【新课标】备战2012年中考专项突破复习八上7-8 (2)
人教版初中数学八上 期末复习题型突破四 几何的综合
(2)求证:CD平分∠ADB;
(2)证明:过点C作CM⊥DA,交DA的延长线于点M, 作CN⊥BD于点N, 则∠AMC=∠DNC=∠BNC=90°. ∵∠ADB+∠AMC+∠DNC+∠MCN=360°, ∴∠ADB+∠MCN=180°. 由(1)知∠ADB+∠ACB=180°, ∴∠MCN=∠ACB, ∴∠MCN-∠ACN=∠ACB-∠ACN, 即∠ACM=∠BCN. 由(1)知AC=BC,∴△ACM≌△BCN (AAS), ∴CM=CN,∴CD平分∠ADB.
(3)若在点D运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数
是否变化?如果变化,请说明理由;如果不变化,请求出∠BAC的度数. (3)解:∠BAC的度数不变化. 延长DB至点P,使BP=AD,连接CP. ∵CD=AD+BD,DP=BP+BD,∴CD=DP. ∵∠ADB+∠DBC+∠ACB+∠CAD=360°, ∠ADB+∠ACB=180°, ∴∠CAD+∠CBD=180°. ∵∠CBD+∠CBP=180°,∴∠CAD=∠CBP. 又∵AC=BC,∴△CAD≌△CBP(SAS), ∴CD=CP,∠CDA=∠P,∴CD=DP=CP, ∴△CDP是等边三角形,∴∠CDP=∠P=60°, ∴∠CDA=60°, ∴∠ADB=∠CDA+∠CDP=120°. ∵∠ADB=2∠BAC,∴∠BAC=60°.
(1)证明:∵CB=CA,DB=DA, ∴CD垂直平分线段AB, ∴CD⊥AB.
(2)∠CAD=15°,E为AD延长线上的一点,且CE=CA. ①求证:DE平分∠BDC;
∴∠CDE=∠BDE,∴DE平分∠BDC.
②若点M在DE上,且DC=DM,请判断ME,DB的数量关系,并给出证明; ②解:ME=BD.证明如下:连接MC. 由①知∠CDE=60°. ∵DC=DM,∴△MCD为等边三角形, ∴CM=CD,∠CMD=60°, ∴∠EMC=180°-∠CMD=120°. 由①得∠BDC=120°=∠EMC. ∵CE=CA,AC=BC, ∴∠E=∠CAD=15°,EC=BC, ∴∠ECM=∠CMD-∠E=45°. 由①知∠BCD=45°,∴∠ECM=∠BCD, ∴△BDC≌△EMC,∴ME=DB.
2024年中考考前数学集训试卷2及参考答案(含答题卡)A4版
12024年中考考前集训卷2数学(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单选题(共40分)1.(本题4分)下列各数中,与2-互为倒数的是()A .12-B .12C .1D .22.(本题4分)如图,这是一个由两个等高的几何体组成的图形的三视图,则这个组合图形摆放正确的是()A.B.C.D .3.(本题4分)下列计算结果等于6a 的是()A .24a a +B .24()a a -⋅C .122a a ÷D .()32a -4.(本题4分)不等式组32242x xx x -+<⎧⎪⎨+≤-⎪⎩的解集,在数轴上表示正确的是()A .B .C .D .5.(本题4分)下列函数中,当0x <时,y 的值随x 的增大而增大的是()A .y x=-B .1y x=C .1y x =-D .21y x =-6.(本题4分)如图,正方形ABCD 内接于O ,点E 在O 上连接,BE CE ,若18ABE ∠=︒,则BEC DCE ∠-∠=()A .16︒B .17︒C .18︒D .20︒7.(本题4分)九(1)班三名同学进行唱歌比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,后来要求这三名同学用抽签方式重新确定出场顺序,则抽签后每个同学的出场顺序都发生变化的概率为()A .23B .12C .13D .168.(本题4分)如图,在矩形ABCD 中,E ,F 分别在CD 边和AD 边上,BE CF ⊥于点G ,且G 为CF 的中点,若4AB =,5BC =,则BG 的长为()A .4B .C .D .9.(本题4分)已知a 、b 为实数,下列四个函数图像中,不可能...是y 关于x 函数()222y a ab b x x ab =++++的图像的为()A .B .C .D .10.(本题4分)在边长为2的正方形ABCD 中,点E 是AD 边上的中点,BF 平分∠EBC 交CD 于点F ,过点F 作FG ⊥AB 交BE 于点H ,则GH 的长为()A B C .14D 14第Ⅱ卷二、填空题(共20分)11.(本题5分)因式分解:3312a a -=.12.(本题5分)2023年,安徽光伏制造业实现营业收入超2900亿元,首次跃居全国第3位.其中数据2900亿用科学记数法表示为13.(本题5分)我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术)∶若一个三角形的三边长分别为a ,b ,c ,则这个三角形的面积S =a ,b ,c 14.(本题5分)如图,在ABC 中,90ACB ∠=︒,CA x ⊥轴于点A ,双曲线()0ky x x=>经过点C ,且与AB 交于点D .若ABC 的面积为12,3BD AD =.请解决以下问题:(1)若点D 纵坐标为1,则B 点的纵坐标为.(2)k =.三、解答题(共90分)15.(本题8分)先化简,再求值,22111x x x x-+--,其中1x =.16.(本题8分)某超市有线下和线上两种销售方式,去年计划实现总销售利润200万元,经过努力,实际总销售利润为225万元,其中线下销售利润比原计划增长5%,线上销售利润比原计划增长15%,则该超市去年实际完成线下销售利润、线上销售利润各多少万元?17.(本题8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出ABC ,其顶点A ,B ,C 均为网格线的交点.(1)将ABC 沿水平方向向右平移5个单位,再向下平移3个单位,得到111A B C △,画出111A B C △;(2)将ABC 以点A 为中心,逆时针旋转90°,得到22AB C ,画出22AB C ;(3)求弧2CC 长.(结果用π表示).18.(本题8分)【观察思考】“中国结”图案.【规律总结】请用含n 的式子填空:(1)第n 个图案中黄梅花的盆数为______;(2)第1个图案中红梅花的盆数可表示为12⨯,第2个图案中红梅花的盆数可表示为23⨯,第3个图案中红梅花的盆数可表示为34⨯,第4个图案中红梅花的盆数可表示为45⨯,…;第n 个图案中红梅花的盆数可表示为______;【问题解决】(3)已知按照上述规律摆放的第n 个“中国结”图案中红梅花比黄梅花多68盆,结合图案中红梅花和黄梅花的排列方式及上述规律,求n 的值.19.(本题10分)如图,小河岸边有一棵大树,大树的一边为河面,一边为河堤.为了测量小河岸边大树AB 的高度,小明从树根部点A 沿河堤向上走了10m 到达点C 处,测得大树顶端B 的仰角为45︒,再继续向上走了20m 到达点D 处,此时点D 和大树顶端B 在一条水平线上,试求大树AB 的高度和河堤的坡比.(结果保留根号)20.(本题10分)如图,AB 为O 的直径,AC 和BD 是O 的弦,延长AC 、BD 交于点P ,连接AD 、CD .(1)若点C 为AP 的中点,且PC PD =,求B ∠的度数;(2)若点C 为弧AD 的中点,4PD =、PC =O 的半径.21.(本题12分)某校准备组织开展四项项目式综合实践活动:“A.家庭预算,B.城市交通与规划,C.购物决策,D.饮食健康”.为了解学生最喜爱哪项活动,随机抽取部分学生进行问卷调查(每位学生只能选择一项),将调查结果绘制成下面两幅不完整的统计图,请结合图中提供的信息回答下列问题:(1)本次一共调查了______名学生,在扇形统计图中,m的值是______;(2)补全条形统计图;(3)若该校共有2000名学生,估计最喜爱B和C项目的学生一共有多少名?(4)现有最喜爱A,B,C,D活动项目的学生各一人,学校要从这四人中随机选取两人交流活动体会,请用列表或画树状图的方法求出恰好选取最喜爱C和D项目的两位学生的概率.22.(本题12分)在四边形ABCD中,点E是对角线BD上一点,过点E作EF AE交BC于点F.(1)如图1,当四边形ABCD 为正方形时,求EFAE的值为______;(2)如图2,当四边形ABCD 为矩形时,AB m BC =,探究EFAE的值(用含m 的式子表示),并写出探究过程;(3)在(2)的条件下,连接CE ,当2AB =,4BC =,CE CD =时,求EF 的长.23.(本题14分)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+-与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N .(ⅰ)如图1,当3PAPB=时,求线段MN 的长;(ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.12024年中考考前集训卷2数学·答题卡第Ⅰ卷(请用2B 铅笔填涂)第Ⅱ卷请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!二、填空题(每小题5分,共20分)11._________________12.___________________13.__________________14.(1)__________________(2)___________________三、(本大题共9个小题,共90分.解答应写出文字说明,证明过程或演算步骤)15.(8分)一、选择题(每小题4分,共40分)1.[A ][B ][C ][D ]2.[A ][B ][C ][D ]3.[A ][B ][C ][D ]4.[A ][B ][C ][D ]5.[A ][B ][C ][D ]6.[A ][B ][C ][D ]7.[A ][B ][C ][D ]8.[A ][B ][C ][D ]9.[A ][B ][C ][D ]10.[A ][B ][C ][D ]姓名:__________________________准考证号:贴条形码区考生禁填:缺考标记违纪标记以上标志由监考人员用2B 铅笔填涂选择题填涂样例:正确填涂错误填涂[×][√][/]1.答题前,考生先将自己的姓名,准考证号填写清楚,并认真核准条形码上的姓名、准考证号,在规定位置贴好条形码。
2023学年八年级数学上册高分突破必练专题(人教版) 平行+线段中点构造全等模型综合应用(解析版)
平行+线段中点构造全等模型综合应用【结论】如图 AB∥CD 点E、F分别在直线AB、CD上点O为EF 中点则△POE≌△QOF口诀:有中点有平行轻轻延长就能行【典例1】(1)方法回顾证明:三角形中位线定理.已知:如图1 DE是△ABC的中位线.求证:.证明:(2)问题解决:如图2 在正方形ABCD中E为AD的中点G、F分别为AB、CD 边上的点若AG=3 DF=4 ∠GEF=90°求GF的长.【解答】(1)已知:如图1 DE是△ABC的中位线.求证:DE∥BC DE=BC 证明:过点C作CF∥BA交DE的延长线于点F∴∠A=∠ACF∠F=∠ADF∵点E是AC的中点∴AE=EC∴△ADE≌△CFE(AAS)∴DE=EF=DF AD=CF∵点D是AB的中点∴AD=DB∴DB=CF∴四边形DBCF是平行四边形∴DF∥BC DF=BC∴DE∥BC DE=BC故答案为:DE∥BC DE=BC;(2)延长GE CD交于点H∵四边形ABCD是正方形∴AB∥CD∴∠A=∠ADH∠AGE=∠H∵点E是AD的中点∴AE=DE∴△AGE≌△DHE(AAS)∴AG=DH=3 GE=EH∵DF=4∴FH=DH+DF=7∵∠GEF=90°∴FE是GH的垂直平分线∴GF=FH=7∴GF的长为7.【变式1-1】已知:AD是△ABC的角平分线点E为直线BC上一点BD=DE过点E作EF∥AB交直线AC于点F当点F在边AC的延长线上时如图①易证AF+EF=AB;当点F在边AC上如图②;当点F在边AC的延长线上AD是△ABC的外角平分线时如图③.写出AF、EF与AB的数量关系并对图②进行证明.【解答】(1)证明:如图①延长AD、EF交于点G∵AD平分∠BAC∴∠BAD=∠CAD∵EF∥AB∴∠G=∠BAD∴∠G=∠CAD∴FG=AF在△ABD和△GED中∴△ABD≌△GED(AAS)∴AB=GE∵GE=FG+EF=AF+EF∴AF+EF=AB;(2)结论:AF﹣EF=AB.证明:如图②延长AD、EF交于点G ∵AD平分∠BAC∴∠BAD=∠CAD∵EF∥AB∴∠G=∠BAD∴∠G=∠CAD∴FG=AF在△ABD和△GED中∴△ABD≌△GED(AAS)∴AB=GE∵GE=FG﹣EF=AF﹣EF∴AF﹣EF=AB;(3)结论:EF﹣AF=AB.证明:如图③延长AD交EF于点G ∵AD平分∠P AC∴∠P AD=∠CAD∵EF∥AB∴∠AGF=∠P AD∴∠AGF=∠CAD∠ABD=∠GED ∴FG=AF在△ABD和△GED中∴△ABD≌△GED(ASA)∴AB=GE∵EF﹣FG=GE∴EF﹣AF=AB;【变式1-2】如图四边形ABDC中∠D=∠ABD=90°点O为BD的中点且OA⊥OC.(1)求证:CO平分∠ACD;(2)求证:AB+CD=AC.【解答】解:(1)如图延长AO交CD的延长线于点E∵O为BD的中点∴BO=DO在△AOB与△EOD中∴△AOB≌△EOD(ASA)∴AO=AE又∵OA⊥OC∴AC=CE∴CO平分∠ACD;(三线合一)(2)由△AOB≌△EOD可得AB=DE∴AB+CD=CD+DE=CE∵AC=CE∴AB+CD=AC1.如图在四边形ABCD中AD∥BC E是AB的中点连接DE并延长交CB的延长线于点F点M在BC边上且∠MDF=∠ADF.(1)求证:△ADE≌△BFE.(2)连接EM如果FM=DM判断EM与DF的关系并说明理由.【解答】(1)证明:∵AD∥BC∴∠ADE=∠BFE∵E为AB的中点∴AE=BE在△AED和△BFE中∴△AED≌△BFE(AAS);(2)解:EM与DM的关系是EM垂直且平分DF;理由如下:连接EM如图所示:由(1)得:△AED≌△BFE∴DE=EF∵∠MDF=∠ADF∠ADE=∠BFE ∴∠MDF=∠BFE∴FM=DM∴EM⊥DF∴ME垂直平分DF.2.△ABC中P是BC边上的一点过P作直线交AB于M交AC的延长线于N且PM =PN MF∥AN(1)求证:△PMF≌△PNC;(2)若AB=AC求证:BM=CN.【解答】(1)证明:∵MF∥AN∴∠MFP=∠NCP在△PMF和△PNC中∴△PMF≌△PNC(AAS);(2)证明:由(1)得:△PMF≌△PNC∴FM=CN∵AB=AC∴∠B=∠ACB∵MF∥AN∴∠MFB=∠ACB∴∠B=∠MFB∴BM=FM∴BM=CN.3.如图在四边形ABCD中AD∥BC E是AB的中点连接DE并延长交CB的延长线于点F点G在边BC上且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG判断EG与DF的位置关系并说明理由.(3)求证:AD+BG=DG.【解答】解:(1)如图1 ∵E是AB的中点∴AE=BE∵AD∥BC∴∠A=∠ABF∠ADE=∠F∴△ADE≌△BFE;(2)如图2 EG⊥DF理由是:∵∠ADF=∠F∠ADF=∠GDF∴∠F=∠GDF∴DG=FG由(1)得:△ADE≌△BFE∴DE=EF∴EG⊥FD;(3)如图2 由(1)得:△ADE≌△BFE∴AD=BF∵FG=BF+BG∴FG=AD+BG∵FG=DG∴AD+BG=DG.4.如图已知AB=12 AB⊥BC于B AB⊥AD于A AD=5 BC=10.点E是CD的中点求AE的长.【解答】解:如图延长AE交BC于F.∵AB⊥BC AB⊥AD∴∠D=∠C∠DAE=∠CFE又∵点E是CD的中点∴DE=CE.∵在△AED与△FEC中∴△AED≌△FEC(AAS)∴AE=FE AD=FC.∵AD=5 BC=10.∴BF=5在Rt△ABF中∴AE=AF=6.5.5.阅读理解(1)如图①△ABC中D是BC中点连接AD直接回答S△ABD与S△ADC相等吗?相等(S表示面积);应用拓展(2)如图②已知梯形ABCD中AD∥BC E是AB的中点连接DE、EC试利用上题得到的结论说明S△DEC=S△ADE+S△EBC;解决问题(3)现有一块如图③所示的梯形试验田想种两种农作物做对比实验用一条过D点的直线将这块试验田分割成面积相等的两块画出这条直线并简单说明另一点的位置.【解答】解:(1)如图①过点A作AE⊥BC于E.∵D是BC中点又∵S△ABD=•BD•AE S△ADC=•CD•AE∴S△ABD=S△ADC.故答案为相等;(2)如图②延长DE交CB的延长线于点F.∵E是AB的中点∴AE=BE.∵AD∥BC∴∠ADE=∠BFE.在△DAE与△FBE中∴△DAE≌△FBE(AAS)∴DE=FE S△DAE=S△FBE∴E是DF中点∴S△DEC=S△FEC=S△BFE+S△EBC=S△ADE+S△EBC∴S△DEC=S△ADE+S△EBC;(3)如图所示:取AB的中点E连接DE并延长交CB的延长线于点F取CF的中点G作直线DG 则直线DG即可将这块试验田分割成面积相等的两块.6.如图直角△ABC∠ABC=90°分别以AB、AC为直角边作等腰直角△ABD、△ACE 连接DE交AB于F求证:BC=2AF.【解答】证明:在AB上取点M使AM=BC连接DM∵△ABD是等腰直角三角形∴AB=AD∠BAD=90°∴∠ABC=∠DAM∴△ABC≌△DAM(SAS)∴AC=DM∠AMD=∠ACB∵AC=AE∴AE=DM∵∠ACB=∠DAC∴∠AMD=∠DAC∵∠CAE=∠DAB=90°∴∠DAN=∠BAE∴∠AMD=∠BAE∵∠AFE=∠DFM∴△DMF≌△EAF(AAS)∴AF=FM∴BC=AM=2AF.7.如图梯形ABCD中AD∥BC E是CD的中点AE平分∠BAD AE⊥BE.(1)求证:BE平分∠ABC;(2)求证:AD+BC=AB;(3)若S△ABE=4 求梯形ABCD的面积.【解答】(1)证明:延长AE交BC的延长线于M如图所示:∵AD∥BC∴∠M=∠DAE∵AE平分∠BAD∴∠DAE=∠BAE∴∠BAE=∠M∴AB=MB∵AE⊥BE∴∠ABE=∠CBE∴BE平分∠ABC;(2)证明:∵AB=MB BE⊥AE∴AE=ME∵E是CD的中点∴DE=CE在△ADE和△MCE中∴△ADE≌△MCE(SAS)∴AD=MC∴AD+BC=MC+BC=MB=AB;(3)解:∵AB=MB AE=ME∴△MBE的面积=△ABE的面积=4∴△ABM的面积=2×4=8∵△ADE≌△MCE∴△ADE的面积=△MCE的面积∴梯形ABCD的面积=△ABM的面积=8.8.如图在梯形ABCD中AD∥BC E是AB的中点.(1)求证:S△CED=S△ADE+S△BCE.(2)当CE=DE时判断BC与CD的位置关系并说明理由.【解答】(1)证明:延长DE交CB的延长线于F∵AD∥CF∴∠A=∠ABF∠ADE=∠F∵E是AB中点∴AE=BE在△AED与△BEF中∴△AED≌△BEF(AAS)∴DE=EF S△AED=S△EBF∴S△DEC=S△EFC=S△ADE+S△BCE.(2)解:当CE=DE时BC⊥CD.理由:∵△AED≌△BEF∴DE=EF∵CE=DE∴CE=DE=EF∴∠F=∠ECF∠ECD=∠CDE∵∠F+∠ECF+∠ECD+∠CDE=180°∴∠FCD=90°∴BC⊥CD.。
专题02 名词-备战中考英语专项突破课件(语法篇)
foot→feet;tooth→teeth; 改变内部元音字母
man→men; mouse→mice
特殊名词 词尾加-ren 单复数同形
child→children sheep→sheep;deer→deer; Chinese→Chinese
“各国人”名 词变复数
Chinese→Chinese;
—Because the color red is the
of good luck in China.
