因式分解、分式和分式方程综合测评
2022年北师大版八年级数学下册第五章分式与分式方程综合训练试题(含解析)
北师大版八年级数学下册第五章分式与分式方程综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知:1115a b -=-,则ab b a -的值是( ) A .15 B .15- C .5 D .﹣52、下列等式成立的是( )A .11a a b b +=+B .2112a a b b -++=-C .1b a a b -=--D .22a a b b= 3、若关于x 的一元一次不等式组322232x x x a -⎧->⎪⎨⎪-≤⎩的解集为2x <-,且关于y 的分式方程2111y a y y =-++的解为负整数,则所有满足条件的整数a 的值之和是( )A .15-B .13-C .7-D .5-4、下列各式中,正确的是( )A .()222422a a a a +-=--B .22b b a a +=+C .122b a b a =++D .a b a b c c-++=- 5、分式a a b--可变形为( )A .a a b --B .+a a bC .a a b --D .+a a b- 6、若关于x 的分式方程242x m x x x ++--=﹣1无解,则m 的值是( ) A .m =2或m =6B .m =2C .m =6D .m =2或m =﹣6 7、若把分式2x y xy+的x ,y 同时扩大2倍,则分式的值为( ) A .扩大为原来的2倍 B .缩小为原来的14C .不变D .缩小为原来的12 8、关于x 的分式方程28222m x x x x +=--无解,则m =( ) A .2 B .4 C .2或4 D .2或09、2021年10月16日,我国神舟十三号载人飞船与天和核心舱首次成功实现“径向对接”,对接过程的控制信息通过微波传递.微波理论上可以在0.000003秒内接收到相距约1千米的信息.将数字0.000003用科学记数法表示应为( )A .33010-⨯B .6310-⨯C .5310-⨯D .40.310-⨯ 10、若分式2a a b+中的a ,b 的值同时扩大到原来的4倍,则分式的值( ) A .是原来的8倍B .是原来的4倍C .是原来的14D .不变第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、代数式21x -与代数式32x -的值相等,则列等式为 _____,解得x =_____. 2、已知分式211x x -+的值为0,那么x 的值是_____________.3、要使分式32x -有意义,则x 应满足的条件是_______. 4、若2x =5y ,则x y x+=_____. 5、当x _____时,分式25x x -有意义. 三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:211111x x x x ⎛⎫+÷ ⎪+--⎝⎭,其中x 是6的平方根. 2、一粥一饭当思来之不易,半丝半缕恒念物力维艰.开展“光盘行动”,拒绝“舌尖上的浪费”,已经成为一种时尚. 某学校食堂为了鼓励同学们做到光盘不浪费,针对每餐后光盘的学生奖励苹果或砂糖橘一份.近日,学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,砂糖橘每千克的价格比苹果每千克的价格低40%.求苹果每千克的价格.3、解方程:2111x x x -=-+.4、已知2x =,求代数式2104233x x x -⎛⎫+÷ ⎪--⎝⎭的值. 5、阅读下列材料: ①111111111,,12223233434=-=-=-⨯⨯⨯… ②111111111111,,13233523557257⎛⎫⎛⎫⎛⎫=⨯-=⨯-=⨯- ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭… ③111111111111,,1434473477103710⎛⎫⎛⎫⎛⎫=⨯-=⨯-=⨯- ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭… 根据你观察到的规律,解决下列问题:(1)写出①组中的第5个等式;(2)写出②组的第n 个等式,并证明;(3)计算:11111559913397401++++⨯⨯⨯⨯.-参考答案-一、单选题1、D【分析】首先分式方程去分母化为整式方程,求出(b ﹣a )的值,把(b ﹣a )看作一个整体代入分式约分即可.【详解】 解:∵1115a b -=-,∴b ﹣a =15-ab , ∴ab b a -=﹣15ab ab =﹣5; 故选:D .【点睛】本题考查了分式的加减法、分式的值,熟练掌握这一类型的解题方法,首先分式方程去分母化为整式方程,把(b-a )看作一个整体代入所求分式约分是解题关键.2、C【分析】直接根据分式的性质进行判断即可【详解】解:A . 11a a b b+≠+,故选项A 不符合题意; B .2112a a b b-++≠-,故选项B 不符合题意;C.()1b a a ba b a b---==---,故选项C符合题意;D.22≠a ab b,故选项D不符合题意;故选C【点睛】本题主要考查了分式性质的应用,熟练掌握分式性质是解答本题的关键3、B【分析】化简一元一次不等式组,根据解集为23a+≥-2得到a的取值范围;解分式方程,根据解是负整数解,且不是增根,得到a的最终范围,这个范围内能使y是整数的a确定出来求和即可.【详解】解:一元一次不等式组整理得到:223xax<-⎧⎪+⎨≤⎪⎩,∵不等式组的解集为x<-2,∴23a+≥-2,∴a≥-8;分式方程两边都乘以(y+1)得:2y=a-(y+1),整理得3y=a-1,y=13a-.∵y有负整数解,且y+1≠0,∴13a-<0,且13a-≠-1,解得:a <1,且a ≠-2.∴能使y 有负整数解的a 为:-8,-5,和为-13.故选:B .【点睛】本题主要考查了分式方程的解,一元一次不等式组的解集,有理数的混合运算.考虑解分式方程可能产生增根是解题的关键.4、A【分析】根据分式的基本性质,辨析判断即可.【详解】 ∵()222(2)(2)42(2)(2)2a a a a a a a a ++--==----,∴A 正确;∵分式基本性质中,没有加法,∴B 不正确; ∵1222b b baa b a b b b b ÷==+÷+÷+,∴C 不正确; ∵()a ba b a bc c c -+---==-,∴D 不正确;故选A .【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.5、C【分析】根据分式的基本性质进行分析判断.【详解】 解:==+a a a a b a b a b-----, 故C 的变形符合题意,A 、B 和D 的变形不符合题意,故答案为:C .【点睛】本题考查分式的基本性质,理解分式的基本性质(分式的分子,分母同时乘以或除以同一个不为零的数或式子,分式仍然成立)是解题关键.6、A【分析】先去分母得到整式方程,解整式方程得x =m -4,利用分式方程无解得到x =±2,所以m -4=±2,然后解关于m 的方程即可.【详解】 解:242x m x x x++--=﹣1 去分母得x +m -x (x +2)=-x 2+4,解得x =m -4,∵原方程无解,∴x =2或-2,即m -4=2,解得m =6;或m -4=-2,解得m =2;即当m =2或6时,关于x 的分式方程242x m x x x++--=﹣1无解.故选:A .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.7、D【分析】分别用2x 和2y 去代换原分式中的x 和y ,利用分式的基本性质化简即可.【详解】 解:根据题意得:22222x y x y +⨯⋅=2()8x y xy +=1=422x y x y xy xy++⨯, 即把分式2x y xy+的x ,y 同时扩大2倍,则分式的值缩小为原来的12, 故选:D .【点睛】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.8、C【分析】先解分式方程得(2)4m x -=,再由方程无解可得2m =或0x =或2x =,分别求出m 的值即可.【详解】 解:28222m x x x x+=--, 方程两边同时乘(2)x x -得:824mx x -=-,移项得:284mx x -=-,合并同类项得:(2)4m x -=,∵方程无解,∴2m =或0x =或2x =,∴当2x =时,244m -=,解得:4m =,∴2m =或4m =,故选:C .【点睛】本题考查分式方程的解,熟练掌握分式方程无解的条件是解题的关键.9、B【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a ×10-n ,其中1≤a <10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】60.000003310-=⨯故选:B .【点睛】本题考查了科学记数法,科学记数法一般形式为a ×10n ,其中1≤a <10,确定a 和n 的值是解题关键.10、D【分析】根据分式的基本性质,把a ,b 的值同时扩大到原来的4倍,代入原式比较即可.【详解】解:a ,b 的值同时扩大到原来的4倍,原式=24422444()a a a a b a b a b⨯⨯==+++;分式的值不变; 故选:D .【点睛】 本题考查了分式的基本性质,解题关键是熟练运用分式的基本性质进行化简.二、填空题1、2312x x =-- -1 【分析】根据题意列出分式方程,求出分式方程的解即可得到x 的值.【详解】 解:根据题意得:21x -=32x -, 去分母得:2(x -2)=3(x -1),去括号得:2x -4=3x -3,解得:x =-1,检验:把x =-1代入得:(x -1)(x -2)≠0,∴分式方程的解为x =-1. 故答案为:2312x x =--,-1. 【点睛】此题考查了解分式方程,熟练掌握分式方程的解法是解本题的关键. 2、1【分析】根据分式值为0的条件:分子为0,分母不为0,进行求解即可.【详解】解:∵分式211xx-+的值为0,∴211xx-=+,∴21010xx⎧-=⎨+≠⎩,∴1x=,故答案为:1.【点睛】本题主要考查了分式值为0的条件,熟知分式值为0的条件是解题的关键.3、x≠2【分析】根据分式有意义,分母不等于0列式计算即可得解.【详解】解:由题意得,x-2≠0,解得x≠2.故答案为:x≠2.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4、7 5【分析】先用含y的代数式表示出x,然后代入x yx+计算.【详解】解:∵2x=5y,∴52x y =,∴x yx+=572552y y yyy+==75.故答案为:75.【点睛】本题考查了分式的化简求值,用含y的代数式表示出x是解答本题的关键.5、≠5【分析】根据分式有意义的条件即可求出答案.【详解】解:由分式有意义的条件可知:x-5≠0,∴x≠5,故答案为:≠5.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是:分母不为0是解题的关键.三、解答题1、21x+,7【分析】根据分式的混合运算法则把原式化简,代入计算即可.【详解】 解:原式(1)(1)(1)(1)(1)(1)x x x x x x x ⎡⎤-++=⋅+-⎢⎥+-⎣⎦ 21(1)(1)(1)(1)x x x x x x x -++=⋅+-+- 21x =+.∵x 是6的平方根,∴26x =,∴原式617=+=.【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.2、14元【分析】设苹果每千克的价格为x 元,则砂糖橘每千克的价格为(140%)x -元.根据“学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,”列出方程,即可求解.【详解】解:设苹果每千克的价格为x 元,则砂糖橘每千克的价格为(140%)x -元. 根据题意,得1500180050(140%)x x-=- 解得14x =经检验:14x =是原分式方程的解,且符合题意,∴苹果每千克的价格为14元. 【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.3、13x =.【分析】先方程两边同乘以(1)(1)x x +-将分式方程化为整式方程,再按照解一元一次方程的步骤即可得.【详解】 解:2111x x x -=-+, 方程两边同乘以(1)(1)x x +-,得21(1)2(1)--+=-x x x x ,去括号,得22122x x x x ---=-,移项、合并同类项,得31x -=-,系数化为1,得13x =, 经检验,13x =是原方程的解, 所以原方程的解为13x =.【点睛】本题考查了解分式方程,熟练掌握方程的解法是解题关键.需注意的是,解分式方程需进行检验.4、22x ,【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值代入计算即可求出值.【详解】解:2104233x x x -⎛⎫+÷ ⎪--⎝⎭, 2(2)33(2)(2)x x x x x --=⋅--+, 22x =+,当2x =22x ==- 【点睛】本题考查了分式的化简求值,二次根式的化简,解题的关键是熟练掌握运算法则.5、(1)1115656=-⨯; (2)1111)21)(2122121n n n n =--+-+((),证明见解析; (3)100401【分析】(1)根据前几个等式的变化规律即可求解;(2)根据前几个等式的变化规律即可得出第n 个等式,根据异分母分式的减法法则证明即可;(3)根据前三组观察出的变化规律求解即可.(1) 解:∵111111111111,,122232334344545=-=-=-=-⨯⨯⨯⨯,, ∴第5个等式为1115656=-⨯; (2)解:∵111111111111,, 13233523557257⎛⎫⎛⎫⎛⎫=⨯-=⨯-=⨯-⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭,∴第n个等式为1111) 21)(2122121 n n n n=--+-+((),证明:右边=1(21)(21)121221)(21221)(2121)(21 n nn n n n n n+--⋅=⋅=-+-+-+()()(),左边=1 21)(21 n n-+(),∵右边=左边,∴1111) 21)(2122121 n n n n=--+-+(();(3)解:∵115⨯=11(1)45⨯-,159⨯=111()459⨯-,1913⨯=111()4913⨯-,∴1111) 43)(4144341 n n n n=--+-+((),∴1111 1559913397401 ++++⨯⨯⨯⨯=11111111111(1)()()() 4545949134397401⨯-+⨯-+⨯-++⨯-=11111111(1) 4559913397401⨯-+-+-++-=11(1) 4401⨯-=1400 4401⨯=100 401.【点睛】本题考查分式规律性问题,涉及用代数式表示数的规律、异分母分式的减法、与实数运算有关的规律题,理解题意,正确得出变化规律,会利用类比的思想方法解决问题是解答的关键.。
初中数学-分式与分式方程测试题(含答案)
初中数学-分式与分式方程测试题(含答案)初中数学-分式与分式方程测试题一、选择题1.分式﹣A.﹣2.在可变形为()B.C.﹣D.中,分式的个数是()A. 2B. 3C. 4D. 53.下列算式中,你认为错误的是()A.4.化简B.C.D.的结果为()D.A.﹣1 B. 1 C.5.分式方程﹣2=的解是()C. x=2D. x=﹣1A. x=±1B. x=﹣1+6.设m﹣n=mn,则A.的值是()B. 0C. 1D. -1的值为零,那么的值是()XXX.如果分式A.B.8.假如分式A.9.解方程A.C.的值为负数,则的x取值范围是()XXX.去分母得()B.D.的值是()10.若m+n﹣p=0,则A. -3B. -1C. 1D. 3二、填空题11.方程12.若分式方程的解为________.=a无解,则a的值为________13.若分式14.分式方程15.化简:16.17.计较:的值为零,则=________。
﹣=0的解是________.=________.________=________ .=3的解是正数,则m的取值范围是________.18.已知关于x的方程三、解答题19.解方程:20.解分式方程:..21.计较:(1)y(2x﹣y)+(x+y)2;(2)(y﹣1﹣22.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?)÷.参考谜底一、选择题DBBBDDCDCA二、填空题11.x=﹣112.1或﹣113.-314.1515.x+y16.a2-b²17.18.m>-6且m≠-4三、解答题19.解:2x=x﹣2+1,x=﹣1,经检验x=﹣1是原方程的解,则原方程的解是x=﹣120.解:去分母得:x(x+1)﹣x2+1=2,去括号得:x2+x ﹣x2+1=2,解得:x=1,经检修x=1是增根,分式方程无解21.解:(1)原式=2xy﹣y2+x2+2xy+y2=4xy+x2;(2)原式==.•=1+,22.解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.。
第五章 分式与分式方程 综合素质评价(含答案)北师大版数学八年级下册
第五章 分式与分式方程 综合素质评价一、选择题(每题3分,共30分)1.【教材P 109习题T 1改编】下列式子是分式的是( )A.a -b 2B.5+y πC.x +3x D .1+x2.【2022·衡阳期中】使分式5x +2有意义的x 的取值范围为( )A .x ≠-2B .x ≠2C .x ≠0D .x ≠±23.若|x |-1x -1的值为0,则x 的值为( )A .1B .0C .±1D .-14.下列各分式中,是最简分式的是( )A.x 2+y 2x +yB.x 2-y 2x +y C.x 2+x xy D.xyy 25.下列各式中,正确的是( )A .--3x 5y =3x -5yB .-a +b c =-a +b cC .-a -b c =a -b cD .-a b -a =aa -b6.【教材P 127议一议变式】解分式方程2x -1-2xx -1=1,该方程的解为() A .x =1 B .x =3 C .x =12 D .无解7.【2022·太原一模】化简⎝ ⎛⎭⎪⎫x 2-4x 2+4x +4+2x +2÷x2x +4的结果为( )A .2B .2x -8xC .-6D .-88.若关于x 的分式方程axx -2=4x -2+1有解,则a 的取值范围为( )A .a ≠1B .a ≠2C .a ≠-1且a ≠-2D .a ≠1且a ≠29.【2022·崆峒区校级三模】2022年北京冬奥会有3个赛区,分别是北京赛区、延庆赛区、张家口赛区,3个赛区之间均有高速铁路和高速公路相通,北京赛区清河高铁站与张家口赛区太子城高铁站之间的高速铁路里程为166 km ,高速公路里程为178 km ,已知从清河高铁站到太子城高铁站乘“复兴号”列车比乘汽车少用2 h ,“复兴号”列车的平均速度是汽车平均速度的3倍,求“复兴号”列车和汽车的平均速度.设汽车的平均速度是x km/h ,则可列方程为( ) A.166x -1783x =2 B.166x +2=1783xC.178x -1663x =2D.178x +2=1663x 10.【2022·萍乡期末】已知关于x 的不等式组⎩⎨⎧2x -3a <2,x -2b >3的解集为-1<x <2,则代数式⎝ ⎛⎭⎪⎫a -b 2a ·a a -b的值是( ) A .23 B .-2 C .-83 D .-43二、填空题(每题3分,共24分)11.x 6ab 2与y 9a 2bc 的最简公分母是________.12.【2022·苏州期中】当x =________时,分式x -1x -3的值为0. 13.用换元法解方程x x 2-1+3(x 2-1)x =4,若设x x 2-1=y ,那么所得到的关于y 的整式方程为____________.14.【2022·黄冈期末】已知a ,b 两数在数轴上的位置如图所示,则化简⎪⎪⎪⎪⎪⎪b 2-a +a 2+b -2ab a -b 的结果是________.15.【教材P 132复习题T 5(3)改编】已知2x -3(x -1)(x +2)=A x -1+B x +2,则A =________,B =________.16.对于非零的两个实数a ,b ,规定a *b =3b -2a ,若5*(3x -1)=2,则x 的值为________.17.【2022·连云港期末】若分式方程3a x +3=6x +3+4有增根,则a =________. 18.一个容器装有1升水,按照如下方法把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15……第n 次倒出的水量是1n 升的1n +1.按照这种倒水的方法,n 次倒出的水量共为________升.三、解答题(19~21题每题10分,其余每题12分,共66分)19.计算:(1)2a a 2-9-1a -3; (2)(a -2-4a -2)÷a -4a 2-4.20.先化简,再求值:(1)x 2-4x +4x ÷⎝ ⎛⎭⎪⎫2x -1,其中x =2-2;(2)【2022·盘锦】x -3x 2-1÷x -3x 2+2x +1-⎝ ⎛⎭⎪⎫1x -1+1,其中x =|-2|+1.21.解分式方程:(1)【2022·宿迁】2x x -2=1+1x -2; (2)x +1x -1+4x 2-1=1.22.若整数a 使关于x 的不等式组⎩⎪⎨⎪⎧x -12≤11+x 3,4x -a >x +1有且只有45个整数解,且使关于y 的方程2y +a +2y +1+601+y=1的解为非正数,求整数a 的值.23.【新定义题】定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n阶分式”.例如,分式3x +1与3x 1+x互为“3阶分式”. (1)分式10x 3+2x与__________互为“5阶分式”; (2)设正数x ,y 互为倒数,求证:分式2x x +y 2与2y y +x 2互为“2阶分式”; (3)若分式a a +4b 2与2b a 2+2b互为“1阶分式”(其中a ,b 为正数),求ab 的值.24.【教学建模】【2022·呼和浩特】今年我市某公司分两次采购了一批土豆.第一次花费30万元,第二次花费50万元.已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工.若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元.由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?