6-2复数的概念

合集下载

复数与参数方程( )

复数与参数方程(  )

2 i , z 2 1 3i ,则复数
B.第二象限
z1 z2
2
在复平面内对应点在( D.第四象限

C.第三象限 ) C. 13i
17、复数 A. 13
3 2i 4 6i 的值是( 1 i 2
B. 13
D. 13i
高考链接
1、 (2010 年安徽文)已知 i A.
上课时间
能够解决复数的常见考题及参数方程的常见题型 能够适当与其他知识相结合的应用
复数知识点总结
(一) 复数的概念和意义 1、复数:形如 a bi
ab R 的数叫做
2
复数(其中 i 叫做虚部单位,且满足 i
1 ) 。
2、复数的表示方法:复数常用字母 z 表示, 即z
a bia, b R。
3) z1 z 2
a bi c di ac bci adi bdi2 ac bd ad bci ;
第 1 页/共 8 页
教学设计方案
XueDa PPTS Learning Center
4)
z1 a bi a bi c di ac bd bc ad ic di 0 ; z 2 c di c di c di c 2 d 2 c 2 d 2
A. y x 2 B. y x 2 C. y x 2(2 x 3) ) D. y x 2(0 y 1)
例 2.化极坐标方程 cos 0 为直角坐标方程为(
2
) D. y 1
A. x y 0或y 1
2 2
B. x 1
3、实部和虚部:对于复数 z 1) 2) 3)

