概率自测题
概率论与数理统计 自测题2
5
9.设某地区成年居民中肥胖者占 10%,不胖不瘦者占 82%,瘦者占 8%,又知肥胖者患 高血压的概率为 20%,不胖不瘦者患高血压病的概率为 10%,瘦者患高血压病的概率 为 5%。(1)若在该地区任选一人,则此人患高血压病的概率是多大?(2)若在该 地区任选一人,发现此人患高血压病,则他属于肥胖者的概率有多大 ?
(B) P(A ∪ B ) = 1
【】 【】 【】
(C) P( AB) = P( A)P(B)
(D) P(A) + P(B) = 1
8.已知 0<P(B)<1,P[(A1∪A2)|B]=P(A1|B)+P(A2|B),则下列选项成立的是 【 】 ( A) P[( A1 ∪ A2 ) | B] = P( A1 | B) + P( A2 | B); (B) P(A1B∪A2B)=P(A1B)+P(A2B);
(2)A 与 B 都发生,而 C 不发生; (3)A,B,C 中至少有一个发生; (4)A,B,C 中至多有一个发生; (5)A,B,C 都发生; (6)A,B,C 都不发生; (7)A,B,C 中至少有两个发生; (8)A,B,C 中至多有两个发生。
2. 已知 P( A) = 1 , p(B | A) = 1 , P( A | B) = 1 ,求P( A ∪ B) .
(D) P(A-B)=P(A)。
3. 筐中有 5 只黄色的小鸡和 4 只黑色的小鸡,从中任意取出 2 只,则取出的小鸡颜色
大学概率统计自测题
事件与概率自测题一. 判断题(判断下列各题是否正确,正确的在括号内划√,错误的划×;每小题2分,共20分)1、设B A ,为对立事件,则A B φ=. ( )2、概率为零的事件是不可能事件. ( )3、设事件B A ,相互独立,且0)()(≠B P A P 则)(AB P 一定大于零. ( )4、设样本空间{}4,3,2,1=Ω,事件{}3,2,1=A ,则75.0)(=A P . ( )7、设A,B,C 为三事件,若满足三事件两两独立,则三事件相互独立. ( )8、若P(AB)=0,则A 与B 互不相容. ( ) 9、设A,B,C 为三事件,若满足三事件相互独立,则三事件两两独立. ( )10、如果事件B A ,相互独立,则)()(A P AB P ≠. ( )二.单项选择题(在每小题的备选答案中选出一个正确答案,并将正确答案的代码填在题干上的括号内;每小题2分,共20分)1、设事件A 和B 的概率分别为12(),()23P A P B == 则()P AB 可能为( ) A . 0 B . 1 C .0.6 D .1/62、从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为( )A . 12B . 225C . 425D .以上都不对 3、在随机事件C B A ,,中,A 和B 两事件至少有一个发生而C 事件不发生 的随机事件可表示为( )A .CBC AB .C AB C .BC A C B A C ABD .C B A4、从标号为1,2,…,100的100个灯泡中任取一个,则取得标号为奇数的灯泡的概率为( )A .10150B .10151C .10050D .10051 5、1)()(>+B P A P ,则事件A 与B 必定( )A .独立B .不独立C .相容D .不相容7、设A 和B 为任意两个事件,且A B ⊂,则必有( ).(A ))()(AB P A P < (B ))()(AB P A P ≥(C ))()(AB P A P > (D ))()(AB P A P =8、对于任意概率不为零的事件A 和B ,下列命题肯定正确的是( ). (A )如果A 和B 互不相容,则A 与B 也互不相容;(B ))如果A 和B 相容,则A 与B 也相容;(C )如果A 和B 互不相容,则A 和B 相互独立;(D )如果A 和B 相互独立,则A 与B 也相互独立9、设随机事件,A B 满足()0.2P AB =,()0.6P A =,则=)(AB P ( ) A .0.12 B .0.4 C .0.6 D .0.810、设每次试验成功的概率为10,<<p p ,则在3次独立重复试验中至少成 功一次的概率为( )A .3)1(1p --B .2)1(p p - C .213)1(p p C - D .32p p p ++三.填空题(每空2分,共20分)1、设事件A 与B 相互独立,且()0.4P A =,()0.6P A B =,则()P B = .2、已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=)(B A P .3、设事件A 与B 相互独立,已知5.0)(=A P ,8.0)(=B A P ,则)(B A P =4、设有10件产品,其中有3件次品,从中任意抽取5件,问其中恰有2件 次品的概率是5、设事件A 与B 相互独立,已知5.0)(=A P ,8.0)(=B A P ,则: )(B A P =6、设有10件产品,其中有4件次品,从中任意抽取6件,问其中恰有2件次品的概率是7、已知()0.7,()0.3,()P A P A B P AB =-==则 .8、设每次试验中事件A 出现的概率为p ,在三次独立重复试验中,A 至少 出现一次的概率为1927,则p = . 9、设事件A 、B 及A B 的概率分别为0.2,0.3,0.4,则()P A B = .10、对同一目标接连进行3次独立重复射击,已知至少命中目标一 次的概率为78,则每次命中目标的概率等于 .一维随机变量自测题一. 判断题(判断下列各题是否正确,正确的在括号内划√,错误的划×;每小题2分,共20分)1、连续型随机变量的分布函数一定是连续函数. ( )2、设随机变量X 的概率密度为)(x f ,则一定满足1)(0≤≤x f . ( )3、设()F x 是随机变量X 的分布函数.若()()F a F b <,则a b <. ( )4、若随机变量),(~p m B X ,则概率)1(=X P 与自然数m 无关. ( )5、设~(1,4)X N ,则X 的概率密度为8)1(2221--x e π. ( )6、分布函数()F x 与密度函数之间满足()()F x f x '=. ( )7、服从二项分布的随机变量可以写成若干个服从0-1分布的随机变量的和. ( )8、设X 为随机变量,()()F x x -∞<<+∞为其分布函数,则()F x 在其定义域内一定为连续函数. ( )9、设()()f x x -∞<<+∞为随机变量X 的概率密度函数,则() 1.f x dx +∞-∞=⎰ ( )10、设X 为随机变量,()()F x x -∞<<+∞为其分布函数,则0() 1.F x ≤≤ ( )二.单项选择题(在每小题的备选答案中选出一个正确答案,并将正确答案的代码填在题干上的括号内;每小题2分,共14分)1、设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >=( ) A .2[1(2)]-Φ B .2(2)1Φ-C .2(2)-ΦD .12(2)-Φ2、设2~()X N μσ,,则随着σ的增大,概率}{σμ<-X P ( ). )(A 保持不变 )(B 单调减少 )(C 单调增加 )(D 增减不定3、设)2,1)((=i x F i 为i X 的分布函数。
概率单元测试题及答案大全
概率单元测试题及答案大全一、选择题1. 一个袋子里有3个红球和2个蓝球,随机取出一个球,下列哪个事件的概率最大?A. 取出红球B. 取出蓝球C. 取出白球D. 取出黑球答案:A2. 投掷一枚公正的硬币,出现正面的概率是多少?A. 0.2B. 0.5C. 0.8D. 1答案:B3. 如果事件A和事件B是互斥的,且P(A)=0.3,P(B)=0.4,那么P(A∪B)是多少?A. 0.1B. 0.3C. 0.7D. 无法确定答案:C二、填空题4. 一个骰子有6个面,每个面出现的概率是________。
答案:1/65. 如果一个事件的概率为0,那么这个事件是________。
答案:不可能事件6. 一个事件的概率为1,表示这个事件是________。
答案:必然事件三、计算题7. 一个袋子里有5个白球和5个黑球,随机取出2个球,求取出的2个球都是白球的概率。
答案:首先计算取出第一个白球的概率为5/10,然后计算在取出第一个白球后,再取出第二个白球的概率为4/9。
所以,两个都是白球的概率为(5/10) * (4/9) = 2/9。
8. 一个班级有30个学生,其中15个男生和15个女生。
随机选择3个学生,求至少有1个女生的概率。
答案:首先计算没有女生的概率,即选择3个男生的概率为(15/30) * (14/29) * (13/28)。
然后用1减去这个概率,得到至少有1个女生的概率为1 - [(15/30) * (14/29) * (13/28)]。
四、简答题9. 什么是条件概率?请给出一个例子。
答案:条件概率是指在某个事件已经发生的条件下,另一个事件发生的概率。
例如,如果我们知道一个班级中有50%的学生是左撇子,那么在随机选择一个学生是左撇子的条件下,这个学生是数学专业的学生的概率。
10. 请解释什么是独立事件,并给出一个例子。
答案:独立事件是指一个事件的发生不影响另一个事件发生的概率。
例如,投掷一枚公正的硬币两次,第一次的结果不会影响第二次的结果。
《概率》数学测试题及答案