答案一、1.C 2.A 3.D 4.A 5.D 6.D7.A 8.D 9.C10.D 点拨:解不等式组⎩⎨⎧2x -3a <2,x -2b >3,解得⎩⎪⎨⎪⎧x <3a +22,x >3+2b .∵不等式组的解集为-1<x <2,∴⎩⎪⎨⎪⎧3a +22=2,3+2b =-1,解得⎩⎪⎨⎪⎧a =23,b =-2. ∴⎝ ⎛⎭⎪⎫a -b 2a ·a a -b =⎝ ⎛⎭⎪⎫a 2-b 2a ·a a -b=a +b =23-2=-43.二、11.18a 2b 2c 12.1 13.y 2-4y +3=014.b -a +1 15.-13;73 16.34 17.218.n n +1点拨:由题意得12+12×13+13×14+14×15+…+1n ×1n +1=12+12-13+13-14+14-15+…+1n -1n +1=1-1n +1=n n +1. 三、19.解:(1)原式=2a (a +3)(a -3)-a +3(a +3)(a -3)=a -3(a +3)(a -3)=1a +3; (2)原式=[(a -2)2a -2-4a -2]·(a +2)(a -2)a -4=a 2-4a +4-4a -2·(a +2)(a -2)a -4=a (a -4)a -2·(a +2)(a -2)a -4=a (a +2)=a 2+2a .20.解:(1)原式=(x -2)2x ÷2-x x =(2-x )2x ·x 2-x=2-x . 当x =2-2时,2-x =2-(2-2)= 2.(2)解:x -3x 2-1÷x -3x 2+2x +1-⎝ ⎛⎭⎪⎫1x -1+1 =x -3(x +1)(x -1)×(x +1)2x -3-⎝ ⎛⎭⎪⎫1x -1+x -1x -1 =x +1x -1-x x -1=1x -1. ∵x =|-2|+1=2+1, ∴原式=12+1-1=12=22. 21.解:(1)解:2x x -2=1+1x -2, 去分母,得2x =x -2+1,解得x =-1.经检验,x =-1是原方程的解.则原方程的解是x =-1.(2)方程两边都乘(x +1)(x -1),得(x +1)2+4=(x +1)(x -1),解得x =-3. 检验:当x =-3时,(x +1)(x -1)≠0,所以原分式方程的解为x =-3.22.解:解不等式组,得a +13<x ≤25,∵不等式组有且只有45个整数解,∴-20≤a +13<-19,解得-61≤a <-58,解关于y 的方程得y =-a -61,∵关于y 的方程2y +a +2y +1+601+y=1的解为y =-a -61,y ≤0,∴-a -61≤0,解得a ≥-61,∵y +1≠0,∴y ≠-1,∴a ≠-60.故整数a 的值为-61或-59.23.(1)153+2x(2)证明:由题意得xy =1,则y =1x .把y =1x 代入2x x +y 2+2y y +x 2, 得2x x +1x 2+2x 1x +x 2=2x 3x 3+1+2x 3+1=2.∴2x x +y 2与2y y +x 2互为“2阶分式”. (3)解:∵a a +4b 2与2b a 2+2b互为“1阶分式”, ∴a a +4b 2+2b a 2+2b=1. ∵a a +4b 2+2b a 2+2b =a 3+2ab (a +4b 2)(a 2+2b )+2ab +8b 3(a +4b 2)(a 2+2b ), ∴a 3+2ab +2ab +8b 3a 3+2ab +4a 2b 2+8b 3=1, 则2ab =4a 2b 2.又∵a ,b 为正数,∴ab =12.24.解:(1)设去年每吨土豆的平均价格是x 元,则今年第一次采购时每吨土豆的价格为(x +200)元,第二次采购时每吨土豆的价格为(x -200)元.由题意得300 000x +200×2=500 000x -200, 解得x = 2 200.经检验,x =2 200是原分式方程的解,且符合题意.答:去年每吨土豆的平均价格是2 200元.(2)由(1)得,今年采购的土豆数量为300 0002 200+200×3=375(吨). 设应将m 吨土豆加工成薯片,则应将(375-m )吨土豆加工成淀粉,由题意得⎩⎪⎨⎪⎧m ≥23(375-m ),m 5+375-m 8≤60,解得150≤m ≤175.设总利润为y 元,则y =700m +400(375-m )=300m +150 000.∵300>0,∴y 随m 的增大而增大,∴当m =175时,y 的值最大,y max =300×175+150 000=202 500.答:为获得最大利润,应将175吨土豆加工成薯片,最大利润是202 500元.。
因式分解 和分式方程专项练习50题
人教版 八年级数学寒假专项训练因式分解1,2441x x -+2,x 4-13,x -x 34,x 3-4x 2+4x5,x 2+6xy +9y 26,3223x x y xy y +--7,2a 2-4a +28,3x 3-12x9,4x 2-8x +410,x 2+2x (x -3y )+(x -3y )211,(m +1)(m -1)+(m -1)12,-4a 3+4a 2-16a13,(3a -4b )(7a -8b )-(11a -12b )(8b -7a ) 14,3223121824x y x y xy -+15,23(2)2(2)a a +-+16,22n n n a a a +++17,a (x +y -z )-b (z -x -y )-c (x -z +y )18,-49a 2bc -14ab 2c +7ab19,(2a +b )(2a -3b )-8a (2a +b )20,x 2-x +1421,(a -b)2-4b 222,ab(ab -6)+923,m 2-n 2+2m -2n24,-2a 3+12a 2-18a25,3x -12x 3分式方程26,321121x x +=-+27,25113x x x -+=--28,212x x --=129,12012032x x =--30,221269x x x x -++-=131,21239a a =+- 32,32322x x x +=+- 33,242111x x x ++=---34,35,5x =7x -236,1x -x -2x=1 37,12x -1=12-34x -238, 39,1412112-=-++x x x 40,21133x x x-+=-- 41,1617222-=-++x x x x x 42,214111x x x +--=-- 43,0)1(213=-+--x x x x 44,11222x x x-=--- 45,近年来,我国逐步完善养老金保险制度,甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?46,小明去离家2.4 km 的体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有45 min ,于是他立即步行(匀速)回家取票,在家取票用时2 min ,取到票后,他马上骑自行车211=+x x(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20 min,骑自行车的速度是步行速度的3倍.(1)小明步行的速度是多少?(2)小明能否在球赛开始前赶到体育馆?47,(12分)某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?(总费用=施工费+工程师食宿费)48,用价值为100元的甲种涂料与价值为200元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,求这种新涂料每千克售价是多少元?49,为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成.现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成.问原来规定修好这条公路需多长时间?50,为了更好适应和服务新农村下经济的快速发展,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.。
(好题)初中数学八年级数学下册第五单元《分式与分式方程》测试(有答案解析)
一、选择题1.若关于x 的分式方程3111m x x -=--的解是非负数,则m 的取值范围是( ) A .4m ≥-,1m ≠B .4m ≥-且3m ≠-C .2m ≥且3m ≠D .4m >- 2.已知113x y -=,则代数式21422x xy y x xy y ----的值( ) A .4B .9C .-4D .-8 3.分式方程3121x x =-的解为( ) A .1x =B .2x =C .3x =D .4x = 4.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数 5.已知分式24x x +的值是正数,那么x 的取值范围是( ) A .x >0B .x >-4C .x ≠0D .x >-4且x ≠0 6.关于分式2634m n m n--,下列说法正确的是( ) A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变7.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510y y a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2 B .3 C .6 D .118.若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组5x x a ≥⎧⎨>⎩的解集是5x ≥,则符合条件的整数a 有( ) A .1个 B .2个C .3个D .4个 9.从7-、5-、3-、1-、3、6这六个数中,随机抽取一个数,记为k ,若数k 使关于x的分式方程3211k x x +=--的解为非负数,那么这6个数中所有满足条件的k 的值之和是( )A .4-B .0C .3D .610.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯= B .6608400147660840010x x ⨯=++ C .660840014147660840010x x ⨯=⨯++ D .7840066010146608400x x ++⨯= 11.已知分式34x x -+的值为0,则x 的值是( ) A .3 B .0 C .-3 D .-412.下列变形不正确的是( )A .1122x x x x +-=---B .b a a b c c--+=- C .a b a b m m -+-=- D .22112323x x x x--=--- 二、填空题13.已知实数m 、n 均不为0且22227m mn n m n mn--=-+,则11m n -=______. 14.(1)分解因式39x x -= ______________.(2)已知5a b +=,3ab =,则22a b += ________.(3)某种球形冠状病毒的直径大约为0.000000102m ,这个数用科学记数法表示为________________________.15.如果30,m n --=那么代数式2⎛⎫-⋅ ⎪+⎝⎭m n n n m n 的值为______________________. 16.某种病毒的直径为0.0000000028米,用科学记数法表示为______米.17.有意义,则x 的取值范围是______________. 18.科学家使用冷冻显微术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为__________.19.计算22a b a b a b-=-- _________. 20.要使分式3 x 2-有意义,则 x 的取值范围是___________. 三、解答题 21.(1)计算: 02202013(3)(1)2-π-+-+--() (2)解方程:3231x x =+- 22.解方程:21113x x x++=. 23.解方程:(1)25231x x x x +=++; (2)23111x x x -=--. 24.先化简,再求值2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中整数x 满足13x -≤<. 25.计算:(2933a a a+--)÷3a a +. 26.(1)化简:221111x x x ⎛⎫÷- ⎪-+⎝⎭(2)先化简再求值:22224221121a a a a a a --⎛⎫-+÷ ⎪+--+⎝⎭,其中2=a .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先去分母得到整式方程m +3=x ﹣1,再由整式方程的解为非负数得到m +4≥0,由整式方程的解不能使分式方程的分母为0得到m +4≠1,然后求出不等式的公共部分得到m 的取值范围.【详解】解:去分母得m +3=x ﹣1,整理得x =m +4,因为关于x 的分式方程311m x x-=--1的解是非负数, 所以m +4≥0且m +4≠1,解得m ≥﹣4且m ≠﹣3,故选:B .【点睛】 本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.2.A解析:A【分析】 由11x y=3,变形得y -x =3xy ,然后整体代入代数式,计算化简,即可得到结论. 【详解】解:由11x y =3,得y x xy-=3,即y -x =3xy ,x -y =-3xy , 则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xy xy xy----=4. 故选:A .【点睛】本题主要考查了分式化简求值,利用整体代入法是解决本题的关键.3.C解析:C【分析】首先分式两边同时乘以最简公分母()21x x -去分母,再移项合并同类项即可得到x 的值,然后要检验;【详解】两边同时乘以()21x x -,得:()312x x -= ,解得:x=3,检验:将x=3代入()210x x -≠,∴方程的解为x=3.故选:C .【点睛】本题考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验; 4.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 5.D解析:D【分析】 若24x x +的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围.【详解】 解:∵24x x+>0, ∴x +4>0,x≠0,∴x >−4且x ≠0.故选:D .【点睛】 本题考查分式值的正负性问题,若对于分式a b(b≠0)>0时,说明分子分母同号;分式a b(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 6.D解析:D【分析】根据分式的基本性质即可求出答案.【详解】解:A、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m、n均扩大2倍,分式的值不变,故该说法不符合题意;B、22623=23432m n m nm n m n⨯--⨯--,故分子、分母的中m扩大2倍,n不变,分式的值没有扩大2倍,故该说法不符合题意;C、226212=32438m n m nm n m n-⨯--⨯-,故分子、分母的中n扩大2倍,m不变,分式的值发生变化,故该说法不符合题意;D、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m、n均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.7.B解析:B【分析】根据分式方程的解为正整数解,即可得出a=0,1,2,5,11,根据不等式组的解集为a−1<4,即可得出a<5,找出a的所有的整数,将其相加即可得出结论.【详解】解:∵分式方程有解,∴解分式方程得x=121a+,∵x≠3,∴121a+≠3,即a≠3,又∵分式方程有正整数解,∴a=0,1,2,5,11,又∵不等式组至少有2个整数解,∴解不等式组得51 yy a≤⎧⎨-⎩>,∴a−1<4,解得,a<5,∴a=0,1,2,∴0+1+2=3,故选:B.本题考查了一元一次不等式组的整数解、分式方程的解,有一定难度,注意分式方程中的解要满足分母不为0的情况.8.C解析:C【分析】解分式方程的得出x=2a-2,根据解为非负数得出2a-2≥0,且2a-2≠2,据此求出解得a≥1且a≠2;解不等式组两个不等式,根据解集得出a<5;综合以上两点得出整数a的值,从而得出答案.【详解】解:分式方程122x ax-=-,去分母,得:2(x-a)=x-2,解得:x=2a-2,∵分式方程的解为非负数,∴2a-2≥0,且2a-2≠2,解得a≥1且a≠2,∵不等式组5xx a≥⎧⎨>⎩的解集是x≥5,∴1≤a<5,且a≠2,则整数a的值为1、3、4共3个,故选:C.【点睛】本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a的取值范围.9.C解析:C【分析】先对分式方程进行求解,即用含k的代数式表示分式方程的解,然后根据题意可进行求解.【详解】解:由3211kx x+=--可得:52xk=+,∵分式方程的解为非负数,且1x≠,∴52k+≥且512k+≠,解得:5k≥-且3k≠-∴满足条件的有5-、1-、3、6,∴它们的和为51363--++=;故选C.本题主要考查分式方程及一元一次不等式的解法,熟练掌握分式方程及一元一次不等式的解法是解题的关键.10.B解析:B【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可.【详解】5月份厨余垃圾分出率=660660x+,12月份厨余垃圾分出率=84007840010x+,∴由题意得6608400147 660840010x x⨯=++,故选:B.【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.11.A解析:A【分析】根据分式的值为0的条件可以求出x的值;分式为0时,分子为0分母不为0;【详解】由分式的值为0的条件得x-3=0,x+4≠0,由x-3=0,得x=3,由x+4≠0,得x≠-4,综上,得x=3时,分式34xx-+的值为0;故选:A.【点睛】本题考查了分式的值为0的情况,若分式的值为0,需要同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.12.A解析:A【分析】答题首先清楚分式的基本性质,然后对各选项进行判断.【详解】解:A、1122x xx x+--=---,故A不正确;B 、b a a bc c --+=-,故B 正确; C 、a b a b m m-+-=-,故C 正确; D 、22112323x x x x--=---,故D 正确. 故答案为:A .【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.二、填空题13.【分析】将原分式化简得再两边同时除以即可得结果【详解】由得所以则故答案为:【点睛】本题考查了分式的化简求值观察式子得到已知与未知的式子之间的关系是解题的关键 解析:163【分析】 将原分式化简得163n m mn -=,再两边同时除以mn 即可得结果. 【详解】 由22227m mn n m n mn--=-+得24414m mn n m n mn --=-+ 所以163n m mn -=,则11163m n -= 故答案为:163【点睛】 本题考查了分式的化简求值,观察式子得到已知与未知的式子之间的关系是解题的关键. 14.x (x +3)(x -3)19【分析】(1)先提取公因式x 再用平方差公式分解;(2)根据完全平方公式变形求解即可;(3)绝对值小于1的数可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不解析:x (x +3)(x -3) 19 71.0210-⨯【分析】(1)先提取公因式x ,再用平方差公式分解;(2)根据完全平方公式变形求解即可;(3)绝对值小于1的数可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:(1)39x x -=x(x 2-9)= x(x +3)(x -3);(2)∵5a b +=,3ab =,∴22a b +=(a+b)2-2ab=25-6=19;(3)0.000000102=71.0210-⨯.故答案为:(1)x(x +3)(x -3);(2)19;(3)71.0210-⨯.【点睛】本题考查了因式分解,完全平方公式,科学记数法等知识,熟练掌握各知识点是解答本题的关键.15.【分析】将原式进行分式的混合计算化简先算小括号里面的然后算乘法最后整体代入求值【详解】解:===∵∴故答案为:3【点睛】本题考查分式的混合运算掌握运算顺序和计算法则正确计算是解题关键解析:3【分析】将原式进行分式的混合计算化简,先算小括号里面的,然后算乘法,最后整体代入求值.【详解】 解:2⎛⎫-⋅ ⎪+⎝⎭m n n n m n =22m n n m n n ⎛⎫⋅ ⎪⎭-+⎝ =()()n n m nm n m n -⋅++ =m n -∵30m n --=,∴=3m n -故答案为:3.【点睛】本题考查分式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.16.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:000000解析:92.810-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000000028=2.8×10-9,故答案为:92.810-⨯.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.且【分析】根据分式有意义可得根据二次根式有意义的条件可得再解即可【详解】由题意得:且解得:且故答案为:且【点睛】本题主要考查了分式有意义和二次根式有意义的条件关键是掌握分式有意义的条件是分母不等于零 解析:0x ≥且1x ≠【分析】根据分式有意义可得10x -≠,根据二次根式有意义的条件可得0x ≥,再解即可.【详解】由题意得:10x -≠,且0x ≥,解得:0x ≥且1x ≠,故答案为:0x ≥且1x ≠.【点睛】本题主要考查了分式有意义和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.18.2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000022=2.2×10−10,故答案为:2.2×10−10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.