高中数学 三维设计 复数 复数的概念

高中数学 三维设计 复数 复数的概念

7.1复数的概念7.1.1数系的扩充和复数的概念新课程标准新学法解读1.通过方程的解,认识复数.2.理解复数的代数表示,理解两个复数相等的含义.1.了解数系扩充的过程,明确引入复数的必要性.2.本节新概念较多,理解相关概念是学好复数的关键.[思考发现]1.已知复数z =1+i ,则下列结论中正确的个数是( ) ①z 的实部为1;②z >0;③z 的虚部为i . A .1 B .2 C .3D .0解析:选A 易知①正确,②③错误,故选A.2.在2+7,27i ,8+5i ,(1-3)i ,0.68这几个数中,纯虚数的个数为( )A .0B .1C .2D .3解析:选C 由纯虚数的定义可知27i , (1-3)i 是纯虚数.故选C.3.若a -2i =b i +1,a ,b ∈R ,则a 2+b 2=________. 解析:由两个复数相等可知,a =1,-2=b ,所以a 2+b 2=5. 答案:54.3i 2+7i 的实部为________,虚部为________. 解析:3i 2+7i =-3+7i ,实部为-3,虚部为7. 答案:-3 75.已知复数z =m +(m 2-1)i(m ∈R )满足z <0,则m =________.解析:∵z <0,∴z 为实数且小于0,∴⎩⎪⎨⎪⎧m 2-1=0,m <0,解得m =-1. 答案:-1[系统归纳]1.数系扩充的脉络自然数集→整数集→有理数集→实数集→复数集. 2.复数概念的三点说明(1)复数集是最大的数集,任何一个数都可以写成a +b i(a ,b ∈R )的形式,其中0=0+0i.(2)复数的虚部是实数b 而非b i.(3)复数z =a +b i 只有在a ,b ∈R 时才是复数的代数形式,否则不是. 3.两个复数相等的条件(1)在两个复数相等的条件中,注意前提条件是a ,b ,c ,d ∈R ,即当a ,b ,c ,d ∈R 时,a +b i =c +d i ⇔a =c 且b =d .若忽略前提条件,则结论不能成立.(2)利用该条件把复数的实部和虚部分离出来,达到“化虚为实”的目的,从而将复数问题转化为实数问题来求解.复数的有关概念[例1] 给出下列三个命题:①若z ∈C ,则z 2≥0;②2i -1虚部是2i ;③2i 的实部是0.其中真命题的个数为( )A .0B .1C .2D .3[解析] 对于①,当z ∈R 时,z 2≥0成立,否则不成立,如z =i ,z 2=-1<0,所以①为假命题;对于②,2i -1=-1+2i ,其虚部是2,不是2i ,②为假命题;对于③,2i =0+2i ,其实部是0,③为真命题.故选B.[答案] B复数概念的几个关注点(1)复数的代数形式:若z =a +b i ,只有当a ,b ∈R 时,a 才是z 的实部,b 才是z 的虚部,且注意虚部不是b i ,而是b .(2)不要将复数与虚数的概念混淆,实数也是复数,实数和虚数是复数的两大构成部分.(3)举反例:判断一个命题为假命题,只要举一个反例即可,所以解答判断命题真假类题目时,可按照“先特殊,后一般,先否定,后肯定”的方法进行解答.[变式训练]1.若复数z =a 2-3+2a i 的实部与虚部互为相反数,则实数a 的值为______. 解析:由条件知a 2-3+2a =0,∴a =1或a =-3. 答案:1或-32.下列命题正确的是________. ①复数-i +1的虚部为-1.②若z 1,z 2∈C 且z 1-z 2>0,则z 1>z 2. ③任意两个复数都不能比较大小.解析:①复数-i +1=1-i ,虚部为-1,正确;②若z 1,z 2不全为实数,则z 1,z 2不能比较大小,错误;③若两个复数都是实数,可以比较大小,错误.答案:①复数的分类[例2] 当m 为何实数时,复数z =m 2-m -6m +3+(m 2-2m -15)i.(1)是虚数;(2)是纯虚数.[解] (1)当⎩⎪⎨⎪⎧m +3≠0,m 2-2m -15≠0,即m ≠5且m ≠-3时,z 是虚数. (2)当⎩⎪⎨⎪⎧m 2-m -6m +3=0,m 2-2m -15≠0,即m =3或m =-2时,z 是纯虚数.复数分类解题策略判断一个复数在什么情况下是实数、虚数或者纯虚数,应首先保证复数的实部、虚部均有意义.其次根据分类的标准,列出实部、虚部应满足的关系式再求解.[变式训练]1.[变设问]本例中条件不变,当m 为何值时,z 为实数?解:当⎩⎪⎨⎪⎧m +3≠0,m 2-2m -15=0,即m =5时,z 是实数.2.[变设问]本例中条件不变,当m 为何值时,z >0.解:因为z >0,所以z 为实数,需满足 ⎩⎪⎨⎪⎧m 2-m -6m +3>0,m 2-2m -15=0,解得m =5. 3.[变条件]已知z =log 2(1+m )+ilog 12(3-m )(m ∈R ),若z 是虚数,求m 的取值范围.解:∵z 是虚数,∴log 12(3-m )≠0,且1+m >0,即⎩⎪⎨⎪⎧3-m >0,3-m ≠1,1+m >0,∴-1<m <2或2<m <3.∴m 的取值范围为(-1,2)∪(2,3).复数相等及其应用[例3] (1)已知x 2-y 2+2xy i =2i ,求实数x ,y 的值;(2)关于x 的方程3x 2-a2x -1=(10-x -2x 2)i 有实根,求实数a 的值.[解] (1)∵x 2-y 2+2xy i =2i ,∴⎩⎪⎨⎪⎧ x 2-y 2=0,2xy =2,解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1. (2)设方程的实数根为x =m , 则3m 2-a2m -1=(10-m -2m 2)i ,∴⎩⎪⎨⎪⎧3m 2-a 2m -1=0,10-m -2m 2=0,解得a =11或a =-715.复数相等问题的解题技巧(1)必须是复数的代数形式才可以根据实部与实部相等,虚部与虚部相等列方程组求解. (2)根据复数相等的条件,将复数问题转化为实数问题,为应用方程思想提供了条件,同时这也是复数问题实数化思想的体现.(3)如果两个复数都是实数,可以比较大小,否则是不能比较大小的.[变式训练]1.满足x -3i =(8x -y )i 的实数x ,y 的值为( ) A .x =0且y =3 B .x =0且y =-3 C .x =5且y =3 D .x =3且y =0解析:选A 依题意得⎩⎪⎨⎪⎧ x =0,-3=8x -y ,解得⎩⎪⎨⎪⎧x =0,y =3.故选A. 2.已知A ={1,2,(a 2-3a -1)+(a 2-5a -6)i},B ={-1,3},A ∩B ={3},求实数a 的值. 解:由题意,得(a 2-3a -1)+(a 2-5a -6)i =3,∴⎩⎪⎨⎪⎧a 2-5a -6=0,a 2-3a -1=3,解得a =-1.A 级——学考合格性考试达标练1.复数⎝⎛⎭⎫2-32i 的虚部为( ) A .2 B .-32C .2-32D .0解析:选C 由复数定义知C 正确.故选C.2.若复数2-b i(b ∈R )的实部与虚部互为相反数,则b 的值为( ) A .-2 B.23 C .-23D .2解析:选D 复数2-b i 的实部为2,虚部为-b ,由题意知2=-(-b ),即b =2.故选D.3.设集合A ={实数},B ={纯虚数},C ={复数},若全集S =C ,则下列结论正确的是( )A .A ∪B =C B .A =B C .A ∩(∁SB )=∅D .(∁SA )∪(∁S B )=C解析:选D 集合A ,B ,C 的关系如图,可知只有(∁SA )∪(∁S B )=C 正确.故选D.4.已知复数z 1=1+3i 的实部与复数z 2=-1-a i 的虚部相等,则实数a 等于( ) A .-3 B .3 C .-1D .1解析:选C 易知1+3i 的实部为1,-1-a i 的虚部为-a ,则a =-1.故选C. 5.已知复数z 1=a +2i ,z 2=3+(a 2-7)i ,a ∈R ,若z 1=z 2,则a =( ) A .2 B .3 C .-3D .9解析:选B 因为z 1=a +2i ,z 2=3+(a 2-7)i ,且z 1=z 2,所以有⎩⎪⎨⎪⎧a =3,a 2-7=2,解得a =3.故选B.6.若4-3a -a 2i =a 2+4a i ,则实数a 的值为________.解析:易知⎩⎪⎨⎪⎧4-3a =a 2,-a 2=4a ,解得a =-4.答案:-47.如果(m 2-1)+(m 2-2m )i >1则实数m 的值为______.解析:由题意得⎩⎪⎨⎪⎧m 2-2m =0,m 2-1>1,解得m =2.答案:28.若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为______. 解析:因为复数(a 2-3a +2)+(a -1)i 是纯虚数,所以⎩⎪⎨⎪⎧a 2-3a +2=0,a -1≠0,解得a =2.答案:29.分别求满足下列条件的实数x ,y 的值. (1)2x -1+(y +1)i =x -y +(-x -y )i ; (2)x 2-x -6x +1+(x 2-2x -3)i =0.解:(1)∵x ,y ∈R ,∴由复数相等的定义得⎩⎪⎨⎪⎧2x -1=x -y ,y +1=-x -y ,解得⎩⎪⎨⎪⎧x =3,y =-2.(2)∵x ∈R ,∴由复数相等的定义得⎩⎪⎨⎪⎧x 2-x -6x +1=0,x 2-2x -3=0,即⎩⎪⎨⎪⎧x =3或x =-2,且x ≠-1,x =3或x =-1,∴x =3. 10.设复数z =lg(m 2-2m -2)+(m 2+3m +2)i(m ∈R ),试求m 取何值时? (1)z 是实数; (2)z 是纯虚数;(3)z 对应的点位于复平面的第一象限.解:(1)由m 2+3m +2=0且m 2-2m -2>0,解得m =-1或m =-2,故当m =-1或m =-2时,复数表示实数.(2)当实部等于零且虚部不等于零时,复数表示纯虚数.由lg(m 2-2m -2)=0,且m 2+3m +2≠0,求得m =3,故当m =3时,复数z 是纯虚数. (3)由lg(m 2-2m -2)>0,且m 2+3m +2>0,解得m <-2或m >3,故当m <-2或m >3时,复数z 对应的点位于复平面的第一象限.B 级——面向全国卷高考高分练1.复数z =1a -1+(a 2-1)i 是实数,则实数a 的值为( )A .1或-1B .1C .-1D .0或-1解析:选C 因为复数z =1a -1+(a 2-1)i 是实数,且a 为实数,则⎩⎪⎨⎪⎧a 2-1=0,a -1≠0,解得a=-1.故选C.2.若(x +y )i =x -1(x ,y ∈R ),则2x +y 的值为( ) A.12 B .2 C .0D .1解析:选D 由复数相等的充要条件知,⎩⎪⎨⎪⎧ x +y =0,x -1=0,解得⎩⎪⎨⎪⎧x =1,y =-1,∴x +y =0.∴2x +y =20=1.故选D.3.已知关于x 的方程x 2+(m +2i)x +2+2i =0(m ∈R )有实数根n ,且z =m +n i ,则复数z 等于( )A .3+iB .3-iC .-3-iD .-3+i解析:选B 由题意知n 2+(m +2i)n +2+2i =0,即⎩⎪⎨⎪⎧ n 2+mn +2=0,2n +2=0.解得⎩⎪⎨⎪⎧m =3,n =-1.∴z =3-i.故选B. 4.已知复数z 1=m +(4-m 2)i(m ∈R ),z 2=2cos θ+(λ+3sin θ)i(λ,θ∈R ),并且z 1=z 2,则λ的取值范围为( )A.⎣⎡⎦⎤-7,916B.⎣⎡⎦⎤916,7 C .[-1,1]D.⎣⎡⎦⎤-916,7 解析:选D 由z 1=z 2得⎩⎪⎨⎪⎧m =2cos θ,4-m 2=λ+3sin θ,消去m 得λ=4sin 2θ-3sin θ=4⎝⎛⎭⎫sin θ-382-916.由于-1≤sin θ≤1,故-916≤λ≤7.故选D. 5.若复数(a 2-a -2)+(|a -1|-1)i(a ∈R )不是纯虚数,则a 的取值范围是________.解析:若复数为纯虚数,则有⎩⎪⎨⎪⎧|a -1|-1≠0,a 2-a -2=0,即⎩⎪⎨⎪⎧a ≠0且a ≠2,a =2或a =-1,∴a =-1. 故复数不是纯虚数时a ≠-1. 答案:(-∞,-1)∪(-1,+∞)6.已知实数a ,x ,y 满足a 2+2a +2xy +(a +x -y )i =0,则点(x ,y )的轨迹方程是__________.解析:由复数相等的充要条件知,⎩⎪⎨⎪⎧a 2+2a +2xy =0,a +x -y =0,消去a ,得x 2+y 2-2x +2y =0,即(x -1)2+(y +1)2=2.答案:(x -1)2+(y +1)2=2 7.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,如果(x +y )+(x +3)i =⎪⎪⎪⎪⎪⎪3x +2y i -y 1,求实数x ,y 的值.解:由定义运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,得⎪⎪⎪⎪⎪⎪3x +2y i -y 1=3x +2y +y i , 故有(x +y )+(x +3)i =3x +2y +y i.因为x ,y 为实数,所以有⎩⎪⎨⎪⎧x +y =3x +2y ,x +3=y ,得⎩⎪⎨⎪⎧2x +y =0,x +3=y ,得x =-1,y =2. C 级——拓展探索性题目应用练已知关于x 的方程x 2+(1-2i)x +(3m -i)=0有实根,求实数m 的值. 解:设a 为方程的一个实数根,则有 a 2+(1-2i)a +(3m -i)=0, 即(a 2+a +3m )-(2a +1)i =0.由复数相等的充要条件得⎩⎪⎨⎪⎧a 2+a +3m =0,2a +1=0,解得⎩⎨⎧m =112,a =-12.故实数m 的值为112.7.1.2复数的几何意义新课程标准新学法解读1.理解复平面的实轴、虚轴、复数的模、共轭复数的概念.2.理解复数的代数表示及其几何意义. 从“数”和“形”两个角度认识理解复数,由于复平面的建立,使得复数和复平面内的点和以原点为起点的向量具有一一对应关系,为研究复数问题提供了更加有力的工具.[思考发现]1.已知复数z =-i ,复平面内对应点Z 的坐标为( ) A .(0,-1) B .(-1,0) C .(0,0)D .(-1,-1)解析:选A 复数z =-i 的实部为0,虚部为-1,故复平面内对应点Z 的坐标为(0,-1).故选A.2.若OZ ―→=(0,-3),则OZ ―→对应的复数为( ) A .0 B .-3 C .-3iD .3解析:选C 由复数的几何意义可知OZ ―→对应的复数为-3i.故选C. 3.复数z =(a 2-2a )+(a 2-a -2)i 对应的点在虚轴上,则( ) A .a ≠2或a ≠1B .a ≠2或a ≠-1C .a =2或a =0D .a =0解析:选C 由题意知a 2-2a =0,解得a =0或2.故选C.4.若复数a +1+(1-a )i 在复平面内对应的点在第二象限,则实数a 的取值范围是( ) A .(-∞,1) B .(-∞,-1) C .(1,+∞)D .(-1,+∞)解析:选B 因为z =a +1+(1-a )i , 所以它在复平面内对应的点为(a +1,1-a ),又此点在第二象限,所以⎩⎪⎨⎪⎧a +1<0,1-a >0,解得a <-1.故选B.5.