A.reason
B.hope
C.dream
D.symbol
( C )12.(2020·武汉)—How's Mr.Clark's small company?
—Quite good . It has grown to become a
—Hard to believe! Scientists are full of great changes in our life.
which leads to
A.attraction
B.invention
C.position
D.contribution
( A )3.(2020·福建)—I like
light(光;光线)—a light(电灯) orange(橙汁)—an orange(橙子) radio(无线电)—a radio(收音机) fish(鱼肉)—fishes(各种各样的鱼) exercise(锻炼;运动)—exercises(习题) life(生活)—lives(生命) time(时间)—times(倍;次数)
教材单元链 语法项目 考查角度
接
教材例句
When is Alice'birthday?
专题14 复合句-备战中考英语专项突破课件(语法篇)
.
—How about driving? A.how I'm going
B.where I'm going
C.when I'm going
D.who I'm going with
( B )5.(2020·武威)—Do you know
?
—Sorry,I've never had an e-book before.Why not read the
A.if she flies
B.whether she will fly
C.when will she fly
D.how will she fly
( A )4.(2020·黄石)—I'm planning a trip to the National Mining
Park(国家矿山公园) tomorrow,but still can't decide
her 般疑问句转换而来 页】 词
时,引导词用 if 或 I don't know whether he will come or
whether
not.我不知道他是否会来。
(续表)
构成规则及 用法
示例
Excuse me,do you know where I can
语
使用陈述句 get some postcards?打扰了,你知道
Unit 6 页)
比较 状语 复合 状语 从句
Sam is smarter than Tom.(教材第 19 页) 八上
Are you as friendly as your sister?(教
Unit 3 材第 19 页)
句 从句 目的 八下 He cannot turn himself into a man
2024年人教版八年级上册物理拔尖专训2 声速的应用
拔尖专项
1. [新趋势·数形结合法] 除夕晚上,小华在阳台欣赏远处正
在绽放的礼花,礼花绽放时间间隔均匀,每次闪光之后1
s就听到一声爆响。为估计礼花燃放地点距她家的距离,
她在某次看见闪光开始计时,听到最后一声爆响停止计
时,历时13 s,共有3次闪光,5次爆响(如图所示)。礼花
闪光和相应爆响是 同时 (填“同时”或“不同时”)产
度为340 m/s,求:
拔尖专项
(1)3.5 s内汽车行驶的路程。
【解】汽车在3.5 s内行驶的路程s车=v车t=20 m/s×3.5 s
=70 m。
(2)3.5 s内声音传播的路程。
【解】声音在3.5 s内传播的距离s声=v声t=340 m/s×3.5 s
=1 190 m。
拔尖专项
(3)鸣笛时A处距前山的距离。
=0.4 s,此时汽车距测速仪的距离s2= vt2= ×340 m/s×
0.4 s=68 m。由于测速仪第一次发出的信号被汽车接收时汽
车距测速仪的距离大于测速仪第二次发出的信号被汽车接收
时汽车距测速仪的距离,所以汽车是在向测速仪靠近的,故
BC正确,不符合题意;汽车在接收来自P1、P2两个信号之间的光之后开始计时,且1 s后有一声爆响,所以声音产生的
−
间隔时间为t=
=3
1
2
3
4
s。
5
6
7
8
9
拔尖专项
由于看见3次闪光,听见5次爆响,所以第3次(最后一次)闪光
对应第5次(最后一次)爆响,所以最后一次爆响传播的时间为
两个间隔时间段再加1 s,即t'=3 s×2+1 s=7
2024-2025学年人教版八年级上册期中数学复习训练试卷(天津)(含答案)
2024-2025学年第一学期人教版八年级期中数学复习训练试卷(天津)试卷满分:120分 考试时间:100分钟一、选择题本大愿共12小题每小题3分共36分在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.下列长度的三条线段中,能组成三角形的是( )A .,,B .,,C .,,D .,,3.用直尺和圆规作一个角等于已知角,如图,能得出的依据是( )A .B .C .D .4 . 一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为( )A .30B .24C .18D .24或305. 如图,是的两条中线,连接.若,则( )A .1B .1.5C .2.5D .56. 如图,在△ABC 中,根据尺规作图痕迹,下列说法不一定正确的是( )3cm 1cm 1cm 1cm 2cm 3cm2cm 3cm 4cm 4cm 4cm 9cmAOB AO B '''∠=∠SSS SAS ASA AASAD CE ,ABC V ED 10ABC S =△S =阴影A.AF=BF B.AE=ACC.∠DBF+∠DFB=90°D.∠BAF=∠EBC7.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( )A.40°B.30°C.20°D.10°8.如图,AC=FD,BC=ED,要利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE=BE;④BF=BE,可利用的是( )A.①或②B.②或③C.①或③D.①或④9.如图,在△ABC中,已知点D,E,F分别为边AC,BD,CE的中点,且阴影部分图形面积等于4平方厘米,则△ABC的面积为( )A .8平方厘米B .12平方厘米C .16平方厘米D .18平方厘米10 . 如图,中,,且,垂直平分,交于点,交于点,若周长为16,,则为( )A .5B .8C .9D .1011. 如图,在中, 垂直平分,点P 为直线上的任意一点,则的最小值是( )A .6B .7C .8D .1012 .如图,C 为线段上一动点(不与点A ,E 重合),在同侧分别作正三角形和正三角形,与交于点O ,与交于点P ,与交于点Q ,连接.以下五个结论:①;②;③;④;其中恒成立的结论有( )个ABC V AB AE =AD BC ⊥EF AC AC F BC E ABC V 6AC =DC ABC V 906810BAC AB AC BC EF ∠=︒===,,,,BC EF AP BP +AE AE ABC CDE AD BE AD BC BE CD PQ AD BE =PQ AE ∥EQ DP =60AOB ∠=︒A .1B .2C .3D .4二、境空题:本大题共6小题,每小题3分,共18分,请将答案直接填在答题纸中对应的横线上。
2024年人教版八年级上册数学阶段拔尖专训6 全等三角形难点模型归类
1
2
3
阶段拔尖专训
【证明】∵ BD ⊥直线 m , CE ⊥直线 m ,
∴∠ BDA =∠ CEA =90°.∴∠ BAD +∠ ABD =90°.
∵∠ BAC =90°,∴∠ BAD +∠ CAE =90°.
∴∠ CAE =∠ ABD . 在△ ADB 和△ CEA 中,
∵∠ ABD =∠ CAE ,∠ BDA =∠ AEC , AB = AC ,
=∠ BAC =α,其中α为任意锐角或钝角.请问结论 DE =
BD + CE 是否仍然成立?若成立,请你给出证明;若不
成立,请说明理由.
1
2
3
阶段拔尖专训
【解】成立.证明如下:∵∠ BDA =∠ BAC =α,
∴∠ ABD +∠ BAD =∠ BAD +∠ CAE =180°-α.
∴∠ CAE =∠ ABD . 在△ ADB 和△ CEA 中,∵∠ ABD
∴△ ABD ≌△ CAE (AAS).∴ AE = BD , AD = CE .
∴ DE = AE + AD = BD + CE .
1
2
3
阶段拔尖专训
(2)如图②,将(1)中的条件改为:在△ ABC 中, AB = AC ,
D , A , E 三点都在直线 m 上,并且有∠ BDA =∠ AEC
1
2
3
阶段拔尖专训
(2)当直线 AE 处于如图②的位置时,则 BD , DE , CE 有
何数量关系?请说明理由.
1
2
3
阶段拔尖专训
【解】 BD = DE - CE . 理由如下:同(1)可得△ ABD
≌△ CAE (AAS).∴ AD = CE , BD = AE .
2023学年八年级数学上册高分突破必练专题(人教版) 一线三等角模型的综合应用(解析版)
一线三等角模型的综合应用模型一 一线三垂直全等模型如图一 ∠D=∠BCA=∠E=90° BC=AC 。
结论:Rt △BDC ≌Rt △CEA 模型二 一线三等角全等模型如图二 ∠D=∠BCA=∠E BC=AC 。
结论:△BEC ≌△CDA图一 图二应用:①通过证明全等实现边角关系的转化 便于解决对应的几何问题; ②与函数综合应用中有利于点的坐标的求解。
【类型一:标准“K ”型图】【典例1】在△ABC 中 ∠ACB =90° AC =BC 直线MN 经过点C 且AD ⊥MN 于D BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图(1)的位置时求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图(2)的位置时 求证:DE =AD ﹣BE ;(3)当直线MN 绕点C 旋转到图(3)的位置时 请直接写出DE AD BE之间的等量CD EBA关系.【解答】解:(1)①∵AD⊥MN BE⊥MN∴∠ADC=∠ACB=90°=∠CEB∴∠CAD+∠ACD=90°∠BCE+∠ACD=90°∴∠CAD=∠BCE∵在△ADC和△CEB中∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB∴CE=AD CD=BE∴DE=CE+CD=AD+BE;(2)证明:∵AD⊥MN BE⊥MN∴∠ADC=∠CEB=∠ACB=90°∴∠CAD=∠BCE∵在△ADC和△CEB中∴△ADC≌△CEB(AAS);∴CE=AD CD=BE∴DE=CE﹣CD=AD﹣BE;(3)当MN旋转到题图(3)的位置时AD DE BE所满足的等量关系是:DE=BE﹣AD.理由如下:∵AD⊥MN BE⊥MN∴∠ADC=∠CEB=∠ACB=90°∴∠CAD=∠BCE∵在△ADC和△CEB中∴△ADC≌△CEB(AAS)∴CE=AD CD=BE∴DE=CD﹣CE=BE﹣AD.【变式1-1】如图∠BAC=90°AD是∠BAC内部一条射线若AB=AC BE⊥AD于点E CF⊥AD于点F.求证:△ABE≌△CAF.【解答】证明:∵∠BAC=90°∴∠CAF+∠BAE=90°∵BE⊥AD CF⊥AD∴∠CF A=∠BEA=90°∴∠C+∠CAF=90°∴∠C=∠BAE∵AB=AC∴△ABE≌△CAF(AAS)【变式1-2】在△ABC中∠BAC=90°AB=AC直线l经过点A过点B、C分别作l 的垂线垂足分别为点D、E.(1)特例体验:如图①若直线l∥BC AB=AC=分别求出线段BD、CE和DE 的长;(2)规律探究:(Ⅰ)如图②若直线l从图①状态开始绕点A旋转α(0<α<45°)请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°)与线段BC相交于点H请再探线段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图③中延长线段BD交线段AC于点F若CE=3 DE=1 求S△BFC.【解答】解:(1)在△ABC中∠BAC=90°AB=AC∴∠ABC=∠ACB=45°∵l∥BC∴∠DAB=∠ABC=45°∠CAE=∠ACB=45°∴∠DAB=∠ABD=45°∠EAC=∠ACE=45°∴AD=BD AE=CE∵AB=AC=∴AD=BD=AE=CE=1∴DE=2;(2)(Ⅰ)DE=BD+CE.理由如下:在Rt△ADB中∠ABD+∠BAD=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∴∠ABD=∠CAE在△ABD和△CAE中∴△ABD≌△CAE(AAS);∴CE=AD BD=AE∴DE=AE+AD=BD+CE.(Ⅱ)DE=BD﹣CE.理由如下:在Rt△ADB中∠ABD+∠BAD=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∴∠ABD=∠CAE在△ABD和△CAE中∴△ABD≌△CAE(AAS);∴CE=AD BD=AE∴DE=AE﹣AD=BD﹣CE.(3)由(2)可知∠ABD=∠CAE DE=AE﹣AD=BD﹣CE ∵∠BAC=∠ADB=90°∴△ABD∽△FBA∴AB:FB=BD:AB∵CE=3 DE=1∴AE=BD=4∴AB=5.∴BF=.∴S△BFC=S△ABC﹣S△ABF=×52﹣×3×=.【类型二:做辅助线构造“K”型图】【典例2】如图△ABC为等腰直角三角形∠ABC=90°△ABD为等腰三角形AD=AB=BC E为DB延长线上一点∠BAD=2∠CAE.(1)若∠CAE=20°求∠CBE的度数;(2)求证:∠BEC=135°;(3)若AE=a BE=b CE=c.则△ABC的面积为.(用含a b c 的式子表示)【解答】(1)解:∵∠CAE=20°∠BAD=2∠CAE∴∠BAD=40°∵AD=AB∴∠D=∠DBA=70°又∵∠ABC=90°∴∠CBE=180°﹣70°﹣90°=20°;(2)证明:过点A作AF⊥DE于点F过点C作CG⊥DE于点G∴∠AFB=∠ABC=∠CGB=90°又∵AD=BC=AB∴∠BAC=∠ACB=45°∠F AB=∠DAB=∠CAE∵∠F AB+∠FBA=∠FBA+∠CBG=90°∴∠F AB=∠CBG=∠CAE在△BAF和△CBG中∴△BAF≌△CBG(AAS)∴AF=BG BF=CG∵∠CBG=∠CAE∴∠AEF=∠ACB=45°∴AF=EF=BG BF=CG∴BF=EG=CG∴∠CEG=∠AEF=45°∴∠AEC=90°∴∠BEC=135°;(3)解:由(2)可知CG=BF AF=EF∴CG=BF=EF﹣BE=AF﹣BE∵S△ABC=S△AEB+S△AEC﹣S△BEC∴S△ABC=BE•CG=BE•(AF﹣BE)=.故答案为:.【类型三:“K”型图与平面直角坐标综合】【典例3】如图平面直角坐标系中有点A(﹣1 0)和y轴上一动点B(0 a)其中a >0 以B点为直角顶点在第二象限内作等腰直角△ABC设点C的坐标为(c d).(1)当a=2时则C点的坐标为;(2)动点B在运动的过程中试判断c+d的值是否发生变化?若不变请求出其值;若发生变化请说明理由.【解答】解:(1)如图1中过点C作CE⊥y轴于E则∠CEB=∠AOB.∵△ABC是等腰直角三角形∴BC=BA∠ABC=90°∴∠BCE+∠CBE=90°=∠BAO+∠CBE∴∠BCE=∠ABO在△BCE和△BAO中∴△CBE≌△BAO(AAS)∵A(﹣1 0)B(0 2)∴AO=BE=1 OB=CE=2∴OE=1+2=3∴C(﹣2 3)故答案为:(﹣2 3);(2)动点A在运动的过程中c+d的值不变.