《概率》数学测试题及答案《概率》数学测试题及答案1.从装有2个红球和2个白球的口袋中任取2个球,那么互斥而不对立的两个大事是()A.至少有一个白球和全是白球B.至少有一个白球和至少有一个红球C.恰有一个白球和恰有2个白球D.至少有一个白球和全是红球2.从甲,乙,丙三人中任选两名代表,甲被选中的的概率是()A.B.C.D.13.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是偶数的概率是()A.B.C.D.4.在两个袋内,分别写着装有0,1,2,3,4,5六个数字的6张卡片,今从每个袋中各任取一张卡片,则两数之和等于5的概率为()A.B.C.D.5.袋中装有6个白球,5只黄球,4个红球,从中任取1球,抽到的不是白球的概率为()A.B.C.D.非以上答案6.以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是()A.B.C.D.7.甲、乙两人进行围棋竞赛,竞赛实行五局三胜制,无论哪一方先胜三局则竞赛结束,假定甲每局竞赛获胜的概率均为,则甲以3∶1的比分获胜的概率为()A.B.C.D.8.袋中有5个球,3个新球,2个旧球,每次取一个,无放回抽取2次,则第2次抽到新球的概率是()A.B.C.D.9.某校高三年级进行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采纳抽签的方式确定他们的演讲挨次,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为()A.B.C.D.10.袋里装有大小相同的黑、白两色的手套,黑色手套15只,白色手套10只.现从中随机地取出两只手套,假如两只是同色手套则甲获胜,两只手套颜色不同则乙获胜. 试问:甲、乙获胜的机会是()A.一样多B.甲多C.乙多D.不确定的11.在5件不同的产品中有2件不合格的产品,现再另外取n件不同的合格品,并在这n+5件产品中随机地抽取4件,要求2件不合格产品都不被抽到的概率大于0.6,则n的最小值是.12.甲用一枚硬币掷2次,登记国徽面(记为正面)朝上的次数为n. ,请填写下表:正面对上次数n21概率P(n)13.在集合内任取1个元素,能使代数式的概率是.14.20名运动员中有两名种子选手,现将运动员平均分为两组,种子选手分在同一组的概率是.15.在大小相同的6个球中,4个红球,若从中任意选取2个,则所选的2个球至少有一个红球的概率是.16.从1,2,3,…,9这9个数字中任取2个数字:(1)2个数字都是奇数的概率为;(2)2个数字之和为偶数的概率为.17.有红,黄,白三种颜色,并各标有字母A,B,C,D,E的卡片15张,今随机一次取出4张,求4张卡片标号不同,颜色齐全的概率.18.从5双不同的鞋中任意取出4只,求下列大事的概率:(1)所取的`4只鞋中恰好有2只是成双的;(2)所取的4只鞋中至少有2只是成双的.19.在10枝铅笔中,有8枝正品和2枝次品,从中不放回地任取2枝,至少取到1枝次品的概率是多少?20.10根签中有3根彩签,若甲先抽一签,然后由乙再抽一签,求下列大事的概率:(1)甲中彩;(2)甲、乙都中彩;(3)乙中彩21.设一元二次方程,依据下列条件分别求解(1)若A=1,B,C是一枚骰子先后掷两次消失的点数,求方程有实数根的概率;(2)若B=-A,C=A-3,且方程有实数根,求方程至少有一个非负实数根的概率.参考答案:1.A;2.C;3.A;4.B;5.C;6.D;7.A;8.D;9.B; 10.A; 11. 14; 12. ;13. ; 14. ; 15. ; 16. ;;17. 解:基本领件总数为,而符合题意的取法数,;18. 解:基本领件总数是=210(1)恰有两只成双的取法是=120∶所取的4只鞋中恰好有2只是成双的概率为(2)大事“4只鞋中至少有2只是成双”包含的大事是“恰有2只成双”和“4只恰成两双”,恰有两只成双的取法是=120,四只恰成两双的取法是=10∶所取的4只鞋中至少有2只是成双的概率为19. (直接法):至少取到1枝次品包括:A=“第一次取到次品,其次次取到正品”;B=“第一次取到正品,其次次取到次品”;C=“第一、二次均取到次品”三种互斥大事,所以所求大事的概率为P(A)+P(B)+P(C)==.20. 解:设A={甲中彩} B={乙中彩} C={甲、乙都中彩} 则C=AB(1)P(A)=;(2)P(C)=P(AB)=(2)21. 解.(1)当A=1时变为方程有实数解得明显若时; 1种若时; 2种若时; 4种若时; 6种若时; 6种故有19种,方程有实数根的概率是.B=-A,C=A-3,且方程有实数根,得,得而方程有两个正数根的条件是:即,故方程有两个正数根的概率是而方程至少有一个非负实数根的对立大事是方程有两个正数根故所求的概率为.。
初中概率计算题
1、一个盒子里有5个红球和3个蓝球,如果随机摸取一个球,摸到哪种颜色球的可能性大?A. 红球B. 蓝球C. 一样大D. 无法确定(答案:A)2、小明有3件不同的上衣和2条不同的裤子,他随机选择一件上衣和一条裤子搭配,共有多少种不同的搭配方式?A. 4种B. 5种C. 6种D. 7种(答案:C)3、学校举行运动会,小亮参加的是百米赛跑。
在起跑线上,小亮和另外7名选手一字排开,裁判随机安排跑道,小亮被安排在第一个跑道的概率是多少?A. 1/6B. 1/7C. 1/8D. 1/9(答案:C)4、一副扑克牌去掉大小王共52张,从中任意抽取一张,抽到黑桃的可能性是?A. 1/13B. 1/4C. 1/52D. 1/12(答案:B)5、一个骰子有六个面,分别标有1到6的数字。
投掷一次骰子,出现偶数的概率是多少?A. 1/6B. 1/3C. 1/2D. 2/3(答案:C)6、小华的生日在6月份,已知6月份有30天,随机猜测小华生日的日期,猜中的概率是多少?A. 1/29B. 1/30C. 1/31D. 1/32(答案:B)7、一个班级有20名学生,其中10名是男生,10名是女生。
老师随机点名回答问题,点到男生的概率是多少?A. 1/10B. 1/19C. 1/2D. 11/20(答案:C)8、一个转盘上有红、黄、蓝三种颜色,每种颜色各占转盘的三分之一。
转动转盘一次,指针停在红色区域的概率是多少?A. 1/4B. 1/3C. 1/2D. 2/3(答案:B)。
概率论与数理统计自测题1
。
5
44
43 1
13 4
14
A. ( 5 )
B. ( ) ⋅ 55
C. ( ) ⋅ 55
D. ( ) 5
2.设随机变量 X 服从指数分布,且 DX = 0.25 则 X 的概率密度为
。
-1-
−2 x
(A)
⎧2e , x>0 ⎨
⎩0 , x≥0
⎧ −1 x
(B)
⎪ ⎨
1 2
e
2
,
x>0
⎪
⎩0 , x ≥ 0
(C)
⎧
− 4x
4e
,
x>0
⎨
⎧1
1 −
x
(D)
⎪ e 4 , x>0 ⎨4
⎩0 , x≥0
⎪
⎩0 , x≥0
3.
设随机变量 X
的数学期望
EX
= −2
,方差
DX
=
1
,则
E
(3
2
X
− 2) =
。
(A)12 (B) 13 (C) 14
(D) 15
2
4. 设 E (X ) = µ ,D( X ) = σ ,其中 µ,σ > 0 为常数,则对于任意常数c ,
。
3. 有5个人在一座8层大楼的第一层进入电梯。设他们中的每一个人自第二层开始
在每一层离开是等可能的,则5个人在不同层次离开的概率为
。
1
X−µ
4. 设随机变量 X 服从 N ( µ, ) ,则
∼
。
2
1
2
5. 设连续型随机变量 X 的概率密度
⎧
f ( x)
⎪ cos x =⎨
概率测试题及答案
概率测试题及答案一、选择题1. 一个骰子掷出6点的概率是:A. 1/3B. 1/6C. 1/2D. 1答案:B2. 抛一枚硬币,正面朝上和反面朝上的概率相等,这个概率是:A. 1/2B. 1/3C. 1/4D. 2/3答案:A3. 如果一个事件的发生不影响另一个事件的发生,这两个事件被称为:A. 互斥事件B. 独立事件C. 必然事件D. 不可能事件答案:B二、填空题1. 概率的基本性质是:概率的值介于________和1之间。
答案:02. 如果事件A和事件B是互斥的,那么P(A∪B) = P(A) + P(B) -P(A∩B),其中P(A∩B) = ________。
答案:0三、简答题1. 什么是条件概率?请给出条件概率的公式。
答案:条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率的公式为P(A|B) = P(A∩B) / P(B),其中P(B)≠ 0。
四、计算题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。
答案:抽到红球的概率为P(红球) = 5/(5+3) = 5/8。
2. 有3个独立事件A、B、C,它们各自发生的概率分别为P(A) = 0.3,P(B) = 0.4,P(C) = 0.5。
求事件A和事件B同时发生的概率。
答案:事件A和事件B同时发生的概率为P(A∩B) = P(A) × P(B) = 0.3 × 0.4 = 0.12。
五、论述题1. 论述什么是大数定律,并给出一个实际生活中的例子。
答案:大数定律是概率论中的一个概念,它指出随着试验次数的增加,事件发生的相对频率趋近于其概率。
例如,在抛硬币的实验中,随着抛硬币次数的增加,正面朝上的频率会趋近于1/2,即硬币正面朝上的概率。
概率论与数理统计自测题
, 概率论与数理统计自测题(含答案,先自己做再对照)一、单项选择题1.设A 与B 互为对立事件,且P 〔A 〕>0,P 〔B 〕>0,那么以下各式中错误的选项是......〔 〕 A .0)|(=B A P B .P 〔B |A 〕=0 C .P 〔AB 〕=0D .P 〔A ∪B 〕=12.设A ,B 为两个随机事件,且P 〔AB 〕>0,那么P 〔A|AB 〕=〔 〕 A .P 〔A 〕 B .P 〔AB 〕 C .P 〔A|B 〕 D .13.设随机变量X 在区间[2,4]上服从均匀分布,那么P{2<X<3}=〔 〕 A .P{3.5<X<4.5} B .P{1.5<X<2.5} C .P{2.5<X<3.5} D .P{4.5<X<5.5} 4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 那么常数c 等于〔 〕A .-1B .21-C .21D .1 5.设二维随机变量〔X ,Y 〕的分布律为那么A .0.3 B .0.5 C .0.7 D .0.86.设随机变量X 服从参数为2的指数分布,那么以下各项中正确的选项是〔 〕 A .E 〔X 〕=0.5,D 〔X 〕=0.25 B .E 〔X 〕=2,D 〔X 〕=2 C .E 〔X 〕=0.5,D 〔X 〕=0.5 D .E 〔X 〕=2,D 〔X 〕=47.设随机变量X 服从参数为3的泊松分布,Y~B 〔8,31〕,且X ,Y 相互独立,那么D 〔X-3Y-4〕=〔 〕A .-13B .15C .19D .238.D 〔X 〕=1,D 〔Y 〕=25,ρXY =0.4,那么D 〔X-Y 〕=〔 〕 A .6 B .22 C .30 D .469.在假设检验问题中,犯第一类错误的概率α的意义是〔 〕 A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被承受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被承受的概率10.设总体X 服从[0,2θ]上的均匀分布〔θ>0〕,x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,那么θ的矩估计θˆ=〔 〕A .x 2B .xC .2xD .x 21 1A 2.D 3.C4.D5.A6.A7.C8.B9.C10.B二、填空题11.设事件A 与B 互不相容,P 〔A 〕=0.2,P 〔B 〕=0.3,那么P 〔B A ⋃〕=____________. 12.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,那么这两颗棋子是不同色的概率为____________.13.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,那么飞机至少被击中一炮的概率为____________.14.