术 新生物技术:广义上包括基因工程、细胞工 程、发酵工程、酶工程。核心为基因工程技术
Academy
Mil Med Sci
生物技术药物(ICH)
来源于细菌、酵母、昆虫、植物和哺乳动物细胞等各 种表达体系 特征细胞产物 包括人体内诊断药物、治疗药物或预防药物 活性物质包括蛋白质或多肽,蛋白质多肽类似物或衍 生物,由蛋白多肽组成的药物产品。这些蛋白多肽可 能是来自细胞培养,或用重组DNA技术生产,也包括 用转基因植物和动物生产的产品。
造血生长因子
G-CSF, GM-CSF , M-CSF , EPO , TPO , IL-3,6,11等
Academy
Mil Med Sci
治疗性生物制品的分类
Academy
Mil Med Sci
基于核酸的治疗剂
核酸疫苗 基因治疗 反义核酸 CpG ISS siRNA/miRNA
Academy
Mil Med Sci
标记物在体内的丢失是外、内标记蛋白共同存在的问题 放射性检测不能检测到非标记-氨基酸的任何降解产物 蛋白水解释放的标记氨基酸重新利用。可能循环摄取定位于组 织,或重新被利用而掺入至其它内源性蛋白
Academy
Mil Med Sci
生物检定分析法
利用在体或体外组织/细胞对受试药物的某种特异反应 进行测定。通过剂量(或浓度)效应曲线对目标药物 进行定量(绝对量或比活性单位)。 几种生物检定方法
Immobilize Drug
Add Sample
Confirm binding
Inhibit binding

一项在中国精神分裂症受试者中评估氯氮平片的生物等效性研究

一项在中国精神分裂症受试者中评估氯氮平片的生物等效性研究

◇临床药理学◇摘要目的:建立人血浆中氯氮平含量测定的UPLC-MS/MS 分析方法评价国产和原研氯氮平片在中国精神分裂症患者体内的生物等效性和安全性。

方法::采用两制剂、两周期、两序列交叉设计,24例受试者多剂量口服两种氯氮平片(每12h 口服100mg ),用UPLC-MS/MS 方法测定其血药浓度,计算主要药动学参数,评价两种氯氮平片的生物等效性。

结果:人血浆中氯氮平含量测定分析方法的线性范围为5~2000ng/mL ,批内、批间精密度[RSD (%)]均小于5%。

受试制剂与参比制剂的主要药动学参数:T max,ss 分别为1.01~5.02h 和1.00~5.00h ;C max,ss 分别为(665.0±279.3)、(679.5±240.3)ng/mL ;AUC 0-τ分别为(5408.1±2918.2)、(5389.5±2223.6)ng ∙h ∙mL -1;受试制剂和参比制剂药动学参数C max,ss 、AUC 0-τ几何均值比的90%置信区间分别落在86.15%~106.25%和87.69%~104.51%。

结论:建立的分析方法灵敏、快速、准确,两种氯氮平片在受试者体内生物等效。

关键词氯氮平;超高效液相色谱质谱联用法;药动学;稳态;生物等效性中图分类号:R969.1;R971+.4文献标志码:A文章编号:1009-2501(2023)10-1121-10doi :10.12092/j.issn.1009-2501.2023.10.005精神分裂症是一种严重的神经精神疾病,影响全球近1%的人群[1]。

抗精神病药物是目前主要的治疗方法,该类药物常分为第一代抗精神病药(又称典型抗精神病药物)和第二代抗精神病药物(又称非典型抗精神病药)[2-3]。

氯氮平自1958年被发现[4-5],为第二代抗精神病药物的代表。

上市50余年饱受监管机构关注且一度撤市失宠,现仍是治疗抵抗或有自杀倾向精神分裂症患者最有效的药物[6-8]。

药代动力学试验

药代动力学试验

标准加入法举例
? 废水样品中五氯苯(PCP)的分析
PCP
4 ppm 3 ppm 2 ppm 1 ppm
常用的定量方法
? 峰面积百分比法
? 由于检测技术的影响,在液相色谱中不常用
? 外标法
? 在液相色谱中用的最多
? 内标法
? 准确,但是麻烦 ? 在标准方法中用的最多
外标法定量
?配制一系列已知浓度的标样
? 步骤一: ? 90%甲醇1mL/min流速冲洗30min ? 步骤二: ? 10%甲醇1mL/min流速冲洗30min ? 步骤三: ? 90%甲醇1mL/min流速冲洗60min
色谱柱的存放
? 存放前的处理
? 除去杂质、盐
? 合适的存放溶剂 ? 避免色谱柱床的干枯 ? 避免机械震动 ? 防止细菌生长 ? 注意存放的温度
静注加替沙星在家兔体内的药代动力学研究
HPL1.HCP原LC理的与组成标准操作规程 (SOP)
2.分配色谱的原理 3.色谱柱 4.流动相 5.定性与定量方法 6.样品的预处理 7.反相色谱分析方法的开发
Chromatography
HPLC 的组成
? Pump 泵 ? Injector/Autosampler 进样器/自动进样器 ? Column 色谱柱 ? Detector 检测器 ? Data System/Integrator 数据系统/积分仪表
柱号 8082693.
键合相色谱柱
? 以硅胶为基质,通过化学键合方式把碳十八、碳 八、胺基等基团联在基质上,作为固定相。
? 优点∶
? 固定相稳定,不易流失 ? 应用广泛,可使用多种溶剂 ? 消除硅羟基的不良影响
? 缺点∶
? pH值不能小于3 ? 同样填料,各种牌号色谱柱不尽相同

辅酶Q_(10)软胶囊的人体药代动力学及相对生物利用度

辅酶Q_(10)软胶囊的人体药代动力学及相对生物利用度

辅酶Q_(10)软胶囊的人体药代动力学及相对生物利用度杨劲;丁黎;李王番;华雅萍;王广基
【期刊名称】《中国药科大学学报》
【年(卷),期】2001(32)2
【摘要】目的考察口服辅酶Q10 软胶囊在人体内的动态行为 ,并与辅酶Q10 普通片进行比较。

方法采用双交叉实验设计 ,10名受试者多剂量服用辅酶Q10 两种制剂 ,用HPLC方法测定辅酶Q10 在人体内的血药浓度。

结果连续服用辅酶Q10 两种制剂第 5天基本达到稳态。

辅酶Q10 软胶囊的相对生物利用度为普通片的 2 84%。

【总页数】5页(P117-121)
【关键词】辅酶Q10;药代动力学;高效液相色谱法;软胶囊;相对生物利用度
【作者】杨劲;丁黎;李王番;华雅萍;王广基
【作者单位】中国药科大学药物代谢研究中心
【正文语种】中文
【中图分类】R977.3;R969.1
【相关文献】
1.利福平胶囊,软胶囊的药代动力学及相对生物利用度 [J], 吴文芳;翁福海
2.辅酶Q_(10)片的人体生物利用度研究 [J], 肖淑华;魏广力;陆榕;刘昌孝
3.辅酶Q_(10)片的人体生物利用度研究 [J], 肖淑华;魏广力;陆榕;刘昌孝
因版权原因,仅展示原文概要,查看原文内容请购买。

改良型新药调释制剂临床药代动力学研究技术指导原则

改良型新药调释制剂临床药代动力学研究技术指导原则

改良型新药调释制剂临床药代动力学研究技术指导原则改良型新药调释制剂是指通过改变药物的给药方式以实现药物在体内的控制释放,从而提高药物疗效和减少副作用的一类药物制剂。