理由:过点C作CE⊥y轴于E则∠CEA=∠AOB∵△ABC是等腰直角三角形∴BC=BA∠ABC=90°∴∠BCE+∠CBE=90°=∠ABO+∠CBE∴∠BCE=∠ABO在△BCE和△BAO中∴△CBE≌△BAO(AAS)∵B(﹣1 0)A(0 a)∴BO=AE=1 AO=CE=a∴OE=1+a∴C(﹣a1+a)又∵点C的坐标为(c d)∴c+d=﹣a+1+a=1即c+d的值不变.【变式3】点A的坐标为(4 0)点B为y轴负半轴上的一个动点分别以OB、AB为直角边在第三象限和第四象限作等腰Rt△OBC和等腰Rt△ABD.(1)如图一若点B坐标为(0 ﹣3)连接AC、OD.①求证:AC=OD;②求D点坐标.(2)如图二连接CD与y轴交于点E试求BE长度.【解答】(1)①证明:∵△OBC和△ABD是等腰直角三角形∴OB=CB BD=AB∠ABD=∠OBC=90°∴∠ABD+ABO=∠OBC+∠A∠O∴∠OBD=∠CBA∴△OBD≌△CBA(SAS)∴AC=OD;②如图一、∵A(4 0)B(0 ﹣3)∴OA=4 OB=3过点D作DF⊥y轴于F∴∠BOA=∠DFB=90°∴∠ABO+∠OAB=90°∵∠ABD=90°∴∠ABO+∠FBD=90°∴∠OAB=∠FBD∵AB=BD∴△AOB≌△BFD(AAS)∴DF=OB=3 BF=OA=4∴OF=OB+BF=7∴D(3 ﹣7);(2)如图二、过点D作DF⊥y轴于F则∠DFB=90°=∠CBF同(1)②的方法得△AOB≌△BFD(AAS)∴DF=OB BF=OA=4∵OB=BC∴BC=DF∵∠DEF=∠CEB∴△DEF≌△CEB(AAS)∴BE=EF∴BF=BE+EF=2BE=4∴BE=2.【类型四:特殊“K”型图】【典例4】(1)猜想:如图1 已知:在△ABC中∠BAC=90°AB=AC直线m经过点A BD⊥直线m CE⊥直线m垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系请直接写出;(2)探究:如果三个角不是直角那结论是否会成立呢?如图2 将(1)中的条件改为:在△ABC中AB=AC D A、E三点都在直线m上并且有∠BDA=∠AEC=∠BAC =α(其中α为任意锐角或钝角)如果成立请你给出证明;若不成立请说明理由;(3)解决问题:如图3 F是角平分线上的一点且△ABF和△ACF均为等边三角形D、E分别是直线m上A点左右两侧的动点D、E、A互不重合在运动过程中线段DE的长度始终为n连接BD、CE若∠BDA=∠AEC=∠BAC试判断△DEF的形状并说明理由.【解答】解:(1)DE=BD+CE理由如下:∵∠BAC=90°∴∠BAD+∠CAE=90°∵BD⊥m CE⊥m∴∠ADB=∠CEA=90°∴∠BAD+∠ABD=90°∴∠ABD=∠CAE在△ADB和△CEA中∴△ADB≌△CEA(AAS)∴BD=AE AD=CE∴DE=AD+AE=BD+CE;(2)结论DE=BD+CE成立理由如下:∵∠BAD+∠CAE=180°﹣∠BAC∠BAD+∠ABD=180°﹣∠ADB∠ADB =∠BAC∴∠ABD=∠CAE在△BAD和△ACE中∴△BAD≌△ACE(AAS)∴BD=AE AD=CE∴DE=DA+AE=BD+CE;(3)△DFE为等边三角形理由如下:由(2)得△BAD≌△ACE∴BD=AE∠ABD=∠CAE∴∠ABD+∠FBA=∠CAE+F AC即∠FBD=∠F AE在△FBD和△F AE中∴△FBD≌△F AE(SAS)∴FD=FE∠BFD=∠AFE∴∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=60°∴△DFE为等边三角形.【变式4】已知在△ABC中AB=AC D A E三点都在直线m上且DE=9cm∠BDA=∠AEC=∠BAC(1)如图①若AB⊥AC则BD与AE的数量关系为CE与AD的数量关系为;(2)如图②判断并说明线段BD CE与DE的数量关系;(3)如图③若只保持∠BDA=∠AEC BD=EF=7cm点A在线段DE上以2cm/s的速度由点D向点E运动同时点C在线段EF上以xcm/s的速度由点E向点F运动它们运动的时间为t(s).是否存在x使得△ABD与△EAC全等?若存在求出相应的t 的值;若不存在请说明理由.【解答】解:(1)∵∠BDA=∠AEC=∠BAC∴∠BAD+∠CAE=∠BAD+∠ABD∴∠CAE=∠ABD∵∠BDA=∠AEC BA=CA∴△ABD≌△CAE(AAS)∴BD=AE CE=AD故答案为:BD=AE CE=AD;(2)DE=BD+CE由(1)同理可得△ABD≌△CAE(AAS)∴BD=AE CE=AD∴DE=BD+CE;(3)存在当△DAB≌△ECA时∴AD=CE=2cm BD=AE=7cm∴t=1 此时x=2;当△DAB≌△EAC时∴AD=AE=4.5cm DB=EC=7cm∴t=x=7÷=综上:t=1 x=2或t=x=.1.如图∠ACB=90°AC=BC AD⊥CE BE⊥CE垂足分别为D E.(1)求证:△ACD≌△CBE;(2)试探究线段AD DE BE之间有什么样的数量关系请说明理由.【解答】(1)证明:∵AD⊥CE BE⊥CE∴∠ADC=∠BEC=90°∴∠ACE+∠CAD=90°∵∠ACB=90°∴∠BCE+∠ACD=90°∴∠BCE=∠CAD在△ACD和△CBE中∴△ACD≌△CBE(AAS);(2)解:AD=BE+DE理由如下:∵△ACD≌△CBE∴CD=BE AD=CE∵CE=CD+DE∴AD=BE+DE.2.如图在△ABC中AB=AC D、A、E三点都在直线m上并且有∠BDA=∠AEC=∠BAC=α若DE=10 BD=3 求CE的长.【解答】解:∵∠AEC=∠BAC=α∴∠ECA+∠CAE=180°﹣α∠BAD+∠CAE=180°﹣α∴∠ECA=∠BAD在△BAD与△ACE中∴△BAD≌△ACE(AAS)∴CE=AD AE=BD=3∵DE=AD+AE=10∴AD=DE﹣AE=DE﹣BD=10﹣3=7.∴CE=7.3.如图把一块直角三角尺ABC的直角顶点C放置在水平直线MN上在△ABC中∠C =90°AC=BC试回答下列问题:(1)若把三角尺ABC绕着点C按顺时针方向旋转当AB∥MN时∠2=45度;(2)在三角尺ABC绕着点C按顺时针方向旋转过程中分别作AM⊥MN于M BN⊥MN与N若AM=6 BN=2 求MN.(3)三角尺ABC绕着点C按顺时针方向继续旋转到图3的位置其他条件不变则AM、BN与MN之间有什么关系?请说明理由.【解答】解:(1)在△ABC中AB=AC∠ACB=90°∴∠B=∠A=45°∵AB∥MB∴∠2=∠B=45°故答案为45;(2)∵AM⊥MN于M BN⊥MN于N∴∠AMC=90°∠BNC=90°.∴∠1+∠CAM=90°又∵∠1+∠2=90°∴∠2=∠CAM同理:∠1=∠CBN在△AMC和△CNB中∴△AMC≌△CNB(ASA)∴AM=CN MC=BN∴MN=MC+CN=AM+BN=2+6=8;(3)MN=BN﹣AM理由:同(2)的方法得△AMC≌△CNB(ASA)∴AM=CN MC=BN∴MN=MC﹣CN=BN﹣AM.4.在△ABC中∠ACB=90°AC=BC直线MN经过点C且AD⊥MN于D BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时(1)中的结论还成立吗?若成立请给出证明;若不成立说明理由.【解答】(1)证明:①∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°∴∠DAC=∠BCE.又AC=BC∠ADC=∠BEC=90°∴△ADC≌△CEB.②∵△ADC≌△CEB∴CD=BE AD=CE.∴DE=CE+CD=AD+BE.(2)△ADC≌△CEB成立DE=AD+BE.不成立此时应有DE=AD﹣BE.证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°∴∠DAC=∠BCE.又AC=BC∠ADC=∠BEC=90°∴△ADC≌△CEB.∴CD=BE AD=CE.∴DE=AD﹣BE.5.已知△ABC在平面直角坐标系中在△ABC中AB=BC∠ABC=90°.(1)如图①已知点A(0 ﹣4)B(1 0)求点C的坐标;(2)如图②已知点A(0 0)B(3 1)求点C的坐标.【解答】解:(1)过点C作x轴的垂线交x轴于点D∵A(0 ﹣4)B(1 0)∴OA=4 OB=1∵∠ABC=90°∠AOB=90°∴∠CBD+∠OBA=90°∠OAB+∠OBA=90°∴∠CBD=∠BAO∵AB=BC∠AOB=∠BDC=90°∴△BCD≌△ABO(AAS)∴CD=BO=1 BD=AO=4∴OD=3∴点C坐标为(﹣3 1);(2)过B作x轴的垂线交x轴于点D过点C作DB的垂线交DB的延长线于点E∵A(0 0)B(3 1)∴OD=3 BD=1∵∠ABC=90°∠ADB=90°∴∠CBE+∠OBD=90°∠BAD+∠OBD=90°∴∠BAD=∠CBE∵AB=BC∠ADB=∠BEC=90°∴△ABD≌△BCE(AAS)∴CE=BD=1 BE=AD=3∴DE=4∴点C的横坐标为3﹣1=2∴点C坐标为(2 4).6.如图1 在平面直角坐标系中点A(0 m)B(m0)C(0 ﹣m)其中m>0 点P为线段OA上任意一点连接BP CE⊥BP于E AD⊥BP于D.(1)求证:AD=BE;(2)当m=3时若点N(﹣3 0)请你在图1中连接CD EN交于点Q.求证:EN ⊥CD;(3)若将“点P为线段OA上任意一点”改为“点P为线段OA延长线上任意一点”其他条件不变连接CD EN⊥CD垂足为F交y轴于点H交x轴于点N请在图2中补全图形求点N的坐标(用含m的代数式表示).【解答】(1)证明:如图1中∵A(0 m)B(m0)C(0 ﹣m)∴OA=OB=OC=m∴∠ABC=90°∵OB⊥AC OA=OC∴BA=BC∵CE⊥BP于E AD⊥BP于D∴∠ADB=∠CEB=90°∵∠CBE+∠ABD=90°∠CBE+∠BCE=90°∴∠ABD=∠BCE在△ADB和△BEC中∴△ADB≌△BEC(AAS)∴AD=BE.(2)证明:如图1中设CD交ON于点J EN交CD于点K.∵N(﹣3 0)m=3∴OA=OB=OC=ON=3∴AC=BN∵∠ADP=∠BOP=90°∠APD=∠BPO∴∠DAC=∠EBN在△ACD和△BNE中∴△ACD≌△BNE(SAS)∴∠ACD=∠BNE∵∠ACD+∠CJO=90°∠CJO=∠NJK∴∠CNE+∠NJK=90°∴∠NKJ=90°∴CD⊥EN.(3)解:如图2中∵CE⊥BP于E AD⊥BP于D ∴∠ADB=∠CEB=90°∵∠CBE+∠ABD=90°∠CBE+∠BCE=90°∴∠ABD=∠BCE在△ADB和△BEC中∴△ADB≌△BEC(AAS)∴AD=BE.∠BAD=∠CBE∵∠CAB=∠CBO=45°∴∠CAD=∠EBN∵EN⊥CD∴∠CFH=∠NOH∵∠NHO=∠CHF∴∠ACD=∠HNO在△CAD和△NBE中∴△CAD≌△NBE(AAS)∴AC=BN=2m∴ON=BN﹣OB=m∴N(﹣m0).7.如图1 在平面直角坐标系内A(﹣6 0)B(0 9)C(0 4)连接AB、AC点D为x轴正半轴上一点且S△ACD=S△ABC.(1)求点D的坐标;(2)如图2 延长DC交AB于点E AE=AC求点E的坐标;(3)如图3 在(2)的条件下点P在第三象限连接AP、BP、CP若∠CAP=90°∠BAC=2∠PCO BP交x轴于点K求点K的坐标.【解答】解:(1)∵A(﹣6 0)B(0 9)C(0 4)∴AO=6 OB=9 OC=4∴BC=OB﹣OC=9﹣4=5∴S△ACB=×5×6=15∵S△ACD=×4•AD=2AD S△ACD=S△ABC.∴2AD=×15∴AD=10∴OD=AD﹣OA=10﹣6=4∴D(4 0);(2)过点E作FH∥AD交y轴于点H过点A作F A⊥AD交FH于点F∵x轴⊥y轴∴∠AOB=90°∵FH∥AD∴∠FHO=90°∵F A⊥AD∴∠F AO=90°∵FH∥AD∴∠AFH+∠F AD=180°∴∠AFH=90°∴∠AFH=∠FHO=∠F AO=∠AOB=90°∴四边形AFHO是矩形∵AE=AC∴∠AEC=∠ACE∵OC=OD∴∠COD=90°∴∠CDO=∠DCO=45°∵FH∥AD∠CEH=∠CDO=45°且∠AEF+∠AEC+∠CEH=180°∠ACO+∠ACE+∠DCO=180°∴∠AEF=∠ACO在△AEF和△ACO中∴△AEF≌△ACO(AAS)∴AF=AO EF=CO=4∴矩形AFHO为正方形∴AO=FH=6∴EH=FH﹣EF=6﹣4=2∴E(﹣2 6);(3)∵∠BAC=2∠PCO设∠PCO=α∴∠BAC=2α∵AE=AC∴∠AEC=∠ACE=(180°﹣∠BAC)=90°﹣α∵∠DCO=45°∴∠ACP=180°﹣∠DCO﹣∠PCO﹣∠ECA=180°﹣45°﹣α﹣(90°﹣α)=45°∵∠CAP=90°∴∠APC=180°﹣∠CAP﹣∠ACP=180°﹣90°﹣45°=45°∴∠ACP=∠CAP∴AC=AP过点A作HR⊥x轴.过点C作CH⊥HR过点P作RT⊥HR∴∠H=∠CAP=∠R=90°∵∠HAC+∠HCA=180°﹣∠H=180°﹣90°=90°∠HAC+∠RAP=180°﹣∠CAP =180°﹣90°=90°∴∠HCA=∠RAP在△CHA和△ARP中∴△CHA≌△ARP(AAS)∴HC=AR HA=RP∵OA=6 OC=4 TB=OB+OT=9+6=15∴HC=AR=6∴HA=RP=4∴PT=RT﹣RP=6﹣4=2设KO=a S△BPT=S梯形KOTP+S△BKO∴(KO+PT)•OT+KO•OB∴×(a+2)×6+a×9解得a=∴K(﹣0).8.从反思中总结基本活动经验是一个重要的学习方法.例如我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形可以使得我们在观察新问题的时候很迅速地联想从而借助已有经验迅速解决问题.(1)如图1 在平面直角坐标系中四边形OBCD是正方形且D(0 2)点E是线段OB延长线上一点M是线段OB上一动点(不包括点O、B)作MN⊥DM垂足为M且MN=DM.设OM=a请你利用基本活动经验直接写出点N的坐标(2+a a)(用含a的代数式表示);(2)基本经验有利有弊当基本经验有利于新问题解决的时候这是基本经验的正迁移;当基本经验所形成的思维定势局限了新问题的思考让新问题解决不出来的时候这是基本经验的负迁移.例如如果(1)的条件去掉“且MN=DM”加上“交∠CBE的平分线与点N”如图2 求证:MD=MN.如何突破这种定势获得问题的解决请你写出你的证明过程.(3)如图3 请你继续探索:连接DN交BC于点F连接FM下列两个结论:①FM 的长度不变;②MN平分∠FMB请你指出正确的结论并给出证明.【解答】(1)解:如图1中作NE⊥OB于E∵∠DMN=90°∴∠DMO+∠NME=90°∠NME+∠MNE=90°∴∠DMO=∠MNE在△DMO和△MNE中∴△DMO≌△MNE∴ME=DO=2 NE=OM=a∴OE=OM+ME=2+a∴点N坐标(2+a a)故答案为N(2+a a).(2)证明:如图2中在OD上取OH=OM连接HM∵OD=OB OH=OM∴HD=MB∠OHM=∠OMH ∴∠DHM=180°﹣45°=135°∵NB平分∠CBE∴∠NBE=45°∴∠NBM=180°﹣45°=135°∴∠DHM=∠NBM ∵∠DMN=90°∴∠DMO+∠NMB=90°∵∠HDM+∠DMO=90°∴∠HDM=∠NMB在△DHM和△MBN中∴△DHM≌△MBN(ASA)∴DM=MN.(3)结论:MN平分∠FMB成立.证明:如图3中在BO延长线上取OA=CF在△AOD和△FCD中∴△DOA≌△DCF∴AD=DF∠ADO=∠CDF∵∠MDN=45°∴∠CDF+∠ODM=45°∴∠ADO+∠ODM=45°∴∠ADM=∠FDM在△DMA和△DMF中∴△DMA≌△DMF∴∠DFM=∠DAM=∠DFC过M作MP⊥DN于P则∠FMP=∠CDF 由(2)可知∠NMF+∠FMP=∠PMN=45°∵∠NMB=∠MDO∠MDO+∠CDF=45°∴∠NMB=∠NMF即MN平分∠FMB.(在旋转过程中FM=AM显然AM的长度是变化的故FM的长度是变化的或取两个特殊位置比较AM的值即可发现结论).。