【分析】根据分式运算的性质结合平方差公式计算即可得到答案【详解】故答案为:【点睛】本题考查了分式平方差公式的知识;解题的关键是熟练掌握分式加减运算平方差公式的性质从而完成求解解析:+a b【分析】根据分式运算的性质,结合平方差公式计算,即可得到答案.【详解】22a b a b a b ---()()22a b a b a b a b a b a b+--===+-- 故答案为:+a b .【点睛】本题考查了分式、平方差公式的知识;解题的关键是熟练掌握分式加减运算、平方差公式的性质,从而完成求解.20.x≠2【分析】根据分式有意义得到分母不为0即可求出x 的范围【详解】解:要使分式有意义须有x-2≠0即x≠2故填:x≠2【点睛】此题考查了分式有意义的条件分式有意义的条件为:分母不为0解析:x≠2【分析】根据分式有意义得到分母不为0,即可求出x 的范围.【详解】 解:要使分式3 x 2-有意义,须有x-2≠0,即x≠2, 故填:x≠2.【点睛】此题考查了分式有意义的条件,分式有意义的条件为:分母不为0. 三、解答题21.(1)1;(2)9x =【分析】(1)根据绝对值的性质、零指数幂、负整数次幂和有理数的乘方进行计算即可; (2)把分式方程化成整式方程求解,最后验根.【详解】解:(1)原式=31411=+-+=;(2)3231x x =+- 去分母得:()()3123x x -=+,去括号得:3326x x -=+,移项、合并得:x =9,检验:把x =9代入方程,各分母都不为0,∴x =9是方程的解.【点睛】本题考查实数的运算、解分式方程,解题的关键是掌握实数的相关性质和解分式方程的方法.22.43x =- 【分析】先去分母将分式方程化为整式方程,求解整式方程并验根即可.【详解】解:去分母得:3(21)13x x ++=,去括号得:6313x x ++=,移项合并同类项得:34x =-,系数化为1得:43x =-. 经检验43x =-是该方程的根. 【点睛】本题考查解分式方程.注意解分式方程一定要验根.23.(1)无解;(2)2x =【分析】(1)先去分母,把分式方程转化成整式方程,求出方程的解,再进行检验即可; (2)先去分母,把分式方程转化成整式方程,求出方程的解,再进行检验即可.【详解】解:(1)25231x x x x +=++ 方程两边同乘以()1x x +,得523x x +=,解整式方程得,1x =-,检验:当1x =-时,()10x x +=,因此1x =-不是原分式方程的解,∴原分式方程无解;(2)23111x x x -=-- 方程两边同乘以()()11x x +-,得()()2113x x x +--=解方程得,2x =检验:当2x =时,()()110x x +-≠所以,原分式方程的解2x =.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要检验.24.原式1x=,1x=时,原式1=;或2x=时原式12=.【分析】根据分式的减法和除法可以化简题目中的式子,然后从-1≤x<3中选取使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】解:2111 x xxx x⎛⎫-+÷⎪++⎝⎭=2(1)(1)11x x x xx x --++⋅+=221 x xx-+=1x,∵x(x+1)≠0,∴x≠0,x≠-1,∵整数x满足-1≤x<3,∴x=1或2,当x=1时,原式=11=1,当x=2时,原式=12.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.25.a【分析】首先提出负号使括号内变为2933aa a⎛⎫-⎪--⎝⎭,然后根据平方差公式、除法法则进行化简即可.【详解】原式229393(3)3333a a a a aa aa a a a a a⎛⎫+-+=-÷=÷=+⋅= ⎪---+⎝⎭【点睛】本题考查了平方差公式、分式的化简,重点是掌握乘法公式在分式化简中的计算方法.26.(1)21x-,(2)21a+,2-【分析】(1)先计算括号内的分式减法,再算除法即可;(2)先依据分式运算法则和顺序化简,再代入求值即可.【详解】解:(1)221111x x x ⎛⎫÷- ⎪-+⎝⎭, 2211111x x x x x +⎛⎫=÷- ⎪-++⎝⎭, 221·1x x x x+=-, ()()21·11x x x x x +=+-,21x =-; (2)22224221121a a a a a a --⎛⎫-+÷ ⎪+--+⎝⎭, ()()()()22212·1112a a a a a a a--=++-+-, 22(1)11a a a a -=-++, 21a =+, ∵2=a ,∴a=2(不符合题意,舍去)或a=-2,把a=-2代入,原式2221-+==-. 【点睛】本题考查了分式的运算和分式化简求值,解题关键是熟练运用分式的运算法则和运算顺序解题.。
(好题)初中数学八年级数学下册第五单元《分式与分式方程》测试卷(有答案解析)(1)
一、选择题1.下列运算中,正确的是( )A .211a a a+=+ B .21111a a a -⋅=-+ C .1b a a b b a +=-- D .0.22100.7710++=--a b a b a b a b2.已知关于x 的分式方程422x k x x -=--的解为正数,则k 的取值范围是( ) A .80k -<<B .8k >-且2k ≠-C .8k >-且2k ≠D .4k <且2k ≠-3.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x-= B .6000600052x x -= C .6000600052x x -=+ D .6000600052x x-=+ 4.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是( )A .3B .4C .5D .6 5.化简分式2xy x x +的结果是( ) A .y x B .1y x + C .1y + D .y x x+ 6.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .0x = C .1x ≠- D .2x =7.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④ 8.已知2,1x y xy +==,则y x x y +的值是( ) A .0 B .1 C .-1 D .29.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1- B .1 C .3 D .3-10.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5 B .6 C .7 D .811.关于x 的分式方程5222m x x +=--有增根,则m 的值为( ) A .2m = B .2m =- C .5m = D .5m =- 12.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3000300052x x -=+B .3000300052x x -=C .3000300052x x -=+D .3000300052x x-= 二、填空题13.(1)分解因式39x x -= ______________.(2)已知5a b +=,3ab =,则22a b += ________.(3)某种球形冠状病毒的直径大约为0.000000102m ,这个数用科学记数法表示为________________________.14.设m ,n 是实数,定义关于@的一种运算如下:22@()()m n m n m n =+--,则下列结论:①若0mn ≠,m@8n =,则223944163m m n n ÷=; ②@()@@m n k m n m k -=-;③不存在非零实数m ,n ,满足22@5m n m n =+;④若设2m ,n 是长方形的长和宽,若该长方形的周长固定,则当m n =时,@m n 的值最大.其中正确的是_____________.15.已知5a b +=,6ab =,b a a b+=______. 16.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.17.计算:262393x x x x -÷=+--______.18.如果2y =,那么y x =_______________________. 19.已知()22500,0a ab b a b ++=≠≠,则代数式b a a b +的值等于______. 20.若分式方程221422m x x x -=-+-有增根,则m 的值是________. 三、解答题21.某商店准备购进A ,B 两种商品, A 种商品每件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A ,B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?22.先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中 1x =. 23.先化简,再求值:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭,其中22150x x +-=. 24.应用题(步骤要完整)(1)一辆汽车开往距离出发地180km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min 到达目的地.求前一小时的行驶速度.(2)两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工快?25.(1)计算:()24342a b ab ÷-(2)解方程:1233x x x-=-- 26.今年新冠疫情期间,某公司计划将1200 套新型防护服进行加工,分给甲乙两个工厂,甲工厂单独完成任务,比乙工厂单独完成任务多用10天,乙工厂每天加工数量是甲的1.5倍.(1)求甲乙两个工厂每天分别能加工多少套?(2)如果甲工厂每天费用200元,乙工厂每天费用350元,从经济角度考虑,选用哪个工厂较好?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据分式的运算法则及分式的性质逐项进行计算即可.【详解】A :211a a a a+=+,故不符合题意; B :()()21111111111a a a a a a a a a a-+--⋅=⋅==-++,故不符合题意; C :1b a b a a b b a a b a b +=-=-----,故不符合题意; D :0.22100.7710++=--a b a b a b a b,故不符合题意; 故选:D .【点睛】本题考查分式的性质及运算,熟练掌握分式的性质及运算法则是解题的关键.2.B解析:B【分析】令分母等于0解出增根,去分母后,把增根代入求出k 值;去分母解出x ,因为解为正数,从而求出k 的范围【详解】解:令x-2=0,解得分式方程的增根是2去分母得:()42x x k --=- 代入增根2,解得k=−2去分母解得x=k+83∵分式方程解为正数 ∴k+803> 解得k 8>-综合所述k 的取值范围是:8k >-且2k ≠-故答案选B【点睛】本题主要考察了分式方程的增根,一元一次不等式等知识点,准确记住增根的解题步骤是解题关键.3.A解析:A【分析】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天列分式方程.【详解】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 根据题意得:6000600052x x -=, 故选:A .【点睛】此题考查分式方程的实际应用,正确理解题意找到等量关系从而列出方程是解题的关键. 4.A解析:A【分析】根据概率公式列出关于n 的分式方程,解方程即可得.【详解】 解:根据题意可得51n n ++=13, 解得:n =3,经检验n =3是分式方程的解,即放入口袋中的黄球总数n =3,故选:A .【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5.B解析:B【分析】先把分子因式分解,再约分即可.【详解】 解:22(1)1xy x x y y x x x+++==.故选:B .【点睛】本题考查了分式的约分,解题关键是先把分子因式分解,再和分母约分.6.A解析:A【分析】根据分式有意义分母不为零即可得答案.【详解】∵分式2x x -有意义, ∴x-2≠0,解得:x≠2.故选:A .【点睛】 本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.7.B解析:B【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择.【详解】 原式221(1)71211543(1)x x x x x x x -++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x-++=-++++ 1111x x x -=-++ 1x x =+ 又因为x 为正整数,所以1121x x ≤<+, 故选B .【点睛】 本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.8.D解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.9.D解析:D【分析】先将分式方程化为整式方程,再将1x =代入求解即可.【详解】解:原式化简为81233ax a x +=-,将1x =代入得81233a a +=-解得-3a =.当a =-3时a -x=-3-1=-4≠0∴a =-3故选则:D .【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.10.C解析:C【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值.【详解】 解分式方程2311a x x +=--,得53a x -=, ∵分式方程2311a x x+=--的解为非负数,∴503a -≥, 解得a ≤5, ∵关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩, ∵不等式组的解集为2y <-,∴2a ≥-,∵x-1≠0,∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个,故选:C .【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.11.D解析:D【分析】先把分式方程化为整式方程,再把增根代入整式方程,即可求解.【详解】5222m x x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5, 故选D .【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.12.D解析:D【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解.【详解】解:设原计划每小时生产口罩x 个,则实际每小时生产口罩2x 个,依题意得:3000300052x x-= 故选:D .【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二、填空题13.x (x +3)(x -3)19【分析】(1)先提取公因式x 再用平方差公式分解;(2)根据完全平方公式变形求解即可;(3)绝对值小于1的数可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不解析:x (x +3)(x -3) 19 71.0210-⨯【分析】(1)先提取公因式x ,再用平方差公式分解;(2)根据完全平方公式变形求解即可;(3)绝对值小于1的数可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:(1)39x x -=x(x 2-9)= x(x +3)(x -3);(2)∵5a b +=,3ab =,∴22a b +=(a+b)2-2ab=25-6=19;(3)0.000000102=71.0210-⨯.故答案为:(1)x(x +3)(x -3);(2)19;(3)71.0210-⨯.【点睛】本题考查了因式分解,完全平方公式,科学记数法等知识,熟练掌握各知识点是解答本题的关键.14.②③④【分析】根据所给新定义可得再分别判断【详解】解:∵①∴==8∴mn=2∴故错误;②=∴故正确;③∴∴当m-2n=0n=0∴m=0∴不存在非零实数mn 满足故正确;④∵m@n=(m+n )2-(m-解析:②③④【分析】根据所给新定义,可得22@()()4m n n m n m m n =-=+-,再分别判断.【详解】解:∵22@()()4m n n m n m m n =-=+-,①22m@()()8n m n m n =+--=,∴22()()m n m n +--=4mn =8,∴mn=2, ∴222239316241649334m m m n n n n m mn ÷=⨯==,故错误; ②()()22@()m n k m n k m n k -=+---+=4()m n k -, ()@@444m n m k mn mk m n k -=-=-,∴@()@@m n k m n m k -=-,故正确;③22@45m n mn m n ==+,∴22540m n mn +=-,∴()2220m n n -+=, 当m-2n=0,n=0,∴m=0,∴不存在非零实数m ,n ,满足22@5m n m n =+,故正确;④∵m@n=(m+n )2-(m-n )2=4mn ,(m-n )2≥0,则m 2-2mn+n 2≥0,即m 2+n 2≥2mn ,∴m 2+n 2+2mn≥4mn ,∴4mn 的最大值是m 2+n 2+2mn ,此时m 2+n 2+2mn=4mn ,解得m=n ,∴m@n 最大时,m=n ,故正确,故答案为:②③④.【点睛】本题考查因式分解的应用、整式的混合运算,分式的乘除,解题的关键是明确题意,找出所求问题需要的条件.15.【分析】原式整理成再整体代入即可求解【详解】∵∴故答案为:【点睛】本题主要考查分式的加减法解题的关键是掌握分式的加减运算法则和完全平方公式 解析:136【分析】 原式整理成222()2b a b a a b ab a b ab ab++-+==,再整体代入即可求解. 【详解】∵5a b +=,6ab =, ∴222()2b a b a a b ab a b ab ab ++-+==25266-⨯= 136=. 故答案为:136. 【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和完全平方公式. 16.6【分析】先设第一组有x 人则第二组人数是15x 人根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1根据等量关系列出方程即可【详解】解:设第一组有解析:6【分析】先设第一组有x 人,则第二组人数是1.5x 人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可.【详解】解:设第一组有x 人. 根据题意,得242711.5x x-=, 解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人,故答案为6.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验. 17.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++-333x x x =+++ 33x x +=+ 1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 18.【分析】根据二次根式的有意义的条件可求出x 进而可得y 的值然后把xy 的值代入所求式子计算即可【详解】解:∵x -3≥03-x≥0∴x=3∴y=﹣2∴故答案为:【点睛】本题考查了二次根式有意义的条件和负整 解析:19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x =3,∴y =﹣2, ∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.19.【分析】根据题目中的式子等式两边同时除以ab 然后变形即可解答本题【详解】解:∵a2+5ab+b2=0(a≠0b≠0)∴+5+=0∴=-5故答案为:-5【点睛】本题考查了分式的化简求值解题的关键是明确解析:5-【分析】根据题目中的式子,等式两边同时除以ab ,然后变形即可解答本题.【详解】解:∵a 2+5ab+b 2=0(a≠0,b≠0), ∴a b +5+b a =0, ∴b a a b+=-5,故答案为:-5.【点睛】本题考查了分式的化简求值,解题的关键是明确分式化简求值的方法.20.或;【分析】由分式方程有增根得到代入整式方程计算即可求出m 的值;【详解】解:∵去分母得:;∵分式方程有增根∴∴当时则;当时则;故答案为:或;【点睛】此题考查了分式方程的增根增根确定后可按如下步骤进行 解析:4或8-;【分析】由分式方程有增根,得到240x -=,代入整式方程计算即可求出m 的值;【详解】解:∵221422m x x x -=-+-, 去分母得:2(2)2m x x --=+; ∵分式方程221422m x x x -=-+-有增根, ∴240x -=,∴2x =±,当2x =时,则4m =;当2x =-时,则8m =-;故答案为:4或8-;【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.三、解答题21.(1)A 种商品每件的进价为50元,B 种商品每件的进价是30元;(2)该商店有5种进货方案.【分析】(1)设A 种商品每件的进价为x 元,则B 种商品每件的进价是(x−20)元,由题意得关于x 的分式方程,求解并检验,然后作答即可;(2)设购进A 种商品a 件,则购进B 种商品(40−a )件,由题意得关于a 的不等式组,解得a 的取值范围,再取整数解,则方案数可得.【详解】解:(1)设A 种商品每件的进价为x 元,则B 种商品每件的进价是(x−20)元, 由题意得:3000180020x x =-, 解得:x =50, 经检验,x =50是原方程的解且符合实际意义.50−20=30(元),答:A 种商品每件的进价为50元,B 种商品每件的进价是30元;(2)设购进A 种商品a 件,则购进B 种商品(40−a )件,由题意得:()5030401560402a a a a ⎧+-≤⎪⎨-≥⎪⎩, 解得:403≤a≤18, ∵a 取整数, ∴a 可为14,15,16,17,18,答:该商店有5种进货方案.