临床药代动力学研究是评价药物在体内的吸收、分布、代谢和排泄过程及其相互关系的科学方法。

基于改良型新药调释制剂在药代动力学研究中的特殊性,以下是相关参考内容,以指导该领域的研究工作。

一、研究设计1. 目标:明确改良型制剂的药代动力学特点、药效学特点及其变异因素。

2. 研究流程:包括药物长效性评价、药物释放机制评价、药物控制效应评价和药物安全性评价等。

3. 研究人群:应选择适当的健康志愿者和患者作为研究对象,确保研究的临床可靠性和数据的准确性。

二、实验方法1. 药物样品采集:在规定时间点采集血液样品,并进行药物浓度测定,以获得药物的血浆药物浓度-时间曲线。

2. 药物浓度分析:选取合适的药物分析技术进行药物浓度的测定,如高效液相色谱法、气相色谱法等。

3. 药物代谢动力学评价:通过测定药物在体内的代谢产物,分析药物代谢速率、药物代谢途径和药物代谢酶的变化情况。

4. 药物药效学评价:根据研究药物的治疗效果、安全性和耐受性,评价改良型制剂的药效学特点。

5. 药物释放特性评价:通过体内和体外的释放特性研究,评价改良型制剂的药物释放速率和机制。

三、数据处理与统计分析1. 数据处理:对采集到的药物浓度数据进行整理、计算和验证,确保数据的准确性和可靠性。

2. 药代动力学参数计算:根据药物浓度-时间曲线,计算药物的主要药代动力学参数,如药物的峰值浓度、时间达到峰值浓度、消除半衰期等。

3. 统计分析:对药代动力学参数进行统计学分析,比较不同组别之间的差异性,评估药代动力学的变异因素。

四、安全性评价1. 不良反应监测:记录患者在用药过程中出现的不良反应情况,并进行统计分析。

2. 安全性评估:基于不良反应情况、药代动力学参数和药效学特点,评估改良型制剂的安全性和耐受性。

常见药物的药代动力学研究

常见药物的药代动力学研究

常见药物的药代动力学研究随着现代医学的不断发展,药物的应用也越来越广泛。

对药物的药代动力学研究可以帮助医学工作者更好地了解药物在体内的代谢和动力学过程,进而提高药物的疗效和安全性。

以下是常见药物的药代动力学研究简述。

1. 乙酰水杨酸乙酰水杨酸是一种非类固醇抗炎药,常用于缓解轻至中度的疼痛和发热。

其药代动力学研究表明,乙酰水杨酸的代谢主要发生在肝脏中,主要由乙酰肝素转化为水杨酸。

约90%的乙酰水杨酸在肝脏中代谢,余下的10%则在肠道和其他部位代谢。

乙酰水杨酸的半衰期约为2-3小时,可通过尿液和粪便排泄。

2. 阿司匹林阿司匹林是一种常用的解热镇痛药和抗血小板药物,可用于缓解轻至中度的疼痛和发热,以及预防心脏病发作。

其药代动力学研究表明,阿司匹林的代谢主要发生在肝脏中,主要由肝脏羧化酶代谢为水杨酸。

阿司匹林的半衰期约为2-4小时,可通过尿液和粪便排泄。

3. 对乙酰氨基酚对乙酰氨基酚是一种非处方药,常用于缓解轻至中度的疼痛和发热。

其药代动力学研究表明,对乙酰氨基酚的代谢主要发生在肝脏中,并主要被乙酰化为乙酰对氨基酚。

对乙酰氨基酚的半衰期约为2-3小时,可通过尿液和粪便排泄。

4. 氯硝西泮氯硝西泮是一种苯二氮平类药物,主要用于治疗焦虑症和抑郁症。

其药代动力学研究表明,氯硝西泮的代谢主要发生在肝脏中,并通过羟基化和葡萄糖醛酸化代谢。

氯硝西泮的半衰期约为24-48小时,可通过尿液和粪便排泄。

5. 雷米普利雷米普利是一种ACE抑制剂,主要用于治疗高血压和心力衰竭。

其药代动力学研究表明,雷米普利的代谢主要发生在肝脏中,并通过羧化代谢。

雷米普利的半衰期约为12-16小时,可通过尿液排泄。

总的来说,药代动力学研究可以帮助了解药物在体内的代谢和动力学过程,对于提高药物的疗效和安全性具有重要的意义。

随着科技的不断进步,药代动力学研究的技术也在不断完善,相信在未来,药物治疗也会变得更加科学和精准。

药代动力学的研究

药代动力学的研究

药物代谢动力学的研究摘要:超高效液相色谱(UPLC)和PBPK模型在药物代谢动力学研究发挥的重要的作用。

UPLC是一种柱效高、发展前景好的液相色谱技术,是一种基于机制的数学模型;PBPK用于模拟化学物质在体内的分布代谢更方面对药物动力学的研究。

药物代谢动力学的更深研究在药物研发中起到了重要意义及作用。

关键词:药物代谢动力学 UPLC PBPK模型药物研发Abstract: the high performance liquid chromatography (UPLC) and PBPK model in the study of the pharmacokinetic play an important role. UPLC is a column efficiency high, the prospects of the development of good performance liquid chromatography, is based on a mathematical model of the mechanism; PBPK used for simulation of the chemical substances in the body of metabolic distributed more medicine dynamics research. The pharmacokinetic deeper in drug development research has important significance and role.Keywords: Pharmacokinetic UPLC PBPK model Drug development前言:动力学的基本理论和方法已经渗透到生物药剂学,药物治疗学,临床药理学及毒理学等多学科领域中。

药物代谢动力学是应用数学处理方法,定量描述药物及其他外源性物质在体内的动态变化规律,研究机体对药物吸收、分布、代谢和排泄等的处置以及所产生的药理学和毒理学意义;并且探讨药物代谢转化途径,确证代谢产物结构,研究代谢产物的药效或毒性;提供药物效应和毒性的靶器官,阐明药效或毒性的物质基础,弄清药物疗效和毒性与药物浓度的关系[1]。