专题 期中模拟测试卷(压轴题综合测试卷)(人教版)(原卷版)-2024-2025学年八年级数学上册
专题期中模拟测试卷学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一、选择题(本大题共10小题,每小题3分,满分30分)1.(24-25八年级上·河北廊坊·阶段练习)在下列条件:①∠AA+∠BB=∠CC,②∠AA:∠BB:∠CC=5:3:2,③∠AA= 90°−∠BB,④∠AA=2∠BB=3∠CC,⑤一个外角等于与它相邻的内角.中,能确定△AABBCC是直角三角形的条件有()A.2个B.3个C.4个D.5个2.(24-25八年级上·全国·单元测试)已知数轴上点A,B,C,D对应的数字分别为−1,1,x,7,点C在线段BBBB上且不与端点重合,若线段AABB,BBCC,CCBB能围成三角形,则x可能是()A.2 B.3 C.4 D.53.(23-24八年级上·内蒙古呼伦贝尔·期中)如图,EEBB交AACC于点MM,交FFCC于点BB,∠EE=∠FF=90°,∠BB=∠CC,AAEE=AAFF,给出下列结论:①∠1=∠2;②BBEE=CCFF;③△AACCAA≌△AABBMM;④CCBB=BBAA,其中正确的有()A.①②③B.①②④C.①③④D.②③④4.(24-25八年级上·江苏无锡·阶段练习)如图,∠AA=∠BB=90°,AABB=60,EE、FF分别为线段AABB和射线BBBB上的一点,若点EE从点BB出发向点AA运动,同时点FF从点BB出发向点BB运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AACC上取一点GG,使△AAEEGG与△BBEEFF全等,则AAGG的长为()A.18 B.88 C.88或62 D.18或705.(24-25八年级上·湖北荆州·阶段练习)如图,在△AABBCC中,∠AACCBB=90°,AACC=BBCC,点C的坐标为(−2,0),点B的坐标为(1,6),则A点的坐标为()A.(8,−2)B.(−8,3)C.(−6,2)D.(−6,3)6.(23-24八年级上·福建莆田·期中)如图,在五边形AABBCCBBEE中,∠BBAAEE=142°,∠BB=∠EE=90°,AABB=BBCC,AAEE=BBEE.在BBCC,BBEE上分别找一点MM,AA,使得△AAMMAA的周长最小时,则∠AAMMAA+∠AAAAMM的度数为()A.76° B.84° C.96° D.109°7.(24-25八年级上·重庆江北·开学考试)如图,点D是△AABBCC边BBCC上的中点,点E是AABB上一点且BBEE=3AAEE,F、G是边AABB上的三等分点,若四边形FFGGBBEE的面积为14,则△AABBCC的面积是()A.24 B.42 C.48 D.56 8.(2024·江苏·模拟预测)如图,将四边形纸片AABBCCBB沿MMAA折叠,使点AA落在四边形CCBBMMAA外点AA′的位置,点BB落在四边形CCBBMMAA内点BB′的位置,若∠BB=90°,∠2−∠1=36°,则∠CC等于()A.36°B.54°C.60°D.72°9.(23-24八年级上·江苏南通·期中)如图,在△AABBCC中,∠BBAACC和∠AABBCC的平分线AAEE,BBFF相交于点OO,AAEE交BBCC 于EE,BBFF交AACC于FF,过点OO作OOBB⊥BBCC于BB,下列四个结论:①∠AAOOBB=90°+12∠CC;②当∠CC=60°时,AAFF+ BBEE=AABB;③OOEE=OOFF;④若OOBB=aa,AABB+BBCC+CCAA=2bb,则SS△AAAAAA=aabb.其中正确的结论是()A.①②③B.②③④C.①③④D.①②④10.(23-24八年级上·湖北荆门·期末)如图,C为线段AAEE上一动点(不与点A,点E重合),在AAEE同侧分别作等边△AABBCC和等边△CCBBEE,AABB交于点O,AABB与BBCC交于点P,BBEE与CCBB交于点Q,连接PPPP,OOCC.以下六个结论:①AABB=BBEE;②PPPP∥AAEE;③AAPP=BBPP;④BBEE=BBPP;⑤∠AAOOBB=60°;⑥OOCC平分∠AAOOEE,其中正确的结论的个数是()A.3个B.4个C.5个D.6个评卷人得分二、填空题(本大题共5小题,每小题3分,满分15分)11.(24-25八年级上·江苏宿迁·阶段练习)在的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△AABBCC关于某条直线对称的格点三角形,最多能画个个.12.(24-25八年级上·黑龙江哈尔滨·阶段练习)风筝又称“纸鸢”、“风鸢”、“纸鹞”等,起源于中国东周春秋时期,距今已有2000多年的历史,如图是一款风筝骨架的简化图,已知AABB=AABB,BBCC=CCBB,AACC=90cm,BBBB=60cm,制作这个风筝需要的布料至少为cm2.13.(24-25八年级上·四川德阳·阶段练习)如图所示,由五个点组成的图形,则∠AA+∠BB+∠CC+∠BB+∠EE=度.14.(24-25八年级上·内蒙古呼和浩特·阶段练习)如图,在Rt△AABBCC中,∠AACCBB=90°,AACC=6,BBCC=8,AABB=10,AABB是∠BBAACC的平分线,若PP,PP分别是AABB和AACC上的动点,则PPCC+PPPP的最小值是.15.(24-25八年级上·福建福州·阶段练习)如图,在△AABBCC中,AABB=AACC,∠BBAACC=120°,AABB⊥BBCC于点D,点P是CCAA延长线上一点,点O在AABB延长线上,OOPP=OOBB,下面的结论:①∠AAPPOO−∠OOBBBB=30°;②△BBPPOO是等边三角形;③AABB−AAPP=AAOO;④SS四边形AAAAAAAA=2SS△AAAAAA,其中正确的结论是.评卷人得分三、解答题(本大题共8小题,满分55分)16.(6分)(23-24八年级上·山东菏泽·期末)如图,在平面直角坐标系中,AA(−1,4),BB(−3,3),CC(−2,1).(1)画出△AABBCC关于xx轴的对称图形△AA1BB1CC1;(2)求△AABBCC的面积;(3)在yy轴上找一点PP,使得△PPBBCC的周长最小.17.(6分)(24-25八年级上·福建莆田·阶段练习)如图,在四边形AABBCCBB中,AACC平分∠BBAABB,过CC作CCEE⊥AABB 于EE,并且∠AABBCC+∠AABBCC=180°.(1)求证:BBCC=BBCC.(2)求证:AAEE=12(AABB+AABB).18.(6分)(24-25八年级上·湖北孝感·阶段练习)如图,△AABBBB和△CCAAEE是等腰直角三角形,其中∠BBAABB=∠CCAAEE=90°,AABB=AABB,AAEE=AACC,过A点作AAFF⊥CCBB,垂足为点F.(1)求证:△AABBCC≌△AABBEE;(2)若CCAA平分∠BBCCEE,求证:CCBB=2BBFF+BBEE.19.(6分)(24-25八年级上·福建莆田·阶段练习)如图,在△AAOOBB和△CCOOBB中,OOAA=OOBB,OOCC=OOBB,若∠AAOOBB=∠CCOOBB=60°,连接AACC、BBBB交于点P;(1)求证∶△AAOOCC≌△BBOOBB.(2)求∠AAPPBB的度数.(3)如图(2),△AABBCC是等腰直角三角形,∠AACCBB=90°,AACC=BBCC,AABB=14cm,点D是射线AABB上的一点,连接CCBB,在直线AABB上方作以点C为直角顶点的等腰直角△CCBBEE,连接BBEE,若BBBB=4cm,求BBEE的值.20.(6分)(23-24八年级上·江苏南通·阶段练习)如图:△AABBCC是边长为6的等边三角形,P是AACC边上一动点.由点A向点C运动(P与点AA、CC不重合),点Q同时以点P相同的速度,由点B向CCBB延长线方向运动(点Q不与点B重合),过点P作PPEE⊥AABB于点E,连接PPPP交AABB于点D.(1)若设AAPP的长为x,则PPCC=_________,PPCC=____________.(2)当∠BBPPBB=30°时,求AAPP的长;(3)点PP,PP在运动过程中,线段EEBB的长是否发生变化?如果不变,直接写出线段EEBB的长;如果变化,请说明理由.21.(8分)(24-25八年级上·湖北省直辖县级单位·阶段练习)如图①,在△AABBCC中,∠AABBCC与∠AACCBB的平分线相交于点P.(1)若∠AA=60°,则∠BBPPCC的度数是;(2)如图②,作△AABBCC外角∠MMBBCC,∠AACCBB的角平分线交于点Q,试探索∠PP,∠AA之间的数量关系;(3)如图③,延长线段BBPP,PPCC交于点E,在△BBPPEE中,存在一个内角等于另一个内角的3倍,请直接写出∠AA的度数是.22.(8分)(23-24八年级上·湖北黄石·期末)在平面直角坐标系中,AA(−5,0),BB(0,5),点C为x轴正半轴上一动点,过点A作AABB⊥BBCC交y轴于点E.(1)如图①,若CC(3,0),求点E的坐标;(2)如图②,若点C在x轴正半轴上运动,且OOCC<5,其它条件不变,连接BBOO,求证:BBOO平分∠AABBCC;(3)若点C在x轴正半轴上运动,当OOCC+CCBB=AABB时,求∠OOBBCC的度数.23.(9分)(24-25八年级上·山东济宁·阶段练习)(1)问题背景:如图1,在四边形AABBCCBB中,AABB=AABB,∠BBAABB= 120°,∠BB=∠AABBCC=90°,E、F分别是BBCC,CCBB上的点,且∠EEAAFF=60°,探究图中线段BBEE、EEFF、FFBB之间的数量关系.小李同学探究此问题的方法是:延长FFBB到点G,使BBGG=BBEE.连接AAGG,先证明△AABBEE≌△AABBGG,再证明△AAEEFF≌△AAGGFF,可得出结论.他的结论应是______________________.(2)如图2,在四边形AABBCCBB中,AABB=AABB,∠BB+∠BB=180°,EE,FF分别是边BBCC,CCBB上的点,且∠EEAAFF= 12∠BBAABB.(1)中的结论是否仍然成立?请写出证明过程.(3)在四边形AABBCCBB中,AABB=AABB,∠BB+∠BB=180°,E,F分别是边BBCC,CCBB所在直线上的点,且∠EEAAFF= 12∠BBAABB.请直接写出线段EEFF,BBEE,FFBB之间的数量关系.。
2024-2025学年八年级上册期中押题重难点检测卷(范围:三角形、全等三角形、轴对称)(含解析)
期中押题重难点检测卷(培优卷)【考试范围:三角形、全等三角形、轴对称】注意事项:本试卷满分120分,考试时间120分钟,试题共26题。
答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置一、选择题(10小题,每小题3分,共30分)1.(23-24八年级上·福建厦门·期中)窗花是中国古老的民间艺术之一,下列窗花作品中为轴对称图形的是( )A .B .C .D .2.(23-24七年级下·全国·单元测试)一块三角形玻璃板不慎被小强同学碰破,成了如图所示的四块,聪明的小强经过仔细地考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃板,你认为可行的方案是( )A .带其中的任意两块去都可以B .带 ①②或②③去就可以了C .带 ①④ 或③④去就可以了D .带①④或①③去就可以了3.(24-25八年级上·辽宁葫芦岛·阶段练习)若三角形的三边长分别是2,8,m ,则m 的取值可能是( ) A .5 B .6 C .7 D .104.(24-25八年级上·浙江金华·阶段练习)如图,已知ABC DCB ∠=∠,下列判断中,错误的是( )A .若添加条件AB DC =,则ABC DCB △≌△B .若添加条件AC DB =,则ABC DCB △≌△C .若添加条件AD ∠=∠,则ABC DCB △≌△D .若添加条件ACB DBC ∠=∠,则ABC DCB △≌△5.(24-25八年级上·辽宁葫芦岛·阶段练习)一副三角板按如图所示叠放在一起,其中30,45,90B E C ADE °°°∠=∠=∠=∠=,若20EDB ∠=°,则BAE ∠的度数为( )A .5°B .10°C .15°D .20°6.(23-24七年级下·江苏南京·期末)在ABC 中,90C ∠=°,若10BC =,AD 平分BAC ∠交BC 于点D ,且:3:2BD CD =,则点D 到线段AB 的距离DE 为( )A .2B .4C .5D .67.(24-25八年级上·黑龙江齐齐哈尔·阶段练习)如图,三角形纸片中,12cm AB =,9cm AC =,16BC cm =.沿过点C 的直线折叠这个三角形,使点A 落BC 边上的点E 处,折痕为CD ,则DBE 的周长是( )A .19cmB .20cmC .2lcmD .22cm8.(24-25八年级上·浙江金华·阶段练习)如图,在五边形ABCDE 中,146BAE =°∠,90B E ∠=∠=°,AB BC =,AE DE =.在BC ,DE 上分别找一点M ,N ,使得AMN 的周长最小时,则AMN ANM ∠+∠的度数为( )A .68°B .76°C .84°D .96°9.(24-25八年级上·浙江绍兴·阶段练习)如图,在ABC 中,已知AB AC =,90BAC ∠= ,10cm BC =,直线CM BC ⊥,动点D 从点C 开始沿射线CCBB 方向以每秒3cm 的速度运动,动点E 也同时从点C 开始在直线CM 上以每秒2cm 的速度运动,连接AAAA ,AE ,设运动时间为t 秒.当ABD ACE ≌△△时,t 的值应为( )A .2或5B .5或12C .2或10D .5或1010.(23-24八年级上·江苏宿迁·阶段练习)如图,在锐角三角形ABC 中,AH 是BC 边上的高,分别以AB AC ,为一边,向外作正方形ABDE 和ACFG (正方形四条边都相等,四个角都是直角),连接CE BG ,和EG EG ,与HA 的延长线交于点M ,下列结论:①BG CE =;②BG CE ⊥;③AM 是AEG △的中线;④EAM ABC ∠=∠.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题(8小题,每小题3分,共24分)11.(24-25八年级上·全国·单元测试)若从一个n 边形的一个顶点出发,最多可以引9条对角线,则n = . 12.(24-25八年级上·黑龙江哈尔滨·阶段练习)如图,在ABC 中,已知ABC ∠和ACB ∠的平分线相交于点F ,过F 作DE BC ∥,交AB 于点D ,交AC 于点E ,若3,2BD CE ==,则线段DE 的长为 .13.(24-25八年级上·江苏扬州·阶段练习)如图,90B C ∠=∠=°,DE ,AE 分别平分ADC ∠,BAD ∠,8BC =,10AD =,则ADE 的面积为 .14.(24-25八年级上·浙江金华·阶段练习)一个三角形的三条边的长分别是5,7,10,另一个三角形的三条边的长分别是5,21x −,1y +,若这两个三角形全等,则x y +的值是 .15.(24-25八年级上·河北廊坊·阶段练习)淇淇用正方形、正五边形和正六边形纸片组成如图所示的图形(正五边形和正六边形有1个顶点重合,正方形的两个顶点分别在正五边形和正六边形的边上),若12110∠+∠=°,则3∠的度数为 .16.