【点睛】本题考查了分式方程和一元一次不等式组在实际问题中的应用,理清题中的数量关系是解题的关键.22.11x +【分析】根据分式的运算法则先进行化简,然后代入1x =计算即可.【详解】 原式22121111x x x x x x x -++⎛⎫=-÷ ⎪---⎝⎭, ()()()211111x x x x +-=⨯-+ 11x =+当1x =时,原式2==. 【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键.23.242x x +;415【分析】 先根据分式混合运算的法则把原式进行化简,再把22150x x +-=变形为2215x x +=,最后代入化简结果中进行计算即可.【详解】解:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭=22(2)4(2)(2)2x x x x x x x+--+÷-+- =22(2)(2)4(2)2x x x x x x x+-+-+⨯-- =242x x x x+++- =22444(2)x x x x x x ++--+ 242x x=+ 22150x x +-=2215x x ∴+=∴原式415=. 【点睛】 本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.24.(1)60km /h ;(2)乙队快【分析】(1)直接根据题意表示出变化前后的速度,进而利用所用时间得出等式求出答案; (2)由“甲队单独施工1个月完成了总工程的三分之一”知甲的工作效率为13,设乙队如果单独施工x 个月能完成总工程,则乙的工作效率为1x ,根据(甲的工作效率+乙的工作效率)×12=1-13,由此可列方程,从而问题得解. 【详解】解:(1)设前一小时的行驶速度为xkm/h ,根据题意可得:1801804011.560x x x -+=-,解得:x=60, 检验得:x=60是原方程的根,答:前一小时的行驶速度为60km/h .(2)设乙队如果单独施工x 个月能完成总工程.依题意列方程:( 113+x )×12=1-13. 解方程得:x=1.经检验:x=1是原分式方程的解.答:乙队单独施工1个月可以完成总工程,所以乙队的施工进度快.【点睛】本题考查了分式方程的应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据,找到关键描述语,找到合适的等量关系是解决问题的关键.25.(1)2a b ;(2)7x =是原方程的解.【分析】(1)单项式与单项式相除,系数与系数相除作为商的系数,相同字母分别相除,底数不变,指数相减计算即可;(2)等式两边同时乘以x-3化为整式方程,从而求出x 的值,再检验即可;【详解】(1)原式()432244a b a b =÷2a b =(2)解:方程左右两边乘()3x -得()123x x +=-126x x +=-7x =检验7x =时,30x -≠,∴7x =是原方程的解;【点睛】本题考查了单项式与单项式相除和解分式方程,掌握计算方法是解题的关键;26.(1)甲工厂每天能加工40套新型防护服,乙工厂每天能加工60套新型防护服;(2)选择甲工厂较好.【分析】(1)设甲工厂每天能加工x 套新型防护服,则乙工厂每天能加工1.5x 套新型防护服,根据工作时间=工作总量÷工作效率结合甲工厂单独完成任务比乙工厂单独完成任务多用10天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用总费用=每天需要的费用×工作时间,可分别求出选择甲、乙两工厂所需费用,比较后即可得出结论.【详解】解:(1)设甲工厂每天能加工x 套新型防护服,则乙工厂每天能加工1.5x 套新型防护服, 依题意得:12001200101.5x x-=, 解得:x=40, 经检验,x=40是原方程的解且符合题意,∴1.5x=60.答:甲工厂每天能加工40套新型防护服,乙工厂每天能加工60套新型防护服.(2)选择甲工厂所需费用为200×120040=6000(元);选择乙工厂所需费用为350×120060=7000(元).∵6000<7000,∴从经济角度考虑,选用甲工厂较好.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.。
基础内容 1因式分解 2分式的综合运算 及分式方程的训练解题 及重
基础内容: 1因式分解 2分式的综合运算 及分式方程的训练解题 及重要概念3不等式或不等式组的解法及双向应用一、因式分解的检测与补救1 3x 3ay 4z n+1与6xy 2z n 的公因式为2 (x-1)(x 2-1)与x 2+2x-3的公因式为 ;3 x 2+mxy+9y 2是完全平方式则m=4 x 2-24xy+m 是完全平方式则m=5 若2x 2-24x+m 有一个因式为x-1则m=6、△ABC 的三边满足a 2-2bc=c 2-2ab ,则△ABC 是( )A 、等腰三角形B 、直角三角形C 、等边三角形D 、锐角三角形7、已知2x 2-3xy+y 2=0(xy ≠0),则x y +y x的值是 8 给下列各式分解因式(1) 2xy-x 2-y 2+1 (2) ma+nb+mb+na (3) 21372+--x x (4) ab 2x 2-2ab 2xy+ab 2y 2(5) 2324--x x (6) 37622--ab b a (7) m 2n 3b n+2 - n 3m 2a n+2 (8) x 2-6x-72(9) 9p-6p(m+n)+p(m+n)2 (10) 32286y xy y x -+-(11)(a-2b)2+3a-6b-10 (12)(x 2+3x-3)(x 2+3x+4)-8(13).1n n 1n a 41a a -++-(n 是大于1的自然数) (14)2244c a a -+-(15)2224)1(a a -+9 计算 (1)34×1.78+25×1.78+41×1.78 (2) (4mn-m 2-4n 2)÷(2n-m)(3)(x 2-7xy+12y 2)÷(x-3) (4)(x 3+6x 2+11x+6)÷(x+3) 10 解方程(1)x 3 = x (2)x 3+x=6x 2+6(3) 14x 2+5x-1=0 (4) x 3+x=2x 2+211 思考题(1)已知的值 求 ab b a b a 2122=+=+,的值2)(b a -; 的值44b a + (2)已知,a 2 +b 2+4a-12b=-40求(1)a ,b 的值(2)a 2+b 2的值(3)证明: 2a 2 -4a+3 恒正 (用配方法)12.若5mx x 2-+能在有理数范围内分解成两个一次因式的积,则m=_________ 13 已知2kx x 4-+有因式1x x 2--,求k 的值和另一个因式14、设n 为正整数,且64n -7n 能被57整除,证明:21278+++n n 是57的倍数一基础知识知识点回顾:1、分式的定义: 。
八年级数学下册《分式》综合水平测试人教新课标版
内蒙古鄂尔多斯市达拉特旗第十一中学八年级数学下册 第16章《分式》综合水平测试 人教新课标版一、选择题:(每小题2分,共20分)1.下列各式:2b a -,x x 3+,πy +5,()1432+x ,b a b a -+,)(1y x m-中,是分式的共有( )A.1个B.2个C.3个D.4个2.下列判断中,正确的是( )A .分式的分子中一定含有字母B .当B =0时,分式B A 无意义C .当A =0时,分式B A 的值为0(A 、B 为整式)D .分数一定是分式3.下列各式正确的是( )A .11++=++b a x b x aB .22x y x y =C .()0,≠=a mana m n D .a m a n m n --= 4.下列各分式中,最简分式是( )A .()()y x y x +-8534B .y x x y +-22C .2222xy y x y x ++D .()222y x y x +- 5.化简2293mm m --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m m -3 6.若把分式xyy x 2+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍7.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A .9448448=-++x xB .9448448=-++xx C .9448=+x D .9496496=-++x x 8.已知230.5x y z ==,则32x y z x y z +--+的值是( )A .17 B.7 C.1 D.13 9.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.4710.已知226a b ab +=,且0a b >>,则a b a b +-的值为( ) A .2 B .2± C .2 D .2±二、填空题:(每小题3分,共24分)11.分式392--x x 当x _________时分式的值为零,当x ________时,分式xx 2121-+有意义. 12.利用分式的基本性质填空:(1)())0(,10 53≠=a axy xy a (2)()1422=-+a a 13.分式方程1111112-=+--x x x 去分母时,两边都乘以 . 14.要使2415--x x 与的值相等,则x =__________. 15.计算:=+-+3932a a a __________. 16. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 17.若分式231-+x x 的值为负数,则x 的取值范围是__________. 18. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______. 三、解答题:(共56分)19.计算:(1)11123x x x++ (2)3xy 2÷x y 2620. 计算: ()3322232n m n m --⋅21. 计算(1)168422+--x x x x (2)m n n n m m m n n m -+-+--223. 解下列分式方程.(1)x x 3121=- (2)1412112-=-++x x x24. 计算:(1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111x x x x ++++++-。
(完整word版)苏教版八年级数学下册《分式》综合水平测试题
澄韵教育助你成长!八年级数学下册?分式?综合讲解姓名: 班级: 学校:一、选择题: 〔每题 2 分,共 20 分〕 1.以下各式: a b 2 , x 3 5 x , y 3 2 , 1 x , 4 a a b b 1 , ( ) x y m中,是分式的共有〔 〕个 个 个 个2.以下判断中,正确的选项是〔 〕A .分式的分子中必然含有字母B .当 B =0 时,分式A B没心义C .当 A =0 时,分式D .分数必然是分式A B的值为 0〔A 、B 为整式〕 3.以下各式正确的选项是〔 〕A . a b x x a b 1 1B . y x 2y2 x n na C . , a 0m maD . n m n m aa4.以下各分式中,最简分式是〔 〕A .34 85x xy y B . 2 y xx y 22 2x y C . 2 2 x y xy2 2x yD . 2x y 5.化简2m 93m2m的结果是〔 〕A.m m3B. m m 3C.m m3D.3 mm6.假设把分式x y 2xy中的 x 和 y 都扩大 3 倍,那么分式的值〔 〕A .扩大 3 倍B .不变C .减小 3 倍D .减小 6 倍7.A 、B 两地相距 48 千米,一艘轮船从 A 地顺流航行至 B 地,又马上从 B 地逆流返回 A地,共用去 9 小时,水流速度为 4 千米/时,假设设该轮船在静水中的速度为 x 千米/ 时,那么可列方程〔 〕48 48 A.9x 4 x 448 48 B.94 x 4 x48 C.4 9x96 96 D.9x 4 x 48.x y z2 3 ,那么x 3y z2x y z的值是〔〕澄韵教育助你成长!1A .1 7D.139.一轮船从 A 地到B 地需 7天,而从 B 地到A 地只需 5天,那么一竹排从 B 地漂到 A 地需要的天数是〔 〕A .12 10.2 26a b ab ,且 a b 0,那么a b a b的值为〔 〕A . 2B . 2C .2D . 2二、填空题: 〔每题 3 分,共 24 分〕11.分式 2 xx 9 3当 x _________时分式的值为零,当 x ________时,分式 11 2x 2x有意义.12.利用分式的根本性质填空:3a〔1〕 ,(a 0)5xy 10axy〔2〕 a 2a2 4113.分式方程 1 1x 1 x 1 x1 21去分母时,两边都乘以 .14.要使x54与 的值相等,那么 x =__________.1 x2 15.计算: 2 a a93 a 3 __________.x3 2 m x2无解,那么 m 的值为 __________.16. 假设关于 x 的分式方程x 317.假设分式x 3x 1 2的值为负数,那么 x 的取值范围是 __________. 18.2x y 4y 22x 1 y 4y 1,那么的2 4y y x 值为______. 三、解答题: 〔共 56 分〕 19.计算:〔1〕1 1 1x 2x 3x2〔2〕3xy6 yx220. 计算:22 23 3 32m n m n21. 计算〔1〕 2 x 2 x 4x 8x 16〔2〕2m n n m m m nnn m22. 先化简,后求值:2 2a a a a ( ) ( ) 1,其中2 2 2 2a b a 2 ab b a b a b2 a ,b 3323. 解以下分式方程. 〔1〕1 1x 2 3x〔2〕1 2 x 1 x 1 x42124. 计算: 〔1〕1 x 1 11〔2〕1 x x 1 1 x 1 x 1221x4 x425.x 为整数,且2 2x 3 3 x2x2x189为整数,求所有吻合条件的 x 的值.澄韵教育助你成长!326.先阅读下面一段文字,尔后解答问题:一个批发兼零售的文具店规定:凡一次购置铅笔 301 支以上〔包括 301 支〕可以按批发价付款;购置 300 支以下〔包括 300 支〕只能按零售价付款.现有学生小王购置铅笔,若是给初2 2 三年级学生每人买 1 支,那么只能按零售价付款,需用1m 元,〔m 为正整数,且m 12>100〕若是多买 60 支,那么可按批发价付款,同样需用m 1 元.设初三年级共有x名学生,那么①x 的取值范围是;②铅笔的零售价每支应为元;③批发价每支应为元.〔用含x 、m 的代数式表示〕.27.某工人原方案在规准时间内恰好加工 1500 个零件,改良了工具和操作方法后,工作效率提高为原来的 2 倍,因此加工 1500 个零件时,比原方案提前了 5 小时,问原方案每小时加工多少个零件?28. A 、B 两地相距 20 km,甲骑车自 A 地出发向 B 地方向行进 30 分钟后,乙骑车自 B 地出发,以每小时比甲快 2 倍的速度向 A 地驶去,两车在距 B 地 12 km 的 C 地相遇,求甲、乙两人的车速 .答案一、选择题1.C 2.B 3.C 4.C 5.B 6.C 7.B 8.A 9.B 10.A 二、填空题〔每题 3 分,共 24 分〕1 11.=- 3、≠2 12. 26a 、a 2 13.(x 1)( x 1) 14.6 15.a 316.3 17.-1<x <23 18.2〔提示:设2 4y y m,原方程变形为x m2x 1 m 1,方程两边同时乘以(x 1)(m 1) ,得x(m 1) (x 1)(m 2) ,化简得m x =2,即2 4y y m =2.三、解答题〔共 56 分〕19.〔1〕原式=6 3 26x 6x 6x =116x〔2〕原式= 23xyxg =26y122x20.原式= 2 4 3 34m n g3 m n =1 7 12m n21.〔1〕原式=x( x 4)2(x 4)=xx4〔2〕原式=2m n m nm n m n m n =2m n m nm n=mm n22.原式=2 2a a a(a b) a( ) [ ] 12 2 2a b (a b) (a b)(a b) a b=2 2 2a ab a a(a b) a[ ] 12(a b) (a b)( a b)=ab (a b)( a b)2(a b) ab1=a b a ba b a b =2aa b当2a ,b 3 时,原式=323223( 3)=43113=41123.〔1〕方程两边同时乘以3x( x 2) ,得3x x 2,解得x =-1,把x =-1 代入3x( x 2) ,3x(x 2) ≠0,∴原方程的解,∴原方程的解是x =-1.澄韵教育助你成长!5〔2〕方程两边同乘以最简公分母 (x 1)( x 1) ,得 (x 1) 2(x 1) 4,解这个整式方程得, x 1,检验:把 x 1代入最简公分母 (x 1)( x 1),( x 1)( x 1) =0,∴ x 1不是原方程的解,应舍去,∴原方程无解.24.〔1〕原式=11 x 1g = x 1 xx 1 1 x 1g =x 1 x x x 1g =1 x 1 x〔2〕原式=1 x 1 x2 42 4(1 x)(1 x) (1 x)(1 x) 1 x 1 x=2 2 42 2 41 x 1 x 1 x=2 22(1 x ) 2(1 x ) 42 2 2 2 4(1 x )(1 x ) (1 x )(1 x ) 1 x =2 22 2x 2 2x 42 2 4(1 x )(1 x ) 1 x=4 44 41 x 1 x=4 44(1 x ) 4(1 x )4 4 4 4(1 x )(1 x ) (1 x )(1 x )=4 44(1 x ) 4(1 x )1 8x=881 x2 2 2x 1825.原式= 2x 3 x 3 x 9 2(x 3) 2( x 3) (2x 18)= 2x 92x 62 x9 =2( x 3) (x 3)( x 3)=22 2 ,∵x 3x3 3x2x 2 x 189 是整数,∴x 23 是整数,∴ x 3的值可能是 ±1 或±2,分别解得 x =4, x =2, x =5, x =1,吻合条件的 x 可以是1、2、4、5.26.① 241≤x ≤300;②2m 1 x , 2 mx160 27.设原方案每小时加工 x 个零件,依照题意得:1500 15005x 2x,解得 x =150,经检验, x =150 是原方程的根,答:设原方案每小时加工 150 个零件.28.设甲速为 xkm/h ,乙速为 3xkm/h ,那么有20 12 x 30 60 x12 3x,解之得 x 8,经检验,x =8 是原方程的根,答:甲速为 8km/h ,乙速为 24km/h.。
因式分解与分式测试
因式分解与分式测试题一、选择题1.下列各式:(1﹣x),,,,其中分式共有()A.1个 B.2个 C.3个 D.4个2.下列分式中,最简分式是()A.B.C.D.3.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)24.下列各式从左到右的变形错误的是()A.(y﹣x)2=(x﹣y)2B.﹣a﹣b=﹣(a+b)C.(a﹣b)3=﹣(b﹣a)3D.﹣m+n=﹣(m+n)5.使分式有意义的x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥26.当x=()时,与互为相反数.A.x=2 B.x=6 C.x=﹣6 D.x=37.把多项式2x2+8x+8分解因式,结果正确的是()A.(2x+4)2B.2(x+4)2C.2(x﹣2)2D.2(x+2)28.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=39.如果9x2+kx+25是一个完全平方式,那么k的值是()A.15 B.±5 C.30 D.±3010.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x11.如图甲,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形如图乙,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.(a+2b)(a﹣b)=a2+ab﹣2b2 B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)12.将m2(a﹣2)+m(2﹣a)分解因式,正确的是()A.(a﹣2)(m2﹣m)B.m(a﹣2)(m+1)C.m(a﹣2)(m﹣1)D.m(2﹣a)(m﹣1)13.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.14.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A. B. C. D.二、填空题15.若代数式的值为零,则x=.16.计算:(﹣)÷=.17.若x﹣y=5,xy=6,则xy2﹣x2y=.18.关于x的分式方程=﹣1的解是负数,则m的取值范围是.19.若(m+n)人完成一项工程需要m天,则n个人完成这项工程需要天.三、解答题20.把下列各式因式分解:(1)m(m﹣5)﹣2(5﹣m)2;(2)﹣4x3+8x2﹣4x.(3)9(m+n)2﹣(m﹣n)2(4)81a4﹣72a2b2+16b4.21.(1)1﹣)÷(+)÷(﹣x﹣1);(2)先化简,再求值:÷(﹣),其中a=﹣1.22.解方程:﹣3.+=﹣1.23.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?参考答案与试题解析一、选择题(共20小题,满分60分)1.下列各式:(1﹣x),,,,其中分式共有()A.1个 B.2个 C.3个 D.4个【解答】解:(1﹣x)是整式,不是分式;,的分母中均不含有字母,因此它们是整式,而不是分式.分母中含有字母,因此是分式.故选:A.2.下列分式中,最简分式是()A.B.C. D.【解答】解:A、原式为最简分式,符合题意;B、原式==,不合题意;C、原式==,不合题意;D、原式==,不合题意,故选:A.3.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【解答】解:mx2﹣m=m(x﹣1)(x+1),x2﹣2x+1=(x﹣1)2,多项式mx2﹣m与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.6.下列各式从左到右的变形错误的是()A.(y﹣x)2=(x﹣y)2B.﹣a﹣b=﹣(a+b)C.(a﹣b)3=﹣(b﹣a)3 D.﹣m+n=﹣(m+n)【解答】解:A、(y﹣x)2=(x﹣y)2,正确;B、﹣a﹣b=﹣(a+b),正确;C、(a﹣b)3=﹣(b﹣a)3,正确;D、﹣m+n=﹣(m﹣n)而不是﹣(m+n),故本选项错误;故选:D.7.