重组人尿激酶原药代动力学的研究

重组人尿激酶原药代动力学的研究

重组人尿激酶原药代动力学的研究随着科技的不断进步,药物研究也在不断地发展。

其中,药代动力学是药物研究的重要分支之一。

药代动力学研究的是药物在体内的吸收、分布、代谢和排泄等过程,以及药物在体内的作用时间和剂量等因素。

药代动力学的研究对于药物的研发、剂量的确定以及药物的安全性评估等方面具有重要的意义。

本文主要介绍了重组人尿激酶原药代动力学的研究。

尿激酶原是一种具有强烈的纤溶作用的蛋白酶原,能够促进血栓的溶解和防止血栓的形成。

由于尿激酶原的作用,它被广泛用于心肌梗死、深静脉血栓和肺栓塞等疾病的治疗。

但是,尿激酶原的制备来源主要是人尿中提取,不仅制备成本高,而且存在感染风险。

因此,近年来,研究人员对重组人尿激酶原的研究越来越感兴趣。

一、重组人尿激酶原的制备重组人尿激酶原是通过基因工程技术制备的。

首先,从人体中提取尿激酶原的基因,然后将其插入到表达载体中。

接着,将表达载体转化到细胞中,使细胞能够表达出重组人尿激酶原。

最后,通过纯化、结晶等步骤,得到纯度较高的重组人尿激酶原。

二、重组人尿激酶原的药代动力学研究重组人尿激酶原的药代动力学研究主要包括吸收、分布、代谢和排泄等方面。

其中,重组人尿激酶原的吸收主要是通过静脉注射进行的。

在体内,重组人尿激酶原主要分布在血液中,能够有效地溶解血栓。

重组人尿激酶原的代谢主要是在肝脏和肾脏中进行的。

在体外研究中发现,重组人尿激酶原的半衰期约为20分钟,说明其在体内的代谢速度较快。

重组人尿激酶原的排泄主要是通过肾脏进行的,其中约有80%的重组人尿激酶原在24小时内经过肾脏排泄。

三、重组人尿激酶原的临床应用重组人尿激酶原的临床应用主要是用于心肌梗死、深静脉血栓和肺栓塞等疾病的治疗。

其中,心肌梗死是重组人尿激酶原应用最广泛的领域之一。

心肌梗死是由于冠状动脉的阻塞造成的心肌缺血和坏死。

重组人尿激酶原能够溶解血栓,恢复冠状动脉的通畅,从而减轻心肌梗死的症状和预防心肌梗死的后遗症。

四、重组人尿激酶原的安全性评估重组人尿激酶原的安全性评估是药物研究的重要环节之一。

《化学药创新药临床单次和多次给药剂量递增药代动力学研究技术指导原则》

《化学药创新药临床单次和多次给药剂量递增药代动力学研究技术指导原则》

目录一、前言 (1)二、总体考虑 (1)(一)单次给药剂量递增药代动力学研究 (2)(二)多次给药剂量递增药代动力学研究 (3)(三)代谢产物的药代动力学研究 (3)(四)药代动力学/药效动力学研究 (4)三、研究设计 (4)(一)受试人群 (5)(二)样本量 (6)(三)剂量选择 (6)(四)采样设计 (8)(五)检测物质 (9)(六)其他考虑 (9)四、数据分析 (13)(一)药代动力学参数的估算 (13)(二)剂量-暴露-效应关系分析 (13)(三)多个研究数据的汇总分析 (14)(四)其他 (14)五、研究报告 (14)六、参考文献 (15)一、前言药代动力学(Pharmacokinetics,PK)研究旨在阐明药物在体内的吸收、分布、代谢和排泄的动态变化及其规律。

创新药临床PK研究有助于全面认识人体对药物的处置过程,是推进创新药临床研究和制定临床合理用药方案的重要依据。

本指导原则旨在对化学药创新药临床研发起始阶段的以经典PK方法开展的单次和多次给药剂量递增PK研究给出建议。

本指导原则仅代表药品监管部门当前的观点和认识。

随着科学技术的发展,本指导原则中的相关内容将不断更新与完善。

在应用本指导原则时,还应同时参考其他已发布的相关技术指导原则。

二、总体考虑单次给药剂量递增和多次给药剂量递增PK研究以及药物代谢产物PK研究是创新药临床起始研究的主要内容之一,可为后续临床研究的剂量和给药方式的确定等提供重要依据。

一般认为,PK研究应在较宽剂量范围内进行,以充分了解剂量-暴露-效应关系。

(一)单次给药剂量递增药代动力学研究单次给药剂量递增PK研究的目的包括了解药物和/或代谢产物在人体内的PK特征、获得药物在人体内单次给药的PK参数、探索剂量-暴露比例关系等。

单次给药剂量递增PK研究设计应考虑所有可用的非临床信息、临床研究数据以及类似作用机制药物的相关信息。

单次给药剂量递增PK研究通常嵌套在耐受性研究中开展,鼓励在耐受性研究的每个剂量组中开展PK研究。

临床去乙酰毛花苷药代动力学特点、正确选用药物、临床应用建议、用药剂量、用药方法、用药注意事项及过量与

临床去乙酰毛花苷药代动力学特点、正确选用药物、临床应用建议、用药剂量、用药方法、用药注意事项及过量与

临床去乙酰毛花昔药代动力学特点、正确选用药物、临床应用建议、用药剂量、用药方法、用药注意事项及过量与毒性反应处理药代动力学特点西地兰口服吸收率很低,一般只用于静脉注射,注射后10min起效,于0∙5~2h即可达作用高峰,半衰期33~36h,作用维持1~2天,完全消失3~6天。

主要由肾脏排泄。

西地兰作用快而蓄积性小,多为临时使用,治疗量与中毒量之间的差距大于其他洋地黄类强心昔。

正确选用药物西地兰可用于心力衰竭,由于作用快,适用于急性心功能不全或慢性心功能不全急性加重的患者。

还可用于心律失常,控制伴快速心室率的心房颤动、心房扑动患者的心室率,但对终止室上性心动过速起效慢,已少用。

西地兰经过肝脏羟化,肝功能不全患者不宜使用,会减弱其药效,可选用不经肝脏代谢的地高辛。

西地兰经肾脏排泄,肾功能不全患者不宜使用,会增加蓄积中毒风险。

西地兰可通过胎盘,故妊娠后期母体用量可能增加,分娩后6周须减量。

本品可排入乳汁,哺乳期妇女应用须权衡利弊。

临床应用建议洋地黄类药物可改善心衰患者的症状,降低慢性HFrEF患者的住院风险,可用于控制房颤患者的心室率,急性心衰合并快速房颤时可首选静脉洋地黄类药物控制心室率(主要为西地兰注射液)。

掌握用药剂量及用药方法给药方式:静脉注射(缓慢推注,有因快速推注导致死亡的病例)溶媒:5%葡萄糖注射液成人用法用量:未口服洋地黄者,首剂:5%GS20m1.+西地兰0.4-0.6mg(1-1,5支)缓慢推注10min,注意监测心率;若无效可再次静注,间隔2~4h:5%GS20m1.+西地兰0.2-0.4mg(0.5—1支)缓慢推注10min,注意监测心率。

以上重复2~3次,总量不超过1~1.6mg(2.5-4支),病情稳定后,可改为口服地高辛维持。

小儿常用量:按下列剂量分2~3次间隔3~4h给予。

根据体重计算。

早产儿和足月新生儿或肾功能减退、心肌炎患儿,肌内或静脉注射按体重0.022mg∕kg,2周~3岁,按体重0.025mg∕kgo 静脉注射获满意疗效后,可改用地高辛常用维持量以保持疗效。

SQ109_抗生素,用于治疗肺结核。_502487-67-4_Apexbio

SQ109_抗生素,用于治疗肺结核。_502487-67-4_Apexbio

产品描述:
SQ109 是一种新型抗结核药,作用于 XDR,IC50 值为 0.2 μg/m分枝杆菌(Mtb)引起的感染性疾病,是致死率最高的头 号杀手,每年有超过 300 万人死于结核病。即使如此,用于 TB 治疗的已有药物仍面临诸多 挑战,包括副作用和耐多药结核病(MDR-TB)的发展。作为一种新型抗结核药物,SQ109 具有不同的作用机制和更高的效能,作用于霉菌酸转运体 MmpL3,而 MmpL3 是 Mtb 细胞 壁中霉菌酸合成所必需的[1,2]。 SQ109 是从根据乙胺丁醇(EMB)的活性药效所设计的大化学品库中筛选出来的。即使如此, SQ109 与 EMB 有不同的化学结构、效应和机制。在前 27 个候选者中,SQ109 具有最高的选 择性指数和最低的 IC50 值,分别为 16.7 和 0.78 μg/ml。SQ109 对 Mtb 的所有亚株均具有 有效的活性,包括 XDR-和 MDR-TB 临床菌株,IC50 值为 0.2 μg/ml。此外,SQ109 对其它致 病分枝杆菌也具有显著效果,MIC 值范围介于 4-16 μg/ml 之间[1]。 在 PK 研究中,SQ109 具有低口服生物利用度,而其氨基甲酸酯前药具有改善的口服生物利 用度(从 21.4%到 91.4%),在大鼠中具有较高的组织分布。在感染的小鼠中,SQ109 以 10 mg/kg 的剂量给药后显著减轻体重损失的症状。在慢性结核病小鼠模型中,10 mg/kg 的 SQ109 比 100 mg/kg 的 EMB 具有更好的效力。此外,在感染的小鼠模型中,SQ109 和 bedaquiline 联合治疗具有持久的治愈效果[1,3]。
ApexBio Technology
Evaluation sample solution : ship with blue ice All other available size: ship with RT , or blue ice upon request