(2024八年级上·浙江·专题练习)如图,AD 是ABC 的角平分线,CE AD ⊥,垂足为F ,若30CAB ∠=°,50B ∠=°,则BDE ∠的度数为 .17.(2024七年级下·全国·专题练习)如图,已知30MON ∠=°,点123A A A …,,,在射线ON 上,点123B B B …,,,在射线OM 上.112223334A B A A B A A B A … ,,,均为等边三角形,若14OA =,则667A B A 的边长为 .18.(23-24八年级下·福建福州·期中)如图,平面直角坐标系中,()0,2A ,点B 是x 轴上的动点,ABC 是等边三角形,连接OC ,则OC 的最小值是 .三、解答题(8小题,共66分)19.(24-25八年级上·江西南昌·阶段练习)已知一个三角形的两条边长分别为4cm ,8cm .设第三条边长为cm x .(1)求x 的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.20.(24-25八年级上·云南昭通·阶段练习)如图,已知AB CE =,A C ∠=∠,DA 和DE 分别是BDE ∠和ADC ∠的平分线,点B 、C 、D 在同一直线上.(1)求证:ABD CED ≌△△;(2)若6AB =,7AD =,5DE =,求BC 的长.21.(24-25八年级上·山东聊城·阶段练习)如图,ABC 中,90ACB ∠=°,延长AC 到点F ,过点F 作FE AB ⊥于点E ,FE 与BC 交于点D ,若DE DC =.(1)求证: BD DF =;(2)若35AC cm AB cm ==,, 求CCCC 的长度.22.(24-25八年级上·湖南长沙·阶段练习)小强为了测量一幢高楼高AB ,在旗杆CD 与楼之间选定一点P .如图,CD DB AB DB ⊥⊥,,测得旗杆顶C 视线PC 与地面夹角36DPC ∠=°,测楼顶A 视线PA 与地面夹角54APB ∠=°,且CD PB =.(1)证明:CPD PAB △≌△;(2)1036CD DB ==,,求大楼AB 的高.23.(24-25八年级上·黑龙江佳木斯·阶段练习)如图,在ABC 中,BD ,CD 分别是ABC ∠,ACB ∠的内角平分线,交于点D ,BP ,CP 分别是ABC ∠,ACB ∠的外角平分线,交于点P .若50A ∠=°.(1)求BDC ∠;(2)如果A α∠=,直接用α表示出BPC ∠的度数.24.(23-24七年级下·重庆黔江·期中)综合与探究:爱思考的小明在学习过程中,发现课本有一道习题,他在思考过程中,对习题做了一定变式,让我们来一起看一下吧.在ABC 中,ABC ∠与ACB ∠的平分线相交于点P .(1)如图1,如果80A ∠=°,那么BPC ∠=______°;(2)如图1,请猜想A ∠与BPC ∠之间的数量关系,并说明理由;(3)如图2,作ABC 的外角MBC ∠,NCB ∠的平分线交于点Q ,试探究Q ∠与BPC ∠的数量关系.25.(23-24八年级上·湖南邵阳·期中)【初步探索】(1)如图1,在四边形ABCD 中,90AB AD B ADC ∠∠===°,,E ,F 分别是BC CD ,上的点,且EF BE FD =+,探究图中BAE FAD EAF ∠∠∠,,之间的数量关系.小明同学探究此问题的方法是:延长FD 到点G ,使DG BE =.连接AG ,先证明ABE ADG △≌△,再证明AEF AGF ≌,可得出结论,则他的结论应是________.【灵活运用】(2)如图2,若在四边形ABCD 中,180AB AD B D E F =∠+∠=°,,,分别是BC CD ,上的点,且EF BE FD =+,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD 中,180ABC ADC AB AD ∠+∠=°=,,若点E 在CB 的延长线上,点F 在CD 的延长线上,且仍然满足EF BE FD =+,请直接写出EAF ∠与DAB ∠的数量关系.26.(24-25八年级上·江苏扬州·阶段练习)在ABC 中,5AB =,3AC =.若点D 在BAC ∠的平分线所在的直线上.(1)如图1,当点D 在ABC 的外部时,过点D 作DE AB ⊥于E ,作DF AC ⊥交AC 的延长线于F ,且BE CF =. ①求证:点D 在BC 的垂直平分线上;②BE =________;(2)如图2,当点D 在线段BC 上时,若90C ∠=°,BE 平分ABC ∠,交AC 于点E ,交AD 与点F ,过点F 作FG BE ⊥,交BC 于点G .①DFG ∠=________;②若4BC =,43EC =,求GC 的长度; (3)如图3,过点A 的直线l BC ∥,若90C ∠=°,4BC =,点D 到ABC 三边所在直线的距离相等,则点D 到直线l 的距离是________.期中押题重难点检测卷(培优卷)【考试范围:三角形、全等三角形、轴对称】注意事项:本试卷满分120分,考试时间120分钟,试题共26题。
2023学年八年级数学上册高分突破必练专题(人教版) 手拉手综合应用(解析版)
手拉手综合应用应用:①利用手拉手模型证明三角形全等便于解决对应的几何问题;②作辅助线构造手拉手模型难度比较大。
【类型一:等边三角形中的手拉手模型】【典例1】阅读与理解:如图1 等边△BDE按如图所示方式设置.操作与证明:(1)操作:固定等边△ABC将△BDE绕点B按逆时针方向旋转120°连接AD CE 如图2;在图2中请直接写出线段CE与AD之间具有怎样的大小关系.(2)操作:若将图1中的△BDE绕点B按逆时针方向旋转任意一个角度α(60°<α<180°)连接AD CE AD与CE相交于点M连BM如图3;在图3中线段CE 与AD之间具有怎样的大小关系?∠EMD的度数是多少?证明你的结论.猜想与发现:(3)根据上面的操作过程请你猜想在旋转过程中∠DMB的度数大小是否会随着变化而变化?请证明你的结论.【解答】解:(1)EC=AD;∵将△BDE绕点B按逆时针方向旋转120°∴∠ABD=∠CBE在△EBC和△DBA中∴△EBC≌△DBA(SAS)∴EC=AD;(2)EC=AD∠EMD=60°理由如下:设AD与BE交于点O∵将△BDE绕点B按逆时针方向旋转α度∴∠EBC=∠DBA=α∵△ABC与△BDE是等边三角形∴BC=AB BD=BE∴△EBC≌△DBA(SAS)∴EC=AD∠CEB=∠ADB∵∠EOM=∠DOB∴∠EMD=∠EBD=60°(3)不变理由如下:过点B作BH⊥AD于点H BF⊥EC于点F ∵△EBC≌△DBA∴S△EBC=S△DBA AD=EC∴BH=BF∴MB平分∠DMC∴∠DMB=∴∠DMB的度数大小不变【变式1-1】如图△ABC和△DCE都是等边三角形且B C D三点在一条直线上连接AD BE相交于点P.(1)求证:BE=AD.(2)求∠APB的度数.【解答】(1)证明:∵△ABC和△DCE都是等边三角形∴BC=AC CE=CD∠ACB=∠ECD=60°∴∠ACB+∠ACE=∠ECD+∠ACE即∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE.(2)解:由(1)可得△ACD≌△BCE(SAS)∴∠DAC=∠EBC.∵∠ACB=∠DAC+∠ADC=60°∴∠EBC+∠ADC=∠APB=60°即∠APB=60°.【变式1-2】(1)问题发现:如图①△ABC和△EDC都是等边三角形点B、D、E在同一条直线上连接AE.①∠AEC的度数为;②线段AE、BD之间的数量关系为;(2)拓展探究:如图②△ABC和△EDC都是等腰直角三角形、∠ACB=∠DCE=90°点B、D、E在同一条直线上CM为△EDC中DE边上的高连接AE试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系并说明理由;(3)解决问题:如图③△ABC和△EDC都是等腰三角形∠ACB=∠DCE=36°点B、D E在同一条直线上请直接写出∠EAB+∠ECB的度数.【解答】解:(1)①∵△ABC和△DCE都是等边三角形∴CE=CD CA=CB∠ECD=∠ACB=60°∴∠ECD﹣∠ACD=∠ACB﹣∠ACD即∠ECA=∠DCB在△ECA和△DCB中∴△ECA≌△DCB(SAS)∴∠AEC=∠BDC=120°故答案为:120°;②∵△ECA≌△DCB∴AE=BD故答案为:AE=BD;(2)CM+AE=BM理由如下:∵△DCE是等腰直角三角形∠CDE=45°∴∠CDB=135°由(1)得△ECA≌△DCB∴∠CEA=∠CDB=135°AE=BD∵∠CEB=45°∴∠AEB=∠CEA﹣∠CEB=90°∵△DCE都是等腰直角三角形CM为△DCE中DE边上的高∴CM=EM=MD∴CM+AE=BM;(3)∵△DCE是等腰三角形∠DCE=36°∴∠CDE=72°∴∠CDB=108°∵△ECA≌△DCB∴∠CEA=∠CDB=108°∴∠EAC+∠ECA=72°∵△ABC是等腰三角形∠ACB=36°∴∠CAB=72°∴∠EAB+∠ECB=∠EAC+∠CAB+∠ECA+∠ACB=72°+72°+36°=180°【类型二:等腰三角形的手拉手模型】【典例2】在△ABC中AB=AC点D是直线BC上一点(不与B、C重合)以AD为一边在AD的右侧作△ADE使AD=AE∠DAE=∠BAC连接CE.(1)如图1 当点D在线段BC上时∠BAC=90°①求证:BD=CE;②∠BCE=;(2)设∠BCE=a∠BAC=β①如图2 当点D在线段BC上移动求证α+β=180°;②当点D在射线BC的反向延长线上移动则a、β之间有怎样的数量关系?请直接写出你的结论.【解答】(1)①证明:∵AB=AC AD=AE∠BAD+∠DAC=∠DAC+∠CAE=90°∴∠BAD=∠CAE在△ABD与△ACE中∴△ABD≌△ACE(SAS)∴BD=CE;②由①知△ABD≌△ACE∴∠B=∠ACE∴∠BCE=∠ACB+∠ACE=∠ACB+∠B又∵∠BAC=90°∴∠BCE=90°故答案为:90°;(2)①证明:∵AB=AC AD=AE∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE在△ABD与△ACE中∴△ABD≌△ACE(SAS)∴∠B=∠ACE∴∠B+∠ACB=α∵∠BAC+∠B+∠ACB=180°∴α+β=180°;②α=β.理由如下:如图由①同理得△ABD≌△ACE(SAS)∴∠ABD=∠ACE∴∠BAC+∠ACB=∠ACB+∠BCE∴∠BAC=∠BCE即α=β.【变式2-1】如图△ABC和△ADE都是等腰直角三角形CE与BD相交于点M BD交AC于点N.证明:(1)BD=CE;(2)BD⊥CE.【解答】证明:(1)∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+∠CAD即∠CAE=∠BAD在△ABD和△ACE中∴△ABD≌△ACE(SAS)∴BD=CE(2)∵△ABD≌△ACE∴∠ABN=∠ACE∵∠ANB=∠CND∴∠ABN+∠ANB=∠CND+∠NCE=90°∴∠CMN=90°即BD⊥CE.【变式2-2】如图在△ABC中∠BAC=90°AB=AC点D为直线BC上一动点连接AD以AD为直角边作等腰直角三角形ADF.(1)如图1 若当点D在线段BC上时(不与点B、C重合)证明:△ACF≌△ABD;(2)如图2 当点D在线段BC的延长线上时试猜想CF与BD的数量关系和位置关系并说明理由.【解答】(1)证明:∵∠BAC=90°△ADF是等腰直角三角形∴∠CAF+∠CAD=90°∠BAD+∠ACD=90°∴∠CAF=∠BAD在△ACF和△ABD中∴△ACF≌△ABD(SAS)(2)解:CF=BD CF⊥BD.理由:∵∠CAB=∠DAF=90°∴∠CAB+∠CAD=∠DAF+∠CAD即∠CAF=∠BAD在△ACF和△ABD中∴△ACF≌△ABD(SAS)∴CF=BD∠ACF=∠B∵AB=AC∠BAC=90°∴∠B=∠ACB=45°∴∠BCF=∠ACF+∠ACB=45°+45°=90°∴CF⊥BD【类型三:直角三角形中的手拉手模型】【典例3】△ABC与△BDE均为等腰直角三角形∠ABC=∠DBE=90°.(1)如图1 当D B C在同一直线时CE的延长线与AD交于点F.求证:∠CF A =90°;(2)当△ABC与△BDE的位置如图2时CE的延长线与AD交于点F猜想∠CF A的大小并证明你的结论;(3)如图3 当A E D在同一直线时(A D在点E的异侧)CE与AB交于点G∠BAD=∠ACE求证:BG+AB=AC.【解答】(1)证明:∵△ABC和△DBE是等腰直角三角形∴AB=BC BD=BE∠ABC=∠DBE=90°在△ABD和△CBE中∴△ABD≌△CBE(SAS)∴∠BAD=∠BCE∵∠BAD+∠AFE+∠FEA=∠BCE+∠ABC+∠BEC=180°又∵∠FEA=∠BEC∴∠CF A=∠ABC=90°.(2)解:∠CF A=90°.理由如下:同理可证△ABD≌△CBE(SAS)∴∠BAD=∠BCE∴∠CF A=∠ABC=90°.(3)过点G作GH⊥AC于点H同(2)可知∠BAD=∠BCE∵∠BAD=∠ACE∴∠ACE=∠BCE∵AB⊥BC GH⊥AC∴BG=GH∵∠BAC=45°∴∠BAC=∠AGH=45°∴GH=AH∴AH=BG在Rt△BCG和Rt△HCG中∴Rt△BCG≌Rt△HCG(HL)∴BC=CH∴AC=AH+CH=BG+BC=BG+AB.【变式3-1】如图:已知△ABC中∠BAC=90°AB=AC点D为直线BC上的一动点(点D不与点B、C重合)以AD为边作△ADE使∠DAE=90°AD=AE连接CE.发现问题:如图1 当点D在边BC上时(1)请写出BD和CE之间的位置关系为BD⊥CE并猜想BC和CE、CD之间的数量关系:.(2)如图2 当点D在边BC的延长线上且其他条件不变时(1)中BD和CE之间的位置关系;BC和CE、CD之间的数量关系是否成立?若成立请证明;若不成立请写出新的数量关系说明理由;【解答】解:(1)∵∠BAC=90°AB=AC∴∠ABC=∠ACB=45°∵∠BAC=∠DAE=90°∴∠BAC﹣∠CAD=∠DAE﹣∠CAD即∠BAD=∠CAE在△ABD和△ACE中∴△ABD≌△ACE(SAS)∴BD=CE∠ACE=∠ABD=45°∴∠BCE=∠ACB+∠ACE=45°+45°=90°BC=CD+BD=CD+CE∴BD⊥CE故答案为:BD⊥CE;BC=CD+CE;(2)BD⊥CE成立数量关系不成立关系为BC=CE﹣CD.理由如下:如图2 ∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+∠CAD即∠BAD=∠CAE在△ABD和△ACE中∴△ABD≌△ACE(SAS)∴BD=CE∠ACE=∠ABC∴BD=BC+CD∠ACE+∠ACB=90°∴BD⊥CE;BC=CE﹣CD;【类型四:作辅助线构造手拉手模型】【典例4】在△ABC中AB=AC∠ABC=α点D是直线BC上一点点C关于射线AD 的对称点为点E.作直线BE交射线AD于点F.连接CF.(1)如图1 点D在线段BC上补全图形求∠AFB的大小(用含α的代数式表示);(2)如果∠α=60°①如图2 当点D在线段BC上时用等式表示线段AF BF CF之间的数量关系并证明;②如图3 当点D在线段CB的延长线上时直接写出线段AF、BF、CF之间的数量关系.【解答】解:(1)补全图形如下连接AE∵点E为点C关于AD的对称点∴AE=AC EF=FC∠EAD=∠CAD 设∠EAD=∠CAD=x∴∠CAE=2x∵AB=AC∴∠ACB=∠ABCα.∴∠BAE=180°﹣2x﹣2α∴∠ABE+∠AEB=2x+2α∵AE=AB∴∠ABE=∠AEB=x+α∴∠AFB=∠AEB﹣∠EAD=α;(2)①AF=BF+CF.