已知复数z =1+2i(i 是虚数单位),则|z |=________. 解析:∵z =1+2i ,∴|z |= 12+22= 5.答案:5[系统归纳]1.复平面、实轴、虚轴与复数的对应(1)复平面内点的坐标与复数实部虚部的对应:点Z 的横坐标是a ,纵坐标是b ,复数z =a +b i(a ,b ∈R )可用点Z (a ,b )表示.(2)实轴与复数的对应:实轴上的点都表示实数.(3)虚轴与复数的对应:除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.2.复数几何意义的两个注意点(1)复数与复平面上的点:复数z =a +b i(a ,b ∈R )的对应点的坐标为(a ,b ),而不是(a ,b i).(2)复数与向量的对应:复数z =a +b i(a ,b ∈R )的对应向量是以原点O 为起点的,否则就谈不上一一对应,因为复平面上与OZ ―→相等的向量有无数个.3.对复数模的三点说明(1)数学上所谓大小的定义是:在(实)数轴上右边的比左边的大,而复数的表示要引入虚数轴,在平面上表示,所以也就不符合关于大和小的定义,而且定义复数的大小也没有什么意义,所以我们说两个复数不能比较大小.(2)数的角度理解:复数a +b i(a ,b ∈R )的模|a +b i|=a 2+b 2,两个虚数不能比较大小,但它们的模表示实数,可以比较大小.(3)几何角度理解:表示复数的点Z 到原点的距离.|z 1-z 2|表示复数z 1, z 2对应的点之间的距离.复数与复平面内点的关系[例1] 求实数a 分别取何值时,复数z =a 2-a -6a +3+(a 2-2a -15)i(a ∈R )对应的点Z 满足下列条件:(1)在复平面的第二象限内; (2)在复平面内的x 轴上方.[解] (1)点Z 在复平面的第二象限内, 则⎩⎪⎨⎪⎧a 2-a -6a +3<0,a 2-2a -15>0,解得a <-3. (2)点Z 在x 轴上方,则⎩⎪⎨⎪⎧a 2-2a -15>0,a +3≠0, 即(a +3)(a -5)>0,解得a >5或a <-3.利用复数与复平面内点的对应关系解题的步骤(1)找对应关系:复数的几何表示法即复数z =a +b i(a ,b ∈R )可以用复平面内的点Z (a ,b )来表示,是解决此类问题的根据.(2)列出方程:此类问题可寻求复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.特别提醒:复数与复平面内的点是一一对应关系,因此复数可以用点来表示.[变式训练]1.[变设问]本例中题设条件不变,求复数z 表示的点在x 轴上时,实数a 的值. 解:点Z 在x 轴上,所以a 2-2a -15=0且a +3≠0, 所以a =5.故a =5时,点Z 在x 轴上.2.[变设问]本例中条件不变,如果点Z 在直线x +y +7=0上,求实数a 的值. 解:因为点Z 在直线x +y +7=0上, 所以a 2-a -6a +3+a 2-2a -15+7=0,即a 3+2a 2-15a -30=0, 所以(a +2)(a 2-15)=0,故a =-2或a =±15.所以a =-2或a =±15时,点Z 在直线x +y +7=0上.复数的模[例2] 已知复数z 1=3+i ,z 2=-12+32i.(1)求|z 1|及|z 2|并比较大小;(2)设z ∈C ,满足条件|z |=|z 1|的复数z 对应的点Z 的轨迹是什么图形? [解] (1)|z 1|=|3+i|= 32+12=2,|z 2|=⎝⎛⎭⎫-122+⎝⎛⎭⎫322=1,所以|z 1|>|z 2|. (2)法一:设z =x +y i(x ,y ∈R ), 则点Z 的坐标为(x ,y ). 由|z |=|z 1|=2得x 2+y 2=2,即x 2+y 2=4.所以点Z 的轨迹是以原点为圆心,2为半径的圆. 法二:由|z |=|z 1|=2知|OZ ―→|=2(O 为坐标原点), 所以Z 到原点的距离为2.所以Z 的轨迹是以原点为圆心,2为半径的圆.复数模的计算(1)计算复数的模时,应先确定复数的实部和虚部,再利用模长公式计算.虽然两个虚数不能比较大小,但它们的模可以比较大小.(2)设出复数的代数形式,利用模的定义转化为实数问题求解.[变式训练]1.已知复数z =1-2m i(m ∈R ),且|z |≤2,则实数m 的取值范围是________. 解析:由|z |= 1+4m 2≤2,解得-32≤m ≤32. 答案:⎣⎡⎦⎤-32,32 2.求复数z 1=6+8i 与z 2=-12-2i 的模,并比较它们的模的大小.解:∵z 1=6+8i ,z 2=-12-2i ,∴|z 1|= 62+82=10,|z 2|=⎝⎛⎭⎫-122+-22=32.∵10>32,∴|z 1|>|z 2|.复数与复平面内向量的关系[例3] (1)在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )A .4+80iB .8+2iC .2+4iD .4+i(2)在复平面内,A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i. ①求向量AB ―→,AC ―→,BC ―→对应的复数; ②判定△ABC 的形状.[解析] (1)两个复数对应的点分别为A (6,5),B (-2,3),则C (2,4).故其对应的复数为2+4i.[答案] C(2)①由复数的几何意义知:OA ―→=(1,0),OB ―→=(2,1),OC ―→=(-1,2),所以AB ―→=OB ―→-OA ―→=(1,1),AC ―→=OC ―→-OA ―→=(-2,2),BC ―→=OC ―→-OB ―→=(-3,1),所以AB ―→,AC ―→,BC ―→对应的复数分别为1+i ,-2+2i ,-3+i.②因为|AB ―→|=2,|AC ―→|=22,|BC ―→|=10, 所以|AB ―→|2+|AC ―→|2=|BC ―→|2,所以△ABC 是以BC 为斜边的直角三角形.复数与平面向量的对应关系(1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数.反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.(2)解决复数与平面向量一一对应的问题时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.[变式训练]1.在复平面内,把复数3-3i 对应的向量按顺时针方向旋转π3,所得向量对应的复数是( )A .2 3B .-23iC.3-3i D .3+3i解析:选B 复数对应的点为(3,-3),对应的向量按顺时针方向旋转π3,则对应的点为(0,-23),所得向量对应的复数为-23i.故选B.2.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-2i ,它们所对应的点分别是A ,B ,C ,若OC ―→=x OA ―→+y OB ―→(x ,y ∈R ),则x +y 的值是________.解析:由复数的几何意义可知,OC ―→=x OA ―→+y OB ―→, 即3-2i =x (-1+2i)+y (1-i), ∴3-2i =(y -x )+(2x -y )i ,由复数相等可得⎩⎪⎨⎪⎧ y -x =3,2x -y =-2,解得⎩⎪⎨⎪⎧x =1,y =4.∴x +y =5. 答案:5A 级——学考合格性考试达标练1.复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选C z =-1-2i 在复平面内对应的点为(-1,-2),它位于第三象限.故选C. 2.向量a =(-2,1)所对应的复数是( ) A .z =1+2i B .z =1-2i C .z =-1+2iD .z =-2+i解析:选D 向量a =(-2,1)所对应的复数是z =-2+i.故选D. 3.已知0<a <2,复数z =a +i(i 是虚数单位),则|z |的取值范围是( ) A .(1,3) B .(1,5) C .(1,3)D .(1,5)解析:选B |z |=a 2+1,∵0<a <2,∴1<a 2+1<5,∴|z |∈(1,5).故选B. 4.设O 为原点,向量OA ―→,OB ―→对应的复数分别为2+3i ,-3-2i ,那么向量BA ―→对应的复数为( )A .-1+iB .1-iC .-5-5iD .5+5i解析:选D 因为由已知OA ―→=(2,3),OB ―→=(-3,-2),所以BA ―→=OA ―→-OB ―→=(2,3)-(-3,-2)=(5,5),所以BA ―→对应的复数为5+5i.故选D.5.已知复数z 满足|z |2-2|z |-3=0,则复数z 对应点的轨迹为( ) A .一个圆 B .线段 C .两点D .两个圆解析:选A ∵|z |2-2|z |-3=0,∴(|z |-3)(|z |+1)=0,∴|z |=3,表示一个圆.故选A. 6.复数z =x -2+(3-x )i 在复平面内的对应点在第四象限,则实数x 的取值范围是________.解析:∵复数z 在复平面内对应的点位于第四象限,∴⎩⎪⎨⎪⎧x -2>0,3-x <0.解得x >3. 答案:(3,+∞)7.复数3-5i,1-i 和-2+a i 在复平面上对应的点在同一条直线上,则实数a 的值为________.解析:由点(3,-5),(1,-1),(-2,a )共线可知a =5. 答案:58.i 是虚数单位,设(1+i)x =1+y i ,其中x ,y 是实数,则xy =________,|x +y i|=________. 解析:由(1+i)x =1+y i ,得x +x i =1+y i ,∴x =y =1,∴xy =1,|x +y i|=|1+i|= 2. 答案:129.在复平面内指出与复数z 1=-1+2i ,z 2=2-i ,z 3=-i ,z 4=3+3i 对应的点Z 1,Z 2,Z 3,Z 4,然后在复平面内画出这4个复数对应的向量.解:由题意知Z 1(-1,2),Z 2(2,-1),Z 3(0,-1),Z 4(3,3).如图所示,在复平面内,复数z 1,z 2,z 3,z 4对应的向量分别为OZ 1―→,OZ 2―→,OZ 3―→,OZ 4―→.10.实数x 取什么值时,复平面内表示复数z =x 2+x -6+(x 2-2x -15)i 的点Z :(1)位于第三象限;(2)位于第四象限;(3)位于直线x -y -3=0上. 解:因为x 是实数,所以x 2+x -6,x 2-2x -15也是实数.(1)当实数x 满足⎩⎪⎨⎪⎧x 2+x -6<0,x 2-2x -15<0,即-3<x <2时,点Z 位于第三象限.(2)当实数x 满足⎩⎪⎨⎪⎧x 2+x -6>0,x 2-2x -15<0,即2<x <5时,点Z 位于第四象限.(3)当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即3x +6=0,x =-2时,点Z 位于直线x -y -3=0上.B 级——面向全国卷高考高分练1.若x ,y ∈R ,i 为虚数单位,且x +y +(x -y )i =3-i ,则复数x +y i 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A ∵x +y +(x -y )i =3-i ,∴⎩⎪⎨⎪⎧ x +y =3,x -y =-1,解得⎩⎪⎨⎪⎧x =1,y =2,∴复数1+2i 所对应的点在第一象限.故选A. 2.已知复数z =a +3i(a ∈R )在复平面内对应的点位于第二象限,且|z |=2,则复数z 等于( )A .-1+3iB .1+3iC .-1+3i 或1+3iD .-2+3i解析:选A 由题意得⎩⎪⎨⎪⎧a 2+3=4,a <0,解得a =-1.故z =-1+3i.故选A.3.若复数z 对应的点在直线y =2x 上,且|z |=5,则复数z =( ) A .1+2i B .-1-2i C .±1±2iD .1+2i 或-1-2i解析:选D 依题意可设复数z =a +2a i(a ∈R ),由|z |=5得 a 2+4a 2=5,解得a =±1,故z =1+2i 或z =-1-2i.故选D.4.设a ,b ∈R ,i 为虚数单位,则“ab >0”是“复数a -b i 对应的点位于复平面上第二象限”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析:选B 由题意知,“ab >0”可推出⎩⎪⎨⎪⎧ a >0,b >0或⎩⎪⎨⎪⎧a <0,b <0.当a >0,b >0时,a -b i 对应的点位于复平面上第四象限,当a <0,b <0时,a -b i 对应的点位于复平面上第二象限,反之成立.所以“ab >0”是“复数a -b i 对应的点位于复平面上第二象限”的必要不充分条件.故选B.5.已知复数z =x -2+y i 的模是22,则点(x ,y )的轨迹方程是________. 解析:由模的计算公式得x -22+y 2=22,∴(x -2)2+y 2=8. 答案:(x -2)2+y 2=86.i 为虚数单位,设复数z 1,z 2在复平面内对应的点关于原点对称,若z 1=2-3i ,则z 2=________.解析:因为z 1=2-3i 对应的点的坐标为(2,-3),且复数z 1,z 2在复平面内对应的点关于原点对称,所以z 2在复平面内对应点的坐标为(-2,3),对应的复数为z 2=-2+3i.答案:-2+3i7.已知复平面内的点A ,B 对应的复数分别是z 1=sin 2θ+i ,z 2=-cos 2θ+icos 2θ,其中θ∈(0,π).设AB ―→对应的复数是z .(1)求复数z ;(2)若复数z 对应的点P 在直线y =12x 上,求θ的值.解:(1)因为点A ,B 对应的复数分别是 z 1=sin 2θ+i ,z 2=-cos 2θ+icos 2θ,所以点A ,B 的坐标分别是A (sin 2θ,1),B (-cos 2θ,cos 2θ),所以AB ―→=(-cos 2θ,cos 2θ)-(sin 2θ,1)=(-cos 2θ-sin 2θ,cos 2θ-1)=(-1,-2sin 2θ), 所以AB ―→对应的复数z =-1+(-2sin 2θ)i.(2)由(1)知点P 的坐标是(-1,-2sin 2θ),代入y =12x ,得-2sin 2θ=-12,即sin 2θ=14,所以sin θ=±12.又因为θ∈(0,π),所以sin θ=12,所以θ=π6或5π6.C 级——拓展探索性题目应用练设复数z =log 2(m 2-3m -3)+ilog 2(m -2),m ∈R 对应的向量为OZ ―→. (1)若OZ ―→的终点Z 在虚轴上,求实数m 的值及|OZ ―→|; (2)若OZ ―→的终点Z 在第二象限内,求m 的取值范围.解:(1)因为OZ ―→的终点Z 在虚轴上,所以复数Z 的实部为0,则有log 2(m 2-3m -3)=0,所以m 2-3m -3=1.所以m =4或m =-1;因为⎩⎪⎨⎪⎧m 2-3m -3>0,m -2>0,所以m =4,此时z =i ,OZ ―→=(0,1),|OZ ―→|=1, (2)因为OZ ―→的终点Z 在第二象限内,则有⎩⎪⎨⎪⎧log 2m 2-3m -3<0,log 2m -2>0,m 2-3m -3>0,m -2>0,所以m ∈⎝ ⎛⎭⎪⎫3+212,4.。