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,那么第二次取到的是正品的概率为____________. 15.设随机变量X~N 〔1,4〕,标准正态分布函数值Φ〔1〕=0.8413,为使P{X<a}<0.8413,那么常数a<____________.16.抛一枚均匀硬币5次,记正面向上的次数为X ,那么P{X ≥1}=____________. 17.随机变量X 的所有可能取值为0和x ,且P{X=0}=0.3,E 〔X 〕=1,那么x=____________. 18.设随机变量X 的分布律为那么D 〔X 〕=____________.19.设随机变量X 服从参数为3的指数分布,那么D 〔2X+1〕=____________. 20.设二维随机变量〔X ,Y 〕的概率密度为f (x, y)=⎩⎨⎧≤≤≤≤,,0;10,10,1其他y x那么P{X ≤21}=____________. 21.设二维随机变量〔X ,Y 〕的概率密度为 ⎪⎩⎪⎨⎧>>=+-,,0;0,0,),()(其他y x ey x f y x 那么当y>0时,〔X ,Y 〕关于Y 的边缘概率密度f Y (y )= ____________.25.设总体X~N 〔μ,σ2〕,x 1,x 2,x 3为来自X 的样本,那么当常数a=____________时,3212141ˆx ax x ++=μ是未知参数μ的无偏估计. 11. 0.5 12. 351813.0.7 14. 0.9 15. 3 16.323117.71018.1 19.9420.2121. ye - 25. 41三、计算题26.设二维随机变量〔X ,Y 〕的分布律为 试问:X 与Y 是否相互独立?为什么?因为对一切i,j 有}{}P{},P{j i j i Y Y P X X Y Y X X =⋅====所以X ,Y 独立。
概率论与数理统计自测题
概率论与数理统计自测题(第一章)一、选择题(毎小题3分,共15分):1. 在某学校学生中任选一名学生,设事件A 表示“选出的学生是男生”,B 表示“选出的学生是三年级学生”,C 表示“选出的学生是篮球运动员”,则ABC 的含义是( ).(A )选出的学生是三年级男生;(B )选出的学生是三年级男子篮球运动员; (C )选出的学生是男子篮球运动员; (D )选出的学生是三年级篮球运动员;2. 在随机事件C B A ,,中,A 和B 两事件至少有一个发生而C 事件不发生的随机事件可表示为( ).(A )C B C A(B )C AB (C )BC A C B A C AB(D )C B A3.甲乙两人下棋,甲胜的概率为0.6,乙胜的概率为0.4,设A 为甲胜,B 为乙胜,则甲胜乙输的概率为( ).(A )6.06.0⨯ (B )4.06.06.0⨯- (C )4.06.0- (D )0.6 4.下列正确的是( ).(A )若)()(B P A P ≥,则A B ⊆ (B )若B A ⊂,则)()(B P A P ≥(C )若)()(AB P A P =,则B A ⊆ (D )若10次试验中A 发生了2次,则2.0)(=A P 5.设A 、B 互为对立事件,且0)(,0)(>>B P A P ,则下列各式中错误的是( ).(A )0)|(=A B P (B )0)|(=B A P (C )0)(=AB P(D )1)(=B A P二、填空题(毎小题3分, 共15分):1.A 、B 、C 代表三件事,事件“A 、B 、C 至少有二个发生”可表示为 . 2.已知)()(),()()(,161)(B A P B A P B P A P AB P B A P ===,则)(A P = . 3.A 、B 二个事件互不相容,1.0)(,8.0)(==B P A P ,则=-)(B A P . 4.对同一目标进行三次独立地射击,第一、二、三次射击的命中率分别为7.0,5.0,4.0,则在三次射击中恰有一次击中目标的概率为 .5.设A 、B 、C 两两相互独立,满足21)()()(,<==Φ=C P B P A P ABC ,且已知169)(=++C B A P ,则=)(A P . 三、判断题(正确的打“√”,错误的打“⨯”,毎小题2分,共10分):1. 设A 、B 为任意两个互不相容事件,则对任何事件AC C ,和BC 也互不相容. [ ]2.概率为零的事件是不可能事件.[ ]3. 设A 、B 为任意两个事件,则)()()(AB P A P AB A P -=- . [ ]4. 设A 表示事件“男足球运动员”,则对立事件A 表示“女足球运动员” .[ ]5. 设0)(=A P ,且B 为任一事件,则A 与B 互不相容,且相互独立 .[ ] 四、(6分)从1,1,2,3,3,3,4,4,5,6这10个数中随机取6个数,求取到的最大数是4的概率.五、(6分)3人独立地去破译一个密码,他们能破译的概率分别为41,31,51若让他们共同破译的概率是多少?六、(10分)已知一批产品的次品率为4%,今有一种简化的检验方法,检验时正品被误认为是次品的概率为0.02,而次品被误认为是正品的概率为0.05,求通过这种检验认为是正品的一个产品确实是正品的概率.七、(10分)假设有3箱同种型号零件,里面分别装有50件,30件和40件,而一等品分别有20件,12件及24件.现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回),试求先取出的零件是一等品的概率;并计算两次都取出一等品的概率. 八、(10分)设21)(,31)(==B P A P . 1. 若Φ=AB ,求)(A B P ;2. 若B A ⊂,求)(A B P ;3. 若81)(=AB P ,求)(A B P . 九、(10分)一批产品10件,出厂时经两道检验,第一道检验质量,随机取2件进行测试,若合格,则进入第二道检验,否则认为这批产品不合格,不准出厂;第二道检验包装,随机取1件,若合格,则认为包装合格,准予出厂.两道检验中,1件合格品被认为不合格的概率为0.05,一件不合格品被认为合格的概率为0.01,已知这批产品中质量和包装均有2件不合格,求这批产品能出厂的概率.十、(8分)设1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P ,试证事件A 与B 相互独立.概率论与数理统计自测题 (第二章)一、选择题(每小题3分, 共15分):1.设随机变量X 的分布律为),2,1(}{ ===k b k X P k λ,则().(A )10<<λ,且11--=λb (B )10<<λ,且1-=λb (C )10<<λ,且11-=-λb(D )10<<λ,且11-+=λb2.设随机变量X 的密度函数为xx Ae x f 22)(+-=,则( ).(A )πe(B )πe 1 (C )πe 1(D )πe 23.设随机变量X 的概率密度和分布函数分别是)(x f 和)(x F ,且)()(x f x f -=,则对任意实数a ,有=-)(a F ().(A ))(21a F - (B ))(21a F + (C )1)(2-a F (D ))(1a F -4.设相互独立的随机变量Y X ,具有同一分布,且都服从区间[0,1]上的均匀分布,则在区间或区域上服从均匀分布的随机变量是().(A )(Y X ,)(B )Y X +(C )Y X -(D )2X5.设)(1x F 与)(2x F 分别为随机变量1X 与2X 的分布函数,为使)()()(21x bF x aF x F -=是某随机变量的分布函数,在下列给定的各组数值中应取( ).(A )52,53-==b a (B )32,32==b a (C )23,21=-=b a(D )23,21-==b a二、填空题(每小题3分, 共15分): 1.二维随机变量(Y X ,)的联合分布律为:则α与β应满足的条件是 ,当Y X ,相互独立时,α= .2.二维随机变量(Y X ,)的联合密度为:])()[(212122221121),(σμσμσπσ-+--=y x ey x f ,则X的边缘概率密度为 .3.连续型随机变量X 的概率密度为其它10,0,)(2<<⎩⎨⎧=x kx x f ,则常数=k .4.设)02.0,10(~2N X ,已知Φ(2.5)=0.9938,则=<≤}05.1095.9{X P . 5.设Y X ,是相互独立的随机变量,),3(~),,2(~22σσ-N Y N X ,且95.0}7654.8|12{|=≤-+Y X P ,则σ= .三、(12分)随机变量X 的概率密度为⎪⎩⎪⎨⎧>≤=4||,04||,cos )(ππx x x A x f ,试求(1)系数A ;(2)X 的分布函数;(3)X 落在⎪⎭⎫⎝⎛6,0π内的概率. 四、(12分)假设一设备开机后无故障工作的时间X 服从参数为5=θ的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2h 便关机,试求设备每次开机无故障工作的时间Y 的分布函数.五、(10分)随机变量X 的概率密度为⎩⎨⎧≤>=-0,00)(,x x e x f x ;求2X Y =的概率密度.六、(12分)随机变量X 和Y 均服从区间[0,1]上的均匀分布且相互独立.七、(12分)已知随机变量Y X 与的分布律为:且已知1}0{==XY P .(1)求(Y X ,)的联合分布律;(2)Y X 与是否相互独立?为什么?八、(12分)设Y X ,是两个相互独立的随机变量,其概率密度分别为:⎩⎨⎧≤≤=其它,010,1)(x x f x ⎩⎨⎧≤>=-0,00,)(y y e y f y Y求随机变量Y X Z +=的概率密度函数.概率论与数理统计自测题(第三章)一、选择题(毎小题3分, 共6分):1. 对目标进行3次独立射击,每次射击的命中率相同,如果击中次数的方差为0.72,则每次射击的命中率等于( ).(A )0.1 ( B ) 0.2 ( C ) 0.3 ( D ) 0.42.若)()(Y X D Y X D +=-,则( ).(A )X 与Y 独立(B ))()(Y D X D = (C )0)(=+Y X D(D )X 与Y 不相关二、判断题(每小题3分, 共12分): 1.设随机变量X 的概率密度为+∞<<-∞+=x x x f ,)1(1)(2π,则)(X E =0.( ) 2.设),0(~2σN X ,则对任何实数a 均有:),(~22a a N a X ++σ.()3.设),(~2σμN X ,Y 从参数为λ的指数分布,则2222)(σμ+=+Y X E .( ) 4.设)()()(Y E X E XY E =,则X 与Y 独立.( )三、填空题(每空2分, 共22分):1则)(X E = ,)(X D = ,)(Y E = ,)(Y D = ,),cov(Y X = ,=XY ρ .2.设连续型随机变量X 概率密度为⎩⎨⎧≤≤+=其它,010,2)(x ax x f ,且31)(=X E ,则常数=a .3.