延长FB至点G使FG=F A连接AG∵AB=AC∴∠ABC=α=60°∴△ABC为等边三角形∠BAC=60°由(1)知∠AFB=α=60°∴△AFG为等边三角形∴AG=AF∠GAF=60°∴∠GAB=∠F AC在△ABG和△ACF中∴△ABG≌△ACF(SAS)∴BG=CF∴CF+BF=BG+BF=GF∵GF=AF∴AF=BF+CF;②结论为:CF=AF+BF.连接AE.∵点E为点C关于AD的对称点∴AE=AC EF=FC∠EAD=∠CAD 设∠EAD=∠CAD=x∴∠CAE=2x∵AB=AC=AE∴∠ACB=∠ABC=∠BAC=60°.∴∠DAB=x﹣60°∴∠EAB=x+x﹣60°=2x﹣60°∵AE=AB∴∠ABE=∠AEB==120°﹣x∴∠AFE=∠DAB+∠ABE=x﹣60°+120°﹣x=60°在BE上取点G使得FG=F A连接AG∴△AFG为等边三角形∴AG=AF∠GAF=60°∴∠GAE=∠F AB=x﹣60°在△AGE与△AFB中∴△AGE≌△AFB(SAS)∴BF=EG∴EF=EG+FG=BF+AF∴CF=EF=BF+AF.【变式4】如图1 已知△ABC是等边三角形点D是BC边上一点.(1)以AD为边构造等边△ADE(其中点D、E在直线AC两侧)连接CE猜想CE 与AB的位置关系并证明你的结论;(2)若过点C作CM∥AB在CM上取一点F连AF、DF使得AF=DF试猜想△ADF的形状并证明你的结论.【解答】解:(1)CE∥AB证明:∵△ABC和△ADE是等边三角形∴AB=AC AD=AE∠BAC=∠DAE=60°=∠ABC∴∠BAD=∠CAE在△BAD和△CAE中∴△BAD≌△CAE(SAS)∴∠ABD=∠ACE=60°∴∠BAC=∠ACE∴CE∥AB;(2)延长BC至点G使得CG=CF作FH⊥CG于点H 作FN⊥AC于点N∵CM//AB∴∠FCG=∠B=60°∴△CFG是等边三角形∴CF=FG又∴∠ACF=∠BAC=60°∴∠FCN=∠G=60°∵∠FMC=∠FHG=90°∴△NFC≌△HFG(AAS)∴NF=FH又∵AF=DF∴Rt△AFN≌Rt△DFH(HL)∴∠DFH=∠AFN∴∠DFH+∠GFH=∠AFN+∠NFC即∠AFC=∠DFG∴∠AFD+∠DFC=∠CFG+∠DFC∴∠AFD=∠CFG=60°∴△ADF是等边三角形.1.某校八年级数学兴趣小组的同学在研究三角形时把两个大小不同的等腰直角三角板按图①所示放置图②是由它抽象出的几何图形B C E在同一条直线上连接DC.(1)请找出图②中的全等三角形并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC与BE的位置关系.【解答】解:(1)△BAE≌△CAD理由如下:∵∠BAC=∠EAD=90°∴∠BAC+∠CAE=∠EAD+∠CAE即∠BAE=∠CAD在△BAE和△CAD中∴△BAE≌△CAD(SAS);(2)DC⊥BE理由如下:∵△BAC为等腰直角三角形∴∠B=∠ACB=45°∵△BAE≌△CAD∴∠CAD=∠B=45°∴∠ACD=∠ACB+∠CAD=90°∴DC⊥BE.2.如图△ABC和△DEC都是等边三角形D是BC延长线上一点AD与BE相交于点P AC、BE相交于点M AD、CE相交于点N.求证:(1)AD=BE;(2)∠BMC=∠ANC;(3)△CMN是等边三角形.【解答】证明:(1)∵△ABC和△DEC都是等边三角形∴AC=BC CD=CE∠ACB=∠ECD=60°∴∠ACB+∠ACE=∠ECD+∠ACE即∠BCE=∠ACD在△BCE与△ACD中∴△BCE≌△ACD(SAS)∴AD=BE;(2)∵∠ACB=∠ACE=60°由△BCE≌△ACD得:∠CBE=∠CAD∴∠BMC=∠ANC;(3)∵△ACD≌△BCE∴∠CAD=∠CBE在△ACN和△BCM中∴△ACN≌△BCM(ASA)∴CM=CN∴△CMN为等腰三角形∵∠MCN=60°∴△CMN是等边三角形.3.已知:如图△ABC、△CDE都是等边三角形AD、BE相交于点O点M、N分别是线段AD、BE的中点.(1)求∠DOE的度数;(2)求证:△MNC是等边三角形.【解答】(1)解:∵△ABC、△CDE都是等边三角形∴AC=BC CD=CE∠ACB=∠DCE=60°∴∠ACB+∠BCD=∠DCE+∠BCD∴∠ACD=∠BCE在△ACD和△BCE中∴△ACD≌BCE(SAS)∴∠ADC=∠BEC∵等边三角形DCE∴∠CED=∠CDE=60°∴∠ADE+∠BED=∠ADC+∠CDE+∠BED=∠ADC+60°+∠BED=∠BEC+∠CED+60°=∠DEC+60°=60°+60°=120°∴∠DOE=180°﹣(∠ADE+∠BED)=60°;(2)证明:∵△ACD≌△BCE∴∠CAD=∠CBE AD=BE AC=BC又∵点M、N分别是线段AD、BE的中点∴∴AM=BN在△ACM和△BCN中∴△ACM≌△BCN(SAS)∴CM=CN∠ACM=∠BCN又∠ACB=60°∴∠ACM+∠MCB=60°∴∠BCN+∠MCB=60°∴∠MCN=60°∴△MNC是等边三角形.4.如图在平面直角坐标系中已知A(0 a)、B(﹣b0)且a、b满足+|a﹣2b+2|=0.(1)求a b的值;(2)求证:∠OAB=∠OBA;(3)若BE⊥AE求∠AEO的度数.【解答】(1)解:∵∴解得:故答案为:a=2 b=2.(2)证明:由(1)得:OA=OB=2∴∠OAB=∠OBA.(3)解:如图过点O作OF⊥OE交AE于F∵∠AOF+∠BOF=90°∠BOE+∠BOF=90°∴∠AOF=∠BOE∵BE⊥AE∴∠AEB=90°又∵∠AOB=90°∴∠OBE=∠OAF在△OBE和△OAF中∴△OBE≌△OAF(ASA)∴OE=OF∴△OEF为等腰直角三角形∴∠AEO=45°.5.在平面直角坐标系中如图①直线AB与x轴负半轴、y轴正半轴分别交于A B两点OA、OB的长度分别为a和b且满足a2﹣2ab+b2=0.(1)求∠BAO的度数.(2)如图②△COB和△AOB关于y轴对称点D在AB上点E在BC上且AD=BE判断△DOE的形状并说明理由.(3)如图③在(2)结论下点D E分别在AB BC延长线上求证:∠BDE+∠COE =90°.【解答】(1)解:∵a2﹣2ab+b2=0∴(a﹣b)2=0∴a=b又∵∠AOB=90°∴△AOB为等腰直角三角形∴∠BAO=45°;(2)解:结论:△DOE为等腰直角三角形理由如下:∵△AOB为等腰直角三角形∴∠BAO=∠ABO=45°BO=AO∵△COB和△AOB关于y轴对称∴AB=BC∠ABO=∠CBO=45°∵AD=BE∴△OAD≌△OBE(SAS)∴OD=OE∠AOD=∠BOE∵∠AOD+∠DOB=90°∴∠DOE=∠DOB+∠BOE=90°∴△DOE为等腰直角三角形;(3)证明:∵△DOE是等腰直角三角形∴∠DEO=45°∴∠DEB+∠BEO=45°∵∠ACB=∠COE+∠BEO=45°∴∠DEB=∠COE∵∠ABC=∠BDE+∠DEB=90°∴∠BDE+∠COE=90°.6.如图①在△ABC中∠A=90°AB=AC点D E分别在边AB AC上且AD=AE.则CE=BD.现将△ADE绕点A顺时针方向旋转旋转角为α(0°<α<180°).如图②连接CE BD.(1)如图②请直接写出CE与BD的数量关系.(2)将△ADE旋转至如图③所示位置时请判断CE与BD的数量关系和位置关系并加以证明.(3)在旋转的过程中当△BCD的面积最大时α=135°.(直接写出答案即可)【解答】解:(1)CE=BD理由如下:∵∠CAB=∠EAD=90°∠CAB﹣∠BAE=∠EAD﹣∠BAE∴∠CAE=∠BAD在△ACE与△ABD中∴△ACE≌△ABD(SAS)∴CE=BD;(2)CE=BD CE⊥BD理由如下:设BD与CE的交点为F∵∠CAB=∠EAD=90°∠CAB﹣∠BAE=∠EAD﹣∠BAE∴∠CAE=∠BAD在△ACE与△ABD中∴△ACE≌△ABD(SAS)∴∠ACE=∠ABD CE=BD∴∠CAB=∠CFB=90°∴CE=BD CE⊥BD;(3)在△BCD中边BC的长是定值则BC边上的高最大时△BCD的面积最大∴当点D在线段BC的垂直平分线上时△BCD的面积最大如图所示∵AB=AC∠CAB=90°DG⊥BC于G∴∠GAB=45°∴∠DAB=180°﹣45°=135°即当△BCD的面积最大时旋转角α=135°故答案为:135°.7.如图△ABC是等腰直角三角形∠ACB=90°AB=6.动点P从点A出发以每秒2个单位长度的速度在射线AB上运动.点P出发后连接CP以CP为直角边向右作等腰直角三角形CDP使∠DCP=90°连接PD BD.设点P的运动时间为t秒.(1)△ABC的AB边上高为;(2)求BP的长(用含t的式子表示);(3)就图中情形求证:△ACP≌△BCD;(4)当BP:BD=1:2时直接写出t的值.【解答】(1)解:∵△ABC是等腰直角三角形∠ACB=90°AB=6∴△ABC的AB边上高=AB=3故答案为:3;(2)解:∵AB=6 动点P从点A出发以每秒2个单位长度的速度在射线AB上运动∴点P在线段AB上运动的时间为=3(秒)当0<t≤3时PB=6﹣2t当t>3时PB=2t﹣6;(3)证明:∵△ABC是等腰直角三角形∠ACB=90°∴AC=BC∵∠PCD=90°CP=CD∴∠ACP+∠PCB=90°∠PCB+∠BCD=90°∴∠ACP=∠BCD在△ACP与△CBD中∴△ACP≌△CBD(SAS);(4)解:∵△ACP≌△CBD∴AP=BD当BP:BD=1:2时当0<t≤3时解得:t=2当BP:BD=1:2时当t>3时解得:t=6综上所述t的值为2或6.8.问题发现:如图1 △ACB和△DCE均为等边三角形点A、D、E在同一直线上连接BE(1)填空:①∠AEB的度数为;②线段BE、AD之间的数量关系是.(2)拓展探究:如图2 △ACB和△DCE均为等腰三角形∠ACB=∠DCE=90°点A、D、E在同一直线上CM为△DCE中DE边上的高连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系并说明理由.【解答】解:(1)∵△ACB与△DCE都为等边三角形∴CA=CB CD=CE∠ACB=∠DCE=60°∠CDE=∠CED=60°∴∠ADC=180°﹣∠CDE=60°∵∠ACD+∠DCB=∠ECB+∠DCB=60°∴∠ACD=∠ECB∴在△ACD与△BCE中有∴△ACD≌△BCE(SAS)∴∠BEC=∠ADC=120°AD=BE∴∠AEB=∠BEC﹣∠CED=60°故答案为:60°AD=BE;(2)①∵△ACB与△DCE都为等腰直角三角形∴CA=CB CD=CE∠ACB=∠DCE=90°∠CDE=∠CED=45°∴∠ADC=180°﹣∠CDE=135°∵∠ACD+∠DCB=∠ECB+∠DCB=90°∴∠ACD=∠ECB∴在△ACD与△BCE中有∴△ACD≌△BCE(SAS)∴∠BEC=∠ADC=135°AD=BE∴∠AEB=∠BEC﹣∠CED=90°故∠AEB的度数为90°;②∵CM⊥DE△CDE为等腰直角三角形∴DM=DE(三线合一)∴CM=DE∴AE=AD+DE=BE+2CM即:线段CM、AE、BE之间的数量关系为:AE=BE+2CM.9.如图1 在等腰直角三角形ABC中AB=AC∠BAC=90°点E F分别为AB AC 的中点H为线段EF上一动点(不与点E F重合)过点A作AG⊥AH且AG=AH连接GC HB.(1)证明:△AHB≌△AGC;(2)如图2 连接GF HG HG交AF于点Q.①证明:在点H的运动过程中总有∠HFG=90°;②当△AQG为等腰三角形时求∠AHE的度数.【解答】(1)证明:∵AG⊥AH∴∠AHG=90°∵∠BAC=∠AHG=90°∴∠BAH=∠GAC∵AB=AC AG=AH∴△AHB≌△AGC(SAS);(2)①证明:∵点E F分别为AB AC的中点∴EF是△ABC的中位线∴EF∥BC∴∠AEH=∠AFH=45°AE=AF∵∠EAH=∠F AG AH=AG∴△EAH≌△F AG(SAS)∴∠AFG=∠AEH=45°∴∠HF A=90°;②当AQ=QG时∠QAG=∠AGQ∵AG⊥AH且AG=AH∴∠AHG=∠AGH=45°∴∠AHG=∠AGH=∠HAQ=∠QAG=45°∴∠EAH=∠F AH=45°∵AE=AF∴△AEH≌△AFH(SAS)∴∠AHE=∠AHF∵∠AHE+∠AHF=180°∴∠AHE=∠AHF=90°;当AG=GQ时∠GAQ=∠AQG∵∠AEH=∠AGQ=45°∴∠GAQ=∠AQG=67.5°∵∠EAQ=∠HAG=90°∴∠EAH=∠GAQ=67.5°∴∠AHE=∠AQG=67.5°;当AG=AQ时∵H为线段EF上一动点∴不存在AG=AQ的情况;综上所述所述:当△AQG为等腰三角形时∠AHE=90°或67.5°.10.如图在△ABC和△AED中AC交DE于点O∠BAC=∠EAD AB=AC AE=AD 连接BE、CD.(1)求证:BE=CD;(2)延长DE交BC于F若∠BEF=∠CDF求∠AEB的度数;(3)在(2)的条件下当AD=BE时连接CE若BF=4 求△DCE的面积.【解答】证明:(1)∵∠BAC=∠EAD∴∠BAC﹣∠EAC=∠EAD﹣∠EAC∴∠BAE=∠CAD在△BAE与△CAD中∴△BAE≌△CAD(SAS)∴BE=CD;(2)∵AE=AD∴∠AED=∠ADE∵△BAE≌△CAD∴∠AEB=∠ADC=∠ADE+∠CDF∵∠BEF=∠CDF∴∠AEB=∠AED+∠BEF∵∠AEB+∠AED+∠BEF=180°∴∠AEB=90°;(3)∵AD=BE AD=AE∴BE=AE∴∠EBA=∠EAB∵∠EBA+∠EAB=90°∴∠EBA=∠EAB=45°∴∠CAD=∠BAE=45°∵∠ADE=90°﹣∠EAD∠ACB=90°﹣∠BAC ∴∠ADE=∠ACB∵∠AOF=∠OAD+∠ODA∠AOF=∠OFC+∠OCF ∴∠OAD=∠OFC=45°在DE上截取DP=EF连接CP在△BEF与△CDP中∴△BEF≌△CDP(SAS)∴BF=CP∠BFE=∠CPD∵∠BFE+∠CFP=180°∠CPD+∠CPF=180°∴∠CFP=∠CPF=45°∴∠PCF=90°∴CP=CF=4∴作CN⊥PF于N∵DP=EF∴DE=PF∵∴S△DEC=S△PFC=8.。
2023学年八年级数学上册高分突破必练专题(人教版) 三角形基础分类巩固训练(解析版)