新人教版高中数学必修第二册 第7章 复数 7.1.1 数系的扩充和复数的概念

新人教版高中数学必修第二册  第7章 复数   7.1.1 数系的扩充和复数的概念

7.1复数的概念7.1.1数系的扩充和复数的概念考点学习目标核心素养复数的有关概念了解数系的扩充过程,理解复数的概念数学抽象复数的分类理解复数的分类数学抽象复数相等掌握复数相等的充要条件及其应用数学运算问题导学预习教材P68-P70的内容,思考以下问题:1.复数是如何定义的?其表示方法又是什么?2.复数分为哪两大类?3.复数相等的条件是什么?1.复数的有关概念(1)复数的定义形如a+b i(a,b∈R)的数叫做复数,其中i叫做虚数单位,满足i2=-1.(2)复数集全体复数所构成的集合C={a+b i|a,b∈R}叫做复数集.(3)复数的表示方法复数通常用字母z表示,即z=a+b i(a,b∈R),其中a叫做复数z的实部,b叫做复数z的虚部.■名师点拨对复数概念的三点说明(1)复数集是最大的数集,任何一个数都可以写成a+b i(a,b∈R)的形式,其中0=0+0i.(2)复数的虚部是实数b而非b i.(3)复数z =a +b i 只有在a ,b ∈R 时才是复数的代数形式,否则不是代数形式. 2.复数相等的充要条件在复数集C ={a +b i|a ,b ∈R }中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R ),我们规定:a +b i 与c +d i 相等当且仅当a =c 且b =d .3.复数的分类(1)复数z =a +b i(a ,b ∈R )⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)⎩⎪⎨⎪⎧纯虚数a =0,非纯虚数a ≠0W. (2)复数集、实数集、虚数集、纯虚数集之间的关系■名师点拨复数b i(b ∈R )不一定是纯虚数,只有当b ≠0时,复数b i(b ∈R )才是纯虚数.判断(正确的打“√”,错误的打“×”) (1)若a ,b 为实数,则z =a +b i 为虚数.( ) (2)复数z 1=3i ,z 2=2i ,则z 1>z 2.( ) (3)复数z =b i 是纯虚数.( )(4)实数集与复数集的交集是实数集.( ) 答案:(1)× (2)× (3)× (4)√若z =a +(a 2-1)i(a ∈R ,i 为虚数单位)为实数,则a 的值为( ) A .0 B .1 C .-1 D .1或-1 答案:D以3i -2的虚部为实部,以-3+2i 的实部为虚部的复数是( ) A .3-3i B .3+i C .-2+2i D.2+2i 答案:A若(x -2y )i =2x +1+3i ,则实数x ,y 的值分别为________. 答案:-12 -74复数的概念下列命题:①若a∈R,则(a+1)i是纯虚数;②若a,b∈R,且a>b,则a+i>b+i;③若(x2-4)+(x2+3x+2)i是纯虚数,则实数x=±2;④实数集是复数集的真子集.其中正确的命题是()A.①B.②C.③D.④【解析】对于复数a+b i(a,b∈R),当a=0且b≠0时,为纯虚数.对于①,若a=-1,则(a+1)i不是纯虚数,即①错误;两个虚数不能比较大小,则②错误;对于③,若x =-2,则x2-4=0,x2+3x+2=0,此时(x2-4)+(x2+3x+2)i=0不是纯虚数,则③错误;显然,④正确.故选D.【答案】 D判断与复数有关的命题是否正确的方法(1)举反例:判断一个命题为假命题,只要举一个反例即可,所以解答这种类型的题时,可按照“先特殊,后一般,先否定,后肯定”的方法进行解答.(2)化代数形式:对于复数实部、虚部的确定,不但要把复数化为a+b i的形式,更要注意这里a,b均为实数时,才能确定复数的实部、虚部.[提醒]解答复数概念题,一定要紧扣复数的定义,牢记i的性质.对于复数a+b i(a,b∈R),下列说法正确的是()A.若a=0,则a+b i为纯虚数B.若a+(b-1)i=3-2i,则a=3,b=-2C.若b=0,则a+b i为实数D.i的平方等于1解析:选C.对于A,当a=0时,a+b i也可能为实数;对于B,若a+(b-1)i=3-2i,则a=3,b=-1;对于D,i的平方为-1.故选C.复数的分类当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i :(1)为实数?(2)为虚数?(3)为纯虚数?【解】 (1)当⎩⎪⎨⎪⎧m 2-2m =0,m ≠0,即m =2时,复数z 是实数.(2)当m 2-2m ≠0且m ≠0,即m ≠0且m ≠2时,复数z 是虚数.(3)当⎩⎨⎧m ≠0,m 2+m -6m=0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.解决复数分类问题的方法与步骤(1)化标准式:解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.(2)定条件:复数的分类问题可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)即可.(3)下结论:设所给复数为z =a +b i(a ,b ∈R ), ①z 为实数⇔b =0; ②z 为虚数⇔b ≠0;③z 为纯虚数⇔a =0且b ≠0.1.若复数a 2-a -2+(|a -1|-1)i(a ∈R )不是纯虚数,则( ) A .a =-1 B .a ≠-1且a ≠2 C .a ≠-1D .a ≠2解析:选C.复数a 2-a -2+(|a -1|-1)i(a ∈R )不是纯虚数,则有a 2-a -2≠0或|a -1|-1=0,解得a ≠-1.故选C.2.当实数m 为何值时,复数lg(m 2-2m -7)+(m 2+5m +6)i 是: (1)纯虚数;(2)实数.解:(1)复数lg(m 2-2m -7)+(m 2+5m +6)i 是纯虚数,则⎩⎪⎨⎪⎧m 2-2m -7=1m 2+5m +6≠0,解得m =4.(2)复数lg(m 2-2m -7)+(m 2+5m +6)i 是实数,则⎩⎪⎨⎪⎧m 2-2m -7>0,m 2+5m +6=0,解得m =-2或m=-3.复数相等(1)(2019·浙江杭州期末考试)若z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i(m ,n ∈R ),且z 1=z 2,则m +n =( )A .4或0B .-4或0C .2或0D .-2或0(2)若log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,则实数x 的值是________.【解析】 (1)由z 1=z 2,得n 2-3m -1=-3且n 2-m -6=-4,解得m =2,n =±2,所以m +n =4或0,故选A.(2)因为log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,所以⎩⎪⎨⎪⎧log 2(x 2-3x -2)>1,log 2(x 2+2x +1)=0,即⎩⎪⎨⎪⎧x 2-3x -2>2,x 2+2x +1=1,解得x =-2.【答案】 (1)A (2)-2复数相等的充要条件复数相等的充要条件是“化虚为实”的主要依据,多用来求解参数.解决复数相等问题的步骤是:分别分离出两个复数的实部和虚部,利用实部与实部相等、虚部与虚部相等列方程(组)求解.[注意] 在两个复数相等的充要条件中,注意前提条件是a ,b ,c ,d ∈R ,即当a ,b ,c ,d ∈R 时,a +b i =c +d i ⇔a =c 且b =d .若忽略前提条件,则结论不能成立.已知A ={1,2,a 2-3a -1+(a 2-5a -6)i},B ={-1,3},A ∩B ={3},求实数a 的值.解:由题意知,a 2-3a -1+(a 2-5a -6)i =3(a ∈R ),所以⎩⎪⎨⎪⎧a 2-3a -1=3,a 2-5a -6=0,即⎩⎪⎨⎪⎧a =4或a =-1,a =6或a =-1,所以a =- 1.1.若复数z =a i 2-b i(a ,b ∈R )是纯虚数,则一定有( ) A .b =0 B .a =0且b ≠0 C .a =0或b =0D .ab ≠0解析:选B.z =a i 2-b i =-a -b i ,由纯虚数的定义可得a =0且b ≠0. 2.若复数z =m 2-1+(m 2-m -2)i 为实数,则实数m 的值为( ) A .-1 B .2 C .1D .-1或2解析:选D.因为复数z =m 2-1+(m 2-m -2)i 为实数, 所以m 2-m -2=0,解得m =-1或m =2.3.若复数z =(m +1)+(m 2-9)i <0,则实数m 的值等于____________.解析:因为z <0,所以⎩⎪⎨⎪⎧m 2-9=0,m +1<0,解得m =-3.答案:-34.已知x 2-x -6x +1=(x 2-2x -3)i(x ∈R ),则x =________.解析:因为x ∈R ,所以x 2-x -6x +1∈R ,由复数相等的条件得⎩⎪⎨⎪⎧x 2-x -6x +1=0,x 2-2x -3=0,x +1≠0,解得x =3. 答案:3[A基础达标]1.以-3+i的虚部为实部,以3i+i2的实部为虚部的复数是()A.1-i B.1+iC.-3+3i D.3+3i解析:选A.-3+i的虚部为1,3i+i2=-1+3i的实部为-1,故所求复数为1-i.2.在复平面内,复数z=(a2-2a)+(a2-a-2)i是纯虚数,则()A.a=0或a=2 B.a=0C.a≠1且a≠2 D.a≠1或a≠2解析:选B.因为复数z=(a2-2a)+(a2-a-2)i是纯虚数,所以a2-2a=0且a2-a-2≠0,所以a=0.3.若x i-i2=y+2i,x,y∈R,则复数x+y i=()A.-2+i B.2+iC.1-2i D.1+2i解析:选B.由i2=-1,得x i-i2=1+x i,则由题意得1+x i=y+2i,根据复数相等的充要条件得x=2,y=1,故x+y i=2+i.4.复数z=a2-b2+(a+|a|)i(a,b∈R)为实数的充要条件是()A.|a|=|b| B.a<0且a=-bC.a>0且a≠b D.a≤0解析:选D.复数z为实数的充要条件是a+|a|=0,即|a|=-a,得a≤0,故选D.5.下列命题:①若z=a+b i,则仅当a=0且b≠0时,z为纯虚数;②若z21+z22=0,则z1=z2=0;③若实数a与a i对应,则实数集与纯虚数集可建立一一对应关系.其中正确命题的个数是()A.0 B.1C.2 D.3解析:选A.在①中未对z=a+b i中a,b的取值加以限制,故①错误;在②中将虚数的平方与实数的平方等同,如若z1=1,z2=i,则z21+z22=1-1=0,但z1≠z2≠0,故②错误;在③中忽视0·i=0,故③也是错误的.故选A.6.如果x-1+y i与i-3x为相等复数,x,y为实数,则x=________,y=________.解析:由复数相等可知⎩⎪⎨⎪⎧x -1=-3x ,y =1,所以⎩⎪⎨⎪⎧x =14,y =1.答案:1417.复数z 1=(2m +7)+(m 2-2)i ,z 2=(m 2-8)+(4m +3)i ,m ∈R ,若z 1=z 2,则m =________. 解析:因为m ∈R ,z 1=z 2,所以(2m +7)+(m 2-2)i =(m 2-8)+(4m +3)i.由复数相等的充要条件得⎩⎪⎨⎪⎧2m +7=m 2-8,m 2-2=4m +3,解得m =5. 答案:58.设z =log 2(1+m )+ilog 12(3-m )(m ∈R )是虚数,则m 的取值范围是________.解析:因为z 为虚数,所以log 12(3-m )≠0,故⎩⎪⎨⎪⎧1+m >0,3-m ≠1,3-m >0,解得-1<m <3且m ≠2. 答案:(-1,2)∪(2,3)9.已知复数z =(m 2+5m +6)+(m 2-2m -15)i(m ∈R ). (1)若复数z 是实数,求实数m 的值; (2)若复数z 是虚数,求实数m 的取值范围; (3)若复数z 是纯虚数,求实数m 的值; (4)若复数z 是0,求实数m 的值.解:(1)当m 2-2m -15=0时,复数z 为实数, 所以m =5或-3.(2)当m 2-2m -15≠0时,复数z 为虚数. 所以m ≠5且m ≠-3.所以实数m 的取值范围为{m |m ≠5且m ≠-3}.(3)当⎩⎪⎨⎪⎧m 2-2m -15≠0,m 2+5m +6=0时,复数z 是纯虚数,所以m =-2.(4)当⎩⎪⎨⎪⎧m 2-2m -15=0,m 2+5m +6=0时,复数z 是0,所以m =-3.10.已知关于x ,y 的方程组⎩⎪⎨⎪⎧⎝⎛⎭⎫x +32+2(y +1)i =y +4x i ,(2x +ay )-(4x -y +b )i =9-8i有实数解,求实数a ,b 的值. 解:设(x 0,y 0)是方程组的实数解,由已知及复数相等的条件,得⎩⎪⎨⎪⎧x 0+32=y 0 ①,2(y 0+1)=4x 0②,2x 0+ay 0=9 ③,-(4x 0-y 0+b )=-8④,由①②得⎩⎪⎨⎪⎧x 0=52,y 0=4,代入③④得⎩⎪⎨⎪⎧a =1,b =2.所以实数a ,b 的值分别为1,2.[B 能力提升]11.“复数4-a 2+(1-a +a 2)i(a ∈R )是纯虚数”是“a =-2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B.因为1-a +a 2=⎝⎛⎭⎫a -122+34>0,所以若复数4-a 2+(1-a +a 2)i(a ∈R )是纯虚数,则4-a 2=0,即a =±2;当a =-2时,4-a 2+(1-a +a 2)i =7i 为纯虚数,故选B.12.满足方程x 2-2x -3+(9y 2-6y +1)i =0的实数对(x ,y )表示的点的个数为________.解析:由题意知⎩⎪⎨⎪⎧x 2-2x -3=0,9y 2-6y +1=0,解得⎩⎪⎨⎪⎧x =3,y =13或⎩⎪⎨⎪⎧x =-1,y =13.所以实数对(x ,y )表示的点有⎝⎛⎭⎫3,13,⎝⎛⎭⎫-1,13,共有2个. 答案:213.已知复数z =m 2+3m +1+(m 2+5m +6)i<0(m ∈R ),则m 的值为________. 解析:因为z <0,所以z ∈R ,所以m 2+5m +6=0, 解得m =-2或m =-3.当m =-3时,z =1>0,不符合题意,舍去; 当m =-2时,z =-1<0,符合题意. 故m 的值为-2. 答案:-214.已知集合M ={(a +3)+(b 2-1)i ,8},集合N ={3i ,(a 2-1)+(b +2)i},且M ∩N M ,M ∩N ≠∅,求整数a ,b 的值.解:若M ∩N ={3i},则(a +3)+(b 2-1)i =3i ,即a +3=0且b 2-1=3,得a =-3,b =±2.当a =-3,b =-2时,M ={3i ,8},N ={3i ,8},M ∩N =M ,不合题意,舍去; 当a =-3,b =2时,M ={3i ,8},N ={3i ,8+4i}.符合题意. 所以a =-3,b =2.若M ∩N ={8},则8=(a 2-1)+(b +2)i , 即a 2-1=8且b +2=0,得a =±3,b =-2. 当a =-3,b =-2时,不合题意,舍去;当a =3,b =-2时,M ={6+3i ,8},N ={3i ,8},符合题意. 所以a =3,b =-2.若M ∩N ={(a +3)+(b 2-1)i}={(a 2-1)+(b +2)i},则⎩⎪⎨⎪⎧a +3=a 2-1,b 2-1=b +2,即⎩⎪⎨⎪⎧a 2-a -4=0,b 2-b -3=0,此方程组无整数解. 综上可得a =-3,b =2或a =3,b =-2.[C 拓展探究]15.已知复数z 1=-a 2+2a +a i ,z 2=2xy +(x -y )i ,其中a ,x ,y ∈R ,且z 1=z 2,求3x +y 的取值范围.解:由复数相等的充要条件,得⎩⎪⎨⎪⎧-a 2+2a =2xy a =x -y,消去a ,得x 2+y 2-2x +2y =0,即(x -1)2+(y +1)2=2.法一:令t =3x +y ,则y =-3x +t .分析知圆心(1,-1)到直线3x +y -t =0的距离d =|2-t |10≤2, 解得2-25≤t ≤2+25,即3x +y 的取值范围是[2-25,2+25].法二:令⎩⎪⎨⎪⎧x -1=2cos α,y +1=2sin α, 得⎩⎪⎨⎪⎧x =2cos α+1,y =2sin α-1.(α∈R ) 所以3x +y =2sin α+32cos α+2=25sin(α+φ)+2(其中tan φ=3),于是3x +y 的取值范围是[2-25,2+2 5 ].。

2022-2023学年人教A版必修第二册 7-1-2 复数的几何意义 课件(31张)

2022-2023学年人教A版必修第二册 7-1-2 复数的几何意义 课件(31张)
(2)位于虚轴上;
(3)位于直线x-y+3=0上.
解复数z=(m2-4m)+(m2-m-6)i在复平面内对应的点的坐标为Z(m2-4m,m2-m6).
0 < < 4,
2 -4 < 0,
(1)点 Z 位于第三象限,则 2
解得
∴0<m<3.
-2 < < 3,
--6 < 0,
(2)点Z位于虚轴上,则m2-4m=0,解得m=0或m=4.
2 --2 < 0,
则 2
解得 m=1,所以 z=-2.
-3 + 2 = 0,
探究点三 复数的模及其应用
【例3】 若复数z=(a+2)-2ai的模等于 √5 ,求实数a的值.
2
2
解由已知得 ( + 2) + (-2) = √5,即 5a +4a-1=0,解得
a
2
1
a=5或
a=-1,故实数
∴2<m<4,即m的取值范围为(2,4).
(3)由题意,(m2-2m-8)(m2+3m-10)<0,
∴2<m<4或-5<m<-2,
即m的取值范围为(2,4)∪(-5,-2).
(4)由已知得m2-2m-8=m2+3m-10,故m=
规律方法
2
5
.
利用复数与复平面内点的对应的解题步骤
(1)首先确定复数的实部与虚部,从而确定复数对应点的坐标.
(3)点Z位于直线x-y+3=0上,则(m2-4m)-(m2-m-6)+3=0,即-3m+9=0,解得m=3.
的模等于(