设随机变量X 的数学期望5)(,.75)(==X D X E ,且05.0}|75{|≤≥-k X P ,则≥k .4.对圆的直径作近似测量,测量近似值X 均匀分布于区间],0[a 内,则圆面积的数学期望是 .5.设随机变量X 与Y 相互独立,且)1,0(~),,2,1(~N Y N X .令32++-=X Y Z ,则=)(Z D .6.设随机变量(Y X ,)在区域}||,10|),{(x y x y x D <<<=内服从均匀分布,则=++)253(Y X E .四、(10分)设随机变量(Y X ,)的概率密度为:⎪⎩⎪⎨⎧≤≤≤≤+=其它,010,20),(31),(y x y x y x f求数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X 及相关系数XY ρ.五、(10分)设有甲、乙两种投资证券,其收益分别为随机变量21,X X ,已知均值分别为21,μμ,风险分别为21,σσ,相关系数为ρ,现有资金总额为C (设为1个单位).怎样组合资金才可使风险最小?六、(10分)设随机变量X 的分布密度为⎩⎨⎧≤≤-=其它,010),1()(x x ax x f ,求)(),(,X D X E a 和})(2|)({|X D X E X P <-.七、(10分)设随机变量X 与Y 相互独立,且均服从密度为⎩⎨⎧≤>=-0)(x x e x f x,的分布,求(1)X +Y 的分布密度;(2)求)(XY E .八、(10分)设随机变量X 服从泊松分布,6)(=X E ,证明:31}93{≥<<X P .九、(10分)X 为连续型随机变量,概率密度满足:当],[b a x ∉时,0)(=x f ,证明:2)2()(,)(a b X D b X E a -≤≤≤.《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。
概率统计自测题(六)
概率统计自测题(六)一、填空题1.电灯泡使用寿命在1000h 以上的概率为0.2,则3个灯泡在使用1000h 后,最多只有1个坏了的概率为2.设随机变量X 服从泊松分布,且}2{}1{===x P X P ,则==}1{X P3.设随机变量X 与都服从正态分布,且Y ),0(2σN 31}0,0{=≥≤Y X P ,则 =<>}0,0{Y X P4.一射手对同一目标独立地进行4次射击,每次射击的命中率相同,如果至少命中一次的概率为,用81/80X 表示该射手命中目标的次数,则数学期望= )(2X E5.随机变量X 的数学期望100)(=X E ,方差10)(=X D ,则由切比雪夫不等式 ≥<<}12080{X P6.设总体,为取自总体的一个样本,)2,(~2µN X n X X X ,,,21L X 为样本均值,要使1.0)(2≤−µX E 成立,则样本容量 ≥n7.设总体,是来自总体),(~2σµN X n X X X ,,,21L X 的一个样本,参数都是未知的,则2,σµµ的矩估计量为 的矩估计量为 2σ8.假设检验中,显著性水平α表示9.随机变量ξ服从指数分布,参数 时,。
72)(2=ξE =λ二、考虑一元二次方程,其中分别是将一骰子接连掷两次先后出现的点数,求该方程有实根的概率和有重根的概率.02=++C Bx x C B ,p q 三、设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别惟3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份.(1) 求先抽到的一份是女生表的概率;(2) 已知后抽到的一份是男生表,求先抽到的一份是女生表的概率.四、设二维随机变量的密度函数为 ),(Y X ⎪⎩⎪⎨⎧≤≤≤≤+=其它,020,20),sin(),(ππy x y x A y x p试求: (1)常数A ;(2);(3)DX EX ,XY Y X ρ ),,cov( 。
概率论第一章自测题
第一章 自测题一、填空题(每小题2分,共计10分)1.概率()P A 是刻划____________________ ___的指标.2.实际推断原理的内容是 .3.设,,A B C 分别代表甲,乙,丙命中目标,则ABC 表示 .4.将红、黄、蓝3个球随机的放入4个盒子中,若每个盒子的容球数不限,则有三个盒子各放一个球的概率是 .5.设,A B 为随机事件,已知().,().().0705, 03P A P B P A B ==-=,则()P AB = ;()P B A -= .二、是非题(每小题2分,共计20分)1.( )从一批产品中随机抽取100件,发现5件次品,则该批产品的次品率为5%.2.( )若事件,A B 为对立事件,则A 与B 互斥,反之不真.3.( )对于事件,A B ,若()0P AB =,则A 与B 互斥.4.( )在古典概型的随机试验中,()0P A =当且仅当A 是不可能事件.5.( )若0()1P B <<且()(|)P A P A B =,则()(|)P A P A B =.6.( )设A 与B 是两个概率不为零的互不相容事件,则()()()P AB P A P B =.7.( )对于事件,,A B C ,若()()()()P ABC P A P B P C =,则()()()P AB P A P B =.8.( )设随机事件A 分别与随机事件B 、C 独立,则A 也与事件B C 独立.9.( )设随机事件,,A B C 相互独立,则A 与B C 相互独立.10.( )设()0P C >且()()()P AB C P A C P B C =,则()()()P AB P A P B =.三、选择题(每小题2分,共计10分)1.某学生参加两门外语考试,设事件i A ={第i 门外语考试通过} (i =1,2),则事件{两门外语考试至少有一门没通过}可以表示为( ). (A) 12A A ; (B )1212A A A A ; (C )12A A ; (D )12A A2.设事件,,A B C 满足关系式ABC A =,则下列表述正确的是( ).(A )当A 发生时,B 或C 至少有一个不发生; (B )当A 发生时,B 和C 必定都不发生;(C )当B 和C 都不发生时,A 必定发生; (D )当B 或C 至少有一个不发生时,A 必定发生.3.设事件,A B 满足()1P A B =,则( ).(A )A B ⊃;(B )B A ⊃;(C )()0P B A =;(D )()()P AB P B =.4.设0()1,0()1P A P B <<<<,且()()1P A B P A B +=,则( ).(A )A 、B 互斥; (B )A 、B 独立; (C )A 、B 不独立; (D )A 与B 互逆.5.设,,A B C 是三个相互独立的事件,且0()1P C <<,则下列四对事件中,不独立的是( ).(A )A B 与C ;(B )AC 与C ;(C )A B -与C ;(D )AB 与C .四、计算1. (10分)设事件,A B 满足()0.6,()0.5,()0.2P A P B P AB ===,求(),()P A B P B A .2. (5分)已知事件,A B 满足()()P AB P AB =,且()P A p =,求()P B .3. (5分)10个运动队平均分成两组预赛,计算最强的两个队被分在同一组内的概率.4. (10分)某医院用某种新药医治流感,对病人进行试验,其中34的病人服此药,14的病人不服此药,五天后有70%的病人痊愈.已知不服药的病人五天后有10%可以自愈.(1)求该药的治愈率;(2)若某病人五天后痊愈,求他是服此药而痊愈的概率.5. (10分)甲袋中有两个白球,四个黑球,乙袋中有四个白球,两个黑球.现在掷一均匀硬币,若得正面就从甲袋中连续摸n 次球(取后放回),若得反面就从乙袋中摸n 次.若已知摸到的n 个球全是白球.求这些球是从甲袋中取出的概率.6. (10分)12个乒乓球中3个旧的,9个新的.第一次比赛时取出三个用完后放回,第二次比赛时又取出三个.求第二次取出的三个中有两个新球的概率.五、(10分)几何概型的样本空间S 与随机事件,A B 如图所示,试证,A B 相互独立.第一章 自测题参考答案一、填空题(每小题2分,共计10分)1.概率()P A A 的指标.2.实际推断原理的内容是 一次试验小概率事件一般不会发生 .3.设,,A B C 分别代表甲,乙,丙命中目标,则ABC 表示 甲、乙、丙至少一人没命中目标 .4.将红、黄、蓝3个球随机的放入4个盒子中,若每个盒子的容球数不限,则有三个盒子各放一个球的概率是3433!4C .5.设,A B 为随机事件,已知().,().().0705, 03P A P B P A B ==-=,则()P AB = 0.4 ;()P B A -= 0.1 .二、是非题(每小题2分,共计20分)1.( ⨯ )从一批产品中随机抽取100件,发现5件次品,则该批产品的次品率为5%.2.( √ )若事件,A B 为对立事件,则A 与B 互斥,反之不真.3.( ⨯ )对于事件,A B ,若()0P AB =,则A 与B 互斥.4.( √ )在古典概型的随机试验中,()0P A =当且仅当A 是不可能事件.5.( √ )若0()1P B <<且()(|)P A P A B =,则()(|)P A P A B =.6.( ⨯ )设A 与B 是两个概率不为零的互不相容事件,则()()()P AB P A P B =.7.( ⨯ )对于事件,,A B C ,若()()()()P ABC P A P B P C =,则()()()P AB P A P B =.8.( ⨯ )设随机事件A 分别与随机事件B 、C 独立,则A 也与事件B C 独立.9.( √ )设随机事件,,A B C 相互独立,则A 与B C 相互独立.10.( ⨯ )设()0P C >且()()()P AB C P A C P B C =,则()()()P AB P A P B =.三、选择题(每小题2分,共计10分)1.某学生参加两门外语考试,设事件i A ={第i 门外语考试通过} (i =1,2),则事件{两门外语考试至少有一门没通过}可以表示为( D ).(A) 12A A ; (B )1212A A A A ; (C )12A A ; (D )12A A2.设事件,,A B C 满足关系式ABC A =,则关系式的意义是( A ).(A )当A 发生时,B 或C 至少有一个不发生; (B )当A 发生时,B 和C 必定都不发生;(C )当B 和C 都不发生时,A 必定发生; (D )当B 或C 至少有一个不发生时,A 必定发生.3.设事件,A B 满足()1P A B =,则( D ).(A )A B ⊃;(B )B A ⊃;(C )()0P B A =;(D )()()P AB P B =.4.设0()1,0()1P A P B <<<<,且()()1P A B P A B +=,则( B ).