三角形基础分类巩固训练1.在三角形中一定能将其面积分成相等两部分的是()A.中线B.高线C.角平分线D.某一边的垂直平分线【答案】A【解答】解:根据同底等高的两个三角形面积相等可知在三角形中三角形的中线一定能将其面积分成相等两部分故选:A.2.如图为估计池塘岸边A、B的距离小方在池塘的一侧选取一点O测得OA=17米OB=9米A、B间的距离不可能是()A.23米B.8米C.10米D.18米【答案】B【解答】解:∵OA=17米OB=9米∴17﹣9<AB<17+9即:8<AB<26故选:B3.如果一个三角形的三条高的交点恰是三角形的一个顶点那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定【答案】C【解答】解:A、锐角三角形三条高线交点在三角形内故错误;B、钝角三角形三条高线不会交于一个顶点故错误;C、直角三角形的直角所在的顶点正好是三条高线的交点可以得出这个三角形是直角三角形故正确;D、能确定C正确故错误.故选:C.4.如图AD是△ABC的中线已知△ABD的周长为25cm AB比AC长6cm则△ACD 的周长为()A.19cm B.22cm C.25cm D.31cm【答案】A【解答】解:∵AD是BC边上的中线∴BD=CD∴△ABD和△ACD周长的差=(AB+BD+AD)﹣(AC+AD+CD)=AB﹣AC∵△ABD的周长为25cm AB比AC长6cm∴△ACD周长为:25﹣6=19cm.故选:A.5.在△ABC中AB=3 AC=2 BC=a a的值可能是()A.1B.3C.5D.7【答案】B【解答】解:∵△ABC中AB=3 AC=2 BC=a∴1<a<5∴B符合故选:B.6.下列长度的三条线段能组成三角形的是()A.3cm5cm7cm B.3cm3cm7cmC.4cm4cm8cm D.4cm5cm9cm【答案】A【解答】解:A.∵A3+5=8>7∴能组成三角形符合题意;B.∵3+3<7∴不能组成三角形不符合题意;C.∵4+4=8∴不能组成三角形不符合题意;D.∵4+5=9∴不能组成三角形不符合题意.故选:A.7.如图所示四个图形中线段BE能表示三角形ABC的高的是()A.B.C.D.【答案】B【解答】解:由题意线段BE能表示三角形ABC的高时BE⊥AC于E.A选项中BE与AC不垂直;C选项中BE与AC不垂直;D选项中BE与AC不垂直;∴线段BE是△ABC的高的图是B选项.故选:B.8.如图已知△ABC中点D、E分别是边BC、AB的中点.若△ABC的面积等于8 则△BDE的面积等于()A.2B.3C.4D.5【答案】A【解答】解:∵点D是边BC的中点△ABC的面积等于8∴S△ABD=S△ABC=4∵E是AB的中点∴S△BDE=S△ABD=4=2故选:A.9.若△ABC的三边长分别为m﹣2 2m+1 8.(1)求m的取值范围;(2)若△ABC的三边均为整数求△ABC的周长.【解答】解:(1)根据三角形的三边关系解得:3<m<5;(2)因为△ABC的三边均为整数且3<m<5 所以m=4.所以△ABC的周长为:(m﹣2)+(2m+1)+8=3m+7=3×4+7=19.10.若三角形三个内角度数比为2:3:4 则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】A【解答】解:设三个内角度数为2x、3x、4x由三角形内角和定理得2x+3x+4x=180°解得x=20°则三个内角度数为40°、60°、80°则这个三角形一定是锐角三角形故选:A.11.如图直线a∥b在Rt△ABC中点C在直线a上若∠1=58°∠2=24°则∠A的度数为()A.56°B.34°C.36°D.24°【答案】B【解答】解:如图∵∠1=54°a∥b∴∠3=∠1=58°.∵∠2=24°∠A=∠3﹣∠2∴∠A=58°﹣24°=34°.故选:B.12.如图将一副直角三角板按如图所示叠放其中∠C=90°∠B=45°∠E=30°则∠BFD的大小是()A.10°B.15°C.25°D.30°【答案】B【解答】解:∵∠B=45°∴∠BAC=45°∴∠EAF=135°∴∠AFD=135°+30°=165°∴∠BFD=180°﹣∠AFD=15°故选:B.13.如图在△ABC中∠A=70°∠B=60°∠ACD是△ABC的一个外角∠ACD的度数为()A.50°B.60°C.70°D.130°【答案】D【解答】解:∵△ABC中∠A=70°∠B=60°∴∠ACB=180°﹣70°﹣60°=50°∴∠ACD=180°﹣50°=130°故选:D.14.如图已知△ABC为直角三角形∠C=90°若沿图中虚线剪去∠C则∠1+∠2等于()A.90°B.135°C.270°D.315°【答案】C【解答】解:∵四边形的内角和为360°直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.15.如图直线AB∥CD如果∠EFB=31°∠END=70°那么∠E的度数是()A.31°B.40°C.39°D.70°【答案】C【解答】解:∵直线AB∥CD∴∠EMB=∠END=70°∵∠EFB=31°∠EMB=∠E+∠EFB∴∠E=70°﹣31°=39°故选:C.16.如图在△ABC中∠BCA=40°∠ABC=60°.若BF是△ABC的高与角平分线AE相交于点O则∠EOF的度数为()A.130°B.70°C.110D.100°【答案】A【解答】解:∵∠BCA=40°∠ABC=60°∴∠BAC=180°﹣∠BCA﹣∠ABC=180°﹣40°﹣60°=80°.∵AE是∠BAC的平分线∴∠EAC=∠BAC=40°.∵BF是△ABC的高∴∠BF A=90°.∴∠AOF=90°﹣∠EAC=90°﹣40°=50°.∴∠EOF=180°﹣∠AOF=180°﹣50°=130°.故选:A.17.如图已知△ABC的外角∠CAD=120°∠C=80°则∠B的度数是()A.30°B.40°C.50°D.60°【答案】B【解答】解:∵∠CAD=∠B+∠C∠CAD=120°∠C=80°∴∠B=∠CAD﹣∠C=120°﹣80°=40°故选:B18.如图在△ABC中AD是BC边上的高AE BF分别是∠BAC∠ABC的平分线.∠BAC=50°∠ABC=60°.则∠DAE+∠ACD等于()A.75°B.80°C.85°D.90°【答案】A【解答】解:∵AD是BC边上的高∠ABC=60°∴∠BAD=30°∵∠BAC=50°AE平分∠BAC∴∠BAE=25°∴∠DAE=30°﹣25°=5°∵△ABC中∠C=180°﹣∠ABC﹣∠BAC=70°∴∠EAD+∠ACD=5°+70°=75°.故选:A.19.已知直线a∥b Rt△DCB按如图所示的方式放置点C在直线b上∠DCB=90°若∠B=20°则∠1+∠2的度数为()A.90°B.70°C.60°D.45°【答案】B【解答】解:如图延长BD交直线b于点M.∵∠DCB=90°∠B=20°∴∠BDC=90°﹣20°=70°∵a∥b∴∠1=∠BMC∵∠BDC=∠DMC+∠2=∠1+∠2∴∠1+∠2=70°故选:B20.如图在△ABC中∠A=50°∠1=30°∠2=40°∠D的度数是()A.110°B.120°C.130°D.140°【答案】B【解答】解:∴∠A=50°∴∠ABC+∠ACB=180°﹣50°=130°∴∠DBC+∠DCB=∠ABC+∠ACB﹣∠1﹣∠2=130°﹣30°﹣40°=60°∴∠BDC=180°﹣(∠DBC+∠DCB)=120°故选:B.21.如图将△ABC沿MN折叠使MN∥BC点A的对应点为点A' 若∠A'=32°∠B =112°则∠A'NC的度数是()A.114°B.112°C.110°D.108°【答案】D【解答】解:∵MN∥BC∴∠MNC+∠C=180°又∵∠A+∠B+∠C=180°∠A=∠A′=32°∠B=112°∴∠C=36°∠MNC=144°.由折叠的性质可知:∠A′NM+∠MNC=180°∴∠A′NM=36°∴∠A′NC=∠MNC﹣∠A′NM=144°﹣36°=108°.故选:D.22.已知:如图点D、E、F、G都在△ABC的边上DE∥AC且∠1+∠2=180°(1)求证:AD∥FG;(2)若DE平分∠ADB∠C=40°求∠BFG的度数.【解答】证明:(1)∵DE∥AC∴∠2=∠DAC∵∠l+∠2=180°∴∠1+∠DAC=180°∴AD∥GF(2)∵ED∥AC∴∠EDB=∠C=40°∵ED平分∠ADB∴∠2=∠EDB=40°∴∠ADB=80°∵AD∥FG∴∠BFG=∠ADB=80°23.在△ABC中CD平分∠ACB交AB于点D AH是△ABC边BC上的高且∠ACB=70°∠ADC=80°求:(1)∠BAC的度数.(2)∠BAH的度数.【解答】解:(1)∵CD平分∠ACB∠ACB=70°∴∠ACD=∠ACB=35°∵∠ADC=80°∴∠BAC=180°﹣∠ACD﹣∠ADC=180°﹣35°﹣80°=65°;(2)由(1)知∠BAC=65°∵AH⊥BC∴∠AHC=90°∴∠HAC=90°﹣∠ACB=90°﹣70°=20°∴∠BAH=∠BAC﹣∠HAC=65°﹣20°=45°.24.如图在△ABC中点E在AC上点F在AB上点G在BC上且EF∥CD∠1+∠2=180°.(1)求证:GD∥CA;(2)若CD平分∠ACB DG平分∠CDB且∠A=40°求∠ACB的度数.【解答】证明:(1)∵EF∥CD∴∠1+∠3=180°.∵∠1+∠2=180°∴∠2=∠3.∴AC∥GD.(2)∵CD平分∠ACB DG平分∠CDB∴∠3=∠ACB∠2=∠GDB=∠CDB.∵∠CDB=∠A+∠3 ∠2=∠3∴2∠3=∠A+∠3.∴∠3=∠A=40°.∴∠ACB=80°.25.如图在△ABC中∠B=31°∠C=55°AD⊥BC于D AE平分∠BAC交BC于E DF⊥AE于F求∠ADF的度数.【解答】解:∵∠B=31°∠C=55°∴∠BAC=94°∵AE平分∠BAC∴∠BAE=∠BAC=47°∴∠AED=∠B+∠BAE=31°+47°=78°∵AD⊥BC DF⊥AE∴∠EFD=∠ADE=90°∴∠AED+∠EDF=∠EDF+∠ADF∴∠ADF=∠AED=78°.26.如图在△ABC中AD平分∠BAC AE⊥BC若∠BAD=40°∠C=70°求∠DAE的度数.【解答】解:∵AD平分∠BAC∴∠BAC=2∠BAD=80°∵∠C=70°∴∠B=180°﹣∠BAC﹣∠C=180°﹣70°﹣80°=30°∴∠ADE=∠B+∠BAD=30°+40°=70°∵AE⊥BC∴∠AEB=90°∴∠DAE=90°﹣∠ADE=90°﹣70°=20°.27.一个正多边形它的一个内角恰好是一个外角的3倍则这个正多边形是()A.正十二边形B.正十边形C.正八边形D.正六边形【答案】C【解答】解:设这个正多边的一个外角为x°由题意得:x+3x=180解得:x=45360°÷45°=8.28.若一个多边形的内角和等于1800°这个多边形的边数是()A.6B.8C.10D.12【答案】D【解答】解:设这个多边形是n边形根据题意得(n﹣2)×180=1800解得n=12∴这个多边形是12边形.故选:D.29.如图足球图片中的一块黑色皮块的内角和是()A.720°B.540°C.360°D.180°【答案】B【解答】解:∵黑色皮块是正五边形∴黑色皮块的内角和是(5﹣2)×180°=540°.故选:B.30.如图已知∠1+∠2+∠3=240°那么∠4的度数为()A.60°B.120°C.130°D.150°【答案】B【解答】解:∵∠1+∠2+∠3+∠4=360°∠1+∠2+∠3=240°∴∠4=360°﹣(∠1+∠2+∠3)=360°﹣240°故选:B.31.若一个正多边形的每个内角都是120°则这个正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形【答案】A【解答】解:解法一:设所求正多边形边数为n则120°n=(n﹣2)•180°解得n=6 ∴这个正多边形是正六边形.解法二:∵正多边形的每个内角都等于120°∴正多边形的每个外角都等于180°﹣120°=60°又∵多边形的外角和为360°∴这个正多边形边数=360°÷60°=6.故选:A.32.小丽利用最近学习的数学知识给同伴出了这样一道题:假如从点A出发沿直线走6米后向左转θ接着沿直线前进6米后再向左转θ……如此下法当他第一次回到A 点时发现自己走了72米θ的度数为()A.28°B.30°C.33°D.36°【答案】B【解答】解:∵第一次回到出发点A时所经过的路线正好构成一个正多边形∴多边形的边数为:72÷6=12.根据多边形的外角和为360°∴他每次转过的角度θ=360°÷12=30°.故选:B.33.将正六边形与正五边形按如图所示方式摆放公共顶点为O且正六边形的边AB与正五边形的边DE在同一条直线上则∠COF的度数是()A.74°B.76°C.84°D.86°【答案】C【解答】解:由题意得:∠EOF=108°∠BOC=120°∠OEB=72°∠OBE=60°∴∠BOE=180°﹣72°﹣60°=48°∴∠COF=360°﹣108°﹣48°﹣120°=84°故选:C.34.小明把一副含45°30°的直角三角板如图摆放其中∠C=∠F=90°∠A=45°∠D=30°则∠α+∠β等于()A.280°B.285°C.290°D.295°【答案】B【解答】解:∵∠C=∠F=90°∠A=45°∠D=30°∴∠2+∠3=180°﹣∠D=150°∵∠α=∠1+∠A∠β=∠4+∠C∵∠1=∠2 ∠3=∠4∴∠α+∠β=∠A+∠1+∠4+∠C=∠A+∠C+∠2+∠3=45°+90°+150°=285°故选:B.35.如图若干全等正五边形排成环状.图中所示的是前3个五边形要完成这一圆环还需()个五边形.A.6B.7C.8D.9【答案】B【解答】解:五边形的内角和为(5﹣2)×180°=540°所以正五边形的每一个内角为540°÷5=108°如图延长正五边形的两边相交于点O则∠1=360°﹣108°×3=360°﹣324°=36°360°÷36°=10∵已经有3个五边形∴10﹣3=7即完成这一圆环还需7个五边形.故选:B.36.一个多边形它的内角和比外角和的4倍多180°求这个多边形的边数.【解答】解:根据题意得(n﹣2)•180=1620解得:n=11.则这个多边形的边数是11 内角和度数是1620度.。
2023-2024学年重点专项突破五小说阅读-【冲刺吧期末】八年级上册语文
2023-2024学年重点专项突破五小说阅读-【冲刺吧期末】八年级上册语文贫困户①去年年初的时候,单位在扶贫驻点村开展了一项“一对一帮扶”活动。
我接到了任务,帮扶对象是一个女孩。
②女孩从小父母就不在了,她是跟着姑妈长大的。
女孩很懂事,也知道用功,高中毕业考上了外地的一所大学,学医。
③女孩的扶贫项目很简单,我只需要帮她准备资料,申请扶助资金就可以了。
但是领导不这么认为,领导觉得扶贫不单单是物质上的,精神层面的也很重要。
于是,我加了女孩的微信。
女孩很腼腆,很内向,在我的再三要求下,她才同意每天晚上八点以后,跟我在微信上聊聊一天的学习和生活,兼而发上一条朋友圈,算是给过去的一天画上一个句号。
④女孩的朋友圈和她的生活一样,清汤寡水,每次都是两张图,一句话,图片的拍摄地点大都是在教室或者图书馆。
作为主角的女孩,短发、圆脸,一身非黑即白的运动装,眼睛永远盯着书本,像是书本上藏着她所有的远方和希望。
⑤一开始,我并没有在意。
学生嘛,教室、宿舍、食堂,三点一线,大家也许都这样吧。
久了,又觉得不解,大学的生活难道不是斑斓多彩、摇曳多姿的吗?为什么要把日子过成素描的样子?⑥那天,我很随意地问了一句:“每天都是这样学习到很晚吗?”她“嗯”一声,又在微信里发出一个摇头的表情包,说:“也不是,有时候……嗯……也跟同学出去玩儿。
”⑦“可我从来没见你在微信里发过。
下次跟同学一起出去的时候,也发个朋友圈好吗?”我提醒道。
⑧女孩不吭声儿,半天,才小心地回了一个字:“嗯。
”她像是躲在街角,怕被人撞见的一只猫咪。
⑨可是一连几天,我还是在朋友圈里见到她清心寡欲、静坐读书的样子。
困在我的朋友们发布的关于一顿美食、一场电影、一件华服抑或一段诗与远方的旅行的动态中间,她的朋友圈动态像是闯进鹤群的一只小鸡,格格不入。
⑩我觉得有必要跟她认真谈一谈了,这样压抑的生活,会让一个人的心理出现问题的。
于是,我就问了,很郑重很严肃地问了。
我问她为什么不愿意跟别人分享自己的快乐。
专题09-动词的时态和语态-备战中考英语专项突破课件(语法篇)
—Do you have a baseball?
七上 Unit
—Yes,I do./No,I don't.(教材第 27 页) —Does she have a tennis ball?
5
—Yes,she does./No,she do的时 现在
态和
时 语态
七上 Unit 6
—Do you like salad? —Yes,I do./No,I don't.(教材第 33 页) —Does she like tomatoes? —Yes,she does./No,she doesn't.(教材 第 33 页)
七下 Unit —What are you doing?
动词 现在
6
—I'm watching TV.(教材第 33 页)
的时
进行
—What are they doing?
态和 语态
时
七下 Unit —They're playing basketball
7
thepark.(教材第 39 页)
in
动词 的时 态和 语态
一般 过去 时
—How was your school trip?