使分式有意义的x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥2【解答】解:根据题意得:x﹣2≠0,解得:x≠2.故选:C.8.当x=()时,与互为相反数.A.x=2 B.x=6 C.x=﹣6 D.x=3【解答】解:根据题意得:+=0,去分母得:6﹣3x+2x=0,解得:x=6,经检验x=6是分式方程的解,故选:B.9.把多项式2x2+8x+8分解因式,结果正确的是()A.(2x+4)2B.2(x+4)2C.2(x﹣2)2D.2(x+2)2【解答】解:2x2+8x+8=2(x2+4x+4)=2(x+2)2.故选:D.10.若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3【解答】解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=3,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选:A.13.如果9x2+kx+25是一个完全平方式,那么k的值是()A.15 B.±5 C.30 D.±30【解答】解:∵(3x±5)2=9x2±30x+25,∴在9x2+kx+25中,k=±30.故选:D.14.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x【解答】解:=﹣===x,故选:D.16.如图甲,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形如图乙,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.(a+2b)(a﹣b)=a2+ab﹣2b2 B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)【解答】解:图甲的面积=大正方形的面积﹣空白处正方形的面积=a2﹣b2;图乙中矩形的长=a+b,宽=a﹣b,图乙的面积=(a+b)(a﹣b).所以a2﹣b2=(a+b)(a﹣b).故选:D.18.将m2(a﹣2)+m(2﹣a)分解因式,正确的是()A.(a﹣2)(m2﹣m)B.m(a﹣2)(m+1)C.m(a﹣2)(m﹣1)D.m(2﹣a)(m﹣1)【解答】解:m2(a﹣2)+m(2﹣a),=m2(a﹣2)﹣m(a﹣2),=m(a﹣2)(m﹣1).故选:C.19.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.B.C.+4=9 D.【解答】解:顺流时间为:;逆流时间为:.所列方程为:+=9.故选:A.20.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A. B. C. D.【解答】解:设规则瓶体部分的底面积为S平方厘米.倒立放置时,空余部分的体积为bS立方厘米,正立放置时,有墨水部分的体积是aS立方厘米,因此墨水的体积约占玻璃瓶容积的=.故选:A.二、填空题(共4小题,共12分)21.若代数式的值为零,则x=3.【解答】解:由题意得,=0,解得:x=3,经检验的x=3是原方程的根.故答案为:3.22.计算:(﹣)÷=.【解答】解:(﹣)÷=[﹣]×=[﹣]×=×=.故答案为:.23.若x﹣y=5,xy=6,则xy2﹣x2y=﹣30.【解答】解:∵x﹣y=5,xy=6,∴xy2﹣xy2=﹣xy(x﹣y)=﹣6×5=﹣30,故答案为:﹣30.16.关于x的分式方程=﹣1的解是负数,则m的取值范围是m>﹣1,m≠0.14.(3.00分)若(m+n)人完成一项工程需要m天,则n个人完成这项工程需要天.三、解答题(本大题共5小题,45分)25.(8.00分)把下列各式因式分解:(1)m(m﹣5)﹣2(5﹣m)2;(2)﹣4x3+8x2﹣4x.【解答】解:(1)原式=m(m﹣5)﹣2(m﹣5)2=(m﹣5)(m﹣2m+10)=﹣(m﹣5)(m﹣10)(2)原式=﹣4x(x2﹣2x+1)=﹣4x(x﹣1)2【解答】解:(1)9(m+n)2﹣(m﹣n)2=[3(m+n)]2﹣(m﹣n)2=[3(m+n)+(m﹣n)][3(m+n)+(m﹣n)]=4(2m+n)(m+2n);(2)81a4﹣72a2b2+16b4=(9a2﹣4b2)2=(3a+2b)2(3a﹣2b)2.26.(11.00分)(1)计算:(1﹣)÷(2)先化简,再求值:÷(﹣),其中a=﹣1.【解答】解:(1)原式=•=x+1;(2)原式=•=,当a=﹣1时,原式=﹣.(2)原式=÷=•(x﹣1)=;27.(5.00分)解方程:﹣3.【解答】解1=﹣(1﹣x)﹣3(x﹣2)1=﹣1+x﹣3x+62x=4x=2经检验,x=2不是原分式方程的解.(2)去分母得:4﹣(x+2)(x+1)=﹣x2+1,即4﹣x2﹣3x﹣2=﹣x2+1,移项合并得:3x=1,解得:x=,经检验x=是分式方程的解.29.(13.00分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.。
(必考题)初中数学八年级数学下册第五单元《分式与分式方程》测试(答案解析)
一、选择题1.若关于x 的分式方程3111m x x -=--的解是非负数,则m 的取值范围是( ) A .4m ≥-,1m ≠B .4m ≥-且3m ≠-C .2m ≥且3m ≠D .4m >-2.下列运算中,正确的是( ) A .211a a a+=+ B .21111a a a -⋅=-+ C .1b a a b b a +=-- D .0.22100.7710++=--a b a b a b a b3.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( )A .93010-⨯米B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米 4.化简221x x x ++÷(1-11x +)的结果是( ) A .11x + B .11x - C .x+1 D .x-15.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .26.下列变形不正确...的是( ) A .1a b a b a b-=-- B .1a b a b a b +=++ C .221a b a b a b +=++ D .221-=-+a b a b a b7.若关于x 的方程1044m x x x--=--无解,则m 的值是( ) A .2- B .2 C .3- D .3 8.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( ) A .扩大到原来的3倍 B .缩小到原来的13 C .保持不变 D .无法确定9.若分式293x x -+的值为0,则x 的值为( ) A .4 B .4- C .3或-3 D .310.若关于x 的方分式方程222x m x x=---有非负整数解,且关于y 的不等式组()()2123513y y y y m +⎧+≥⎪⎨⎪-<-+⎩有且只有2个整数解,则所有符合条件的正整数m 的和为( ) A .5 B .7 C .8 D .911.已知2,1x y xy +==,则y x x y +的值是( ) A .0 B .1 C .-1 D .212.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1- B .1 C .3 D .3-二、填空题13.函数332x y x -=-中自变量x 的取值范围是_________. 14.关于x 的分式方程211m x =-+无解,则m 的取值是_______. 15.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______.16.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.17.已知x a y b =⎧⎨=⎩,是方程352x y -=的解,则代数式352a b +的值为______. 18.计算22111m m m---,的正确结果为_____________. 19.要使分式2x x 1+有意义,那么x 应满足的条件是________ . 20.如果方程322x m x x-=-- 无解,则m=___________. 三、解答题21.观察下列各个等式的规律: 第一个等式:111122=-⨯;第二个等式:1112323=-⨯; 第三个等式:1113434=-⨯;…… (1)直接写出第四个等式;(2)证明:()()()()1121122n n n n n n +=++++; (3)探究并计算:111124466820182020+++⋯+⨯⨯⨯⨯. 22.解方程:21113x x x++=.23.先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中 1x =. 24.某手机专卖店的一张进货单上有如下信息:A 款手机进货单价比B 款手机多800元,花38400元购进A 款手机的数量与花28800元购进B 款手机的数量相同.(1)求A ,B 两款手机的进货单价分别是多少元?(2)某周末两天销售单上的数据,如表所示:(3)根据(1)(2)所给的信息,手机专卖店要花费28000元购进A ,B 两款手机若干部,问有哪几种进货方案?根据计算说明哪种进货方案获得的总利润最高.25.(1(101320203-⎛⎫--+ ⎪⎝⎭. (2)先化简,再求值:21211x x ++-,其中2021x =. 26.先阅读,再解答问题:恒等变形,是代数式求值的一个很重要的方法.利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.例如:当1x =+时,求32122x x x --+的值.为解答这道题,若直接把1x =+代入所求的式中,进行计算,显然很麻烦,我们可以通过恒等变形,对本题进行解答.方法:将条件变形,因1x =+,得1x -=算转化为有理数运算.由1x -=2220x x --=,即222x x -=,222x x =+. 原式)(2221222222x x x x x x x x =+--+=+--+=. 请参照以上的解决问题的思路和方法,解决以下问题:(1)若1x =,求322431x x x +-+的值;(2)已知2x =432295543x x x x x x ---+-+的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先去分母得到整式方程m +3=x ﹣1,再由整式方程的解为非负数得到m +4≥0,由整式方程的解不能使分式方程的分母为0得到m +4≠1,然后求出不等式的公共部分得到m 的取值范围.【详解】解:去分母得m +3=x ﹣1,整理得x =m +4,因为关于x 的分式方程311m x x-=--1的解是非负数, 所以m +4≥0且m +4≠1,解得m ≥﹣4且m ≠﹣3,故选:B .【点睛】 本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.2.D解析:D【分析】根据分式的运算法则及分式的性质逐项进行计算即可.【详解】A :211a a a a+=+,故不符合题意;B :()()21111111111a a a a a a a a a a-+--⋅=⋅==-++,故不符合题意; C :1b a b a a b b a a b a b +=-=-----,故不符合题意; D :0.22100.7710++=--a b a b a b a b,故不符合题意; 故选:D .【点睛】本题考查分式的性质及运算,熟练掌握分式的性质及运算法则是解题的关键. 3.B解析:B【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可.【详解】解:1纳米=0.000 000 001米=10-9米,30纳米=30×10-9米=3×10-8米.故选:B .【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数. 4.A解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键. 5.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,故选:D .【点睛】 本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.6.C解析:C【分析】A 、B 两项利用同分母分式的加减法法则计算,约分即可得到结果;C 、D 通过能否继续进行因式分解,继续化简,即可得到答案.【详解】 A.=1a b a b a b a b a b --=---,故此项正确; B.=1a b a b a b a b a b ++=+++,故此项正确; C.22a b a b ++为最简分式,不能继续化简,故此项错误; D. ()()221a b a b a b a b a b a b--==-+-+,故此项正确; 故选C .【点睛】此题考查了分式的加减法、约分,熟练掌握运算法则是解本题的关键.7.D解析:D【分析】根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 8.A解析:A【分析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案.【详解】222(3)93333()x x x x y x y x y==⨯+++, 故分式的值扩大到原来的3倍,故选:A .【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键. 9.D解析:D【分析】先根据分式的值为0可得290x ,再利用平方根解方程可得3x =±,然后根据分式的分母不能为0即可得.【详解】 由题意得:2903x x -=+, 则290x ,即29x =,由平方根解方程得:3x =±,分式的分母不能为0,30x ∴+≠,解得3x ≠-,则x 的值为3,故选:D .本题考查了分式的值、分式有意义的条件、利用平方根解方程,掌握理解分式的值是解题关键.10.B解析:B【分析】由题意根据分式方程去分母转化为整式方程,由解为非负整数以及不等式组只有2个整数解,确定出符合条件m 的值,求出它们的和即可.【详解】解:去分母得:()22x x m =-+,解得:4x m =-,由解为非负整数解,得到40m -≥,且42m -≠,解得:4m ≤且2m ≠, 不等式组整理得:242y y m ⎧⎪⎨-⎪≥-⎩<, 由不等式组只有2个整数解,得到y=-2,-1,即1024m --≤<, 解得:2≤m <6,综上:2<m≤4则符合题意m=3,4,它们的和为7.故选:B .【点睛】本题考查分式方程的解以及一元一次不等式组的整数解,熟练掌握相关运算法则是解答本题的关键. 11.D解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.12.D解析:D先将分式方程化为整式方程,再将1x =代入求解即可.【详解】解:原式化简为81233ax a x +=-,将1x =代入得81233a a +=-解得-3a =.当a =-3时a -x=-3-1=-4≠0∴a =-3故选则:D .【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.二、填空题13.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式3x-2≠0即可解得x 的取值范围;【详解】根据题意有3x-2≠0解得故自变量x 的取值范围是故答案为:【点睛】本题考查了分式有意义的条件 解析:23x ≠【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式3x-2≠0,即可解得x 的取值范围;【详解】根据题意,有3x-2≠0, 解得23x ≠, 故自变量x 的取值范围是23x ≠, 故答案为:23x ≠. 【点睛】 本题考查了分式有意义的条件,正确理解分式分母不为0时有意义是解题的关键. 14.【分析】分式方程去分母转化为整式方程由分式方程无解确定出x 的值代入整式方程计算即可求出m 的值【详解】解:去分母得:由分式方程无解得x+1=0即x=-1把x=-1代入得:解得:m=0故答案为:m=0【解析:0m =【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:21m x =--,由分式方程无解,得x+1=0,即x=-1,把x=-1代入21m x =--得:2110m =-=,解得:m=0,故答案为:m=0.【点睛】本题主要考查分式方程的解,理解分式方程的增根产生的原因是解题的关键.15.【分析】设甲乙丙三种口罩的进价分别为xyz 根据题意可分别求出甲乙丙三种口罩的利润再根据当销售出的甲乙丙口罩件数之比为1:3:2时的总利润为20和当销售出的甲乙丙口罩件数之比为3:2:2时的总利润为2 解析:83【分析】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,根据题意可分别求出甲、乙、丙三种口罩的利润.再根据当销售出的甲、乙、丙口罩件数之比为1:3:2时的总利润为20%和当销售出的甲、乙、丙口罩件数之比为3:2:2时的总利润为24%,列出等式,求出x 、y 、z 之间的关系.最后即可求出只购进甲、乙两种口罩,使总利润为28%时的甲、乙两种口罩的数量比.【详解】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,则销售甲口罩的利润为30%x ,乙口罩的利润为20%y ,丙口罩的利润为5%z .当销售出的甲、乙、丙口罩件数之比为1:3:2时,设甲口罩售出a 件,则乙口罩售出3a 件,丙口罩售出2a 件. 根据题意可列等式:30%320%25%20%32a x a y a z a x a y a z++=++, 整理得:x =3z .当销售出的甲、乙、丙口罩件数之比为3:2:2时,设甲口罩售出3b 件,则乙口罩售出2b 件,丙口罩售出2b 件. 根据题意可列等式:330%220%25%24%322b x b y b z b x b y b z++=++, 整理得:9x-4y =19z .∴y =2z . 现只购进甲、乙两种口罩,使总利润为28%,设甲口罩售出A 件,乙口罩售出B 件. 则30%20%28%A x B y A x B y +=+,即30%320%228%32A z B z A z B z ⨯⨯+⨯⨯=⨯+⨯.∴83A B =. 故答案为:83. 【点睛】本题考查分式方程的实际应用.根据题意列出每一步的分式方程是解答本题的关键. 16.6【分析】先设第一组有x 人则第二组人数是15x 人根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1根据等量关系列出方程即可【详解】解:设第一组有解析:6【分析】先设第一组有x 人,则第二组人数是1.5x 人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可.【详解】解:设第一组有x 人. 根据题意,得242711.5x x-=, 解得x=6.经检验,x=6是原方程的解,且符合题意.答:第一组有6人,故答案为6.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验. 17.1【分析】将代入方程有代入即可计算【详解】解:将代入方程有3a-5b=2有将代入有:故答案为:1【点睛】本题考查了二元一次方程的解及分式的化简其中根据二元一次方程得到从而使用整体代入思想解题是关键解析:1【分析】将x a y b =⎧⎨=⎩,代入方程352x y -=,有253b a +=,代入352a b +即可计算. 【详解】解:将x a y b=⎧⎨=⎩,代入方程352x y -=,有3a -5b =2,有352a b =+, 将352a b =+代入352a b +有:52152b b +=+ 故答案为:1.【点睛】本题考查了二元一次方程的解及分式的化简,其中根据二元一次方程得到352a b =+从而使用整体代入思想解题是关键.18.【分析】根据分式的加减法运算法则平方差公式因式分解计算即可解答【详解】解:===故答案为:【点睛】本题考查分式的加减运算平方差公式因式分解熟记公式掌握分式的加减运算法则是解答的关键 解析:11m - 【分析】根据分式的加减法运算法则、平方差公式因式分解计算即可解答.【详解】 解:22111m m m --- =22111m m m +-- =1(1)(1)m m m ++- =11m -, 故答案为:11m -. 【点睛】本题考查分式的加减运算、平方差公式因式分解,熟记公式,掌握分式的加减运算法则是解答的关键.19.【分析】根据分式有意义的条件是分母不等于零可得答案【详解】由题意得:解得:故答案为:【点睛】本题主要考查了分式有意义的条件关键是掌握分式有意义的条件是分母不等于零解析:1x ≠-【分析】根据分式有意义的条件是分母不等于零可得答案.【详解】由题意得:10x +≠,解得:1x ≠-,故答案为:1x ≠-.【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零. 20.1【分析】先去分母把分式方程转化为整式方程再根据原方程无解可得x=2然后把x=2代入整式方程求解即可【详解】解:去分母得x -3=﹣m ∵原方程无解∴x -2=0即x=2把x=2代入上式得2-3=﹣m 所以解析:1【分析】先去分母把分式方程转化为整式方程,再根据原方程无解可得x =2,然后把x =2代入整式方程求解即可.【详解】解:去分母,得x -3=﹣m ,∵原方程无解,∴x -2=0,即x =2,把x =2代入上式,得2-3=﹣m ,所以m =1.故答案为1.【点睛】本题考查了分式方程的无解问题,属于常考题型,正确理解题意、掌握解答的方法是关键.三、解答题21.(1)145=⨯1145-;(2)证明见详解;(3)10094040 【分析】(1)由已知等式知,连续整数乘积的倒数等于这两个数倒数差,据此可得;(2)根据以上所得规律可得第n 个和n +1个式子,再根据分式的混合运算顺序和运算法则验证左右两边是否相等可得.(3)根据题目中的例子和所求式子的特点,只要提出14即可用例子的方法计算出所求的式子的值;【详解】解:(1)第四个等式为145=⨯1145-; 故答案为:145=⨯1145- (2)证明:左边=()()()111111112112n n n n n n n n +=-+-++++++122(2)1n n n n =-=++=右边, ∴()()()()1121122n n n n n n +=++++. (3)111124466820182020+++⋯+⨯⨯⨯⨯=11111()412233410091010⨯+++⋯+⨯⨯⨯⨯ =11111111(1)42233410091010⨯-+-+-+⋯+- =1111(0)401-⨯ =10094040. 