(A )A 、B 互斥; (B )A 、B 独立; (C )A 、B 不独立; (D )A 与B 互逆.5.设,,A B C 是三个相互独立的事件,且0()1P C <<,则下列四对事件中,不独立的是( B ).(A )A B 与C ;(B )AC 与C ;(C )A B -与C ;(D )AB 与C .四、计算1. (10分)设事件,A B 满足()0.6,()0.5,()0.2P A P B P AB ===,求(),()P A B P B A . 解 ()()()0.3P AB P B P AB =-=,()()()()0.60.50.30.8P A B P A P B P AB =+-=+-= .()()()0.2P AB P A P AB =-=, ()()0.5()P BA P B A P A ==. (另法:通过()()0.2,()0.8,()()()()0.3P AB P A B P A B P AB P A P B P A B =⋃=∴⋃=∴=+-⋃= 也可计算. )2. (5分)已知事件,A B 满足()()P AB P AB =,且()P A p =,求()P B .解 ()()1()P AB P A B P A B ==- 1()()()()P A P B P AB P AB =--+=()1P B p =-.3. (5分)10个运动队平均分成两组预赛,计算最强的两个队被分在同一组内的概率.解 385102C p C =(分成的两组是可区分的, 如A 组和B 组). 4. (10分)某医院用某种新药医治流感,对病人进行试验,其中34的病人服此药,14的病人不服此药,五天后有70%的病人痊愈.已知不服药的病人五天后有10%可以自愈.(1)求该药的治愈率;(2)若某病人五天后痊愈,求他是服此药而痊愈的概率.解 (1)设 A =(服药),B =(痊愈). ()()()()()()()P B P AB P AB P A P B A P A P B A =+=+31()0.10.744P B A =⨯+⨯=, ()0.9P B A =. (2)27()28P A B =. 5. (10分)甲袋中有两个白球,四个黑球,乙袋中有四个白球,两个黑球.现在掷一均匀硬币,若得正面就从甲袋中连续摸n 次球(取后放回),若得反面就从乙袋中摸n 次.若已知摸到的n 个球全是白球.求这些球是从甲袋中取出的概率.解 设A =(硬币掷得正面)=(甲袋中连续摸n 次球),B =(摸到的n 个球全是白球). 11()()()()123()1112()()()()()12()()2323n nn n P A P B A P AB P A B P B P A P B A P A P B A ⨯====++⨯+⨯. 6. (10分)12个乒乓球中3个旧的,9个新的.第一次比赛时取出三个用完后放回,第二次比赛时又取出三个.求第二次取出的三个中有两个新球的概率.解 设i A =(第一次取出i 个新球) (0,1,2,3)i =,B =(第二次取出的三个中有两个新球).3330003212121122132139339843975966333333331212121212121212()()()()()0.455i i i i i i i P B P A B P A B P A P B A C C C C C C C C C C C C C C C C C C C C C C =======⨯+⨯+⨯+⨯=∑∑(本题设i A =(第一次取出i 个旧球) (0,1,2,3)i =也可以.)五、(10分)几何概型的样本空间S 与随机事件,A B 如图所示,试证,A B 相互独立.证明 只要证()()P A P A B =(本题利用独立性的定义式也可证明). ()()()()a b c c P A a b c d c d +⨯==+⨯++,()()()()P AB a c c P A B P B a c d c d⨯===⨯++, 所以,A B 相互独立.。
《概率论与数理统计》单元自测题及答案.doc
第一章随机事件与概率专业__________ 班级__________ 姓名__________ 学号_________一、填空题:1.设A, B 是随机事件,P(A) = 0.7 , P(B) = 0.5 , P(A - B) = 0.3 ,贝ij P(AB)=___________ , P(BA) = ______________ ;2•设A, B 是随机事件,P(A) = 0.4 , P(B) = 0.3, P(AB) = 0.1, M P(AB)=3.在区间(0,1)中随机地取两个数,则两数之和小于1的概率为 ____________ ;4.三台机器相互独立运转,设第一、第二、第三台机器发生故障的概率依次为0. 1, 0.2,0. 3,则这三台机器中至少有一台发生故障的概率为_______________ ;19 5.设在三次独立试验中,事件A出现的概率相等,若已知A至少出现一次的概率等于亍,27则事件A在每次试验屮出现的概率P(A)为_____________ 。
二、选择题:1.以A表示事件“甲种产品畅销,乙种产品滞销”,则对立事件方为( )(A) “甲种产品滞销,乙种产品畅销”;(B) “甲、乙产品均畅销”;(C) “甲种产品滞销或乙种产品畅销”;(D) “甲种产品滞销”。
2.设A, B为两个事件,则下面四个选项中正确的是( )(A) P( A u B) = P( A) + P(B);(B) P(AB) = P(A)P(B);(C) P(B-A) = P(B)-P(A) ;(D) P(AuB) = l-(P(AB)。
3.对于任意两事件A与B,与AuB=B不等价的是( )(A)AuB;(B)BuA;(C) AB =(/>;(D) AB =(/)O4.设P(A) = 0.6 , P(B) = 0.8 , P(B|A) = 0.8,则有( )(A)事件A与3互不相容;(B)事件A与B互逆;(C)事件4与B相互独立;(D) Bu A。
《概率论与数理统计》自测题3
《概率论与数理统计》自测题3一、填空题1. 设随机事件B A , 相互独立,且5.0)(=A P ,6.0)(=B P ,则_______)(=B A P2.据天气预报,某地第一天下雨的概率为0.6 ,第二天下雨的概率为0.3,两天都下雨的概率为0.1,则两天都不下雨的概率为3. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为________________4.设随机变量X 的概率密度为⎩⎨⎧≤>=-0,00,)(x x kxe x f x ,则=k5.设随机变量)2,3(~2N X ,若{}{}P X C P X C >=≤ 则=C6.设随机变量X 服从均值为10,均方差为0.02的正态分布,已知9938.05.2=Φ)(, 则X 落在区间()9.95,10.05内的概率为7.设随机变量X 的密度函数为2221)(x ex f -=π,则=)(2X E8. 设二维随机变量) , (Y X 的联合分布律为则()=X E9.设两个相互独立的随机变量X 和Y 方差分别为6和3,=-)32(Y X D10.设来自正态总体()29.0 , ~μN X 容量为9的简单随机样本,测得样本均值5=x ,则未知参数μ的置信度为0.95的置信区间为___________________________二、选择题1. 设A ,B 为随机事件,则()P A B -等于( )(A ))()(B P A P - (B )()()()P A P B P AB -+ (C )()()P A P AB - (D )()()()P A P B P AB +-2. 从一副扑克牌的13张梅花牌中有放回地取三次,则三张都不同号的概率是( ) (A )121132 (B ) 132169 (C )121169 (D) 131323. 设随机变量~(1,1)X N ,其概率密度函数为)(x f ,则下列结论正确的是( ) (A ){}{}000.5P X P X ≤=≥= (B ) ()(),(,)f x f x x =-∈-∞+∞; (C ){}{}110.5P X P X ≤=≥=; (D ) ()(),(,)F x F x x =-∈-∞+∞4.设连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>+=-00)(22x x bea x F x ,则有 (A )1==b a (B )1 , 0==b a(C )1 , 1=-=b a (D )1 , 1-==b a5.设随机变量X 服从标准正态分布,即~(0,1)X N ,随机变量21Y X =+, 则Y 服从( )(A )(1,4)N (B )(0,1)N (C ) (1,1)N (D )(1,2)N6. 对任意随机变量Y X ,,若()()D X Y D X Y +=-,则( ) (A )X 与Y 相互独立. (B )X 与Y 不相关. (C )X 与Y 一定不独立. (D )以上结论都不对.三、某保险公司把被保险人分为三类:“谨慎的”,“一般的”和“冒失的”。
概率试题及答案
概率试题及答案### 概率试题及答案题目1:一个袋子里有5个红球和3个蓝球,随机从袋子里取出一个球,然后放回。
再取出一个球。
求两次取出的球都是红球的概率。
解答:首先,我们定义事件A为第一次取出红球,事件B为第二次取出红球。
- 事件A发生的概率P(A)为红球数除以总球数,即P(A) = 5/8。
- 由于取出的球放回,事件B发生的概率与事件A相同,即P(B) =5/8。
我们需要计算的是两次事件都发生的概率,即P(A∩B)。
由于这两个事件是独立的,我们可以使用乘法法则计算:\[ P(A∩B) = P(A) \times P(B) = \frac{5}{8} \times \frac{5}{8} = \frac{25}{64} \]题目2:一个班级有30名学生,其中有15名男生和15名女生。
随机选取5名学生参加一个活动,求至少有2名男生的概率。
解答:我们可以使用组合来解决这个问题。
首先计算总的选取方式,然后计算没有男生或只有1名男生的选取方式。
- 总的选取方式是从30名学生中选取5名,即C(30, 5)。
- 没有男生的方式是从15名女生中选取5名,即C(15, 5)。
- 只有1名男生的方式是从15名男生中选取1名,从15名女生中选取4名,即C(15, 1) * C(15, 4)。
至少有2名男生的概率是1减去没有男生或只有1名男生的概率:\[ P(\text{至少2名男生}) = 1 - \frac{C(15, 5) + C(15, 1)\times C(15, 4)}{C(30, 5)} \]题目3:一个工厂有3条生产线,每条生产线每天生产1000个产品。
每条生产线每天出现次品的概率是0.01。
求至少有一条生产线出现次品的概率。
解答:我们可以使用对立事件的概念来解决这个问题。
首先计算所有生产线都没有次品的概率,然后用1减去这个概率。
- 每条生产线没有次品的概率是1 - 0.01 = 0.99。