第四节 复数

第四节 复数

第四节复数考试要求1.通过方程的解,认识复数.2.理解复数的代数表示及其几何意义,理解两个复数相等的含义.3.掌握复数代数表示式的四则运算,了解复数加、减运算的几何意义.[知识排查·微点淘金]知识点1复数的有关概念内容意义备注复数的概念设a,b都是实数,形如a+b i(a∈R,b∈R)的数叫复数,其中实部为a,虚部为b,i叫做虚数单位a+b i为实数⇔b=0,a+b i为虚数⇔b≠0,a+b i为纯虚数⇔a=0且b≠0复数相等a+b i=c+d i(a,b,c,d∈R)⇔a=c且b=d实数能比较大小,虚数不能比较大小共轭复数a+b i与c+d i共轭(a,b,c,d∈R)⇔a=c且b=-d复数a(a为实数)的共轭复数是a复平面建立平面直角坐标系来表示复数的平面,叫做复平面,x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数复数的模向量OZ→的模叫做复数z=a+b i的模,记作|z|或|a+b i||z|=|a+b i|=a2+b2[微提醒]1.复数集包含实数集与虚数集.2.一个复数为纯虚数,不仅要求实部为0,还要求虚部不为0. 知识点2复数的几何意义复数z=a+b i(a,b∈R)一一对应复平面内的点Z(a,b)一一对应向量OZ→.知识点3复数代数形式的四则运算(1)复数的加、减、乘、除运算法则:设z1=a+b i,z2=c+d i(a,b,c,d∈R),则运算名称符号表示语言叙述加、减法 z 1±z 2=(a +b i)±(c +d i)=(a ±c )+(b ±d )i 把实部、虚部分别相加减 乘法z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i 按照多项式乘法进行,并把i 2换成-1除法z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i ) =ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0) 把分子、分母分别乘以分母的共轭复数,然后分子、分母分别进行乘法运算(2)复数加法的运算律设z 1,z 2,z 3∈C ,则复数加法满足以下运算律: ①交换律:z 1+z 2=z 2+z 1;②结合律:(z 1+z 2)+z 3=z 1+(z 2+z 3). 常用结论1.复数运算的常用结论 (1)(1±i)2=±2i ;1+i 1-i =i ;1-i1+i=-i. (2)-b +a i =i(a +b i)(a ,b ∈R ).(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N *). (4)i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈N *). 2.复数模的运算性质 (1)z ·z =|z |2=|z |2; (2)|z 1·z 2|=|z 1|·|z 2|; (3)⎪⎪⎪⎪z 1z 2=|z 1||z 2|,|z n |=|z |n.(4)对任意复数z 1,z 2都有|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2.[小试牛刀·自我诊断]1.思考辨析(在括号内打“√”或“×”) (1)方程x 2+x +1=0没有解.(×) (2)复数z =a +b i(a ,b ∈R )的虚部为b i.(×)(3)复数中有相等复数的概念,因此复数可以比较大小.(×) (4)原点是实轴与虚轴的交点.(√)(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.(√)2.(链接教材选修2-2 P 106A 组T 2)若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( )A .1B .2C .1或2D .-1解析:选B 依题意,有⎩⎪⎨⎪⎧a 2-3a +2=0,a -1≠0,解得a =2.3.(链接教材选修2-2 P 106B 组T 1)在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i解析:选C 因为A (6,5),B (-2,3),所以线段AB 的中点C (2,4),则点C 对应的复数为z =2+4i.故选C .4.(概念理解错误)i 为虚数单位,复数4+3i3-4i 的虚部是( )A .-1B .1C .iD .-i答案:B5.(理不清复数相等与共轭复数的概念)已知复数z =|(3-i)i|+i 5(i 为虚数单位),则复数z 的共轭复数是________.解析:由题意知z =|3i +1|+i =12+(3)2+i =2+i ,则z =2-i.答案:2-i一、基础探究点——复数的有关概念(题组练透)1.(2021·山东新高考模拟)已知复数z 满足(z +2)(1+i)=2i ,则z =( ) A .-1+i B .-1-i C .1-iD .1+i解析:选B (z +2)(1+i)=2i ⇒z +2=2i 1+i =1+i ⇒z =-1+i ,所以z =-1-i.2.(2021·武汉市部分学校质检)若a +i3-2i 为纯虚数,则实数a 的值为( )A .23B .-23C .32D .-32解析:选A a +i3-2i =(a +i )(3+2i )(3-2i )(3+2i )=3a -213+2a +313i ,因为复数a +i3-2i 为纯虚数,所以3a -213=0,2a +313≠0,解得a =23,故选A .3.设复数z =3-i 1+i ,则复数z 的虚部为( )A .-2iB .-2C .2iD .2解析:选D 解法一:z =3-i 1+i =(3-i )(1-i )(1+i )(1-i )=1-2i ,所以z =1+2i ,z 的虚部为2,故选D .解法二:设z =x +y i(x ∈R ,y ∈R ),则x +y i =3-i1+i,所以(x +y i)(1+i)=3-i ,即(x -y )+(x +y )i =3-i ,所以⎩⎪⎨⎪⎧x -y =3,x +y =-1,解得⎩⎪⎨⎪⎧x =1,y =-2,所以z =1-2i ,所以z =1+2i ,z 的虚部为2,故选D .4.(2021·全国乙卷)设2(z +z )+3(z -z )=4+6i ,则z =( ) A .1-2i B .1+2i C .1+iD .1-i解析:选C 设z =a +b i(a ,b ∈R ),则z =a -b i.结合已知条件,得4a +6b i =4+6i ,根据复数相等的条件可得⎩⎪⎨⎪⎧4a =4,6b =6,解得⎩⎪⎨⎪⎧a =1,b =1,所以z =1+i.故选C .求解与复数概念相关问题的技巧(1)复数的分类、复数相等、复数的模、共轭复数的概念都与复数的实部和虚部有关,所以解答与复数概念有关的问题时,需先把所给复数化为a +b i(a ,b ∈R )的形式,再根据题意列方程(组)求解.(2)求复数的模时,可直接根据复数的模的公式|a +b i|=a 2+b 2和性质|z |=|z |,|z |2=|z |2=z ·z ,|z 1·z 2|=|z 1|·|z 2|,|z 1||z 2|=|z 1||z 2|进行计算. 二、综合探究点——复数的四则运算(思维拓展)[典例剖析][例1] (1)(2021·新高考卷Ⅰ)已知z =2-i ,则z (z +i)=( ) A .6-2i B .4-2i C .6+2iD .4+2i解析:因为z =2-i ,所以z =2+i ,则z (z +i)=(2-i)(2+2i)=4+4i -2i +2=6+2i.故选C . 答案:C(2)(2021·全国甲卷)已知(1-i)2z =3+2i ,则z =( ) A .-1-32iB .-1+32iC .-32+iD .-32-i解析:因为(1-i)2z =3+2i ,所以z =3+2i(1-i )2=3+2i -2i =-1+32i.故选B .答案:B(3)[一题多解]若z (1+i)=1-i ,则z =( ) A .1-i B .1+i C .-iD .i解析:解法一:∵z (1+i)=1-i ,∴z =1-i 1+i =(1-i )2(1+i )(1-i )=-2i2=-i ,∴z =i ,故选D .解法二:(利用共轭复数的性质) ∵z (1+i)=1-i , z (1-i)=1+i ,∴z =1+i 1-i =i ,故选D .答案:D [拓展变式]1.[变结论]若本例(3)条件不变,则|z ·z |的值为________. 解析:∵z =1-i 1+i ,∴|z |=|1-i||1+i|=1.又|z ·z |=|z |2,∴|z ·z |=1. 答案:12.[变条件]本例(3)的解法二是否具有一般性?试探究共轭复数的性质并给予证明.共轭复数的性质有:(1)z ∈R ⇔z =z .(2)非零复数z 是纯虚数⇔z +z =0.(3)①z 1±z 2=z 1±z 2;② z 1·z 2=z 1·z 2;③⎝ ⎛⎭⎪⎫z 1z 2=z 1z 2(z 2≠0). 以z 1·z 2=z 1·z 2为例给予证明.证明:设z 1=a 1+b 1i.z 2=a 2+b 2i.(a 1,b 1,a 2,b 2∈R ), z 1·z 2=(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i , ∴z 1·z 2=(a 1a 2-b 1b 2)-(a 1b 2+a 2b 1)i. z 1=a 1-b 1i ,z 2=a 2-b 2i ,∴z 1·z 2=(a 1-b 1i)(a 2-b 2i)=(a 1a 2-b 1b 2)-(a 1b 2+a 2b 1)i. 故z 1·z 2=z 1·z 2成立.在复数的四则运算中,加、减、乘运算按多项式运算法则进行,把含有虚数单位i 的项看作一类同类项,不含i 的项看作另一类同类项;除法运算则需要分母实数化,解题时注意要把i 的幂化成最简形式.[学会用活]1.(2021·安徽省示范高中联考)已知复数z =1+i ,z 为z 的共轭复数,则1+zz =( )A .3+i 2B .1+i 2C .1-3i 2D .1+3i 2解析:选D 因为z =1+i ,所以z =1-i ,则1+z z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=1+3i2,故选D .三、应用探究点——复数的几何意义(多向思维)[典例剖析]思维点1 复平面内复数与点的对应关系问题[例2] [一题多解]已知i 为虚数单位,复数z 满足z (1-i)=1+2i ,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:解法一:设复数z =a +b i(a ,b ∈R ),则z (1-i)=(a +b i)(1-i)=(a +b )+(-a +b )i ,又z (1-i)=1+2i ,所以⎩⎪⎨⎪⎧a +b =1,-a +b =2,解得⎩⎨⎧a =-12,b =32,所以z =-12+32i ,所以复数z 在复平面内对应的点位于第二象限.故选B .解法二:z =1+2i 1-i =(1+2i )(1+i )(1-i )(1+i )=-1+3i 2=-12+32i.所以复数z 在复平面内对应的点位于第二象限.故选B . 答案:B复数z 、复平面上的点Z 及向量OZ →三者间的联系为z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔OZ →=(a ,b ),据此可知,确定复数在复平面内对应的点所在的位置,只要将复数化为代数形式后,根据对应点Z 的坐标确定即可,反之,根据Z 的坐标即可写出复数z .思维点2 复数模的几何意义及应用[例3] 已知复数z =x +y i ,且|z -2|=3,则yx的最大值为________.解析:∵复数z =x +y i 且|z -2|=3,∴复数z 的几何意义是复平面内以点(2,0)为圆心,3为半径的圆(x -2)2+y 2=3.y x 的几何意义是圆上的点与坐标原点连线的斜率,设yx =k ,即y =kx ,则|2k |1+k 2≤3,可得k ∈[-3,3],所以yx的最大值为 3.答案: 3由于复数、点、向量之间存在一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合,使问题更容易得到解决.[学会用活]2.若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是( ) A .(-∞,1) B .(-∞,-1) C .(1,+∞)D .(-1,+∞)解析:选B 因为(1-i)(a +i)=a +1+(1-a )i , 所以它在复平面内对应的点为(a +1,1-a ),又此点在第二象限,所以⎩⎪⎨⎪⎧a +1<0,1-a >0,解得a <-1.3.设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A .34+12πB .12+1πC .12-1πD .14-12π解析:选D 由|z |≤1知复数z 在复平面内对应的点构成的区域是以(1,0)为圆心,1为半径的圆及其内部,如图中阴影部分表示在圆内(包括边界)且满足y ≥x 的区域,该区域的面积为14π-12×1×1=14π-12,故满足y ≥x 的概率为14π-12π×12=14-12π.故选D .限时规范训练 基础夯实练1.(2021·南昌市摸底)已知i 为虚数单位,则|1+i 3|=( ) A .2 B .1 C .0D . 2解析:选D |1+i 3|=|1-i|=12+(-1)2= 2.故选D .2.(2021·浙江卷)已知a ∈R ,(1+a i)i =3+i(i 为虚数单位),则a =( ) A .-1 B .1 C .-3D .3解析:选C 解法一:因为(1+a i)i =-a +i =3+i ,所以-a =3,解得a =-3.故选C . 解法二:因为(1+a i)i =3+i ,所以1+a i =3+i i =1-3i ,所以a =-3.故选C .3.(2021·全国乙卷)设i z =4+3i ,则z =( ) A .-3-4i B .-3+4i C .3-4iD .3+4i解析:选C 解法一:因为i z =4+3i ,所以i 2z =(4+3i)·i =-3+4i ,所以-z =-3+4i ,则z =3-4i.故选C .解法二:由i z =4+3i ,得z =4+3i i =(4+3i )(-i )i ·(-i )=3-4i.故选C .4.(2021·陕西百校联考)已知复数z =3+4i ,则|z 2-3z |=( ) A . 5 B .5 C .20D .2 5解析:选C 解法一:z 2-3z =(3+4i)2-3(3+4i)=9+24i -16-9-12i =-16+12i ,所以|z 2-3z |=(-16)2+122=20,故选C .解法二:|z 2-3z |=|z (z -3)|=|z |·|z -3|=5×4=20,故选C .5.(2021·山西怀仁一模)已知i 是虚数单位,复数z 满足(1+i)z =|3-i|,则z 的虚部为( )A .-1B .-2C .-iD .-2i解析:选A ∵复数z 满足(1+i)z =|3-i|,∴z =|3-i|1+i =21+i =2(1-i )(1+i )(1-i )=1-i ,∴z 的虚部为-1,故选A .6.(2021·安徽池州模拟)复数z =i 2-5i 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B z =i 2-5i =i (2+5i )(2-5i )(2+5i )=-5+2i 29=-529+229i ,所以复数z =i2-5i 在复平面内对应的点⎝⎛⎭⎫-529,229在第二象限. 7.已知i 是虚数单位,若复数z =a +b i(a ,b ∈R )在复平面内对应的点位于第四象限,则复数z i 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选A ∵复数z =a +b i(a ,b ∈R )在复平面内对应的点位于第四象限,∴a >0,b <0, 则z ·i =(a +b i)i =-b +a i ,∴-b >0,又a >0, ∴复数z i 在复平面内对应的点位于第一象限.8.(2021·四川遂宁月考)已知z =-2+b i1-i (b ∈R ),其中i 为虚数单位,若z =-b i ,则|z -1|=( )A .1B .2C . 5D . 3解析:选C 解法一:∵z =-b i ,∴z =-2+b i1-i=b i ,∴-2+b i =b i ·(1-i)=b +b i ,∴b =-2,∴z =b i =-2i ,∴|z -1|=|-1-2i|= 5.故选C .解法二:由已知得z =-2+b i 1-i=-2-b +(b -2)i2,∵z =-2-b 2-b -22i =-b i ,由复数相等的充要条件可得-2-b 2=0,且-b -22=-b ,∴b =-2,∴z =b i =-2i ,∴|z -1|=|-1-2i|= 5.故选C . 9.(2020·陕西省部分学校摸底)设复数z 满足z +1z =i ,则下列说法正确的是( ) A .z 为纯虚数B .z 的虚部为-12i C .在复平面内,z 对应的点位于第二象限D .|z |=22 解析:选D 解法一:设z =a +b i(a ,b ∈R ),则由题意,得a +b i +1=i(a +b i),即a+1+b i =-b +a i ,所以⎩⎪⎨⎪⎧a +1=-b ,b =a ,解得⎩⎨⎧a =-12,b =-12,所以z =-12-12i.故z 不是纯虚数;z 的虚部为-12;在复平面内,z 对应的点为⎝⎛⎭⎫-12,-12,位于第三象限; |z |=⎝⎛⎭⎫-122+⎝⎛⎭⎫-122=22.故选D . 解法二:由z +1z =i ,得z =1i -1=i +1(i -1)(i +1)=-12-12i ,则z 不是纯虚数,z 的虚部为-12,在复平面内,z 对应的点为⎝⎛⎭⎫-12,-12,位于第三象限, |z |=⎝⎛⎭⎫-122+⎝⎛⎭⎫-122=22.故选D . 10.(2021·江苏省百校大联考)已知复数z =21+i +2i ,i 为虚数单位,则z 的虚部为________.解析:因为z =21+i +2i =2(1-i )(1+i )(1-i )+2i =2-2i 1-i 2+2i =1+i ,所以z 的虚部为1. 答案:1综合提升练11.已知(2+i)y =x +y i ,x ,y ∈R ,则⎪⎪⎪⎪x y +i =( )A . 2B . 3C .2D . 5解析:选D 由(2+i)y =x +y i ,得2y +y i =x +y i ,则可得⎩⎪⎨⎪⎧2y =x ,y =y ,所以x y =2,所以⎪⎪⎪⎪x y +i =|2+i|= 5.故选D .12.(2021·黑龙江省六校联考)已知1-i z=(1+i)2(其中i 为虚数单位),则复数z =( ) A .-1+i 2B .-1-i 2C .1+i 2D .1-i 2 解析:选B 由题意可得z =1-i (1+i )2=1-i 2i =(1-i )(-i )2i (-i )=-1-i 2,故选B . 13.(2021·南昌市重点中学模拟)已知复数1+i 是关于x 的方程x 2+mx +2=0的一个根,则实数m 的值为( )A .-2B .2C .-4D .4解析:选A 依题意得(1+i)2+m (1+i)+2=0,即(m +2)+(m +2)i =0,因此m +2=0,解得m =-2,故选A .14.(2021·河南名校联考)若复数z =1-2i 2+i+a (a ∈R )在复平面内对应的点在第三象限,且|z |=5,则a =( )A .2B .-12C .-1D .-2解析:选D z =(1-2i )(2-i )(2+i )(2-i )+a =-i +a ,由|z |=5,得a 2+(-1)2=5,解得a =±2.又因为复数z 在复平面内对应的点在第三象限,所以a =-2.15.(2021·甘肃顶级名校联考)复数z 1=2+i ,若复数z 1,z 2在复平面内对应的点关于虚轴对称,则z 1z 2=( )A .-5B .5C .-3+4iD .3-4i解析:选A 由题意可知,z 2=-2+i ,所以z 1z 2=(2+i)(-2+i)=-4-1=-5.故选A .16.(2021·广西柳州模拟)已知z =3-i 1-i(其中i 为虚数单位),则z 的共轭复数z 的虚部是( )A .-1B .-2C .1D .2解析:选A ∵z =3-i 1-i =(3-i )(1+i )(1-i )(1+i )=4+2i 2=2+i ,∴z =2-i ,故z 的虚部为-1.故选A .17.(2021·安徽铜陵模拟)已知复数z 满足z ·i =z -i(i 为虚数单位),则|z |=( )A .12B .2C .22D . 2解析:选C 由z ·i =z -i ,得z =i 1-i =i (1+i )(1-i )(1+i )=-12+12i , ∴|z |=⎝⎛⎭⎫-122+⎝⎛⎭⎫122=22.故选C . 18.(2021·江西红色七校联考)若z ∈C 且|z +2-2i|=1,则|z -1-2i|的最小值是( )A .2B .3C .4D .5解析:选A ∵|z +2-2i|=1,∴复数z 对应的点在以C (-2,2)为圆心,以1为半径的圆上.而|z -1-2i|表示复数z 对应的点与点A (1,2)间的距离,故|z -1-2i|的最小值是|AC |-1=2.故选A .。