多西他赛脂质微球注射液Ⅰ期临床药代动力学研究共3篇

多西他赛脂质微球注射液Ⅰ期临床药代动力学研究共3篇

多西他赛脂质微球注射液Ⅰ期临床药代动力学研究共3篇多西他赛脂质微球注射液Ⅰ期临床药代动力学研究1多西他赛脂质微球注射液Ⅰ期临床药代动力学研究随着生物技术的发展,越来越多的新型药物进入了临床试验阶段。

多西他赛脂质微球注射液是一种利用脂质体封装多西他赛的新型药物,旨在提高多西他赛的疗效并减少副作用。

本文旨在探讨该药物在Ⅰ期临床药代动力学研究中的表现。

研究对象与方法本研究共纳入10名健康志愿者(5男5女),年龄在18至45岁之间。

所有被试给予口服避孕药以避免可能的荷尔蒙影响。

本研究采用随机、单盲试验设计,所有对象随机分为两组,分别给予多西他赛脂质微球注射液和非脂质体多西他赛注射液。

两组对象在剂量、注射时间、注射部位等方面完全一致。

检测内容和方法测量包括多西他赛和荷尔蒙水平,以及相关标志物如血白细胞计数等。

血液样本于注射前和注射后0.5、2.5、5、10、24、48、72、96、120小时采集。

结果与讨论本研究结果表明,多西他赛脂质微球注射液和非脂质体多西他赛注射液在药动学上均表现出三相消失模型。

然而,多西他赛脂质微球注射液在第一相时消失较慢,在第二相时消失较快。

与非脂质体多西他赛注射液相比,多西他赛脂质微球注射液的Cmax和AUC0-∞分别增加了2.5倍和2.6倍。

多西他赛脂质微球注射液中多西他赛与脂质体的比例为1:1,因此,我们推测该脂质微球注射液中的脂质体有可能改善了多西他赛的药代动力学。

研究还表明,多西他赛脂质微球注射液在进入肝脏后主要代谢成杂环间环酮(M1)和2'-羟基多西他赛(M3)。

由于这两种代谢产物具有较低的药效和刺激性效应,因此多西他赛脂质微球注射液的副作用有可能较低。

结论多西他赛脂质微球注射液的药代动力学表现出与非脂质体多西他赛注射液不同的三相消失模型,且具有更高的Cmax和AUC0-∞值。

多西他赛脂质微球注射液中的脂质体有可能改善了多西他赛的药代动力学,从而提高了其疗效并减少了副作用。

572_新型衍生化试剂9,10-蒽醌-2-磺酰氯应用于三种心血管药物药代动力学研..

572_新型衍生化试剂9,10-蒽醌-2-磺酰氯应用于三种心血管药物药代动力学研..

新型衍生化试剂9,10-蒽醌-2-磺酰氯应用于三种心血管药物药代动力学研究的柱前衍生-HPLC方法的建立与评价Evaluation of a new derivatization reagent 9, 10-anthraquinone-2-sulfonyl chloride and its application to the pharmacokinetic study of three cardiovascular drugs by pre-column derivatization high-performance liquid chromatography柳菡, 冯芳*, 马明, 崔双进, 谢达荣,徐思之(中国药科大学药物分析教研室,南京,210009)摘要本文首次将新型衍生化试剂9,10-蒽醌-2-磺酰氯(9, 10-anthraquinone-2-sulfonyl chloride, ASC)用于三种具有相似结构的心血管药物盐酸美西律、盐酸甲氧明和重酒石酸间羟胺的柱前衍生-HPLC分析方法的建立和评价,通过制备和鉴定标准衍生化合物、比较不同的分析衍生方式、HPLC/MS分析衍生混合物中共存成分以及优化衍生条件,确定了三种药物的通用衍生模式,并将其应用于的大鼠药物动力学研究,首次揭示了盐酸甲氧明和重酒石酸间羟胺在动物体内的药代动力学特征,为三种药物的临床使用提供依据。

盐酸美西律、盐酸甲氧明和重酒石酸间羟胺是临床常用的心血管药物,治疗窗窄,使用不当可能产生毒副作用,因此有必要对它们的血药浓度进行监测,以保障临床用药的安全、有效。

文献报道的生物样本中三种药物的分析方法有HPLC-UV[1]、GC[2]和GC-MS[3]等。

GC-MS[3]法,由于专属性欠佳,应用受到限制,仅有对盐酸美西律体内过程分析的报道。

HPLC-UV[1]法,由于三种药物分子极性强、紫外吸收弱的限制,常常缺乏应有的专属性和灵敏度。

浅谈药物代谢动力学的研究

浅谈药物代谢动力学的研究

浅谈药物代谢动力学的研究浅谈药物代谢动力学的研究发表时间:2016-03-28T11:08:44.873Z 来源:《健康世界》2015年27期供稿作者:邹娟[导读] 海林市人民医院随着我国医学的研究,我国对于一些药物在机体内的代谢等有了更加深入的要求。

主要就是对于一些药物的代谢动力学的研究。

本文将简单介绍药物的代谢动力学。

海林市人民医院黑龙江海林市 157100摘要:随着我国医学的研究,我国对于一些药物在机体内的代谢等有了更加深入的要求。

主要就是对于一些药物的代谢动力学的研究。

本文将简单介绍药物的代谢动力学。

关键词:药物;代谢动力学;研究药物代谢动力学是应用数学处理方法,定量描述药物及其他外源性物质在体内的动态变化规律,研究机体对药物吸收、分布、代谢和排泄等的处置以及所产生的药理学和毒理学意义。

因此,药物的代谢动力学对于医学上的研究是非常重要的。

1.药物代谢动力学的研究历史1.1药物代谢动力学的研究历史其实,早在1913年医学方面的专家就已经提出了动力学方程,而在1924年的时候,Widmark和Tandberg提出开放式一室动力学模型,1937年Teorell提出房室药代动力学模型的假设,1953年,Dost 博士的第一本药代动力学教科书的问世,KrugerThemer博士发表了药代动力学论文,Nelson发表了第一篇有关药代动力学综迷的发表。

到现在已有70多年的历史。

但是直到20世纪60年代,由于药理学、临床治疗学和生物科学的发展提出药物研究课题才引起了研究者对药代动力学发展的关注。

自1972年,由国际卫生科学研究中(International Center For Advaneed Study in Health Seiences)的J.E.Fogar发起,在美国马里兰州波兹大国立卫生科学研究所(N.1.H)召开了药理学与药代动力学国际会议,第一次正式确认药代动力学为一门独立学科开始,从此以后对几乎所有的临床药物都进行过药物动力学研究,所以药物动力学的真正发展仅仅是在近40年左右。

高剂量利福平、莫西沙星和SQ109治疗肺结核:一项多组别、多阶段的随机对照试验

高剂量利福平、莫西沙星和SQ109治疗肺结核:一项多组别、多阶段的随机对照试验

高剂量利福平、莫西沙星和SQ109治疗肺结核:一项多组别、
多阶段的随机对照试验
Boeree MJ;Heinrich N;Aarnoutse R;申晓娜
【期刊名称】《中国防痨杂志》
【年(卷),期】2017(039)007
【总页数】1页(P756)
【作者】Boeree MJ;Heinrich N;Aarnoutse R;申晓娜
【作者单位】;;;同济大学附属上海市肺科医院结核病临床研究中心上海市结核(肺)
重点实验室
【正文语种】中文
【相关文献】
1.含利福平固定剂量复合剂生物等效评价参考配方的建立:一项提高结核病治疗的
基本步骤 [J], 李华(译);无
2.利福喷汀和异烟肼每周1次给药与利福平和异烟肼每周2次给药对药物敏感的HIV阴性肺结核患者的疗效比较:一项随机临床试验。

[J],
3.提升残疾人获得感的多阶段小组:一项随机对照试验 [J], 卜禾;吴桐;王晔安
4.莫西沙星联合高剂量利福平静脉冲击疗法治疗结核性脑膜炎的效果分析 [J], 易
应花
5.甲氨蝶呤单剂量、多剂量方案联合散结镇痛胶囊治疗输卵管妊娠效果:一项单中心、前瞻性随机对照试验 [J], 何丝思
因版权原因,仅展示原文概要,查看原文内容请购买。