- 所有生产线都没有次品的概率是0.99^3。
概率论自测练习题(含答案)
学院 班级 姓名 学号期末自测练习题一一、选择题(本大题4小题,每小题3分,共12分). 1.对于任意事件A 和B ,若()0P AB =,则( ).(A) AB =∅ (B)AB =∅(C) ()()0P A P B =(D)(()0P AB P A -=2.设随机变量()2~,X N μσ,则随着σ的增大,概率()P X μσ-<( ).(A) 单调增加 (B)单调减少 (C) 保持不变(D)增减性不能确定3.对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =,则( ).(A) ()()()D XY D X D Y = (B)()()()D X Y D X D Y +=+ (C) X 和Y 相互独立(D)X 和Y 不相互独立4.随机变量X 的方差存在,并且有不等式()2()39P X E X -≥≤,则一定有( ).(A) ()2D X = (B)()2D X ≠ (C) ()7()39P X E X -<<(D)()7()39P X E X -<≥二、填空题(本大题4小题,每小题3分,共12分).1.设随机变量~(0,1)X N ,2~()Y n χ,且X 与Y 相互独立,则随机变量~T= .2.随机变量X 和Y 的相关系数为0.9,若0.4Z X =-,则Y 和Z 的相关系数YZ ρ= .3.设随机变量X 与Y 相互独立,X 服从12p =的01-分布,Y 服从13p =的01-分布,则方程220t Xt Y ++=中t 有相同实根的概率为 .4.设随机变量X 的密度函数为,10;(),01;0,c x x f x c x x +-<<⎧⎪=-<<⎨⎪⎩其他.则常数c = .三、计算题(本大题8分).两台车床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02,加工出来的零件放在一起,并且已知第一台机床加工的零件数量是第二台机床加工的零件数量的两倍,求(1)任意取出一个零件,这个零件是合格品的概率;(2)如果取出的这个零件是废品,求它是第二台机床加工的概率.设在15只同类型的零件中有2只是次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品只数. (1)求X 的分布律;(2)求()E X ;(3)求()D X .五、计算题(本大题8分).随机变量X 的概率密度为()22,0;1()0,0.X x x f x x π⎧>⎪+=⎨⎪≤⎩ 求随机变量ln Y X =的概率密度.设二维连续型随机变量(,)X Y 的联合密度为sin(),0,0;(,)220,A x y x y f x y ππ⎧+≤≤≤≤⎪=⎨⎪⎩其他.求(1)常数A ;(2)4P X Y π⎛⎫+< ⎪⎝⎭;(3)边缘密度函数()X f x ,()Y f y ;(4)判别随机变量X 与Y 的独立性.设随机变量X 的分布函数为330,;()1,x a F x a x a x <⎧⎪=⎨-≥⎪⎩,求()E X ,()D X ,23E X a ⎛⎫- ⎪⎝⎭,23D X a ⎛⎫- ⎪⎝⎭.八、计算题(本大题10分).将一枚硬币连续投掷三次,X 表示在三次中出现正面的次数,Y 表示三次中出现正面次数与反面次数之差的绝对值. (1)写出X 和Y 的联合分布律;(2)求()P X Y =.已知总体X 的概率密度1e ,0;(;)0,0.xx f x x θθθ-⎧>⎪=⎨⎪≤⎩(参数0θ>),12,,,nX X X 为X 的一容量为n 的样本,求θ的极大似然估计量.十、计算题(本大题8分).某厂生产的一批滚珠的直径()2~,2.6X N μ,现抽样100个,测得样本平均值11.2x =cm ,问这批滚珠的平均直径能否认为是12cm ?(0.05α=,21.96Z α=)学院 班级 姓名 学号期末自测练习题二一、选择题(本大题4小题,每小题3分,共12分).1.设,A B 是两个互不相容的事件,()0P A >,()0P B >,则一定有( ).(A) ()1()P A P B =- (B)(|)0P A B = (C) ()|1P A B =(D)()0P AB =2.若函数()y f x =是随机变量X 的概率密度函数,则一定有( ).(A) ()f x 的定义域为[0,1] (B)()f x 的值域为[0,1] (C) ()0f x ≥(D)()f x 在(,)-∞+∞上连续3.设随机变量X 与Y 相互独立,其概率分布为则下列式子正确的是( ).(A) X Y = (B)()0P X Y ==(C) 1()2P X Y ==(D)()1P X Y ==4.样本1234,,,X X X X 取自正态分布总体X ,()E X μ=为已知,2()D X σ=未知,则下列随机变量中不能作为统计量的是( ).(A) 114ni i X X ==∑(B)142X X μ+-(C)()2211nii XX σ=-∑(D)()22113ni i S X X ==-∑二、填空题(本大题4小题,每小题3分,共12分).1.设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差为 .2.一颗均匀的骰子重复掷10次,设X 表示出现3点的次数,则X 服从的分布为 .3.设随机变量X 服从参数为2的泊松分布,用契比雪夫不等式估计有()|2|4P X -≥ .4.假设总体X 服从正态分布()2,N μσ,12,,,n X X X 是来自总体X 的一个样本,则有~n X . 三、计算题(本大题10分).有两个箱子,第一个箱子有3个白球,2个红球;第二个箱子有4个白球,4个红球. 现从第一个箱子中随机地取1个球放到第二个箱子里,再从第二个箱子中随机地取1个球,求:(1)第二个箱子中取出的球为白球的概率;(2)已知从第二个箱子中取出的是白球,则从第一个箱子中取出的球是白球的概率为多少?四、计算题(本大题8分).设连续型随机变量X 的概率密度函数为e ,0;()0,0.x X x f x x -⎧≥=⎨<⎩求Y =的概率密度函数.五、计算题(本大题12分).设二维随机变量(,)X Y 的联合概率密度为e ,0;(,)0,y a x y f x y -⎧<<=⎨⎩其他.求(1)常数a ;(2)(1)P X Y +≤;(3),X Y 的边缘概率密度函数()X f x ,()Y f y ;(4)判断,X Y 是否相互独立.六、计算题(本大题12分).将一枚硬币掷3次,以X 表示前2次中出现正面的次数,以Y 表示3次中出现正面的次数,求,X Y 的联合分布律,并计算()P X Y .设长方形的高~(0,1)X U ,周长为定值2,求长方形面积A 的数学期望与方差.八、计算题(本大题12分).总体X 分布律为其中θ(01θ<<)为未知参数. 已知取得的样本值为1231,2,1x x x ===,求θ的矩估计值和最大似然估计值.X 1 2 3P2θ 2(1)θθ-2(1)θ-设某种清漆的9个样品,其干燥时间(以小时计)分别为6.0,5.7,5.8,6.5,7.0,6.3,5.6,6.1,5.0. 若干燥时间服从正态分布()2,Nμσ,求μ的置信水平为0.95的置信区间. (0.0251.96Z=,0.025(8) 2.306t=)十、证明题(本大题6分).设ˆθ是参数θ的无偏估计量,且()ˆ0Dθ>. 证明:2ˆθ不是2θ的无偏估计量.学院 班级 姓名 学号期末自测练习题三一、选择题(本大题4小题,每小题3分,共12分).1.设A 表示事件“甲种产品滞销或乙种产品畅销”,则其对立事件A 为( ).(A) 甲种产品畅销或乙种产品滞销 (B) 甲种产品畅销且乙种产品滞销 (C) 甲种产品畅销 (D) 乙种产品滞销2.设,A B 为任意两个事件,则使()()()P A C P A P C -=-成立的事件C 可以是( ).(A) C A = (B)C A B =(C) C A B =-(D)C B A =-3.若随机变量,X Y 满足()()D X Y D X Y +=-,则一定有( ).(A) X 与Y 相互独立(B)X 与Y 不相关(C) ()0D Y =(D)()()0D X D Y =4.设总体~(3,16)X N ,1216,,,X X X 是来自总体X 的一个样本,X 为样本均值,则( ).(A) 3~(0,1)X N - (B)4(3)~(0,1)X N -(C)3~(0,1)4X N -(D)3~(0,1)16X N - 二、填空题(本大题4小题,每小题3分,共12分).1.设()P A a =,()P B b =,()P A B c +=,则()P AB = .2.若离散型随机变量X 的概率分布为3()4nP X n a ⎛⎫== ⎪⎝⎭ (0,1,2,n = ),则常数a = .3.随机变量~(1,16)X N -,则(52)P X -<<= .((0.75)0.7734Φ=,(1)0.8413Φ=)4.若随机变量X 的期望()E X 和方差()D X 都存在,常数0a >,则用切比雪夫不等式估计有()1X E X P a ⎛-⎫>≤ ⎪⎝⎭.三、计算题(本大题10分).设8支枪中有3支未经试射校正,5支已经试射校正. 一射手用校正过的枪射击时,中靶概率为0.8;而用未校正过的枪射击时,中靶概率为0.3. 今从8支枪中任取一支进行射击,求(1)命中靶的概率;(2)若靶已命中,求所用的枪是已校正过的概率.连续型随机变量X 的分布函数0,;()arcsin ,;1,.x a x F x A B a x a a x a <-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩(常数0a >). 求(1)A 和B 取何值时,分布函数连续;(2)随机变量X 的概率密度函数;(3)方程22016a t Xt ++=有实根的概率.五、计算题(本大题10分).随机变量X 的概率密度为22,0;()0,.xx f x ππ⎧<<⎪=⎨⎪⎩其他 求sin Y X =的概率密度.二维随机向量(,)X Y 的联合概率密度为e ,0;(,)0,.y C y x f x y ⎧<<=⎨⎩其他 (1)求常数C ;(2)求(12,11)P X Y -<<-<<;(3)求()X f x ,()Y f y ;(4)判断,X Y 的独立性.设(,)X Y 的联合分布律为(1)求X 的分布律,并计算()E X ,()D X ;(2)求Z XY =的分布律,并计算()E Z .八、计算题(本大题10分).总体X 的概率密度为36(),0;()0,.x x x f x θθθ-⎧<<⎪=⎨⎪⎩其他 12,,,n X X X 是取自X 的简单随机样本. (1)求θ的矩估计量ˆθ;(2)求ˆθ的期望()ˆE θ,方差()ˆD θ;(3)讨论ˆθ的无偏性.九、计算题(本大题8分).129,,,X X X 是来自正态总体()2~,0.9X N μ的简单随机样本,样本均值5x =,求参数μ的置信度为0.95的置信区间.