中职数学 第六章 复数

中职数学 第六章 复数
在例3中,z1=1+2i与z4=1-2i是共轭复数, 它们所对应的点Z1与Z4关于实轴对称.一般地, 复平面内表示一对共轭复数z=a+b i和z =a- bi的点Z(a,b)和Z (a,-b) 关于实轴对称.
图 6-3
第一节 复数的概念与几何表示
课堂练习
(1) z1=2+3i; (3) z3=-2;
图 6-1
第一节 复数的概念与几何表示
由复数的定义知,任何一个复数z=a+bi(a,b∈ R )都对 应唯一的有序实数对 a,b ,其中a,b分别为复数z的实部和虚 部,而有序实数对a,b 又对应着直角坐标平面的唯一的一个 点Z,其坐标为a,b .反之,对直角坐标平面内的每一点Z a,b 确定的唯一的有序实数对a,b ,如果a,b被分别看成复数z的实 部和虚部,那么就对应唯一的复数z=a+bi.这样就建立了复 数z=a+bi与直角坐标平面的点Z a,b 之间的一一对应关系, 即每一个复数都对应直角坐标平面内的一个点,直角坐标平 面内的每一个点也对应一个复数,如图6-2所示.
第一节 复数的概念与几何表示
图 6-2
第一节 复数的概念与几何表示
于是,复数z=a+bi(a,b∈ R ) 直角坐标系中的点Z a,b 表示.建立直角坐标 系来表示复数的平面称为 复平面 .在复平面 内,x轴上的点都表示实数,y轴上除去原点 以外的点都表示纯虚数,因此,一般将x轴称 为实轴 ,将y轴称为虚轴 .
课堂练习
计算 (1)i3;
(2)i5.
第一节 复数的概念与几何表示
根据数i的性质,i可以与实数b相乘,由于 满足乘法交换律,其乘积一般写成bi(规定 0×i=0),再将bi与实数a相加,由于满足加法 交换律,其和一般写成a+bi.