He missed his parents so much
表示过去某一段时 and he often felt lonely and
间内经常或反复发 unhappy.他很想念他的父母,并
生的动作
且他经常感到孤独和难过。【九全
Unit 4 第 30 页】
学习一般现在时,基本用法要熟悉; 表示动作常发生,特征、性格和能力; 存在状态和习惯,客观事实与真理; 如果主语是单三,谓语就要变一变。
人教版《道德与法治》八年级上册:7.2 服务社会 课时练习
7.2 服务社会一、单项选择题1.《感动中国》年度人物、著名文学家、词作家、剧作家阎肃,从23岁成为一名文艺兵起,就常常跑基层,服务慰问广大官兵,把官兵们生活点滴作为创作素材,很多优秀作品都是在连队的马扎上完成的……。
这说明,服务社会就能①拓展我们视野②丰富我们知识③感动全国人民④成为国之栋梁A. ①②B. ②③C. ①④D. ③④2.“小青荷”是对G20杭州志愿者的昵称。
会议期间志愿者们亲和的微笑和高质量的志愿服务,被誉为“本次杭州峰会最美丽的风景”。
其“美”包括①帮助他人,提高了道德境界②不计较代价与回报的奉献精神③服务社会,体现了人生价值④自觉履行了法律所规定的义务A. ①②④B. ①②③C. ②③④D. ①③④3.在某社区,活跃着一支由退休职工自发组织的治安巡逻队,在过去的7年里,他们抓到过逃犯,赶跑过小偷,处理过意外事故。
他们的行为①有利于维护社会正义②杜绝了违法犯罪现象的发生③损害了社区居民的经济利益④积极履行了服务社区、建设社区的义务A. ③④B. ①②C. ②③D. ①④4.以下名言,表达出社会责任感的有①横看成岭侧成峰,远近高低各不同②落霞与孤鹜齐飞,秋水共长天一色③先天下之忧而忧,后天下之乐而乐④横眉冷对千夫指,俯首甘为孺子牛A. ①②B. ①③C. ②④D. ③④5.社会学家戴维斯说:“放弃了自己对社会的责任,就意味着放弃了自身在这个社会中更好生存的机会。
”下列对这句话的理解正确的有①对社会负责,从某种意义上说也是对自己负责②对自己负责,就是对社会负责③每个人都应该具有社会责任感④承担社会责任必然会获得更多发展的机会A. ①②B. ①③C. ②④D. ③④6.个人如果能把为别人解决困难作为自己的快乐,他一生都会快乐。
伟大的诗人曾说过:“你若要人喜爱你的价值,你就得给他人创造价值。
”对此理解正确的是A. 如果我对他人负责,他人也应对我负责B. 要认识到自己扮演的角色,自己应对自己负责C. 要对别人、对社会负责D. 我们自身的责任由他人来承担,我们承担对社会的责任7.目前,北京市民除了可以选择公共自行车外,还可以选择共享单车出行。
2023学年八年级数学上册高分突破必练专题(人教版) 三角形综合能力提升训练(原卷版)
三角形综合能力提升训练一.选择题(共17小题)1.某零件的形状如图所示,按照要求∠B=20°,∠BCD=110°,∠D=30°,那么∠A 的度数是()A.50°B.60°C.70°D.80°2.如图,在△ABC中,∠ACB=80°,点D在AB上,将△ABC沿CD折叠,点B落在边AC的点E处.若∠ADE=24°,则∠A的度数为()A.24°B.32°C.38°D.48°3.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,若∠A=45°,∠P =40°,则∠C的度数为()A.30°B.35°C.40°D.45°4.如图,已知AB∥DC,Rt△FEG直角顶点在CD上,已知∠FEC=35°,则∠GHB=()A.35°B.45°C.55°D.65°5.如图,△ABC中,CD平分∠ACB,点M在线段CD上,且MN⊥CD交BA的延长线于点N.若∠B=30°,∠CAN=96°,则∠N的度数为()A.22°B.27°C.30°D.37°6.如图①、②中,∠A=42°,∠1=∠2,∠3=∠4,则∠O1+∠O2的度数为()A.111B.174C.153D.1327.如图,∠AOB=60°,点M、N分别在OA、OB上运动(不与点O重合),ME平分∠AMN,ME的反向延长线与∠MNO的平分线交于点F,在M、N的运动过程中,∠F的度数()A.变大B.变小C.等于45°D.等于30°8.如图,BE、CF都是△ABC的角平分线,且∠BDC=115°,则∠A=()A.50°B.45°C.65°D.70°9.如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC的平分线.∠BAC=50°,∠ABC=60°.则∠DAE+∠ACD等于()A.75°B.80°C.85°D.90°10.如图,在△ABC中,设∠A=x°,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC 与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2021BC与∠A2021CD的平分线相交于点A2022,得∠A2022,则∠A2022是()度.A.x B.x C.x D.x11.如图,在△ABC中,∠C=90°,∠B=70°,点D、E分别在AB、AC上,将△ADE 沿DE折叠,使点A落在点F处.则∠BDF﹣∠CEF=()A.20°B.30°C.40°D.50°12.如图,在△ABC中,∠A=60°,∠B=70°,CD是∠ACB的平分线,CH⊥AB于点H,则∠DCH的度数是()A.5°B.10°C.15°D.20°13.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AC上一点,将△ABD沿线段BD翻折,使得点A落在A'处,若∠A'BC=30°,则∠CBD=()A.5°B.10°C.15°D.20°14.如图,图①是四边形纸条ABCD,其中AB∥CD,E,F分别为AB、CD上的两个点,将纸条ABCD沿EF折叠得到图②,再将图②沿DF折叠得到图③,若在图③中,∠FEM =24°,则∠EFC为()A.48°B.72°C.108°D.132°15.如图,在△ABC中,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,∠D=15°,则∠A的度数为()A.30°B.45°C.20°D.22.5°16.如图,点D在△ABC内,且∠BDC=120°,∠1+∠2=55°,则∠A的度数为()A.50°B.60°C.65°D.75°17.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°二.填空题(共5小题)18.如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=120°,则∠1+∠2的度数为.19.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=°.20.在△ABC中,∠ABC,∠ACB的平分线交于点O,∠ACB的外角平分线所在直线与∠ABC的平分线相交于点D,与∠ABC的外角平分线相交于点E,则下列结论一定正确的是.(填写所有正确结论的序号)①;②;③∠E=∠A;④∠E+∠DCF=90°+∠ABD.21.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=度.22.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.三.解答题(共8小题)23.如图所示,D是△ABC边BC的中点,E是AD上一点,满足AE=BD=DC,F A=FE.求∠ADC的度数.24.在△ABC中,AE平分∠BAC,∠C>∠B.(1)课本原题再现:如图1,若AD⊥BC于点D,∠ABC=40°,∠ACB=60°,求∠EAD的度数.(写出解答过程)(2)如图1,根据(1)的解答过程,猜想并写出∠B、∠C、∠EAD之间的数量关系.(3)小明继续探究,如图2在线段AE上任取一点P,过点P作PD⊥BC于点D,请尝试写出∠B、∠C、∠EPD之间的数量关系,并说明理由.25.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)求∠AFC的度数;(2)求∠EDF的度数.26.如图,将长方形纸片ABCD(四个内角均为直角,两组对边分别平行)沿EF折叠后,点C、D分别落在点M、N的位置,EN的延长线交BC于点G.(1)若∠EFG=68°,求∠AEN、∠BGN的度数;(2)若点P是射线BA上一点(点P不与点A重合),过点P作PH⊥EG于H,PQ平分∠APH,PQ与EF有怎样的位置关系?为什么?27.(1)阅读并填空:如图①,BD、CD分别是△ABC的内角∠ABC、∠ACB的平分线.试说明∠D=90°+∠A的理由.解:因为BD平分∠ABC(已知),所以∠1=(角平分线定义).同理:∠2=.因为∠A+∠ABC+∠ACB=180°,∠1+∠2+∠D=180°,(),所以∠D=(等式性质).即:∠D=90°+∠A.(2)探究,请直接写出结果,并任选一种情况说明理由:(i)如图②,BD、CD分别是△ABC的两个外角∠EBC、∠FCB的平分线.试探究∠D 与∠A之间的等量关系.答:∠D与∠A之间的等量关系是.(ii)如图③,BD、CD分别是△ABC的一个内角∠ABC和一个外角∠ACE的平分线.试探究∠D与∠A之间的等量关系.答:∠D与∠A之间的等量关系是.28.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.(1)若∠ABC=75°,∠ACB=45°,求∠D的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.29.a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为18,求c的值.30.问题情景如图1,△ABC中,有一块直角三角板PMN放置在△ABC上(P点在△ABC 内),使三角板PMN的两条直角边PM、PN恰好分别经过点B和点C.试问∠ABP与∠ACP是否存在某种确定的数量关系?(1)特殊探究:若∠A=50°,则∠ABC+∠ACB=度,∠PBC+∠PCB=度,∠ABP+∠ACP=度;(2)类比探索:请探究∠ABP+∠ACP与∠A的关系.(3)类比延伸:如图2,改变直角三角板PMN的位置;使P点在△ABC外,三角板PMN 的两条直角边PM、PN仍然分别经过点B和点C,(2)中的结论是否仍然成立?若不成立,请直接写出你的结论.。
【必刷题】2024八年级数学上册数学问题解决策略专项专题训练(含答案)
【必刷题】2024八年级数学上册数学问题解决策略专项专题训练(含答案)试题部分一、选择题:1. 在下列问题解决策略中,不属于模型法的是()A. 利用函数模型解决实际问题B. 利用几何图形模型解决实际问题C. 通过实验法解决实际问题D. 利用概率模型解决实际问题2. 下列哪个方程不是一元一次方程?()A. 2x + 3 = 7B. 3x 5x = 8C. 2x^2 + 5 = 10D. 4x + 6 = 2x + 103. 已知一组数据的方差是9,那么这组数据每个数都加上5后,方差是()A. 9B. 14C. 18D. 54. 下列哪个图形是中心对称图形?()A. 等边三角形B. 长方形C. 正方形D. 线段5. 一个等腰三角形的底边长为10cm,腰长为8cm,则这个三角形的周长是()A. 26cmB. 24cmC. 20cmD. 18cm6. 下列哪个比例是无理数?()A. √2B. √3C. √4D. √97. 下列哪个数是正数?()A. 3B. 0C. 2/3D. 48. 在平面直角坐标系中,点A(2, 3)关于原点对称的点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)9. 下列哪个多项式是单项式?()A. 3x + 4yB. 5x^2C. 2x^3 + 3x^2D. 4x^2 3x + 210. 一个数加上8后等于它的3倍,这个数是()A. 4B. 6C. 8D. 12二、判断题:1. 一元一次方程的解一定是整数。
()2. 方差越大,数据的波动越小。
()3. 中心对称图形一定是轴对称图形。
()4. 任意两个等腰三角形的周长一定相等。
()5. 无理数的平方一定是无理数。
()三、计算题:1. 计算:(3/4 1/2) ÷ (5/8 + 1/4)2. 计算:√(256/64)3. 计算:2^5 × 2^3 ÷ 2^24. 计算:(4/9)^(1/2)5. 计算:|3 7/2| × (2/3)6. 计算:3 × (5/8 2/3) + 1/67. 计算:(3/5)^28. 计算:4 1/2 + 1/4 1/8 + 1/169. 计算:(2/3)^3 ÷ (1/2)^310. 计算:2^3 ÷ 2^(3)11. 计算:(3/4)^2 (1/2)^212. 计算:√(49/25)13. 计算:5 × (1/2)^314. 计算:(3/8)^2 × (2/3)15. 计算:7/8 ÷ (1/2 + 1/4)16. 计算:3/4 ÷ (2/3 1/6)17. 计算:4/9 ÷ (3/8 1/4)18. 计算:(2/5)^2 × (5/2)^219. 计算:2^(3) ÷ 2^(2)20. 计算:(4/9)^(1/2) × (9/4)^(1/2)四、应用题:1. 甲、乙两地相距120公里,小明从甲地骑自行车前往乙地,速度为每小时15公里,问小明需要多少小时到达乙地?2. 一辆汽车以每小时60公里的速度行驶,行驶了3小时后,距目的地还有150公里,问汽车还需要多少小时到达目的地?3. 某班有男生25人,女生20人,男生平均身高1.6米,女生平均身高1.55米,求全班学生的平均身高。
专题10 非谓语动词-备战中考英语专项突破课件(语法篇)
phone while crossing the street.
A.answering
B.to answer
C.answer
D.answered
the mobile
(B )8.(2018·扬州)—Mr.Wu has recommended many books.Have
you decided
first?
辑主语与句子主语 做一次志愿者,帮助孩子们学习如何
保持一致,在句中 阅读。【八下 Unit 2 第 12
表原因或目的
页】
He returned home to learn his son
不定式作状语可位于句末,在
had gone to the countryside.他返回
句中表结果
状
家中获悉他的儿子已经去了乡下。
表语
school for the children.我们的计划是
系动词后作表语
为孩子们创办另一所中学。
( B )1.(2020·大庆)—What's next?
—I'll have Tony
you around.
A.to show
B.show
C.showed
D.shown
( D )2.(2020·天津)I've just watched a TV programme about
space.I hope
on the moon one day.
A.walk
B.walked
C.walking
D.to walk
( D )3.(2020·泰州)More and more teenagers have poor eyesight,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三英语第一轮复习八(上)Unit 7—Unit 8I.词组:a banana milk shake制作香蕉奶昔three apples削三个苹果up切碎…in \ into…把…放进……into…把…倒入…on \ turn down the blender打开\关上搅拌器cup of yogurt一杯酸奶 teaspoons of honey两勺蜂蜜…all up把…都搅拌起来 the noodles煮面salt to…给…加盐the butter on a slice of bread把一片面包抹上黄油slices=slices of chicken鸡肉片…on the top把…放在上面 recipe for……的食谱16. green onion葱 the pancake卷起薄饼to do需要做…1. hang out with friends 和朋友闲逛2. buy a souvenir 买纪念物3. get his autograph 得到他的签名4. win a prize 获奖5. have a great time on the school trip 在校游中玩得开心6. watch a dolphin show 看海豚表演7. at the end of the day 在一天结束时8. take the subway back to school 乘地铁返回学校9. sleep late 睡得晚 10. go for a drive 开车去兜风11. on my first day off 在我第一个休息日12. put some of his old things out in the yard把他的一些旧东西放进院子里13. in my opinion 依我的观点14. win first prize in yesterday’s singing competition 在昨天的唱歌比赛中获得第一名15. have a yard sale 庭院出售* Notice1 turn on / off / down / upIt’s one’s turn to do sth2 cut down / cut up3 疑问词 how many / how muchII.句子:do you make fruit salad 你怎样制作水果沙拉need three oranges . 我需要三个橘子。
How many oranges do you need你需要多少橘子need two bowls of orange . 我需要两碗橘汁。
How many bowls of orange do you need 你需要多少碗橘汁How much orange do you need 你需要多少橘汁there any sharks at the aquarium---No, there weren’t any sharks.水族馆里有鲨鱼吗没有。
2. ---Did she take any photos ---Yes, she did. 她照相了吗是的。
3. What else did you do on your last school trip=What other things did you do on your last school trip上一个校游日你还作了什么4. We didn't go to the zoo last Sunday. We went to the park..上个周日我们没有去动物园,我们去了公园。
5. The students watched a movie about dolphins.学生们看了一部关于海豚的电影。
6. Class 9 had a great time on the trip.九班的学生们在校游中过得很愉快。
7. What was your last day off like =How was your last day off 你的上个休息日怎么样(be like)9. However, no one came to the sale because the weather was so bad.然而,没有人来买东西因为天气是如此糟糕。
10. Luckily, we brought our umbrellas and raincoats, so we didn’t get wet. 幸运的是,我们带了伞和雨衣,所以我们没有淋湿。
II 基础练习用所给单词的适当形式填空1. How___________ watermelons do we need ( much )2. We still need ten _____________. ( orange )3. Would you cut up some_________ for me ( tomato )4. Ten minutes for you to make your favorite___________( sandwich )5. Our teachers are __________to us. (friend )6. What would you like ___________ ( drink ), tea or coffee7. Why ______ you ______ ( not stay ) at home It’s so cold outside.8. Are you _________ ( good ) than Jim at speaking English9. Thanks for __________ ( have ) us to your party.10. _________ ( not drink ) too much milk when you are hungry.1.I help my father ________ the car.2.I went to the museum and ________ some souvenirs. 3.There ________ an old temple(庙)at the foot of the mountain before.4.Last week I ________ my aunt’s house .5.We ________ some really clever kids when we were in their school.6.I think it ________ very interesting.7.He ________ in California and worked as an actor.8.After that, they ________ the bus back home.9.Who ________ the first prize Toky did.10.Tina ________ Dean’s autograph and read it.句型转换boy needs one cup of milk. (划线提问)______ ______ _______ of milk ______ the boy ____’d like some chicken. (否定句,划线提问)They _______ like _______ chicken._____ ______ chicken _______ they like3 How much is the book How much _______ the book ________________ the ________ of the book4 You mustn’t eat too much.(祈使句) _________ eat too much.5 I make a banana shake like this.(划线)_______ ________ you ________ a banana shake6 I met him on my way to school. (否定)I _______ ______ him on my way to school.8 Are there any seals here (用last year 改写)_____ ________any seals here9.He felt tired just now. (划线) ______ _______ he ______ just now10.He watched TV last night. (划线)_________ _________ he _________ last night________ _________ he _________TV中考链接with my best friend.We saw many beautiful flowers and grass everywhere. There were many people in it. Suddenly we saw a group of people under the tree. Some of them were shouting. My friends and I weresurprised. We _________ there and found a famous actor. He _______something. Some of fans _______ his autograph. He also sung a song for us. We ________ fun that day.’d like some coffee ___ sugar in it. A. with B. over C. aboutD. for2. Can you help me ____ up the meatA. cutB. putC. giveD. clean3 Don’t forget to turn ________ the TV before you go to bed.A offB toC onD down4 Kate, could you ________ the radio a bit Your father is asleep.A turn downB turn offC turn upD turn on。