(0.025 1.96Z =,0.025(8) 2.31t =,0.025(9) 2.26t =).学院 班级 姓名 学号期末自测练习题四一、选择题(本大题4小题,每小题3分,共12分).1.当事件A 与B 同时发生时,事件C 必发生,则下列结论正确的是( ).(A) ()()P C P AB = (B)()()P C P A B = (C) ()()()1P C P A P B ≥+-(D)()()()1P C P A P B ≤+-2.设123,,X X X 是来自总体()2,N μσ的一个样本,其中μ为已知,2σ为未知,则下列不是统计量的为( ).(A) 312e X X X +(B)122X X μ+- (C) ()123max ,,X X X(D)()22212321XX X σ++3.设随机变量,X Y 独立同分布,记,U X Y V X Y =-=+,则U 和V ( ).(A) 不独立 (B)独立 (C) 相关系数不为零 (D) 相关系数为零4.设随机变量,X Y 相互独立,它们的分布律分别为则下列式子正确的是( ).(A) X Y = (B)()1P X Y == (C) 5()9P X Y ==(D)()0P X Y ==二、填空题(本大题4小题,每小题3分,共12分).1.设~(1,16)X N -,则(11)P X ->= .(其中(0.75)0.7734,(0.25)0.5987Φ=Φ=)2.设k 在[2,5]-上服从均匀分布,则关于y 的一元二次方程24420y ky k +++=有实根的概率为 .3.在区间(0,1)中随机地取两数,则两数之和小于0.8的概率为 . 4.若随机变量X 的期望()E X ,方差()D X 都存在,常数0b >,则由切比雪夫不等式有()()P X E X b ->≤ . 三、计算题(本大题10分).某厂有甲,乙,丙三台机床生产,各自的次品率分别为4﹪,4﹪,2﹪,又知它们分别生产产品总数的20﹪,30﹪,50﹪,将这些产品混在一起,(1)求从中任取一件产品是正品的概率;(2)若取到的一件为正品,问它是甲机床产品的概率有多大?已知随机变量X 的概率密度为0;e ,()0.0,x x f x x ->⎧=⎨≤⎩ 求随机变量e X Y =的概率密度().Y f y五、计算题(本大题10分).已知随机变量()2~1,3X N ,()2~0,4Y N ,且X 与Y 的相关系数为1.2XY ρ=-设32X YZ =+,求(),()E Z D Z .二维随机向量(,)X Y 的联合概率密度为(1)e ,0,0;(,)0,.x y Cx x y f x y -+⎧>>=⎨⎩其他(1)求常数C ;(2)求边缘概率密度函数()X f x ,()Y f y ;(3)判断,X Y 的独立性;(4)求(01,01)P X Y <<<<.一整数X随机地在2,3,4三个整数中取一个值,另一个整数Y随机地在2~X X Y的联合分布律.中取一值,试求(,)八、计算题(本大题11分).设某种电子元件的寿命T服从参数λ的指数分布.今测得10个元件的失效时间为1050,1100,1080,1200,1300,1250,1340,1060,1150,1150. 求λ的极大似然估计值.九、计算题(本大题8分).设总体X的方差为1,根据来自总体X的容量为100的简单随机样本,测得样本均值5x=,求数学期望的置信度为95%的置信区间.(0.0251.96Z=)学院 班级 姓名 学号期末自测练习题五一、选择题(本大题4小题,每小题3分,共12分).1.设,A B 为两个事件,则下列事件运算关系中正确的是( ).(A) ()()A B A B A = (B)()A B B A -= (C) A B B A -=-(D)A B A B =2.离散型随机变量X 的分布律为()n P X n p ==(1,2,n = ),则常数p =( ).(A) 14 (B)13 (C) 12(D)233.连续型随机变量X 服从指数分布()E λ,密度函数为e ,0;()0,0.x x f x x λλ-⎧≥=⎨<⎩ 则X 的数学期望()E X ,方差()D X 分别为( ).(A) ,λλ (B)2,λλ (C)11,λλ(D)211,λλ4.设总体分布为()2,N μσ,其中μ为已知,2σ为未知,12,,,n X X X 为从这一总体中抽取的容量为n 的简单随机样本,则下列不是统计量的是( ).(A) 211n i i X n =∑(B)2211ni i X σ=∑ (C)21()nii Xμ=-∑(D)1min i i nX ≤≤二、填空题(本大题4小题,每小题3分,共12分).1.已知()P A B a = ,()P B b =,则()P AB = .2.设K 在[2,5]-上服从均匀分布,则方程24420y Ky K +++=无实根的概率为 .3.若~(1,16)X N -,则()4P X <= .((1.25)0.8944Φ=,(0.75)0.7734Φ=)4.若随机变量X 的方差为4,则根据契比雪夫不等式有估计()()4P X E X -≥≤ . 三、计算题(本大题10分).某人下午5:00下班,他所积累的资料表明: 到家时间 5:35~5:395:40~5:445:45~5:495:50~5:54 迟于5:54乘地铁到家的概率0.10 0.25 0.45 0.15 0.05 乘汽车到家的概率0.30 0.35 0.20 0.10 0.05某日他抛一枚硬币决定乘地铁还是乘汽车. (1)求他5:45~5:49之间到家的概率;(2)若他是5:45~5:49之间到家的,求他是乘地铁回家的概率.某种产品共5件,其中有2件次品,3件正品,从中任取3件,设X 表示取出的3件产品中次品的个数,求(1)X 的分布律;(2)X 的分布函数()F x ;(3)期望()E X ;(4)方差()D X .某仪器装有三只独立工作的同型号电子元件,其寿命(单位:小时)都服从同一指数分布,密度函数6001e ,0;()6000,0.xx f x x -⎧>⎪=⎨⎪≤⎩求在仪器使用的最初200小时内,至少有一只电子元件损坏的概率α.六、计算题(本大题10分).已知随机变量X 服从[1,3]上的均匀分布,求2Y X =的概率密度.已知(,)X Y 的联合概率密度为,01,01;(,)0,.Axy x y f x y ≤≤≤≤⎧=⎨⎩其他 求(1)常数A ;(2)(1)P X Y +<;(3)()X f x ,()Y f y ;(4)判断,X Y 的独立性.八、计算题(本大题8分).设总体X 的概率密度为1,01;(;)0,.x x f x θθθ-⎧<<=⎨⎩其它 其中θ为未知参数,且0θ>. 求θ的矩估计.设有来自正态总体()2~,0.9X N μ的容量为9的简单随机样本,测得样本均值5x =,求未知参数μ的置信度为0.95的置信区间.(0.025 1.96Z =)十、证明题(本大题6分).设事件A 与B 相互独立,证明:A 与B 相互独立.期末自测练习题一一、1.D 2.C 3.B 4.D 二、1.()t n 2.0.9 3.124.1三、(1)0.973(2)0.25 四、(1)分布律(2)14()35E X =(3)52()175D X = 五、22e ()(e 1)yY yf y π=+ 六、(1)12A =(2)144P X Y ππ⎛⎫⎫+<=- ⎪⎪⎝⎭⎭(3)1(sin cos ),0;()220,X x x x f x π⎧+≤≤⎪=⎨⎪⎩其他1(sin cos ),0;()220,Y y y y f y π⎧+≤≤⎪=⎨⎪⎩其他(4)X 与Y 不独立 七、()E X 32a =,()D X 234a =,23E X a ⎛⎫- ⎪⎝⎭0=,23D X a ⎛⎫- ⎪⎝⎭213a = 八、(1)(2)1()2P X Y ==九、11ˆn i i x n θ==∑十、不能认为这批滚珠的平均直径为12cm期末自测练习题二一、1.B 2.C 3.C 4.C 二、1.44 2.1~10,6X B ⎛⎫⎪⎝⎭3.18≤4.2(,)N μσ三、(1)2345(2)1523四、22e ,0;()0,0.y Y y y f y y -⎧≥⎪=⎨<⎪⎩ 五、 (1)1a = (2)112(1)12ee P X Y --+≤=-+(3)e ,0;()0,0.x X x f x x -⎧>=⎨≤⎩,1e ,0;()0,0.y Y y f y y -⎧->=⎨≤⎩(4),X Y 不相互独立 六、1()2P X Y <=七、1()6E A =,1()180D A = 八、矩估计值15ˆ(3)26x θ=-=,极大似然估计值5ˆ6θ= 九、(5.558,6.442) 十、略期末自测练习题三一、1.B 2.C 3.B 4.A 二、1.c b -2.143.0.6147 4.2()D X a三、(1)4980(2)4049四、 (1)12A =,1B π=(2);()()0,.a x a f x F x -<<'==⎩其他(3)23五、01;()0,.Y y f y <<=⎩其他六、解 (1)1C =(2)1(12,11)12e P X Y --<<-<<=-(3)e ,0;()0,0.x X x f x x ⎧<=⎨≥⎩,e ,0;()0,0.y Y y y f y y ⎧-<=⎨≥⎩(4),X Y ∴不独立 七、(1)5()3E X =,()D X 29=(2)()3E Z =八、(1)矩估计量ˆ2X θ=(2)ˆ()E θθ=,21ˆ()5D nθθ= (3)ˆ2X θ=是参数θ的无偏估计量 九、(4.412,5.588) 期末自测练习题四 一、1.C2.D 3.D 4.C 二、1.0.82532.473.8254.2()D X b三、(1)0.97(2)0.2四、21,1;()0,1.Y y yf y y ⎧>⎪=⎨⎪≤⎩五、1()3E Z =,()3D Z =六、(1)1C =(2)e ,0;()0,0.x X x f x x -⎧>=⎨≤⎩,21,0;(1)()0,0.Y y y f y y ⎧>⎪+=⎨⎪≤⎩(3),X Y 不独立(4)211(01,01)e e 12P X Y --<<<<=-+七、八、1ˆ1168λ= 九、(4.804,5.196) 期末自测练习题五一、1. A 2. C 3. D 4. B 二、1.a b -2.373.0.66784.14三、(1)0.325(2)913四、(1)(2)0,0;1,01;10()7,12;101, 2.x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩(3)() 1.2E X =(4)()0.36D X =五、11e --六、19;()0,.Y y f y ≤≤=⎩其他七、(1)4A =(2)(1)P X Y +<16=(3)2,01;()0,.X x x f x ≤≤⎧=⎨⎩其他,2,01;()0,.Y y y f y ≤≤⎧=⎨⎩其他 (4),X Y 相互独立八、矩估计为ˆ1x x θ=- 九、(4.412,5.588) 十、略。