【点睛】 本题主要考查了数字变化规律问题和分式的加减运算,解决此类问题的关键是运用由特殊到一般的思想,找到一般规律,要善于前后联系,挖掘规律.22.43x =- 【分析】先去分母将分式方程化为整式方程,求解整式方程并验根即可.【详解】解:去分母得:3(21)13x x ++=,去括号得:6313x x ++=,移项合并同类项得:34x =-,系数化为1得:43x =-. 经检验43x =-是该方程的根. 【点睛】本题考查解分式方程.注意解分式方程一定要验根.23.11x +,2【分析】根据分式的运算法则先进行化简,然后代入1x =计算即可.【详解】 原式22121111x x x x x x x -++⎛⎫=-÷ ⎪---⎝⎭, ()()()211111x x x x +-=⨯-+ 11x =+当1x =时,原式==.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键.24.(1)A,B两款手机的进货单价分别为3200元,2400元;(2)A,B两款手机的销售单价分别为3700元,2700元;(3)方案见解析,购进A款手机8部,B款手机1部时,总利润最高【分析】(1)设A,B两款手机的进货单价分别为x元,y元,根据题意列出方程,解之即可;(2)设A,B两款手机的销售单价分别为a元,b元,根据表格中的销售总额列出方程组,解之即可;(3)设购进A款手机m部,B款手机n部,根据花费28000元购进A,B两款手机若干部列出二元一次方程,求出整数解,再分别算出利润,可得结果.【详解】解:(1)设A,B两款手机的进货单价分别为x元,y元,由题意可得:800 3840028800x yx y-=⎧⎪⎨=⎪⎩,解得:x=3200,y=2400,∴A,B两款手机的进货单价分别为3200元,2400元;(2)设A,B两款手机的销售单价分别为a元,b元,由题意可得:5840100 6741100 a ba b+=⎧⎨+=⎩,解得:a=3700,b=2700,∴A,B两款手机的销售单价分别为3700元,2700元;(3)设购进A款手机m部,B款手机n部,则有3200m+2400n=28000,即:4m+3n=35,∵m,n均为非负整数,∴m=2,n=9或m=5,n=5或m=8,n=1,当m=2,n=9时,总利润w=500×2+300×9=3700元,当m=5,n=5时,总利润w=500×5+300×5=4000元,当m=8,n=1时,总利润w=500×8+300×1=4300元,∴购进A款手机8部,B款手机1部时,总利润最高.【点睛】本题考查了二元一次方程组,二元一次方程的应用,解题的关键是找到每一问的等量关系,列出方程.25.(1)-1;(2)11x-;12020【分析】(1)根据绝对值化简、负指数幂和零指数幂计算即可;(2)先化简分式,再代入求解即可;【详解】(1)解:原式331=--,1=-;(2)解:原式221211x x x -=+-- 1(1)(1)x x x +=+- 11x =-, 当2021x =时,原式11202112020==-; 【点睛】本题主要考查了实数的混合运算和分式化简求值,准确计算是解题的关键.26.(1);(2)32 【分析】(1)变形已知条件得到x +1x 2+2x =1,再利用降次和整体代入的方法把原式化为−x +1,然后把x 的值代入计算即可;(2)变形已知条件,把2x =+x 2−4x =−1或x 2=4x−1,再利用降次和整体代入的方法化简原式,从而得到原式的值.【详解】解:(1)∵1x =,∴x +1,∴(x +1)2=2,即x 2+2x +1=2,∴x 2+2x =1,∴原式=2x (x 2+2x )−3x +1=2x−3x +1=−x +1=−−1)+1=;(2)∵2x =+∴x−2,∴(x−2)2=3,即x 2−4x +4=3,∴x 2−4x =−1或x 2=4x−1,∴原式=()()()241419415513x x x x x-------++=12(16x2−8x+1−4x2+x−36x+9−5x+5)=12[12(4x−1)−48x+15]=12(48x−12−48x+15)=12×3=32.【点睛】本题考查了分式与整式的化简求值:化简求值题,一定要先化简再代入求值.使用整体代入和降幂的方法更简洁.。
因式分解 分式和分式方程综合测评
因式分解、分式和分式方程综合测评一、选择题(共30分,每题3分)1、(2014安徽)下列四个多项式中,能因式分解的是( )A 、a 2+1B 、a 2—6a+9C 、x 2+5yD 、x 2—5y2、(2014海南)下列式子从左到右变形是因式分解的是( )A 、a 2+4a-21=a (a+4)-21B 、a 2+4a-21=(a-3)(a+7)C 、(a-3)(a+7)=a 2+4a-21D 、a 2+4a-21=(a+2)2-253、(2014浙江金华)把代数式1822-x 分解因式,结果正确的是( )A 、)9(22-xB 、 2)3(2-x C 、 )3)(3(2-+x x D 、)9)(9(2-+x x 4、下列各式的约分运算中,正确的是( ).A 、 x 6x 2 =x 3B 、 a+c b+c = a bC 、a+b a+b = 0D 、 a+b a+b=15、(湖南衡阳2014)下列因式分解中正确的个数为( )①()3222x xy x x x y ++=+; ②()22442x x x ++=+;③()()22x y x y x y -+=+- A 、3个 B 、2个 C 、1个 D 、0个6、若把分式2x y x y+-中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小6倍7、分式方程313-=+-x m x x 有增根,则m 为( ) A 、0 B 、1 C 、3 D 、68、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( )A 、1,3-==c bB 、2,6=-=c bC 、4,6-=-=c bD 、6,4-=-=c b9、 (2014年福建漳州)若代数式x 2+ax 可以分解因式,则常数a 不可以取( )A 、 ﹣1B 、 0C 、 1D 、 210、 某农场开挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是 ( )A 、448020480=--x x B 、204480480=+-x x C 、420480480=+-x x D 、204804480=--x x 二、填空题(共36分,每空3分)11、(2014•济南)分解因式:=++122x x _____________________;(2014•白银)分解因式:2a 2﹣4a+2= _________________;(2014年山东东营) 分解因式:3x 2y ﹣27y= _________________.12、(湖北黄冈2014)分解因式:=-+22)12(a a ; (2014山东潍坊)分解因式:2x(x-3)一8= ___________ .13、(2014年贵州黔东南)因式分解:x 3﹣5x 2+6x= .14、要使15-x 与24-x 的值相等,则x= .15、已知432z y x ==,则=+--+z y x z y x 232 . 16.已知2+x a 与2-x b 的和等于442-x x ,则a= ,b= . 17、若关于x 的分式方程3232-=--x m x x 有增根,则增根为__________ . 18、分式392--x x 当x __________时分式的值为零. 三、解答题(共54分)19、(每题3分,共9分)(1)(2014•滨州)计算:•(2)(2014四川绵阳)化简:(1﹣)÷(﹣2).(3)先化简,再求值:(x -1x -x -2x +1)÷2x 2-x x 2+2x +1,其中x 满足x 2-x -1=0.20、解方程:(每题3分,共6分)(1)141-22-=x x (2)13132=-+--x x x21、(4分)利用分解因式证明:127525- 能被120整除.22、(7分)大正方形的周长比小正方形的周长长96厘米,它们的面积相差960平方厘米。
分式方程的解法综合试题
分式方程的解法综合试题1. 解下列分式方程:(1)$\frac{3}{2x-1}+\frac{1}{x-2}=2$首先,为了得到通分,我们可以将等式两边的分数化成相同的分母。
在这个例子中,我们可以将两个分数通分为$(2x-1)(x-2)$的分母,即:$\frac{3(x-2)}{(2x-1)(x-2)}+\frac{1(2x-1)}{(2x-1)(x-2)}=2$化简后得到:$3(x-2) + (2x-1) = 2(2x-1)(x-2)$展开并合并同类项后:$3x-6+2x-1=4x^2-8x-2x+4$再次合并同类项:$5x-7=4x^2-10x+4$将所有项移到一边得到:$4x^2-15x+11=0$现在,我们可以用因式分解或者配方法解这个方程。
(2)$\frac{2}{x-1}+\frac{1}{x+2}=3$同样地,我们首先将分式通分,即将两个分数的分母乘积作为公共分母:$\frac{2(x+2)}{(x-1)(x+2)}+\frac{1(x-1)}{(x-1)(x+2)}=3$将分式相加并化简得到:$2(x+2)+(x-1)=3(x-1)(x+2)$展开并合并同类项:$2x+4+x-1=3x^2-3x+6$再次合并同类项:$3x+3=3x^2-3x+6$将所有项移到一边得到:$3x^2-6x+3-3x-6=0$现在,我们可以继续使用因式分解或配方法来解这个方程。
2. 解下列分式方程组:$\frac{x}{2}+\frac{y}{3}=4$$\frac{x}{3}+\frac{y}{2}=5$首先,我们可以通过乘以公共倍数的方式,将方程组中的分式方程化成整数方程。
在这个例子中,我们可以将第一个方程乘以6,将第二个方程乘以6,得到:$3x+2y=24$$2x+3y=30$接下来,我们可以使用消元法或代入法来求解这个方程组。
让我们使用消元法。
将第一个方程乘以2,将第二个方程乘以3,得到:$6x+4y=48$$6x+9y=90$将第一个方程的两倍减去第二个方程,得到:$6x+4y-6x-9y=48-90$化简后得到:$-5y=-42$解得:$y=\frac{42}{5}$将$y$的值代入任意一个方程中,我们可以求得$x$的值:$2x+3(\frac{42}{5})=30$$2x+\frac{126}{5}=30$$2x=\frac{150-126}{5}$$2x=\frac{24}{5}$$x=\frac{12}{5}$所以,这组分式方程的解为$x=\frac{12}{5}$,$y=\frac{42}{5}$。
因式分解与分式试卷(含答案)
因式分解及分式与分式方程测试题⒈下列约分正确的是( )A 、326x xx = B 、0=++y x y x C 、x xy x y x 12=++ D 、214222=y x xy2、下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x xxx x C D x x x-=-+=-+=--=+-3.若对于3±=x 以外的一切数98332-=--+x xx n x m 均成立,则mn 的值是( ) (A )8 (B )8- (C )16 (D )16-A. 3B. 3C. 2 D .-25 (2012山东威海3分)化简22x 1+x 93x--的结果是( ) A. 1x 3- B. 1x+3 C. 13x - D. 23x+3x 9-6(2013年深圳市)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他。
已知爸爸比小朱的速度快100米/分,求小朱的速度。
若设小朱速度是x 米/分,则根据题意所列方程正确的是( )A.1014401001440=--x x B. 1010014401440++=x xC. 1010014401440+-=x xD. 1014401001440=-+xx7 (2012广西钦州3分)如果把5xx+y的x 与y 都扩大10倍,那么这个代数式的值( ) A .不变 B .扩大50倍 C .扩大10倍 D .缩小到原来的1108、已知0634=--z y x ,072=-+z y x (0≠xyz ),则22222275632zy x z y x ++++的值为( ) A 、0 B 、1 C 、2 D 、不能确定4.9、已知x 是整数,且918232322-++-++x x x x 为整数,则所有符合条件的x 的值的和为( )A 、12B 、15C 、18D 、2010 (2012湖北武汉3分)一列数a 1,a 2,a 3,…,其中a 1= 1 2,a n = 11+a n -1(n 为不小于2的整数),则a 4=( )A . 5 8B . 8 5C . 13 8D . 813选择题11、分式:1x-1 、1x-2的最简公分母为:____________________;12、若04322=--b ab a ,则ba的值是 。
北师版八年级数学下册第三章《分式》综合能力测试题
八年级数学下册第三章《分式》综合能力测试题时间:100分钟 满分:100分一、选择题(每题3分,共30分) 1.要使分式21-x 有意义,x的值为( )A. x ≠2B. x ≠-2C.-2<x <2D.x ≠2且x ≠-2 2.下列判断中,正确的是( )A.分式的分子中一定含有字母B.对于任意有理数x ,分式225x +总有意义C.分数一定是分式D.当A=0时,分式BA的值为0(A 、B )为整式) 3.如果x>y>0,那么xyx y -++11的值是( )A.零B.正数C.负数D.整数4.若a ,b 为有理数,要使分式ba 的值是非负数,则a ,b 的取值是 ( )A. a ≥0,b ≠0B.a ≥0,b >0C.a ≤0,b <0D.a ≥0,b >0或a ≤0,b <05.下列各式:①()x -151;②34-πx ;③222y x -;④x x +1;⑤xx 25.其中是分式的有( )A.2个B.3个C.4个D.5个 6.下列各式,正确的是( )A.326x xx = B.b a x b x a =++ C.1-=-+-y x y x D.b a b a b a +=++22 7.若ab ba s -+=,则b为( )A.1++s as a B.1+-s as a C.2-+s as a D.1-+s as a8.有一段坡路,小明骑自行车上坡的速度为每小时1v 千米,下坡时的速度为每小时2v 千米,则他在这段路上、下坡的平均速度是( )A.221v v +千米/时 B.2121v v v v +千米/时 C.21212v v v v +千米/时 D.无法确定9.若把分式xyy x 2+(x >0、y >0)中的x 和y 都扩大原来的3倍,那么分式的值( )A.扩大至原来的3倍B.缩小至原来的31C.缩小至原来的6倍D.不变10.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A.9448448=-++x x B.9448448=-++xx C.9448=+x D.9496496=-++x x二、填空题(每题3分,共18分) 11.在分式11+-x x 中,x =__________时,分式无意义;当x =________时,分式的值为零。
(好题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(包含答案解析)(3)
一、选择题1.若关于x 的分式方程3111m x x -=--的解是非负数,则m 的取值范围是( ) A .4m ≥-,1m ≠B .4m ≥-且3m ≠-C .2m ≥且3m ≠D .4m >- 2.已知113x y -=,则代数式21422x xy y x xy y ----的值( ) A .4 B .9 C .-4 D .-83.若关于x 的一元一次不等式组312(2)213x x x a +≤-⎧⎪-⎨<⎪⎩的解集为x≤-5,且关于x 的分式方程24233ax x x ++=--有非负整数解,则符合条件的所有整数a 的和为( ) A .-6 B .-4 C .-2 D .04.关于分式2634m n m n--,下列说法正确的是( ) A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变5.已知x 为整数,且分式2221x x --的值为整数,满足条件的整数x 可能是( ) A .0、1、2 B .﹣1、﹣2、﹣3C .0、﹣2、﹣3D .0、﹣1、﹣2 6.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y-中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式 7.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >- B .1m ≠ C .1m D .1m >-且1m ≠ 8.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每名同学比原来少分摊3元车费.设原来参加游览的学生共x 人.则所列方程是( )A .18018032x x -=- B .18018032x x-=+ C .18018032x x -=- D .18018032x x -=+ 9.若a b ,则下列分式化简中,正确的是( )A .22a a b b +=+B .22a a b b -=-C .33a a b b =D .22a a b b= 10.对于两个非零的实数a ,b ,定义运算*如下:11a b b a*=-.例如:113443*=-.若2x y *=,则xy x y -的值为( ) A .12 B .2 C .12- D .2-11.将0.50.0110.20.03x x +-=的分母化为整数,得( ) A .0.50.01123x x +-= B .5051003x x +-= C .0.50.01100203x x +-= D .50513x x +-= 12.关于x 的分式方程5222m x x +=--有增根,则m 的值为( ) A .2m = B .2m =- C .5m = D .5m =-二、填空题13.计算(﹣22a b)3÷(﹣4a b )2的结果是__. 14.我们知道,假分数可以化为整数与真分数的和的形式,例如:31122=+,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;如果假分式2412+++x x x 的值为整数,则x 的负整数值为______. 15.方程31x x x x -=+的解是______. 16.已知234a b c ==(0abc ≠,a b c +≠),则=+a b c a b c -+-_____.17.如果2y ,那么y x =_______________________.18.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品?根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________.(2)乙型机器人每小时搬运产品_______________kg .19.如果方程322x m x x-=-- 无解,则m=___________. 20.计算33(2)2----=______.三、解答题21.如图,“丰收1号”小麦试验田是边长为m(10)a a >的正方形减去一个边长为1m 的正方形蓄水池后余下的部分,“丰收2号”小麦试验田是边长为(1)m a -的正方形.(1)第一年,两块试验田分别收获400kg 小麦.①这两块试验田中,单位产量高的试验田是_______________;②高的单位产量比低的单位产量多了多少;(2)经过一年的试验后,第二年,两块试验田产量都比前一年有增长,并且“丰收1号”试验田增产更多.已知两块试验田的单位产量相同且“丰收1号”比“丰收2号”多收获100kg ,求“丰收1号”试验田第二年的产量.22.解方程:32122x x x =--- 23.2020年底建成通车的保泸高速公路是进入云南省怒江州的第一条高速公路,它对完善云南高速公路网、巩固怒江州脱贫攻坚成果、带动滇西区域经济发展具有重大意义.保泸高速公路全长约85公里,比目前普通公路缩短了65公里,通行时间也比原来缩短了2个小时,若高速公路通行的平均速度是普通公路通行的平均速度的1.7倍,求保泸高速公路通车后的通行平均速度是多少?24.(1)因式分解:3xy 3﹣6x 2y 2+3x 3y .(2)解分式方程:221x x --+1=﹣342x -. 25.基本运算:(1)解分式方程242332x x x -=-- (2)若202102021m m -=+,先化简再求值 53(2)224m m m m -++÷--26.(1)计算:()24342a b ab ÷-(2)解方程:1233x x x-=--【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先去分母得到整式方程m +3=x ﹣1,再由整式方程的解为非负数得到m +4≥0,由整式方程的解不能使分式方程的分母为0得到m +4≠1,然后求出不等式的公共部分得到m 的取值范围.【详解】解:去分母得m +3=x ﹣1,整理得x =m +4,因为关于x 的分式方程311m x x-=--1的解是非负数, 所以m +4≥0且m +4≠1,解得m ≥﹣4且m ≠﹣3,故选:B .【点睛】 本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.2.A解析:A【分析】 由11x y=3,变形得y -x =3xy ,然后整体代入代数式,计算化简,即可得到结论. 【详解】解:由11x y =3,得y x xy-=3,即y -x =3xy ,x -y =-3xy , 则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xy xy xy----=4. 故选:A .【点睛】本题主要考查了分式化简求值,利用整体代入法是解决本题的关键.3.D解析:D【分析】先解不等式组,根据不等式组的解集得到a 的范围,再解分式方程,根据分式方程的解为非负数得到a 的值,即可求解.【详解】解:不等式组整理得:523x x a -⎧⎨<+⎩, 由解集为5x -,得到235a +>-,即4a >-,分式方程去分母得:()2234ax x --+-=,整理得:(2)12a x -=, 解得:122x a=-, 由x 为非负整数,且3x ≠,得到21a -=,2,3,6,12,解得1a =或0或1-或4-或10-4a >-,1a 或0或1-,符合条件的所有整数a 的和为1010+-=.故选:D .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.4.D解析:D【分析】根据分式的基本性质即可求出答案.