药物代谢动力学

药物代谢动力学

生物转化
图 肝微粒体药物-代谢酶系统的主要组份
*示e 和 2H+来自NADH-黄素蛋白-细胞色素b5或来自NADPH-黄素蛋白
生物转化
肝药酶的特点: (1)专一性低:不仅可对许多脂溶性高的药物发挥 酶促作用,也能对一些内源性生理物质起酶促作 用。 (2)活性有限:数种药物合用后易达饱和,会发生 竞争抑制现象。 (3)个体差异很大,除先天性遗传性的差异外,生 理因素(年龄、营养状态、应激反应等)、病理 因素(肝脏疾病等)均可影响它的活性。 (4)可以受某些药物的诱导:活性增加(肝药酶诱 导)或活性减弱(肝药酶抑制剂)。
体内药量的时-量(效)关系
时-量(效)关系曲线
时-量(效)关系曲线
图 多次静脉注射或静脉滴注后的时-量曲线
a.静脉注射;b.静脉注射(D/t1/2);c.静脉注射(2D/t1/2);d.静脉注射首次量2D、后D/t1/2
被动转运
简单扩散 又称为下山转运,即药物从浓度高的一侧 向浓度低的一侧扩散。 特点: ① 不消耗能量不需载体 ② 不受饱和限速与竞争性抑制的影响 ③ 受药物分子大小、脂溶性、极性等因素 的影响。当细胞膜两侧药物浓度达到平衡 状态时就停止转运。
第三节 药物代谢动力学的一些基本 参数及其概念
药物代谢动力学:研究药物及其代谢产物在体内的吸收、分布、 代谢、排泄的时间过程。 房室模型: 用抽象的数学模型即房室模型来模拟机体,把机体 看作由许多房室构成的体系,将药物转运速度相似的都归为 同一房室,如:一室、二室、多室模型。 表观分布容积: 用来测定药物在体内的表观空间,是通过药 物在体内的总量(A)除以初始血药浓度(C0)计算出来的 参数(Vd)。 Vd = A(总药量)/C0(初始血药浓度) 生物利用度:服用某种药剂后,药剂中主药到达体循环的相对 量和相对速率。F 半衰期: 一般是指血浆半衰期(t1/2),指血浆药物浓度下降 一半所需的时间。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Interspecies pharmacokinetics and in vitro metabolism of SQ109 *,1Lee Jia,2Patricia E.Noker,2Lori Coward,2Gregory S.Gorman,3Marina Protopopova&1Joseph E.Tomaszewski1Developmental Therapeutics Program,National Cancer Institute,NIH,6130Executive Blvd.,Rm8042,Rockville,MD20852, U.S.A.;2Southern Research Institute,Birmingham,AL,U.S.A.and3Sequella Inc.,Rockville,MD,U.S.A.1This study aimed at characterizing the interspecies absorption,distribution,metabolism andelimination(ADME)profile of N-geranyl-N0-(2-adamantyl)ethane-1,2-diamine(SQ109),a newdiamine-based antitubercular drug.2Single doses of SQ109were administered(intravenously(i.v.)and per os(p.o.))to rodents and dogsandbloodsamples were analyzedby liquidchromatography tand em mass spectrometry(LC/MS/MS).Based on i.v.equivalent body surface area dose,the terminal half-life(t1/2)of SQ109in dogs waslonger than that in rodents,reflected by a larger volume of distribution(V ss)anda higher clearancerate of SQ109in dogs,compared to that in rodents.The oral bioavailability of SQ109in dogs,rats andmice were2.4–5,12and3.8%,respectively.3After oral administration of[14C]SQ109to rats,the highest level of radioactivity was in the liver,followedby the lung,spleen andkid ney.Tissue-to-bloodratios of[14C]SQ109were greater than1.Fecal elimination of[14C]SQ109accountedfor22.2%of the total d ose of[14C]SQ109,while urinaryexcretion accountedfor only5.6%.The bind ing of[14C]SQ109(0.1–2.5m g mlÀ1)to plasma proteinsvaried from6to23%depending on the species(human,mouse,rat and dog).4SQ109was metabolizedby rat,mouse,d og andhuman liver microsomes,resulting in22.8,48.4,50.8or58.3%,respectively,of SQ109remaining after a10-min incubation at371C.The predominantmetabolites in the human liver microsomes gave intense ion signals at195,347and363m/z,suggestingthe oxidation,epoxidation and N-dealkylation of SQ109.P450reaction phenotyping usingrecombinant cDNA-expressedhuman CYPs in conjunction with specific CYP inhibitors ind icatedthat CYP2D6andCYP2C19were the pred ominant CYPs involvedin SQ109metabolism.British Journal of Pharmacology(2006)147,476–485.doi:10.1038/sj.bjp.0706650;publishedonline23January2006Keywords:Antituberculosis;diamine;SQ109;ADME;pharmacokineticsAbbreviations:ADME,absorption distribution metabolism elimination;CL,clearance rate;ESI,electrospray ionization;d.p.m., disintegrations per min;LC/MS/MS,liquid chromatography tandem mass spectrometry;V ss,volume ofdistribution;t1/2,terminal half-lifeIntroductionIdentification of a promising new compound for the treatment of tuberculosis is exciting,andits d evelopment is very challenging(Barry III et al.,2000).Current regimens require combinedtreatment of tuberculosis with multiple d rugs, including isoniazid,rifampin,ethambutol and pyrazinamide for the full dosing period of6months(American Thoracic Society Documents,2003).It is difficult to comply completely with this complex andprolongedregimen,andconsequently, there is a substantial rate of treatment failure,even among patients with drug-sensitive disease.Thus,the availability of a more potent antibiotic that couldclear infection more rapid ly wouldbe very valuable.Many approaches to screening andid entifying antibiotics start with a search for biochemical inhibitors of potential targets andthen focus on those that inhibit microbial growth (Rubin,2005).Lee et al.(2003)startedwith a d iverse library of 63238ethambutol analogs with1,2-diamine pharmacophore andtestedtheir activity against Mycobacterium tuberculosis using high-throughput screening.The initial rationale was to identify diamine analogs with enhanced efficacy over etham-butol to improve the existing treatment of tuberculosis,and hopefully make therapeutic implementation easier andof shorter duration.After the lead optimization and screening, three analogs were foundto have an enhancedantitubercular activity comparedto ethambutol.Basedon the results obtainedfrom comparisons of effectiveness andhigh-through-put pharmacokinetic screening using cassette dosing combined with liquidchromatography tand em mass spectrometry (LC/MS/MS)(Jia et al.,2005a),we selected N-geranyl-N0-(2-adamantyl)ethane-1,2-diamine(SQ109,MW330.2;see Figure5for SQ109structure)as a leadcompoundfor advanced drug testing.SQ109exhibited both in vitro anti-microbial activity against M.tuberculosis strain H37Rv grown inside the host murine macrophage cells and in vivo antimicrobial activity on the mouse model inoculated with the H37Rv strain.Oral administration of SQ109to mice for 28consecutive days resulted in significant reductions in mycobacterial burden in both the lungs and spleen of the mice.Monitoring SQ109levels in mouse vital tissues in the course of28-day oral administration showed that the potential sites of action(e.g.,lungs andspleen)containedSQ109at*Author for correspondence;E-mail:jiale@British Journal of Pharmacology(2006)147,476–485&2006Nature Publishing Group All rights reserved0007–1188/06$30.00/bjpconcentrations that were at least10times higher than its minimal inhibitory concentration(1.56m M).SQ109displayed a large volume of distribution to various tissues.Despite its low oral bioavailability,the targetedtissue concentrations of SQ109were at least120-foldhigher than that in the plasma (Jia et al.,2005b).Fingerprinting of SQ109pharmacopro-teomics indicates that treatment of M.tuberculosis H37Rv strain with SQ109causedsignificant upregulation of secreted antigenic proteins ESAT-6-,CFP-10-and ATP-dependent DNA/RNA helicase,andd ownregulation of b-ketoacyl-acyl carrier protein synthase(Jia et al.,2005a).The purpose of the present studies was to characterize systematically andcomprehensively the preclinical profile of absorption,distribution,metabolism and elimination(ADME) for SQ109in a number of species,including its pharmacoki-netics,plasma protein binding;tissue distribution and urinary andfecal elimination in rats;as well as its in vitro metabolism, metabolism phenotyping andpossible metabolic pathways. MethodsAnimalsMale CD2F1mice(23–27g),male Fischer rats(271–289g)and beagle dogs(7.5–8.9kg,two males and two females per dose group)were handled in accordance with the Guide for the Care andUse of Laboratory Animals(National Research Council,1996),or the Principles of Laboratory