高中数学知识梳理@7复数

高中数学知识梳理@7复数

第七章复数1.知识结构:2.基本要求:理解复数的有关概念:复数、虚数、纯虚数,复数的实部、虚部,共轭复数、复数相等;理解复平面的有关概念:复平面、实轴、虚轴,复数的向量表示、复数的模、复平面上两点间的距离.掌握复数的四则运算、平方根,1的立方根;会解实系数一元二次方程.3.重点问题:(1)利用复数的分类、复数相等、复数的运算求解复数问题;(2)掌握复数的模、两复数差的模的几何意义,并解决模的最值问题;(3)掌握实系数一元二次方程的根的问题.4.思想方法与能力:(1)将复数问题转化为实数问题的“化归思想”;(2)通过对实系数一元二次方程的根的问题,把握分类讨论的数学思想;(3)根据复数与复平面内的点的对应关系,注意数与形的转化.1941957.1 复数的概念及运算(一)知识梳理1.复数概念:(1)z a bi =+(a b R ∈、),i 为虚数单位,a 为实部,b 为虚部 (2)共轭复数:z a bi =-(3)复平面:实轴、虚轴,z 对应复平面上的点的坐标为(,)a b (4)复数的模:z =z 对应点到原点的距离2.复数分类: (1)实数:0b = (2)虚数:0b ≠(3)纯虚数:0a =且0b ≠ 3.复数相等:设1z a bi =+,2z c di =+,a b R ∈、、c 、d ,则12z z a c =⇔=且b d = 4.复数的四则运算设111z a b i =+,222z a b i =+(1122a b a b R ∈、、、),则 (1)121212()()z z a a b b i ±=±+± (2)1212121221()()z z a a b b a b a b i =-++ (3)11212211222222()()z a a b b a b a b iz a b ++-=+(分母实数化) 5.共轭复数与模的性质(1)1212z z z z ±=±; 1212z z z z ⋅=⋅; 1122z z z z ⎛⎫=⎪⎝⎭ (2)1212z z z z ⋅=⋅; 1122z z z z = (3)2z z z =⋅; z z =(4)z R z z ∈⇔=; z 为纯虚数z z ⇔=-且0z ≠6.求解复数z 的方法设z a bi =+(a b R ∈、),转化为求实数a b 、的方程组典型例题196【例1】判断下列命题的真假:(1)设12z z C ∈、,若2212z z =,则1122z z z z =;(2)设123z z z C ∈、、,若221223()()0z z z z -+-=,则123z z z ==;(3)设z C ∈,则z 为纯虚数的充要条件是0z z +=; (4)设12z z C ∈、,若120z z ->,则12z z >; (5)设12z z C ∈、,则12z z -= (6)设z C ∈,则()()m nmnz zm n Q =∈,解:(1)为真命题,其余都为假命题【例2】实数m 分别取什么数时,复数2(1)52)615z i m i m i =++-+-(是 (1)实数;(2)虚数;(3)纯虚数;(4)对应的点在第三象限; (5)对应的点在直线40x y ++=上;(6)共轭复数的虚部为12 解:(1)53m m ==-或;(2)53m m ≠≠-且;(3)2m =-; (4)32m -<<-;(5)512m m =-=或【例3】计算下列各式的值: (1)232005i i i i ⋅⋅⋅⋅= (2)232005i i i i ++++=(3)7651212i i i i ---+-- 解:(1)i - (2)i (3)7455i -- 说明:i 的幂运算具有周期性【例4】(1)已知1z i =+,设23(1)4z i ω=+--,求ω (2)若(34)724z i i -=-+,求1z(3)若545(13)(1)(3)i i z i ++=-,求z 的值解:(1)2(1)3(1)41i i i ω=++--=--197(2)72434i z i -+=+,1z =342525i +(3)545455131(13)(1)4(3)3i ii i z i i++++===-- 【备用题1】已知z w C ∈,,(13)i z +为纯虚数,2zw i=+,且w =w 解:(155)z i =±+,则7w i =-或7w i =-+巩固练习1.对于任意虚数z ,z z +的共轭一定是 ,z z -一定是 ,z z ⋅一定是 ,22()z z -一定是2.已知121iz i-=+,则z = ,z = 3.设b R ∈,且1122i bi +++的实部与虚部相等,则b =4.计算2320081i i i i +++++=5.若123421z i z i =--=+,,且12z z z ⋅=,则z =6.若223()1z z f z z -+=+,则(1)f i +=7.计算:2310011111111i i i i i i i i ++++⎛⎫⎛⎫⎛⎫⎛⎫⋅⋅⋅⋅ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭的值为 8.计算: 264(43)(3)(12)i i i --=- 9.复数3()z ai a R =-∈,若5z <,则a 的取值范围是 10.设复数z 满足5z =,且(34)i z +是纯虚数,则z =11.当m 为何值时,22(344)(252)z m m m m i =--+++为:(1)实数;(2)虚数;(3)纯虚数;(4)对应点在第二象限?19812.设m R ∈,虚数22(1)()z m m m i =++-,且2(1)z m i =+-+,求m 的值7.2 复数的概念及运算(二)典型例题【例1】已知1z i =+,若2211z az bi z z ++=--+,求实数,a b 的值. 解:因为2(1)(1)1i z z i --+=+,又22(1)(1)()(2)z az b i a i b a b a i ++=++++=+++ 所以121a b a +=+=,,所以12a b =-=,说明:复数相等的充要条件是解复数问题的重要依据【例2】求复数z ,使4z R z+∈,且22z -= 解一:设z a bi =+(a b R ∈、)由22224444()()a b z a bi a b i R z a bi a b a b +=++=++-∈+++故2240bb a b-=+ 又由22z -=2= 解方程组,可得0z =,4z =,1z = 解二:由4z R z +∈,即441()z z z z z z+=+=+,则2()(4)0z z z--=,即z z =或24z =当z z =且22z -=时,0z =或4z =; 当24z =且22z -=时,0z =或1z =± 综上所述:0z =,4z =,1z =±199【例3】设w 是方程110z z++=的一个根,求: (1)248(1)(1)(1)(1)w w w w ++++ (2)20082008ww -+解:(1)1;(2)1- 【例4】设z 是虚数,1z zω=+是实数,且12ω-<< (1)求z 的值及z 的实部的取值范围; (2)设11zu z-=+,求证u 为纯虚数; (3)求2u ω-的最小值.解:(1)由1z R zω=+∈且z 是纯虚数得1z =,则z z ω=+ 设z a bi =+ (,)a b R ∈,则2a ω=,由12ω-<<知112a -<<则,1Re 12z -<<(2)证明:111()111z z zz z z u u z z z zz z ----=====-++++ 且0u ≠,所以u 为纯虚数(3)因为222121z z z u z z uu a z z zω--+-=++=++++1222(1)3111a a a a a -=+=++-≥++ 当且仅当0a =即z i =±时,2u ω-有最小值为1巩固练习1.复数34i +的平方根为2.若一个复数的平方等于它的共轭复数,则此复数为 3.虚数z 满足1z R z+∈,则z = 4.已知z u C ∈、且z u ≠,1z =,则1z uz u--⋅的值为5.设复数()z x yi x y R x y =+∈≠、,,若222z z P Q z z i-==⋅,,则下列关系式中正确的是( )(A) P Q > (B) P Q < (C) P Q = (D) P Q 、不能确定大小2006.如果210w w ++=,则21001w w w ++++=7.设221z z =-则复数z =8.设x y 、为共轭复数,且()326x y xyi i +-=-,求x y 、9.已知2222x y xyi i -+=,求实数x y 、的值10.已知1z R z+∈,且2z -,求复数z .7.3 复数的几何意义与向量表示知识梳理1.复数与复平面内点及位置向量的对应复数z x yi =+(x y R ∈、),对应点(,)P x y ,对应向量(,)OP x y = 2.两复数差的模的几何意义:设复数111z x y i =+,222z x y i =+(1122x y x y R ∈、、、)对应复平面上的点分别为12Z Z 、,则12z z -表示两点12Z Z 、之间的距离,即1221z z Z Z -=3.常见轨迹的复数方程:(1)0(0)z z r r -=>表示以复数0z 对应点为圆心,r 为半径的圆 (2)12z z z z -=-表示以复数12z z 、对应点为端点的线段的垂直平分线 (3)122z z z z a -+-= 12(2)z z a -<表示椭圆 (4)122z z z z a ---= 12(2)z z a ->表示双曲线的一支典型例题201【例1】平行四边形OABC ,各顶点对应的复数分别是00,2,23,2A B az z i z a i ==+=-+ C z b ai =-+ (,)a b R ∈,求AOC ∠大小.解:由题设得(0,0)(2,)(2,3)(,)2a O A B a Cb a --,,, 因0ABC 为平行四边形,故OC 中点与AB 中点重合 故由中点公式,得2,6a b ==此时,OA OC AC ===由余弦定理,得34AOC π∠=说明:注意到复数的几何意义,即复数的实部、虚部对应于复平面内点的横坐标、终坐标【例2】复数z 所对应的点Z ,点Z 的轨迹是什么曲线? (1)12z i ++= (2)4z i z i ++-= (3)223z i z --=解:(1)是以点(1,1)--为圆心,2为半径的圆(2)是以点(0,1)±为焦点的椭圆,其方程为22134x y += (3)设复数z 对应点为(,)x y ,则(,)z x y i x y R =+∈,代入原式并化简得2288240x y x y +--+=,其轨迹为:以(4,4)为圆心,说明:注意到两复数差的模的几何意义【例3】(1)已知1z =,求2z -的最值;(2)已知11z i --=,求z i +的最值;(3)复数z 满足223z i z --=,求z 的最大值与最小值 (4)若z =2242z z i -++的最小值解:(1)利用单位圆上的点到点(2,0)的距离的最值得最大值为3、最小值为1(2)以(1,1)为圆心,1为半径的圆上的点到(0,1)-1、2021(3)由例2(3)知,max z =min z =(4)设(,)z x yi x y R =+∈,则z对应点的轨迹是:以原点为圆心,为半径的圆 而2222222242(4)(2)2(2)2(1)10z z i x y x y x y -++=-++++=-+++其中22(2)(1)x y -++的最小值为220=所以2242z z i -++的最小值为50说明:一般地,复数z 满足0(0)z z r r -=>,则复数z 对应复平面内点的轨迹是:以复数0z 对应点为圆心,r 为半径的圆【例4】若复数01(0)z mi m =->,对任意复数z 都有0w z z =⋅,2w z =。

6-2电磁波在真空中传播,其电场强度矢量的复数表达式为.

6-2电磁波在真空中传播,其电场强度矢量的复数表达式为.

6-2电磁波在真空中传播,其电场强度矢量的复数表达式为动)=(二沱)0一4严g(V/〃7)试求:(1)工作频率/。

(2)磁场强度矢量的复数表达式。

(3)坡印廷矢量的瞬时值和时间平均值。

解:(1)由题意可得k = 20龙=coJp Q e Q =—,ey = 6-rxlO9c所以工作频率/=3X109H Z(2)磁场强度矢量的复数表达式为T 1 T T 1 T TH = -e v x E = 一(“+其中波阻抗=120枪。

(3)坡印廷矢量的瞬时值和时间平均值。

电磁波的瞬时值为E(t) = Re[Ee7£W ] = (e x - jeJ10~4 cos(dX-20^)(V/m)~T 1 T TH(t) = Re[H 严]=一(€、.+ J 匕)1()7 cos(曲一20芯)(A/m)〃0所以,坡印廷矢量的瞬时值――>T 1 T ―»T TS(t) = E(t)^H(t) =一ICT'cos'(曲一20芯)(匕一j e x)x(e y+丿0 = 0W///72 〃0同理可得坡印廷矢量的时间平均值T 1 T TS<n. =Re[-£:x//*] = 0 W/zw26-4理想介质中,有一均匀平面电场波沿z方向传播,其频率a)= 2^xl09rad/s.当U0 时,在Z = O处,电场强度的振幅E o = 2/77 V !m ,介质的=4,“r = l。

求当t = Ips时, 在z=62m处的电场强度矢量,磁场强度矢量和坡印廷矢量。

解:根据题意,设均匀平面电场为—> T —>E(t) = e x E o cos(曲-kz) mV/tn式中,co=2^xl09 rad / s.k = co^f/js =所以T T 40 兀E(t) = e x 2cos(2^xl09/- z) ( mV/ in)当t = lps. z=62m时,电场强度矢量,磁场强度矢量和坡印廷矢量为E = -e x mV/mt 4 t 40^mA/ mH(t) =一e、cos(2^xl09Z ------------- z)% 3故此时T 2 TH = ------ e Y mA/ m〃oS = Ex H = €. ------- mA/nr~ 60龙6-5己知空气中一均匀平面电磁波的磁场强度复矢量为H= (-e z + 匕2石+ez4)e'^4x+3z)(pA / m)试求:(1)波长、转播方向单位矢量及转播方向与z轴的夹角(2)常数A(3)电场强度复矢量。