【详解】解:A 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m n m n m n⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意; C 、226212=32438m n m n m n m n-⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意;D 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 5.C解析:C【分析】根据分式有意义的条件得到x ≠±1,把分式化简,根据题意解答即可.【详解】解:由题意得,x 2﹣1≠0,解得,x ≠±1,2221x x --=2(1)(1)(1)x x x -+-=21x +, 当21x +为整数时,x =﹣3、﹣2、0、1, ∵x ≠1, ∴满足条件的整数x 可能是0、﹣2、﹣3,故选:C .【点睛】本题考查的是求分式的值、分式有意义的条件,掌握分式的分母不为0是解题的关键. 6.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误; B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y -中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.7.D解析:D【分析】分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可.【详解】去分母得:m-1=2x-2,解得:x=12+m , 由方程的解为正数,得到12+m >0,且12+m ≠1, 解得:1m >-且1m ≠,故答案为:1m >-且1m ≠【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 8.D解析:D【分析】设原来参加游览的学生共x 人,增加2人后的人数为(x+2)人,用租价180元除以人数,根据后来每名同学比原来少分摊3元车费列方程.【详解】设原来参加游览的学生共x 人,由题意得18018032x x -=+, 故选:D .【点睛】此题考查分式的实际应用,正确理解题意是解题的关键.9.C解析:C【分析】根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】 ∵a b A 、22a a b b +≠+ ,故该选项错误; B 、22a a b b -≠- ,故该选项错误; C 、33a a b b= ,故该选项正确;D 、22a a b b≠ ,故该选项错误; 故选:C .【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;10.A解析:A【分析】根据新定义,把2x y *=转化为分式的运算即可.【详解】解:根据定义运算*,2x y *=,112y x-=, 去分母得,2x y xy -=, 代入xy x y-得, 122xy xy =, 故选:A .【点睛】本题考查了新定义运算以及分式运算,解题关键是根据新定义运算找到x 、y 之间的关系,再整体代入.11.D解析:D【分析】根据分式的基本性质求解.【详解】 解:将0.50.0110.20.03x x +-=的分母化为整数,可得50513x x +-=. 故选:D .【点睛】本题考查一元一次方程的化简,熟练掌握分式的基本性质解题关键. 12.D解析:D【分析】先把分式方程化为整式方程,再把增根代入整式方程,即可求解.5222m x x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5, 故选D .【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.二、填空题13.﹣【分析】原式先计算乘方运算再计算除法运算即可得到结果【详解】解:原式===故答案为:﹣【点睛】本题考查含乘方的分式乘除混合运算熟练掌握含乘方的分式乘除混合运算的法则和顺序是解题关键解析:﹣42a b【分析】原式先计算乘方运算,再计算除法运算即可得到结果.【详解】 解:原式=3262816a a b b-÷ =3262816a b b a -⨯ =42a b -. 故答案为:﹣42a b . 【点睛】 本题考查含乘方的分式乘除混合运算,熟练掌握含乘方的分式乘除混合运算的法则和顺序是解题关键.14.【分析】先把分式化为真分式再根据分式的值为整数确定的值【详解】解:分式的值为整数或的负整数值为故答案为:【点睛】本题考查了利用分式的性质对分式进行变形解题的关键是理解真分式的定义解析:1-、3-、5-【分析】先把分式化为真分式,再根据分式的值为整数确定x 的值.解:2412+++x x x ()223=2x x +-+ 3=22x x +-+ 分式2412+++x x x 的值为整数, 21x ∴+=±或3x =±1x ∴=-、3-、5-、1∴x 的负整数值为1x =-、3-、5-,故答案为:1-、3-、5-.【点睛】本题考查了利用分式的性质对分式进行变形,解题的关键是理解真分式的定义. 15.【分析】两边同时乘以x(x+1)化分式方程为整式方程求解即可【详解】∵∴(x+1)(x-3)=∴-2x-3=∴2x+3=0∴x=经检验x=是原方程的解故填【点睛】本题考查了分式方程的解法熟练把分式方 解析:32-. 【分析】 两边同时乘以x(x+1),化分式方程为整式方程求解即可.【详解】 ∵31x x x x -=+, ∴(x+1)(x-3)= 2x ,∴2x -2x-3= 2x ,∴2x+3=0,∴x=32-, 经检验,x=32-是原方程的解, 故填32-. 【点睛】 本题考查了分式方程的解法,熟练把分式方程转化为整式方程是解题的关键,验根是解题的一个重要环节,不能忽视.16.3【分析】设=k 用k 表示出abc 的值代入代数式计算化简即可【详解】设=k则a=2kb=3kc=4k ∴故答案为:3【点睛】此题考查分式的化简求值设设=k 用k 表示出abc 的值是解题的关键解析:3【分析】 设234a b c ===k ,用k 表示出a 、b 、c 的值,代入代数式计算化简即可. 【详解】 设234a b c ===k ,则a=2k ,b=3k ,c=4k , ∴2343=3+234a b c k k k k a b c k k k k-+-+==-+-, 故答案为:3.【点睛】 此题考查分式的化简求值,设设234a b c ===k ,用k 表示出a 、b 、c 的值是解题的关键. 17.【分析】根据二次根式的有意义的条件可求出x 进而可得y 的值然后把xy 的值代入所求式子计算即可【详解】解:∵x -3≥03-x≥0∴x=3∴y=﹣2∴故答案为:【点睛】本题考查了二次根式有意义的条件和负整 解析:19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x =3,∴y =﹣2, ∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.18.【分析】(1)设乙型机器人每小时搬运产品根据甲型机器人搬运所用时间与乙型机器人搬运所用时间相等列方程;设甲型机器人搬运所用时间为小时根据甲型机器人比乙型机器人每小时多搬运列方程;(2)设乙型机器人每 解析:80060010x x =+80060010yy =+【分析】(1)设乙型机器人每小时搬运xkg 产品,根据甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等列方程;设甲型机器人搬运800kg 所用时间为y 小时,根据甲型机器人比乙型机器人每小时多搬运10kg 列方程;(2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+,解方程即可. 【详解】(1)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 设甲型机器人搬运800kg 所用时间为y 小时,由题意得80060010y y=+, 故答案为:80060010x x=+,80060010y y =+; (2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 解得x=30,经检验,x=30是方程的解,答:乙型机器人每小时搬运产品30kg .故答案为:30.【点睛】此题考查分式方程的实际应用,正确理解题意,利用直接设未知数的方法和间接设未知数的方法列方程解决问题,注意:解分式方程需检验.19.1【分析】先去分母把分式方程转化为整式方程再根据原方程无解可得x=2然后把x=2代入整式方程求解即可【详解】解:去分母得x -3=﹣m ∵原方程无解∴x -2=0即x=2把x=2代入上式得2-3=﹣m 所以解析:1【分析】先去分母把分式方程转化为整式方程,再根据原方程无解可得x =2,然后把x =2代入整式方程求解即可.【详解】解:去分母,得x -3=﹣m ,∵原方程无解,∴x -2=0,即x =2,把x =2代入上式,得2-3=﹣m ,所以m =1.故答案为1.【点睛】本题考查了分式方程的无解问题,属于常考题型,正确理解题意、掌握解答的方法是关键.20.【分析】先根据负整数次幂进行化简然后再运算即可【详解】解:==故答案为【点睛】本题考查了负整数次幂的计算法则灵活应用负整数次幂的计算法则是解答本题的关键 解析:14- 【分析】先根据负整数次幂进行化简,然后再运算即可.【详解】解:33(2)2---- =1188-- =14-. 故答案为14-. 【点睛】本题考查了负整数次幂的计算法则,灵活应用负整数次幂的计算法则是解答本题的关键. 三、解答题21.(1)①“丰收2号”;②()()280011kg a a +-;(2) ()5050a kg + 【分析】(1)①先用a 表示出两块试验田的面积,比较出其大小,再根据其产量相同可知面积较小的单位面积产量高即可得出结论;②根据①中两块试验田的面积及其产量,求出其差即可;(2)可设“丰收2号”试验田第二年的产量是kg ,则“丰收1号”试验田第二年的产量是(x +100)kg ,根据两块试验田的单位产量相同列方程求解即可.【详解】解:(1)①∵“丰收1号”小麦的试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1)米的正方形, ∴“丰收1号”小麦的试验田的面积=21a -,“丰收2号”小麦的试验田的面积=()21a -, ∵()()221121a a a ---=-, 由题意可知,a >1,∴2(a -1)>0,即()2211a a ->-∴这两块试验田中,单位产量高的试验田是“丰收2号”,故答案为:“丰收2号”;②∵“丰收1号”小麦的试验田的面积=21a -,“丰收2号”小麦的试验田的面积=()21a -,两块试验田的小麦都收获了400kg ,∴“丰收2号”小麦的试验田小麦的单位面积产量高,∴()()()()()()()222240014001400400800111111a a kg a a a a a a +---==--+-+-, 答:高的单位产量比低的单位产量多了()()280011kg a a +-;(2)设“丰收2号”试验田第二年的产量是xkg ,则“丰收1号”试验田第二年的产量是(x +100)kg , 由题意得:()22x 10011x a a +=--, 解得:x =50a -50,则x +100=50a +50,答:“丰收1号”试验田第二年的产量是(50a +50) kg .【点睛】本题考查一元一次方程的应用、因式分解的应用,熟练掌握运用因式分解解决问题是解题的关键.22.76x =. 【分析】 方程两边同时乘以2(x-1),把分式方程转化为整式方程求解即可.【详解】解:方程两边同时乘以2(x-1),得234(1)x x =--,去括号,得2344x x =-+,移项,合并同类项,得67x =,系数化为1,得76x =, 经检验,76x =是原方程的根,所以原方程的解为76x =. 【点睛】 本题考查了分式方程的解法,熟练确定最简公分母是解题的关键,解后要验根是注意事项,不能漏落.23.保泸高速公路通车后的通行平均速度每小时85公里【分析】设普通公路平均速度为每小时x 公里,行驶高速公路所用时间比行驶普通公路所用时间少2个小时,列方程解之即可.【详解】解:设普通公路平均速度为每小时x 公里,则保泸高速公路通车后的通行平均速度是每小时1.7x 公里.85658521.7x x+-=, 50x =,经检验:50x =是原方程的解且符合实际.保泸高速公路通车后的通行平均速度:1.75085⨯=(公里/小时).答:保泸高速公路通车后的通行平均速度每小时85公里.【点睛】本题考查分式方程解应用题,掌握利用分式方程解应用题的方法与步骤,抓住行驶高速公路所用时间比行驶普通公路所用时间少2个小时列方程是解题关键.24.(1)3xy (x ﹣y )2;(2)分式方程无解【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)原式=3xy (y 2﹣2xy +x 2)=3xy (x ﹣y )2;(2)去分母得:2x ﹣4+4x ﹣2=﹣3,解得:x =12, 经检验x =12是增根, 所以原分式方程无解.【点睛】此题考查了解分式方程,以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.25.(1)2x =;(2)2(3)m -+;-4048【分析】(1)去分母将分式方程转化为整式方程()2423x x +=- 解得2x = 经检验即可; (2)由202102021m m -=+且20210m +≠,可得2021=0m -且-2021m ≠,求出2021m = ,将分式通分后利用乘法约分化简为最简分式 ,把m 代入求值即可 .【详解】(1)解:去分母得()2423x x +=- ,解得2x = ,经检验2x =是原方程的解 ,∴原方程的解是2x =;(2)解:由202102021m m -=+且20210m +≠得,2021=0m -,=2021m ±,-2021m ≠,2021m = , 原式=(2)(2)52(2)223m m m m m m +--⎡⎤+⨯⎢⎥---⎣⎦ 292(2)23m m m m--=⨯-- (3)(3)2(2)23m m m m m-+-=⨯-- 23m =-+(), 把2021m =代入得,原式=22024-⨯=-4048.【点睛】本题考查分式方程的解法,分式值为零求出条件,化简分式求值,掌握分式方程的解法,分式值为零求出条件,化简分式求值的步骤是解题关键.26.(1)2a b ;(2)7x =是原方程的解.【分析】(1)单项式与单项式相除,系数与系数相除作为商的系数,相同字母分别相除,底数不变,指数相减计算即可;(2)等式两边同时乘以x-3化为整式方程,从而求出x 的值,再检验即可;【详解】(1)原式()432244a b a b =÷2a b =(2)解:方程左右两边乘()3x -得()123x x +=-126x x +=-7x =检验7x =时,30x -≠,∴7x =是原方程的解;【点睛】本题考查了单项式与单项式相除和解分式方程,掌握计算方法是解题的关键;。
因式分解与分式测试题及答案-用卷
因式分解与分式测试题1一、选择题(本大题共17小题,共51.0分)1.下列各式中,能用完全平方公式进行因式分解的是()A. B. C. D.2.下列分解因式正确的是()A. B.C. D.3.把多项式分解因式,得,则a,b的值分别是A. ,;B. ,;C. ,;D. ,;4.若多项式x2+2ax+4能用完全平方公式进行因式分解,则a值为()A. 2B.C.D.5.多项式12ab3c+8a3b的各项公因式是()A. B. 4abc C. D. 4ab6.把8a3-8a2+2a进行因式分解,结果正确的是()A. B. C. D.7.将下列多项式因式分解,结果中不含有因式a+1的是()A. B.C. D.8.下列从左到右的变形,是因式分解的是()A. B.C. D.9.下列四个分式中,是最简分式的是()A. B. C. D.10.若分式的值为零,那么x的值为()A. 或B.C.D.11.下列各式:,,,,(x+y)中,是分式的共有()A. 1个B. 2个C. 3个D. 4个12.分式与的最简公分母是()A. abB. 3abC.D.13.若分式的值为零,则x的值是()A. 1B.C.D. 214.使分式有意义的x的取值范围是()A. B. C. D.15.化简-等于()A. B. C. D.16.下列各式中,从左到右变形正确的是()A. B. C. D.17.分式中的x,y同时扩大2倍,则分式的值()A. 不变B. 是原来的2倍C. 是原来的4倍D. 是原来的二、填空题(本大题共7小题,共21.0分)18.因式分解:a2b-4ab+4b=______.19.把多项式ax2+2a2x+a3分解因式的结果是______.20.已知a+b=3,ab=-1,则3a+ab+3b= ______ ,a2+b2= ______ .21.分解因式:x3-4x=______.22.分解因式:9-b2=______.23.已知x+y=10,xy=16,则x2y+xy2的值为______ .24.已知=1,则的值等于______.三、计算题(本大题共4小题,共24.0分)25.分解因式:(1)6xy2-9x2y-y3;(2)16x4-1.26.化简:÷•.27.(1)(1-)÷.(2)+÷.(3)(-)÷(1-)(4)-a-1.28.分解因式:(1)3x-12x2(2)a2-4ab+4b2(3)n2(m-2)-n(2-m)(4)(a2+4b2)2-16a2b2.答案和解析1.【答案】D【解析】【分析】根据完全平方公式,可得答案.本题考查了因式分解,熟记公式是解题关键.【解答】解:4x2+4x+1=(2x+1)2,故D符合题意;故选D.2.【答案】C【解析】【分析】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式各式分解因式后,即可作出判断.【解答】解:A.原式=(a+3)(a-3),错误;B.原式=-a(4-a),错误;C.原式=(a+3)2,正确;D.原式=(a-1)2,错误;故选C.3.【答案】A【解析】【分析】此题考查了因式分解-十字相乘法,以及多项式乘以多项式,熟练掌握运算法则是解本题的关键.因式分解的结果利用多项式乘以多项式法则计算,再利用多项式相等的条件求出a与b的值即可.【解答】解:根据题意得:x2+ax+b=(x+1)(x-3)=x2-2x-3,则a=-2,b=-3,故选A4.【答案】C【解析】【分析】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.利用完全平方公式的结构特征判断即可确定出a的值.【解答】解:∵多项式x2+2ax+4能用完全平方公式进行因式分解,∴2a=±4,解得:a=±2.故选C.5.【答案】D【解析】【分析】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“-1”.根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:12ab3c+8a3b=4ab(3b2c+2a2),4ab是公因式.故选D.6.【答案】C【解析】解:8a3-8a2+2a=2a(4a2-4a+1)=2a(2a-1)2.故选:C.首先提取公因式2a,进而利用完全平方公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.7.【答案】C【解析】【分析】本题考查了因式分解的意义与方法,熟练掌握因式分解的方法是解决问题的关键.先把各个多项式分解因式,即可得出结果.【解答】∵a2-1=(a+1)(a-1),a2+a=a(a+1),a2+a-2=(a+2)(a-1),(a+2)2-2(a+2)+1=(a+2-1)2=(a+1)2,∴结果中不含有因式a+1的是选项C.故选C.8.【答案】D【解析】解:A、(3-x)(3+x)=9-x2,是整式的乘法运算,故此选项错误;B、(y+1)(y-3)≠(3-y)(y+1),不符合因式分解的定义,故此选项错误;C、4yz-2y2z+z=2y(2z-zy)+z,不符合因式分解的定义,故此选项错误;D、-8x2+8x-2=-2(2x-1)2,正确.故选:D.分别利用因式分解的定义分析得出答案.此题主要考查了因式分解的定义,正确把握定义是解题关键.9.【答案】A【解析】【分析】本题考查最简分式的概念,涉及因式分解,分式的基本性质,本题属于基础题型.分子分母没有公因式即可为最简分式.【解答】解:A.,最简分式;B.原式==x+1,故B不是最简分式;C.原式=,故C不是最简分式;D.原式==a+b,故D不是最简分式.故选A.10.【答案】C【解析】解:∵分式的值为零,∴x2-1=0,x+1≠0,解得:x=1.故选:C.直接利用分式的值为0,则分子为0,分母不能为0,进而得出答案.此题主要考查了分式的值为零的条件,正确把握定义是解题关键.11.【答案】C【解析】【分析】本题考查了分式的定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式,根据分式的定义进行判断.【解答】解:下列各式:,,,,(x+y)中,是分式为,,(x+y),一共有3个分式,故选C.12.【答案】C【解析】【分析】本题考查了最简公分母,掌握最简公分母的求法是解题的关键.先找系数的最小公倍数3,再找字母的最高次幂.【解答】解:分式与的最简公分母是3a2b2.故选C.13.【答案】A【解析】【分析】此题主要考查了分式的值为零,正确把握相关定义是解题关键,直接利用分式的值为零,则分子为零,分母不为零,进而得出答案.【解答】解:∵分式的值为零,∴|x|-1=0,x+1≠0,解得:x=1.故选:A.14.【答案】B【解析】【分析】此题主要考查了分式有意义的条件,正确记忆相关定义是解题关键;直接利用分式有意义则其分母不为零,进而得出答案.【解答】解:∵使分式有意义,∴x-3≠0,解得:x≠3.故选B.15.【答案】B【解析】解:原式=+=+==,故选:B.原式第二项约分后两项通分并利用同分母分式的加法法则计算即可得到结果.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.16.【答案】C【解析】【分析】此题主要考查了分式的基本性质,关键是熟练掌握分式的基本性质.根据分式的基本性质对各选项进行逐一分析即可.【解答】解:A.,故本选项错误;B.,原式不成立,故本选项错误;C.原式成立,故本选项正确;D.=,故本选项不正确.故选C.17.【答案】B【解析】【分析】本题考查了分式的基本性质:分式的分子分母都乘以(或除以)一个不为0的数(或式),分式的值不变.根据分式的基本性质得到x,y同时扩大2倍时,分子扩大4倍,分母扩大2倍,则分式的值是原来的2倍.【解答】解:∵分式中的x,y同时扩大2倍,∴分子扩大4倍,分母扩大2倍,∴分式的值是原来的2倍.故选B.18.