Animal Care (/laws).Analytical method for determining SQ109in biomatrices The analytical methodfor d etermining SQ109in various biomatrices was similar to that described previously(Jia et al., 2005b).Briefly,separation of SQ109from biomatrices was achievedon a b-basic C18analytical column preceded by a C18 guardcolumn(Keystone Scientific,Bellefonte,PA,U.S.A.)at 251C anda flow rate of0.6ml minÀ1.SQ109andterfenad ine (internal standard)were eluted using a mobile phase composed of buffer A(5m M CH3COONH4with0.1%trifluoroacetic acid,pH6.8)and buffer B(methanol with0.1%trifluoroacetic acid)according to the following gradient program:50%buffer A and50%buffer B were heldfor0.5min,andthen buffer A was linearly decreased to20%over3min and remained constant for1min while the analytes were eluted.The column was re-equilibratedto initial cond itions via a step gradient for 3min.A PE Sciex API3000triple quadrupole mass spectro-meter equippedwith a Turbo on spray source andoperating at4501C in the positive ion mode was used for the analysis of SQ109.The lower limit of quantitation of SQ109in the plasma was determined to be1.95ng mlÀ1.Rat and dog pharmacokinetic studies with SQ109Rats with an indwelling jugular vein catheter were used for the pharmacokinetic studies.Rats were given either a single intravenous(i.v.)bolus dose of1.5mg kgÀ1(9mg mÀ2)or an oral dose of13mg kgÀ1(78mg mÀ2)of SQ109(n¼8per dose group);rats were divided into subgroups consisting of four rats per subgroup.Rat blood(0.7ml)was withd rawn from the jugular vein catheter at alternating time points from individual rats in each subgroup.Bloodsamples were collectedat2,5,10, 15and30min and1,3,6,10and24h after a single i.v. ad ministration,or5,15and30min and1,2,4,6,10and24h after a single oral administration.Each blood sample was centrifugedto separate plasma,which was then storedat À701C until analysis.Beagle dogs were dosed by gavage at either 3.75or 15mg kgÀ1(75or300mg mÀ2),or intravenously at either 0.45or4.5mg kgÀ1(9and90mg mÀ2).Dog blood(0.7ml)was withdrawn from the jugular vein at2,5,10,20and30min and 1,2,4,8,12,18and24h after a single i.v.ad ministration,or 10,20and30min and1,2,4,8,12,18and24h after a single oral administration.Each bloodsample was collectedinto a tube containing EDTA andcentrifuged(2000Âg,10min)to separate plasma andredbloodcells.To each200m l of plasma sample,10m l of internal standard solution(10m g mlÀ1)was added.SQ109was then separatedandanalyzedby the LC/MS/MS method according to the previously described procedures(Jia et al., 2005b).Peak area ratios of SQ109to the internal standard were plottedagainst theoretical concentrations.Drug concen-trations in the plasma samples were calculatedfrom the standard calibration curves.Pharmacokinetic parameters were calculatedusing the computer program WinNonlin(Pharsight Co.,Mountain View,CA,U.S.A.),andbioavailability was calculatedas(AUC p.o.AUC i.v.À1)Â(dose i.v.dose p.o.À1)Â100%.Tissue distribution and elimination of[14C]SQ109in rats[14C]SQ109(5.8mg mlÀ1)was diluted4.4-fold with0.9%sterile saline to yielda formulation containing1.3mg mlÀ1SQ109 (225m Ci mlÀ1).Male Fischer rats(271–289g)were individually housedin metabolism cages from which urine andfeces were cumulatively collectedto d etermine[14C]SQ109excretion rate. The rats were orally dosed by gavage with13mg kgÀ1of [14C]SQ109.Rats were killedat0.5,5,10and24h after d osing (n¼3per time point)in order to collect blood,tissues and organs for quantitative analysis.Tissues,intestinal tract contents andfeces were homogenizedin10volumes of water. Duplicate aliquots of whole blood,homogenates of tissues, intestinal contents andfeces were d igestedwith tissue solubilizer Soluene350,and decolorized with30%hydrogen peroxide to eliminate chemiluminescence.The samples were radioassayed after mixing with glacial acetic acid and the scintillation cocktail.Duplicate aliquots of urine and cage rinses were radioassayed after mixing with scintillation cocktail.Pieces of carcasses were digested with650ml of10N sodium hydroxide,maintained at371C for3days,and then at room temperature until complete dissolution of the carcasses(B2 weeks).Quadruplicate aliquots of each dissolved carcass were diluted with water(1:20,v vÀ1);portions of each diluted sample were radioassayed after the addition of an appropriate scintillator.After correction for volume by dilution and volume assayed,the radioactivity expressed as disintegrations per min(d.p.m.)of[14C]SQ109in each sample was determined. Plasma protein bindingThe percent binding of[14C]SQ109to mouse,rat,dog and human plasma proteins was determined by using ultracen-trifugation(Barre et al.,1985;Boulton et al.,1998).Briefly,L.Jia et al Interspecies pharmacokinetics of SQ109477British Journal of Pharmacology vol147(5)spiking solutions of[14C]SQ109were preparedby d iluting the stock[14C]SQ109(1mCi of 5.9mgÀ1mlÀ1)with absolute ethanol to yieldspiking solutions containing5,25or 125m g mlÀ1of[14C]SQ109.For each species,a10.8ml aliquot of plasma was mixedwith0.22ml of the appropriate spiking solution of[14C]SQ109to yieldfinal SQ109concentrations of 0.1,0.5or2.5m g mlÀ1.The plasma mixtures were placedinto individual polycarbonate ultracentrifuge tubes and centrifuged at100,000Âg for24h at41C.At the endof the centrifugation period,the upper chylomicron layer,middle aqueous layer and lower protein pellet were separatedandthe volume of each layer was determined.The protein pellets were dissolved in Soluene350 tissue solubilizer.The radioactivity of duplicate portions of the chylomicron andaqueous layers as well as the solubilized protein layer was determined,and the total amount of radioactivity in each layer was calculated.The percentage of radioactivity in each layer was determined by comparing the amount of radioactivity in each layer with the sum of the total amount of radioactivity in all three postcentrifugation plasma samples.The percent of the total radioactivity in the aqueous layer was considered to represent the unbound fraction of SQ109,while the sum of the radioactivity in the chylomicron andlower(pellet)protein layers was consid eredto represent the boundfraction of the d rug.Radioactivity determinationThe radioactivity of all samples was measured in the Tri-Carb 2100TR liquidscintillation analyzer.All counts were con-verted to absolute radioactivity(d.p.m.)by automatic chemiluminescence andquench correction.Samples having radioactivity(d.p.m.)less than or equal to twice background d.p.m.were considered to be below the limit of quantitation, and therefore the reading was considered zero d.p.m.for calculation purposes.SQ109equivalents in biological samples were determined by dividing the sample d.p.m.by the specific activity of[14C]SQ109in d.p.m.per microgram,and expressed in microgram per gram of tissue.