概率测试题及答案
概率测试题及答案一、单项选择题(每题2分,共10分)1. 随机变量X服从标准正态分布,P(X>0)的值是多少?A. 0.5B. 0.3C. 0.7D. 0.9答案:A2. 已知随机变量X服从二项分布B(n, p),n=10,p=0.3,求P(X>=3)的值。
A. 0.3B. 0.5C. 0.7D. 0.9答案:B3. 随机变量X和Y独立同分布,且都服从正态分布N(0,1),求P(X+Y>0)的值。
A. 0.5B. 0.3C. 0.7D. 0.9答案:A4. 随机变量X服从泊松分布,参数λ=4,求P(X=2)的值。
A. 0.25B. 0.125C. 0.0625D. 0.5答案:C5. 随机变量X服从几何分布,参数p=0.4,求P(X>=3)的值。
A. 0.16B. 0.24C. 0.36D. 0.48答案:C二、填空题(每题3分,共15分)1. 随机变量X服从正态分布N(μ, σ^2),其中μ=2,σ^2=4,求P(X<1)的值。
答案:0.15872. 随机变量X服从均匀分布U(a, b),其中a=1,b=3,求P(X>2)的值。
答案:0.53. 随机变量X服从指数分布,参数λ=0.5,求P(X>1)的值。
答案:0.60654. 随机变量X服从二项分布B(n, p),其中n=5,p=0.2,求P(X=3)的值。
答案:0.02645. 随机变量X服从超几何分布,总体大小N=100,成功次数M=30,样本大小n=10,求P(X=5)的值。
答案:0.0864三、计算题(每题10分,共20分)1. 随机变量X服从正态分布N(3, 9),求P(1<X<5)的值。
答案:0.68262. 随机变量X服从指数分布,参数λ=0.2,求P(X<3)的值。
答案:0.8187结束语:本测试题及答案旨在帮助学生理解和掌握概率论的基本概念和计算方法,希望同学们通过练习能够提高解题能力。
概率论与数理统计自测试卷及答案
概率论与数理统计自测试卷一一、填空题(每题3分,共15分)1、已知随机变量X 服从参数为2的泊松(Poisson )分布,且随机变量22-=X Z ,则()=Z E ____________.2、设A 、B 是随机事件,()7.0=A P ,()3.0=-B A P ,则()=AB P3、设二维随机变量()Y X ,的分布列为若X 与Y 相互独立,则βα、的值分别为 。
4、设 ()()()4, 1, ,0.6D X D Y R X Y ===,则 ()D X Y -=___ _5、设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()n i i X μσ=-∑服从__________分布.二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】 (A) 11a a b -+-; (B) (1)()(1)a a a b a b -++-; (C) a a b +; (D) 2a ab ⎛⎫ ⎪+⎝⎭ . 2、设事件A 与B 互不相容,且()0≠A P ,()0≠B P ,则下面结论正确的是【 】 (A) A 与B 互不相容; (B)()0>A B P ;(C) ()()()B P A P AB P =; (D)()()A P B A P =.3、设两个相互独立的随机变量X 与Y 分别服从正态分布()1,0N 和()1,1N ,则【 】(A)()210=≤+Y X P ; (B) ()211=≤+Y X P ; (C)()210=≤-Y X P ; (D)()211=≤-Y X P 。
4、 如果Y X ,满足()Y X D Y X D -=+)(,则必有【 】(A )X 与Y 独立;(B )X 与Y 不相关;(C )0=DY ;(D )0=DX5、设相互独立的两个随机变量X 与Y 具有同一分布律,且X 的分布律为则随机变量()Y X Z ,max =的分布律为【 】 (A)()()211,210====z P z P ; (B) ()()01,10====z P z P ; (C) ()()431,410====z P z P ;(D) ()()411,430====z P z P 。
概率自测题二
自测题二一、填空题1、对某一目标依次进行了三次独立的射击,设三次的射击命中率分别为0.4,0.5,0.7,则三次射击中恰好有一次命中的概率 ,三次射击中至少有一次命中的概率___________。
2、一射手对同一目标地独立地进行4次射击,每次射击命中率相同,如果至少命中一次的概率为8180,则射手的命中率为 。
4、设随机变量X 的分布率为:{}),2,1(3 ===k a k X P k,则.____=a5、设随机变量)2,0(~U X ,则3X Y =在)8,0(上概率密度._______)(=y f Y6、设随机变量X 的分布率为:则._________)(2=X E 8、设平面区域D 由曲线xy 1=及直线2,1,0e x x y ===所围成,二维随机变量),(Y X 在区域D 上服从均匀分布,则),(Y X 的概率密度函数为____________________。
二、计算题(请写出详细的解题步骤。
)1、(6分)一医生对某种疾病能正确诊断的概率为0.3,当诊断正确时,他能治愈的概率为0.8;若未被确诊,病人痊愈的概率为0.1。
现任选一病人,已知他痊愈了,问他被医生确诊的概率是多少?3、设随机变量X 服从区间[2,5]上的均匀分布,求对X 进行3次独立观测中,至多有2次的观测值大于3的概率。
4、设随机变量X 的密度函数为:,02(),240,ax x f x cx b x ≤<⎧⎪=+≤<⎨⎪⎩其他,已知()2,E X ={}3134P X <<=,试求:(1),,a b c 的值;(2)(23)P X <<;三、计算题(本题共4小题,共40分。
请写出详细的解题步骤。
) 1、设(,)X Y 的概率密度为⎩⎨⎧∞<<<<=+-othery x be y x f y x 00,10),()(求:(1)b 的值; (2){}Y X P <(3)边缘概率密度(),()X Y f x f y ; (4)问X 与Y 是否相互独立?3.设总体ξ的分布密度为(1)01()0a a x x f x ⎧+<<=⎨⎩其他,其中1a >-为未知的参数, 如果从总体ξ中抽取得样本观测值为12,,,n x x x ,求参数a 的极大似然估计值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末自测试题
一、填空题(本题总计 20分,每小题 2 分)
1. 设三次独立试验中,事件A 出现的概率相等,若已知A 在一次试验中出现的概率为13
,则事件A 至少出现一次的概率等于 。
2. 设随机变量X 服从参数为l 的泊松分布,且(1)2(2)P X P X ===,那么l = .
3. 设随机变量X 服从指数分布,且4DX =,则X 的概率密度为 。
4. 如果随机变量,X Y 相互独立,且联合概率分布为
则α= ,β= .
5. 已知随机变量[]1,1X U - ,则()223E X -= .
6. 若随机变量X 的数学期望,1)(=X E 方差4)(=X D ,则由切比雪夫不等式知_______)81(≥<-X P
7. 设总体X 服从正态分布(, 1)N μ, 12,,,n X X X 为来自该总体的一个
样本,则21()n
i i X μ=-∑服从 分布.
8.设X ~),(2σμN ,且()1E X =,4DX =,),,2,1(n i X i =为来自总体X 的样本,则X 服从的分布为___ __。
9. 若随机变量(10,0.6),X B 则()______,()________E X D X ==
10.总体X 服从参数为l 的泊松分布,l 未知,12,,,n X X X 为来自该总
体的一个样本,则l 的矩估计量为___ __ 。
二、选择题(本题总计 10分,每小题2 分)
1.事件A 与B 满足下列关系中的哪一个,则称它们是相互对立的 .
(A )Φ=AB (B )Φ=AB ,Ω=B A (C )Ω=B A (D )都不对
2. 设随机变量,X Y 独立同分布,1(1)(1)2
P X P X =-===
,下列正确的是( )。
111()();()()1;()(0);()(1).244A P X Y B P X Y C P X Y D P XY ====+====3.已知随机变量X 与Y 满足()()D X Y D X Y +=-,则有 。
(A) X 与Y 相互独立 (B) 0DY = (C) 0DX DY ⋅= (D) X 与Y 不相关
4.设两个互相独立的随机变量X 和Y 分别服从正态分布)10(,N 和
)11(,N ,则下列等式正确的是__ _。
(A )21)0(=
≤+Y X P (B )2
1)0(=≤-Y X P
(C )21)1(=≤+Y X P (D )2
1)1(=≤-Y X P 5. 设12,,,n X X X (3≥n )为来自总体X 的简单随机样本,则下列估计量中不是..
总体期望μ的无偏估计量的有 . (A )X (B )n X X X +++ 21
(C ))46(1.021X X +⨯ (D )321X X X -+
三、计算题(本题总计 63 分,每小题 9分)
1. 一个袋中有3个黑球2个白球。
随机取出排成一行,其位置记为1、2、3、4、5。
求第一个与最后一个都是白球的概率。
2.设某批产品中甲、乙、丙三个厂家的产量分别占45%,35%,20%,各厂产品中次品率分别为4%、2%和5%. 现从中任取一件,求取到的恰好是次品的概率.
3. 设连续型随机变量X 的分布函数为()F x 0,1arcsin ,1111x a b x x x <-⎧⎪=+-<≤⎨⎪>⎩
,
试求(1)常数a,b ; (2) 1(1)2
P X -<<; (3) X 的密度函数. 4. 已知离散型随机变量X 的概率分布为:
试求(1)()1P X <; (2)21Y X =+的概率分布表;(3)()E Y .
5. 设随机变量X 的概率密度函数为:
0()0
0x
X e x f x x -⎧≥=⎨<⎩,
求随机变量X Y e =的概率密度函数()Y f y 。
6. 某工厂有400台同类型机器,各机器发生故障概率为0.02, 设各机
器独立工作。
利用中心极限定理,求该厂机器故障的台数不小于2
的概率。
(27.84 2.8=, 62.8⎛⎫Φ ⎪⎝⎭=0.9835, 82.8⎛⎫Φ ⎪⎝⎭
=0.9978)
7. 设总体X 的概率密度函数为()()21, 010
x x f x else θθ-⎧-<<=⎨⎩,其中1θ>是未知参数,12,,,n X X X 是总体X 的容量为n 的样本,试求参数θ的最大似然估计.
四、证明题(本题总计7 分)
设随机变量X 和Y 相互独立,且X 与Y 有相同的概率分布. 记, U X Y V X Y =+=-.证明(),0R U V =。