【答案】b(a-2)2【解析】解:原式=b(a2-4a+4)=b(a-2)2,故答案为:b(a-2)2原式提取b,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.【答案】a(x+a)2【解析】解:ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)2首先提取公因式a,然后将二次三项式利用完全平方公式进行分解即可.本题考查了因式分解的知识,解题的关键是能够首先确定多项式的公因式,难度不大.20.【答案】8;11.【解析】【分析】此题主要考查了完全平方公式以及分组分解法分解因式,正确将原式变形是解题关键.直接利用分组分解法将原式变形,再结合完全平方公式将原式变形,进而将已知代入求出答案.【解答】解:∵a+b=3,ab=-1,∴3a+ab+3b=3(a+b)+ab=3×3-1=8;a2+b2=(a+b)2-2ab=9+2=11.故答案为8;11.21.【答案】x(x+2)(x-2)【解析】【分析】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3-4x,=x(x2-4),=x(x+2)(x-2).故答案为x(x+2)(x-2).22.【答案】(3+b)(3-b)【解析】解:原式=(3+b)(3-b),故答案为:(3+b)(3-b)原式利用平方差公式分解即可.此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.23.【答案】160【解析】解:∵x+y=10,xy=16,∴x2y+xy2=xy(x+y)=10×16=160.故答案为:160.首先提取公因式xy,进而将已知代入求出即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.24.【答案】0【解析】解:∵=1,∴b-a=ab,∴a-b=-ab,∴==0.故答案是0.先根据已知条件可求出a-b=-ab,再把a-b的值整体代入所求式子计算即可.本题考查了分式的化简求值、整体代入的思想.解题的关键是先求出a-b的值.25.【答案】解:(1)原式=-y(y2-6xy+9x2)=-y(y-3x)2;(2)原式=(4x2+1)(4x2-1)=(4x2+1)(2x+1)(2x-1).【解析】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式利用平方差公式分解即可.26.【答案】解:原式=••=(a-1)•=a+1.【解析】此题考查了分式的乘除法,分式乘除法的关键是约分,约分的关键是找出公因式.原式利用除法法则变形,约分即可得到结果.27.【答案】解:(1)原式+=1;(2)原式;(3)原式+++;+(4)原式.【解析】本题考查了分式的混合运算,需掌握的知识点:分式的混合运算的顺序和法则,分式的约分、通分以及因式分解;熟练掌握分式的混合运算顺序和因式分解是解决问题的关键.(1)首先通分计算括号里面,进而根据分式的加减乘除混合运算顺序进行约分计算即可;(2)根据分式的加减乘除混合运算顺序进行计算,注意进行因式分解和约分;(3)首先通分计算括号里面再根据分式的加减乘除混合运算顺序进行计算,注意进行因式分解和约分;(4)根据分式的加减法法则进行计算,注意通分.28.【答案】解:(1)原式=3x(1-4x);(2)原式=(a-2b)2;(3)原式=n2(m-2)+n(m-2)=n(m-2)(n+1);(4)原式=(a2+4b2+4ab)(a2+4b2-4ab)=(a+2b)2(a-2b)2.【解析】此题考查了提公因式法及运用公式法因式分解,熟练掌握提公因式法及运用公式法因式分解是解本题的关键.(1)原式提取公因式即可得到结果;(2)原式利用完全平方公式分解即可;(3)原式变形后,提取公因式即可得到结果;(4)原式利用完全平方公式及平方差公式分解即可.。
2022年精品解析北师大版八年级数学下册第五章分式与分式方程综合测试试题(含答案解析)
北师大版八年级数学下册第五章分式与分式方程综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知a +b =5,ab =3,则11b a a b +++=( )A .2B .83 C .4 D .3492、科学家借助电子显微镜发现新型冠状病毒的平均直径约为0.000000125米,则数据0.000000125用科学记数法表示正确的是( )A .1.25×108B .1.25×10﹣8C .1.25×107D .1.25×10﹣73、关于x 的分式方程231x m x -=+的解是正数,则字母m 的取值范围是( ) A .3m <- B .3m < C .3m >且2m ≠ D .3m >-且2m ≠4、下列各式计算正确的是( )A .224222433a b a b c c ⎛⎫-= ⎪⎝⎭ B .111x y x y+=+ C .232323y xy y x ÷= D .211211a a a a-=-+- 5、小明上网查得新冠肺炎病毒的直径大约是106纳米,已知1纳米=0.000001毫米,试用科学记数法表示106纳米,下列正确的是().A.10.6×10﹣7米B.1.06×10-7米C.10.6×10﹣6米D.1.06×10﹣6米6、化简21mm-÷22m mm-的结果是()A.m B.﹣m C.m+1 D.m﹣17、斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A—B—C横穿双向行驶车道,其中AB=BC=12米,在绿灯亮时,小敏共用22秒通过AC路段,其中通过BC路段的速度是通过AB路段速度的1.2倍,则小敏通过AB路段时的速度是()A.0.5米/秒B.1米/秒C.1.5米/秒D.2米/秒8、若关于x的方程2222x mx x++=--有增根,则m的取值是()A.0 B.2 C.-2 D.19、如果把223xyx y-中的x和y都扩大到原来的5倍,那么分式的值()A.扩大到原来的5倍B.不变C.缩小为原来的15D.无法确定10、如果把分式2xyx y+中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.缩小3倍C.缩小6倍D.不变第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明的盒子中装有2个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为_______.2、将数0.0000052-用科学记数法表示为______.3、甲、乙二人从同一地点同时出发沿相同路线去往同一目的地,甲一半路程以速度a 行驶,一半路程以速度b 行驶;乙一半时间以速度a 行驶,一半时间以速度b 行驶,问谁先到达目的地?(a b )下列结论:①甲先到;②乙先到;③甲、乙同时到达;④无法判断.其中正确的结论是_____ .(只需填入序号)4、将数0.000067用科学记数法表示为______.5、已知:关于x 的方程11x a x a +=+的两个解为x 1=a ,x 2=1a ,方程22x a x a +=+的两个解为x 1=a ,x 2=2a ,方程33x a x a +=+的两个解为x 1=a ,x 2=3a ,则关于x 的方程101011x a x a +=+--的两个解为______________.三、解答题(5小题,每小题10分,共计50分)1、解方程:(1)32133x x x +-=-+ (2)()()31112x x x x -=--+2、先化简,再求值:213369x x x x x --+++,其中2630x x +-=. 3、计算或因式分解:(1)计算:(a 2﹣4)2a a+÷; (2)因式分解:a 2(x ﹣y )+b 2(y ﹣x ).4、计算:2136y x xy- 5、已知分式2x b x a-+,当2x =时,分式的值为0;当2x =-时,分式没有意义,求a b +的值.-参考答案-一、单选题1、B【分析】根据异分母的加减进行计算,进而根据完全平方公式的变形,再将已知式子的值整体代入求解即可【详解】 解: a +b =5,ab =3,∴原式=(1)(1)(1)(1)b b a a a b +++++=221a b a bab a b ++++++=2()2351a b ab a b+-++++=25235351-⨯+++=83.故选B【点睛】本题考查了分式的化简求值,整体代入是解题的关键.2、D【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:70.000000125 1.2510-=⨯故选D .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.3、A【分析】解分式方程,得到含字母m 的方程,解此方程,再根据该方程的解是整数,结合分式方程的分母不为零,得到两个关于字母m 的不等式,解之即可.【详解】 解:231x m x -=+ 方程两边同时乘以(x +1),得到233x m x -=+3x m ∴=--+10x ≠1x ∴≠-31m ∴--≠-2m ∴≠-因为分式方程的解是正数,0x ∴>30m ∴-->3m ∴<-故选:A .【点睛】本题考查分式方程的解、解一元一次不等式等知识,难度较易,掌握相关知识是解题关键.4、D【分析】根据分式的运算法则逐项计算即可判断.解:A. 224222439a b a b c c ⎛⎫-= ⎪⎝⎭,原选项错误,不符合题意; B. 11x y x y xy++=,原选项错误,不符合题意; C. 2229332yy x xy x ÷=,原选项错误,不符合题意; D. 2211121(1)1a a a a a a--==-+--,原选项正确,符合题意; 故选:D .【点睛】本题考查了分式的运算,解题关键是熟记分式运算法则,准确进行计算.5、B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:∵1纳米=0.000001毫米=0.000000001米,∴106纳米=0.000000106米=1.06×10﹣7米故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.6、C把除法转化为乘法,然后约分即可求出答案.【详解】解:原式=()()()2+111 mmmmmm-⨯-=m+1,故选:C.【点睛】本题考查了分式的除法运算,两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘,再按乘法法则计算即可.7、B【分析】设通过AB的速度是x m/s,则根据题意可列分式方程,解出x即可.【详解】设通过AB的速度是x m/s,根据题意可列方程:1212221.2x x+=,解得x=1,经检验:x=1是原方程的解且符合题意.所以通过AB时的速度是1m/s.故选B.【点睛】本题考查分式方程的实际应用,根据题意找出等量关系并列出分式方程是解答本题的关键.8、A【分析】方程两边都乘以最简公分母(x-2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【详解】方程两边都乘以(x-2)得:-2+x+m=2(x-2),∵分式方程有增根,∴x-2=0,解得x=2,∴-2+2+m=2×(2-2),解得m=0.故答案为:A.【点睛】此题考查分式方程的增根,掌握运算法则是解题关键.9、A【分析】把分式中的x与y分别用5x与5y代替,再化简即可判断.【详解】分式223xyx y-中的x与y分别用5x与5y代替后,得2(5)(5)50252(5)3(5)5(23)23x y xy xyx y x y x y⨯⨯==⨯⨯-⨯--,由此知,此时分式的值扩大到原来的5倍.故选:A【点睛】本题考查了分式的基本性质,一般地,本题中把x与y均扩大n倍,则分式的值也扩大n倍.10、A【分析】将x,y用3x,3y代入化简,与原式比较即可.【详解】解:将x,y用3x,3y代入得233y3233x xyx y x y⨯⨯⨯=++,故值扩大到3倍.故选A.【点睛】本题考查分式的基本性质,熟悉掌握是解题关键.二、填空题1、1【分析】设黄球的个数为x个,然后根据概率公式列方程,解此分式方程即可求得答案.【详解】解:设黄球的个数为x个,根据题意得:2223x=+,解得:x=1,经检验,x=1是原分式方程的解,∴黄球的个数为1个.故答案为:1.【点睛】此题考查了分式方程的应用,以及概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.2、65.210--⨯【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:由题意得:数0.0000052-用科学记数法表示为65.210--⨯;故答案为65.210--⨯.【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.3、②【分析】不妨设两地的路程为1,甲走完全程用的时间为m ,乙走完全程用的时间为n ,由路程=速度×时间,得甲车到达指定地点的时间为2a b ab +,乙车到达指定地点的时间为2a b+;比较甲,乙的大小即可.【详解】解:设总路程为1,甲走完全程用的时间为m ,乙走完全程用的时间为n , 甲:11222a b m a b ab +=÷+÷=, 乙:122n n a b ⨯+⨯=,整理得 2n a b =+,22()022()a b a b m n ab a b ab a b +--=-=>++ 甲到达用的时间更多,所以乙先到.故答案为:②.【点睛】本题考查了分式加减运算的实际应用,找到合适的等量关系是解决问题的关键.本题是一道考查行程问题的应用题,解此类问题只要把握住路程=速度×时间,即可找出等量关系,列出方程.要注意找出题中隐含的条件,如本题甲乙二人相同的行驶路程.4、6.7×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000067=6.7×10﹣5.故答案为:6.7×10﹣5.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5、x 1=a ,x 2=91a a +-【分析】根据关于x 的方程11x a x a +=+的两个解为x 1=a ,x 2=1a ,方程22x a x a +=+的两个解为x 1=a ,x 2=2a ,方程33x a x a +=+的两个解为x 1=a ,x 2=3a,得到规律求解即可. 【详解】解:∵关于x 的方程11x a x a +=+的两个解为x 1=a ,x 2=1a ,方程22x a x a+=+的两个解为x 1=a ,x 2=2a ,方程33x a x a +=+的两个解为x 1=a ,x 2=3a ,1010(1)(1)11x a x a -+=-+--, ∴依规律,得x -1=a -1或x -1=101a -,解得:x 1=a ,x 2=91a a +-.故答案为:x 1=a ,x 2=91a a +-.【点睛】 本题主要考查了与分式有关的规律型问题,解题的关键在于根据题意找到规律并且构造1010(1)(1)11x a x a -+=-+--. 三、解答题1、(1)6x =-;(2)无解【分析】(1)分式方程两边乘以()()33x x +-,去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)分式方程两边乘以()()21x x +-去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)32133x x x +-=-+, 解:()()()()232333x x x x +--=+-,2269269x x x x ++-+=-,424x =-,6x =-,检验:当6x =-时,()()330x x +-≠,所以,原方程的解是6x =-,(2)()()31112x x x x -=--+,解:()()()2213+-+-=x x x x ,22223x x x x +--+=,1x =,检验:当1x =时,()()210x x +-=,所以,1x =不是原方程的解.【点睛】本题考查了解分式方程,解题的关键是利用“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.2、226169x x x x ,16【分析】先通分,化为同分母的分式,再进行加减运算,再把条件式化为263,x x 整体代入求值即可.【详解】 解:213369xx x x x 2231333x x x x x2222313616969x x xx x x x x x 2630x x +-=263,x x所以:原式3121.39126 【点睛】本题考查的是分式的化简求值,熟练的通分,整体代入求值都是解本题的关键.3、(1)22a a +;(2)()()()a b a b x y +--【分析】(1)根据平方差公式和分式的除法计算法则求解即可;(2)利用提取公因式和平方差公式分解因式即可.【详解】解:()224a a a+-÷ ()()222a a a a =+-⋅+ ()2a a =+22a a =+;(2)()()22a x y b y x -+-()()22a x y b x y =---()()22a b x y =--()()()a b a b x y=+--.【点睛】本题主要考查了分解因式,分式与整式的混合运算,熟知相关计算法则是解题的关键.4、2226y x x y-【分析】确定最简公分母26x y,用性质进行通分即可.【详解】解:原式2222222666y x y xx y x y x y-=-=.【点睛】本题考查了分式的通分,熟练掌握分式的基本性质,准确确定最简公分母是解题的关键.5、6【分析】根据分式的值为0,即分子等于0,分母不等于0,从而求得b的值;根据分式没有意义,即分母等于0,求得a的值,从而求得a b+的值.【详解】解:2x=时,分式的值为0,20b∴-=,2b=.2x=-时,分式没有意义,2(2)0a∴⨯-+=,4a=.6∴+=.a b【点睛】本题考查了分式,解题的关键是注意:分式的值为0,则分子等于0,分母不等于0;分式无意义,则分母等于0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解、分式和分式方程综合测评
一、选择题(共30分,每题3分)
1、(2014安徽)下列四个多项式中,能因式分解的是( )
A 、a 2+1
B 、a 2—6a+9
C 、x 2+5y
D 、x2—5y
2、(2014海南)下列式子从左到右变形是因式分解的是( )
A 、a2+4a-21=a (a+4)-21
B 、a 2+4a -21=(a-3)(a +7) C、(a-3)(a+7)=a 2+4a-21 D、a 2+4a-21=(a +2)2-25
3、(2014浙江金华)把代数式1822-x 分解因式,结果正确的是( )
A 、)9(22-x B、 2)3(2-x C 、 )3)(3(2-+x x D、)9)(9(2-+x x 4、下列各式的约分运算中,正确的是( ).
A 、 \F(x 6,x 2) =x 3
B 、
a+c b+c = \F(a,b) C 、\F (a+b,a +b) = 0 D 、
a+b a+b =1
5、(湖南衡阳2014)下列因式分解中正确的个数为( )
①()3222x xy x x x y ++=+; ②()2
2442x x x ++=+;
③()()22x y x y x y -+=+- A 、3个 B 、2个 C 、1个 D 、0个
6、若把分式2x y x y
+-中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小6倍
7、分式方程3
13-=+-x m x x 有增根,则m 为( ) A 、0 B、1 C 、3 D、6
8、已知多项式c bx x ++2
2分解因式为)1)(3(2+-x x ,则c b ,的值为(ﻩ )
A 、1,3-==c b ﻩ
B 、2,6=-=c b
C 、4,6-=-=c b
D 、6,4-=-=c b
9、 (2014年福建漳州)若代数式x 2+ax 可以分解因式,则常数a不可以取( )
A 、 ﹣1
B 、 0ﻩC、 1ﻩD、ﻩ2
10、 某农场开挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天
完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是 ( )
A、
448020480=--x x B 、204
480480=+-x x C、420480480=+-x x D 、204804480=--x x 二、填空题(共36分,每空3分)
11、(2014•济南)分解因式:=++122x x _____________________; (2014•白银)分解因式:2a 2﹣4a+2= _________________;
(2014年山东东营) 分解因式:3x 2y ﹣27y = _________________. 12、(湖北黄冈2014)分解因式:=-+22)12(a a ;
(2014山东潍坊)分解因式:2x(x-3)一8= ___________ .
13、(2014年贵州黔东南)因式分解:x3﹣5x 2+6x= .
14、要使
15-x 与24-x 的值相等,则x= .
15、已知4
32z y x ==,则=+--+z y x z y x 232 . 16.已知
2+x a 与2-x b 的和等于4
42-x x ,则a= ,b= . 17、若关于x 的分式方程3
232
-=--x m x x 有增根,则增根为__________ . 18、分式3
92--x x 当x __________时分式的值为零. 三、解答题(共54分)
19、(每题3分,共9分)
(1)(2014•滨州)计算:•
(2)(2014四川绵阳)化简:(1﹣
)÷(﹣2).
(3)先化简,再求值:(x -1x -x -2x +1)÷错误!,其中x 满足x 2-x -1=0.
20、解方程:(每题3分,共6分) (1)1
41-22-=x x (2)13132=-+--x
x x
21、(4分)利用分解因式证明:12
7525- 能被120整除.
22、(7分)大正方形的周长比小正方形的周长长96厘米,它们的面积相差960平方厘米。
求这两个正方形的边长。
23、(7分)某商店销售一种衬衫,4月份的营业额为5000元,为了扩大销售,在5月份将每件衬衫按原价的8折销售,销量比4月份增加了40件,营业额比4月份增加了600元,求4月份每件衬衫的售价.
24、(8分)(2014•济宁)济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承
担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.
(1)求乙工程队单独完成这项工作需要多少天?
(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?。