[14C]SQ109equivalents were also expressedas a percentage of[14C]SQ109amount in organs or tissues over the administered total[14C]SQ109amount per animal.The radioactivity in rat urine and feces was expressed as a percentage of the administered dose for each time interval andas a cumulative percentage.Microsomal metabolism of SQ109The microsomal assay was similar to that described previously (Jia et al.,2003).Briefly,SQ109(10m M)was incubatedwith mouse,rat,dog and human liver microsomes,respectively, in an NADPH-generating system containing1.3m M NADP, 3.3m M glucose-6-phosphate,0.4U/ml glucose-6-phosphate dehydrogenase and 3.3m M MgCl2in100m M potassium phosphate buffer(pH7.4).Reaction mixtures were prepared in duplicate and were preincubated for5min at371C.The reactions were then initiated by the addition of microsomes (30m l of a20mg mlÀ1solution in250m M sucrose,yielding a final protein concentration of0.5mg mlÀ1).The final volume of each reaction mixture was1.2ml.Negative control reactions were preparedby incubating mixtures that exclud edeither microsomes or SQ109from the mixture.For negative control incubation where microsomes were excluded,they were added back to the reaction mixture after quenching with acetonitrile. Samples were removedat0,10,20,40or80min andvortex-mixedwith coldacetonitrile to stop the reaction.After centrifugation,a portion of each resulting supernatant was analyzedby mass spectrometry for unchangedSQ109.Metabolism of SQ109by cDNA-expressed recombinant human CYPsSQ109metabolism was also evaluatedin microsomes prepared from insect cells transfectedwith cDNAs encod ing for human CYP1A2,CYP2A6,CYP3A4,CYP2B6,CYP2C8,CYP2C9, CYP2C19or CYP2D6.The recombinant enzymes and microsomes from untransfectedinsect cells were usedin parallel as a control.SQ109(10m M)was preincubatedin duplicate with the above-mentioned NADPH-generating system for5min at371C.The reactions were then initiated by the addition of the individual CYPs(final100pmol CYP mlÀ1)or corresponding untransfected cells.Samples were mixedby inversion,removedat0and30min andmixedwith ice-coldacetonitrile to stop the reactions.After centrifugation (14,000Âg for20min at41C),each extract was analyzedby using the mass spectrometry to monitor metabolite formation or SQ109depletion.Electrospray ionization(ESI)full mass scans were performedto obtain the ion chromatograms of the expected metabolites according to predicted mass gains and losses as comparedwith the molecular mass of SQ109.The ESI as a gentle ionization technique is preferredin metabolite analysis,since ESI usually does not dissociate compounds extensively.The metabolite profiling was basedon the detection of protonated,deprotonated or adduct ions,but not on the fragment ions(Kostiainen et al.,2003).Samples were assayedin both the negative andpositive ion to ensure detection of all potential metabolite(s),and define the structure(s).Metabolite quantitation was basedon percentages of peak areas of each metabolite as a function of incubation time comparedto the total area of all chromatographic peaks. Chemical inhibition studiesThe following inhibitors,at the concentrations shown,were incubatedwith the correspond ing CYP isoforms.These concentrations were basedon literature information(Parkin-son,1996;Tucker et al.,2001;Bjornsson et al.,2003): furafylline(CYP1A2;0.1,1and10m M),quinidine(CYP2D6;0.5,1and10m M),ticlopidine(CYP2C19;5,20and100m M) (Donahue et al.,1997;Tateishi et al.,1999;Ha-Duong et al., 2001)andtroleand omycin(CYP3A;0.5,1and10m M).All inhibitors were dissolved in methanol prior to addition to the incubation mixtures.Reaction mixtures containing human cDNA expressedCYP2D6or CYP2C19(100pmol P450mlÀ1 reaction mixture),the NADPH-generating system,selective CYP inhibitors and100m M potassium phosphate buffer(pH 7.4)were preincubatedfor15min at371C.Each reaction was then started by the addition of SQ109(10m M)with subsequent mixing of each sample by inversion.The samples were immediately removed and mixed with cold acetonitrile to stop reaction at0and30min of incubation.SQ109andits metabolites were identified by the LC/MS/MS method.Peak areas formedwere usedfor quantitative analyses.Control incubation mixtures included mixtures without inhibitors,and mixtures with untransfectedinsect cell microsomes usedas478L.Jia et al Interspecies pharmacokinetics of SQ109 British Journal of Pharmacology vol147(5)microsomal control,andmixtures that containedmethanol insteadof inhibitor(methanol control).Quantitative analyses were performedby comparing the peak areas of the inhibition reactions to their respective methanol controls.The total organic solvent content of the in vitro reaction mixtures was less than2%.Materials[14C]SQ109was preparedin ethanol(1mCi mlÀ1)with specific activity andrad iochemical purity(HPLC analysis)of 172m Ci mgÀ1(57mCi mmolÀ1)and99.6%,respectively.Tissue solubilizer Soluene350andTri-Carb2100TR liquidscintilla-tion analyzer were purchasedfrom Perkin-Elmer Life and Analytical Sciences(Boston,MA,U.S.A.).Scintillation cocktail(Safety SolveTM complete counting cocktail)was purchasedfrom Research Prod ucts nternational Co.(Mount Prospect,IL,U.S.A.).All liver microsomes,human CYP isoforms andspecific CYP isoform inhibitors were purchased from BD Gentest(Woburn,MA,U.S.A.).Organic solvents usedin chromatographic separation of SQ109were purchased from EM Science(Gibbstown,NJ,U.S.A.).Statistical analysisData are expressedas the mean7s.d.Statistical analysis was performedwith Stud ent’s t-test for pairedobservation(two-tailed).A probability of0.05or less was considered significant.ResultsPharmacokinetics of SQ109in rats and dogsSQ109plasma concentration–time courses after single oral and i.v.administration to rats and dogs are illustrated in Figures1 and2,respectively.Pharmacokinetic parameters calculated from noncompartmental analysis of SQ109concentrations in rat andd og plasma are presentedin Tables1and2, respectively.nterspecies pharmacokinetics are summarizedin Table3.The major pharmacokinetic parameters such as t1/2, V ss,clearance rate(CL)andoral bioavailability were comparedin Table3among mice(Jia et al.,2005b)rats and dogs at the same dose based on equivalent body surface area (9mg mÀ2).The terminal t1/2of SQ109in dogs(12–29h; Table2)was longer than in rats(7–8h;Table1),as reflected by the significantly larger volume of distribution of SQ109 in dogs,while the CL in dogs was higher than that in rats in comparison on body surface area dose.The i.v.C max andAUC in dogs increased in proportion to the increase in doses, whereas the oral C max andAUC were less proportional to the increase in doses probably because of the low oral bioavail-ability of SQ109in dogs(2.4–5%;Table2).The oral bioavailability of SQ109in rats was determined to be12%. Comparedto the pharmacokinetic profiles of rats andd ogs, male CD2F1mice given the same dose of SQ109scaled by body surface area(9mg mÀ2,i.v.;75mg mÀ2,p.o.)showeda pharmacokinetic profile(Jia et al.,2005b)similar to rats,but different from dogs in terms of t1/2,CL and V ss,probably Table1Pharmacokinetic parameters of SQ109inrats(n¼8)aRoute i.v.p.o.Dose(mg kgÀ1) 1.513(mg mÀ2)978C max(ng mlÀ1)F644T max(h)F0.5t1/2(h)7.48.2AUC0–N(ng hÀ1mlÀ1)953992CL(ml kgÀ1hÀ1)1575FV ss(ml kgÀ1)9964FBioavailability(%)F12a Noncompartmental analysis.L.Jia et al Interspecies pharmacokinetics of SQ109479British Journal of Pharmacology vol147(5)because rodents share the same allometric exponent that is different from that of dogs.Although no acute toxicity and pathological effects were identified,emesis was observed in dogs 10min after oral administration of the high dose of SQ109(750mg m À2);the emesis was dose related,and most likely a consequence of gastric irritation.[14C]SQ109tissue distribution and elimination in ratsFigure 3shows [14C]SQ109levels in various tissues of rats at 0.5,5,10and 24h after oral administration of the radioactive compound(13mg kg À1).In general,excluding the concentra-tions of [14C]SQ109in gastrointestinal tract,the highest concentrations of radioactivity were found in the liver,and the lowest in the fat.At each time point,[14C]SQ109concentrations in the lung,spleen andkid ney were similar to each other,andrankedas the tissues containing the second highest concentrations of [14C]SQ109.At 0.5h after oral administration,[14C]SQ109concentrations in the brain and whole bloodwere the same (143ng g À1).At 5,10and24h time points,[14C]SQ109concentrations in the brain were 257,187and313ng g À1,respectively,which were higher than those inTable 2Noncompartmental analysis of pharmacokinetic parameters of SQ109in beagle dogs (mean 7s.d.,n ¼4)Routes i.v.i.v.p.o.p.o.Dose(mg kg À1)0.45 4.5 3.7515(mg m À2)99075300C max (ng ml À1)2717109276271180**11.771.737.176.5**T max (h)F F0.5970.160.5170.09t 1/2(h)29.378.112.473.01**19.674.811.671.5*AUC 0–N (ng h À1ml À1)22373119427315**86.5716.0158734**CL (ml kg À1h À1)2138729524717319F F V ss (ml kg À1)75,200719,10029,20076940*F F Bioavailability (%)FF5.072.42.470.7*P o 0.05,**P o 0.01,compared with the values obtained from lower doses of the same administration route.Table 3Comparison of major pharmacokinetic parameters of SQ109administered i.v.to mice,rats and dogs at the same dose (mg m À2)aSpecies Dose (mg m À2)t 1/2(h)CL (ml m À2h À1)V ss (ml m À2)Oral bioavailability (%)bMouse c 9 5.311,36435,400 3.8Rat 97.4945059,70012Dog929.342,7601,504,0005aThe conversion factors usedfor changing a d ose expressedin terms of mg kg À1to an equivalent surface area dose mg m À1are 3(mouse),6(rat)and 20(dog),respectively,referring to the FDA Guidance /cber/gdlns/dose.pdf.bNote,the oral bioavailability was determined based on oral administration of 75mg m À2of SQ109to the animals.cThe mouse data were obtained from our previous studies (Jia et al .,2005b).480L.Jia et al Interspecies pharmacokinetics of SQ109British Journal of Pharmacology vol 147(5)whole bloodat the same time points(103,82and43ng mlÀ1), suggesting that the compoundcrosses the blood–brain barrier. Tissue-to-bloodlevel ratios were generally greater than1, indicating that the compound has the capability to move across blood vascular wall,distribute and reside in various tissues.The total equivalent concentrations of[14C]SQ109 in the stomach,small intestine andlarge intestine at0.5h after the oral administration were331771,312767and 3.471.9m g gÀ1,respectively.At24h,the concentrations declined to2.173.3,31712and2797127m g gÀ1,respectively, kinetically reflecting the gastrointestinal transit time and absorption time of[14C]SQ109.By24h after oral administration,[14C]SQ109was eliminated mainly via the feces,which accountedfor22.2%of the total dose,while urinary excretion accounted for only5.6%of the total dose(Table4).The excretion rate(m g hÀ1)of[14C]SQ109 via urine was faster than that via feces during the first10h period.Thereafter,[14C]SQ109excretion rate via feces became predominating factor.SQ109plasma protein bindingThe results of the protein binding determinations for mouse, rat,dog and human plasma are presented in Table5.In vitro metabolism of SQ109in liver microsomesThe mass spectrometric analyses of SQ109from the in vitro metabolism samples suggest that the parent compoundSQ109 is rapidly metabolized when incubated with mouse,rat,dog or human liver microsomes(Figure4).After incubation at371C for10min,the remaining SQ109accountedfor22.8,48.4,50.8 and58.3%of the total SQ109initially added to rat,mouse,dog and human liver microsomal reaction mixtures,respec-tively.The fastest rate of metabolism of SQ109occurredin rat liver microsomes,where essentially all of the added SQ109was metabolizedwithin20min.The slowest rate of metabolism occurred in human liver microsomes,where8.1%of the added SQ109remainedafter40min incubation at371C.In contrast, the percentage of SQ109remaining in the negative control sample after80-min incubation was96.5,100.0,116.5and 111.5for human,rat,mouse andd og liver microsomes, respectively,as comparedto the0min sample.The control result suggests involvement of liver microsomes in SQ109 metabolism.Liver microsomes convertedSQ109(m/z331.5)to four predominant metabolites with mass to charge ratios(m/z)at 195,347,361and363.Proposedmetabolite id entification using mass spectrometry suggests that m/z361namedM1 symbolize an N-nitrosylation product of SQ109.The m/z347 designated as M2represents two metabolites(M2-1and M2-2) with a single oxygen added to SQ109at different locations,for example,the side chain and the adamantine ring.The m/z195 represents a single metabolite obtained via an N-dealkylation reaction of an unstable intermediate and is designated M3.The m/z363(namedas M4)is consistent in mass with two d egrees of oxidation,that is,ring oxidation combined with N-hydroxylation(M4-1)or with epoxidation(M4-2)(Figure5). Metabolism by cDNA recombinant human CYPsFor the30-min reaction mixtures containing CYP2A6, CYP2C8or CYP2C9,no significant metabolite peaks were observed at the monitored masses.In addition,only negligible amounts of SQ109metabolite at m/z347were foundin incubations using individual recombinant CYP1A2,CYP3A4 or CYP2B6.Extensive metabolism of SQ109was observedin microsomes from insect cell lines transfectedwith cDNA from human CYP2D6andCYP2C19.CYP2C19showedthe capacity to catalyze metabolism of SQ109to produce metabolites of M1, M2,M3andM4,while CYP2D6primarily catalyzedSQ109to form M1andM4.Of great interest was the possible formation of N-(2-adamantyl)ethylene-1,2-diamine(M3,m/z195)cata-lyzedby CYP2C19.M3might contain the ad amantane ring after cleavage of the N–C bondof SQ109(Figure5).Basedon the degradation rate of SQ109estimated by chromatographic peak areas over time,CYP2D6was foundto play the majorTable4Cumulative excretion(%of dose)and excretion rate of[14C]SQ109following a single oral dose of[14C]SQ109(13mg kgÀ1)to ratsPeriod afterdosing(h)Excretion(%of dose)Excretion rate(m g hÀ1)Urine Faeces Urine Faeces0–5 1.1570.340.0270.048.4472.520.1670.30 5–10 1.4370.260.0470.0410.4671.920.3070.36 10–24 2.3570.3612.7173.08 6.1570.9433.2978.07 24–48 1.1770.167.8370.49 1.7970.2511.9670.75 Total(0–48h)5.6670.8722.273.33F FExcretion values are the mean7s.d.(n¼3).Table5Binding of[14C]SQ109at different concen-trations to plasma proteinSQ109(m g mlÀ1)%SQ109bound to plasma protein fromMouse Rat Dog Human0.1 6.2,7.88.4,10.310,11.414.3,16.1 0.5 5.8,8.48.1,9.19.5,11.716.3,18.5 2.58.4,8.58.4,11.810.3,12.117.8,23.8Data were obtainedfrom two tests for eachspecies.L.Jia et al Interspecies pharmacokinetics of SQ109481British Journal of Pharmacology vol147(5)。

相关文档
最新文档