(完整版)复数的基本概念和几何意义

(完整版)复数的基本概念和几何意义

一、考点、热点回顾1. 复数的有关概念 (1)复数① 定义:形如 a + bi ( a , b ∈ R )的数叫做复数,其中 i 叫做虚数单位,满足 i 2=- 1. ② 表示方法:复数通常用字母 z 表示,即 z = a +bi ( a ,b ∈ R ),这一表示形式叫做复数的代数形式 .a 叫做复 数 z 的实部, b 叫做复数 z 的虚部 .注意:复数 m +ni 的实部、虚部不一定是 m 、 n ,只有当 m ∈R ,n ∈R 时,m 、n 才是该复数的实部、虚部 . ( 2)复数集①定义:全体复数所成的集合叫做复数集 . ②表示:通常用大写字母 C 表示 .2. 复数的分类实数( b =0)2)复数集、实数集、虚数集、纯虚数集之间的关系3. 复数相等的充要条件设 a 、 b 、 c 、 d 都是实数,则 a +bi =c +di? a =c 且 b =d ,a +bi =0?a =b =0. 注意:(1)应用复数相等的充要条件时注意要先将复数化为 z =a +bi (a , b ∈R )的形式,即分离实部和虚 部.2)只有当 a =c 且 b =d 的时候才有 a +bi =c +di ,a = c 和 b =d 有一个不成立时,就有 a +bi ≠c + di.3)由 a + bi = 0,a ,b ∈R ,可得 a =0 且 b = 0. 4.复平面的概念 建立直角坐标系来表示复数的平面叫做复平面, x 轴叫做实轴, y 轴叫做虚轴 .实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数 .6.复数的模复数 z =a +bi (a ,b ∈R )对应的向量为 O →Z ,则O →Z 的模叫做复数 z 的模,记作 |z|,且 |z|= a 2+b 2. 注意:复数 a +bi (a , b ∈R )的模 |a + bi|= a 2+b 2,两个虚数不能比较大小,但它们的模表示实数,可以 比较大小 .考点一、复数的概念 例 1、下列命题:①若 a ∈ R ,则( a +1)i 是纯虚数; ②若 a ,b ∈R ,且 a>b ,则 a +i>b + i ;复数1)复数 z =a +bi (a , b ∈R )虚数( b ≠0)纯虚数 a = 0 非纯虚数5.复数的两种几何意义 ( 1)复数 z =a +bi (a , b ∈R )一一对应←一―一对―应→复平面内的点Z (a ,b ) 一一对应←―平面向量 O →Z.典型例题③若( x2- 4)+( x2+3x+ 2)i 是纯虚数,则实数 x=±2;④实数集是复数集的真子集 .其中正确的是( ) A. ① B.② C.③ D.④【解析】 对于复数 a +bi (a ,b ∈R ),当 a =0且 b ≠0 时,为纯虚数 .对于① ,若 a =- 1,则( a +1)i 不 是纯虚数,即 ①错误.两个虚数不能比较大小,则 ②错误.对于 ③,若 x =-2,则 x 2-4=0,x 2+3x +2=0,此时 (x 2-4)+( x 2+3x +2)i =0,不是纯虚数,则 ③错误 .显然,④正确 .故选 D.【 答案】 D 变式训练 1、 1.对于复数 a + bi ( a ,b ∈R ),下列说法正确的是( A. 若 a =0,则 a +bi 为纯虚数B. 若 a +( b -1)i =3-2i ,则 a = 3,b =- 2C. 若 b =0,则 a +bi 为实数D. i 的平方等于 1 解析: 选 C.对于 A ,当 a =0 时, a +bi 也可能为实数; 对于 B ,若 a +( b - 1) i = 3- 2i , 对于 D ,i 的平方为- 1.故选 C.2. 若 4-3a -a 2i =a 2+4ai ,则实数 A.1 C.-4 4 - 3a = a 2,解析: 选 C.易知 2 解得-a 2=4a , 考点二、复数的分类例 2、已知 m ∈R ,复数 z =m (m +2)m -1(1)z 为实数?( 2)z 为虚数?( 3) z 为纯虚数?则 a =3,b =- 1;a 的值为( ) B.1 或- 4D.0 或- 4 a =- 4. (m 2+2m -3)i ,当 m 为何值时,解】 2) 要使1)要使 z 为实数, m 需满足 m 2+2m -3=0,且 m ( m + 2)有意义,即 m -1≠0,解得 m =-3. m -1 z 为虚数, m 需满足 m 2+ 2m - 3≠ 0,且m ( m + 2)有意义,即 m -1≠ 0,解得 m ≠1 且m ≠-3. m -13) 要使z 为纯虚数, m 需满足m ( m + 2)变式训练 2、 当实数 m 为何值时,复数 纯虚数;( 2)实数 . =0,且 m 2+2m -3≠0,解得 m =0 或- 2. m -1lg ( m 2- 2m - 7)+( m 2+ 5m + 6) i 是解:(1)复数 lg ( m 2- 2m - 7)+ m 2+5m +6)i 是纯虚数,则lg 2(m2-2m -7)=0,m 2+ 5m +6≠0,解得 m = 4.m2-2m -7>0 ,2)复数 lg ( m 2- 2m - 7)+( m 2+ 5m + 6) i 是实数,则 m 2+5m +6=0,解得 m =- 2 或 m =- 3.考点三、复数相等 例 3、( 1) 3) 若( x +y )+ yi =( x +1)i ,求实数 x ,y 的值;已知 a 2+(m +2i )a +2+mi =0(m ∈R )成立,求实数 a 的值; 若关于 x 的方程 3x 2- a 2x - 1=( 10- x - 2x 2)求实数 a 的值 . x +y =0, 解】 ( 1)由复数相等的充要条件,得解得 y =x +1, 1 x =- 2, 2)因为 a ,m ∈ R ,所以由 a 2+ am +2+( 2a +m )i = 0,可得 1y =12. a 2+ am +2=0, 2a + m =0,解得a m ==-22,2或 a =- 2, m = 2 2, 所以 a = ± 2.( 3)设方程的实根为 x = m ,则原方程可变为 3m 2-a 2m -1=( 10-m -2m 2) i ,2a3m 2-m - 1=0, 712 解得 a = 11 或- 71. 25 10- m - 2m 2= 0,考点五、复数与复平面内的向量例 5、(1)已知 M (1,3),N (4,-1),P (0,2),Q (-4,0),O 为复平面的原点,试写出 O →M ,O →N ,O →P , O →Q 所表示的复数;( 2)已知复数 1,- 1+2i ,- 3i ,6-7i ,在复平面内画出这些复数对应的向量;( 3)在复平面内的长方形 ABCD 的四个顶点中,点 A ,B ,C 对应的复数分别是 2+3i ,3+2i ,- 2-3i ,求 点 D 对应的复数 .【 解】 ( 1)O →M 表示的复数为 1+ 3i ; O →N 表示的复数为 4-i ; O →P 表示的复数为 2i ; O →Q 表示的复数为- 4.(2)复数 1 对应的向量为 O →A ,其中 A (1,0);复数- 1+2i 对应的向量为 O →B ,其中 B (- 1,2); 复数- 3i 对应的向量为 O →C ,其中 C (0,- 3);复数 6-7i 对应的向量为 O →D ,其中 D (6,-7). 如图所示 .所以 变式训练所以所以3、已知 A ={1,2,a 2-3a -1+(a 2-5a -6)i },B ={-1,3},A ∩B ={3} ,求实数 a 的值. 由题意知, a 2- 3a - 1+ a 2- 3a - 1= 3 , a 2- 5a - 6= 0 , a =- 1.a 2-5a -6)i =3(a ∈R ), a = 4或 a =- 1, 即 考点四、复数与复平面内的点例 4、已知复数 z =( a 2- 1)+ 的值(或取值范围) .( 1)在实轴上; ( 2)在第三象限 .【 解】 ( 1 )若对应的点在实轴上,则有12a -1= 0,解得 a = 2.( 2)若 z 对应的点在第三象限,则有 a 2 -1<0 , 1解得- 1<a<1.故 a 的取值范围是 - 1, 2a - 1<0. 2变式训练 4、求实数 a 取什么值时,复平面内表示复数( 1)位于第二象限;( 2)位于直线 y = x 上 .解: 根据复数的几何意义可知,复平面内表示复数 a 2- 3a + 2) .( 1)由点 Z 位于第二象限,得 a 2+a -2<0,2 解得- 2<a<1. a 2-3a +2>0,故满足条件的实数 a 的取值范围为(- 2,1).2a -1)i ,其中 a ∈R.当复数 z 在复平面内对应的点 Z 满足下列条件时,求 a 1 2.z =a 2+a -2+( a 2-3a +2)i z =a 2+a -2+( a 2-3a + 2)i 的点就是点 Z ( a 2+a -2,解析: 3- 3i 对应向量为( 3,- 3),与 x 轴正半轴夹角为 30°,顺时针旋转 60°后所得向量终点在 y 轴 负半轴上,且模为 2 3.故所得向量对应的复数是- 2 3i.答案: - 2 3i 考点六、复数的模例 6、( 1)设( 1+i )x =1+yi ,其中 x ,y 是实数,则 |x + yi|=( )A.1B. 2C. 3D.2( 2)已知复数 z 满足 z +|z|=2+8i ,求复数 z.【 解】 (1)选 B.因为 x + xi = 1+ yi ,所以 x = y =1, 所以 |x +yi|=|1+i|= 12+12= 2.( 2)法一: 设 z =a +bi ( a ,b ∈R ),则 |z|= a 2+ b 2 , 代入原方程得 a + bi + a 2+b 2=2+ 8i , a + a 2+ b 2= 2, 根据复数相等的充要条件,得 + 解得b =8, 所以 z =- 15+ 8i. 法二: 由原方程得 z =2-|z|+8i (* ). 因为|z|∈R ,所以 2-|z|为 z 的实部, 故 |z|= ( 2-|z|)2+82, 即|z|2=4-4|z|+|z|2+64,得 |z|=17. 将|z|=17代入( *)式得 z =- 15+8i. 变式训练 6、已知复数 z = 3+ ai ( a ∈ R ),且 |z|<4,求实数 解:法一: 因为 z =3+ ai (a ∈ R ),所以 | 由已知得 32+ a 2<4 2,所以 a 2<7,所以 a ∈ 法二:由|z|<4知z在复平面内对应的点在以原点为圆心,以 4为半径的圆内(不包括边界) ,由 z =3+ ai 知z 对应的点在直线 x = 3 上,所以线段 AB (除去端点)为动点 Z (3,由图可知- 7<a< 7.三、课后练习1.若(x+y)i=x-1(x,y ∈R),则 2x+y 的值为 ( )A. B.2 C.0 D.1 解析 :由复数相等的充要条件知 ,x+y =0,x-1=0 故 x+y=0. 故 2x+y =2 0=1. 答案 :D则A →D =(x -2,y -3),B →C =(- 5,-5). → → x - 2=- 5, 由题知, A →D =B →C ,所以 即 x =- 3,故点 D 对应的复数为- 3- 2i.变式训练 5 、在复平面内,把复数 3- 3i 对应的向量按顺时针方向旋转π3 ,所得向量对应的复a =-15, b = a 的取值范围 . = 32 +a 2,- 7,2.已知集合 M={1,2,(m 2-3m-1)+(m 2-5m-6)i},N={-1,3}, 且 M∩ N={3}, 则实数 m的值为 ( )A.4B.-1C.-1 或 4D.-1 或 6 解析 :由于 M∩N={3} ,故 3∈M, 必有 m2-3m-1+(m 2-5m-6)i=3, 所以得 m=-1.答案 :B3. _______________________________________________________________ 给出下列复数 :①-2i,②3+,③8i2,④isin π⑤,4+i;其中表示实数的有 (填上序号 ) __________ .解析 :②为实数 ;③8i2=-8 为实数 ;④i · sin π =0为·实i=数0 ,其余为虚数 .答案 :②③④4.下列复数模大于 3,且对应的点位于第三象限的为 ( )A.z=-2-iB.z=2-3iC.z=3+2iD.z=-3-2i 解析 :A 中 |z|=<3;B 中对应点 (2,-3) 在第四象限 ;C 中对应点 (3,2)在第一象限 ;D 中对应点 (-3,-2) 在第三象限,|z|=>3.答案 :D5.已知复数 z满足 |z|2-2|z|-3=0,则复数 z对应点的轨迹为 ( ) A.一个圆 B.线段 C.两点 D.两个圆解析 :∵|z|2-2|z|-3=0,∴(|z|-3)(|z|+1)=0, ∴|z|=3,表示一个圆 ,故选 A.答案 :A6. _______________________________________________________ 已知在△ABC 中 ,对应的复数分别为 -1+2i,-2-3i, 则对应的复数为______________________________ .解析 : 因为对应的复数分别为 -1+2i,-2-3i,所以 =(-1,2),=(-2,-3). 又=(-2,-3)-(-1,2)=(-1,-5), 所以对应的复数为 -1-5i.答案 :-1-5i7.在复平面内 ,若复数 z=(m2-m-2)+(m 2-3m+2)i 的对应点 ,(1) 在虚轴上 ,求复数 z;(2)在实轴负半轴上 ,求复数 z. 答案 :(1) 若复数 z 的对应点在虚轴上 ,则 m2-m-2=0, 所以 m=-1或 m=2. 此时 z=6i 或 z=0.(2)若复数 z 的对应点在实轴负半轴上 ,则 m2-3m+2=0,m2-m-2<0,∴m=1能力提升8. _____________________________________________________ 若复数 z=cos θ +(-msin -θcosθ )i为虚数 ,则实数 m 的取值范围是________________________ .解析 :∵z 为虚数 ,∴ m-sin θ-cosθ≠ 0,即 m ≠ sin θ+cos θ.∵ sin θ +cos ∈θ[ - 2 , 2 ], ∴ m ∈ (-∞,- 2 )∪( 2 ,+ ∞). 答案 :(-∞,- 2 )∪( 2 ,+ ∞)9. _____________________________________________________ 若复数 (a 2-a-2)+(|a-1|-1)i(a ∈ R)不是纯虚数 ,则 a 的取值范围是 ________________________解析 :若复数为纯虚数 ,则有 a 2-a-2=0,|a-1|-1≠0 即 a=-1. 故复数不是纯虚数时 a ≠-1. 答案 :{a|a ≠-1} 10. _______________________________________________________ 已知向量与实轴正向夹角为 135°,向量对应复数 z 的模为 1,则 z= _________________________________ .解析 :依题意知 Z 点在第二象限且在直线 y=-x 上 , 设 z=-a+ai(a>0).1∵ |z|=1,∴ a 2= .而 a>0,2∴ a=22 答案 :z= i2211. ___________________________________ 已知复数 z 满足 z+|z|=2+8i, 则复数 z= . 解析 :设 z=a+bi(a,b ∈R), 则 |z|= a 2b2 ,代入方程得 ,a+bi+ a 2b 2= 2+8i,∴解得 a=-15∴ z=-15+8i. 答案 :-15+8i12. 已知 M= {1,(m 2-2m)+(m 2+m-2)i}, P={ -1,1,4i}, 若 M ∪ P=P ,求实数 m 的值. 解析 :M ∪P=P,∴M?P,即 (m 2-2m)+(m 2+m-2)i=-1 或 (m 2-2m)+(m 2+m-2)i=4i. 由 (m 2-2m)+(m 2+m-2)i=-1, 得解得 m=1;由 (m 2-2m)+(m 2+m-2)i=4i,解得 m=2. 综上可知 m=1 或 m=2. 答案 :m=1 或 m=213. 已知复数 z=2+cos θ +(1+sin θ∈)iR( ), θ试确定复数 z 在复平面内对应的点的轨迹是什么曲线 解析 : 设复数 z=2+cos θ +(1+sin θ对)i 应的点为 Z(x,y), 则 x=2+cos θ ,y=1+sin θ 即 cos θ =-x2,sin θ =-1y 所以 (x-2)2+(y-1) 2=1.∴z22所以复数 z 在复平面内对应点的轨迹是以 (2,1)为圆心 ,1 为半径的圆答案 :复数 z在复平面内对应点的轨迹是以 (2,1)为圆心 ,1为半径的圆14.已知复数 z= m(m- 1)+ (m2+ 2m-3)i( m∈ R ).(1)若 z 是实数,求 m 的值;(2)若 z是纯虚数,求 m 的值;(3)若在复平面 C 内, z所对应的点在第四象限,求答案 : (1)∵z 为实数,∴m2+2m-3=0,解得 m=-(2)∵z 为纯虚数,m m- 1 =0 , m2+ 2m- 3≠0.m 的取值范围.解得 m= 0.(3)∵z 所对应的点在第四象限,m m- 1 >0 ,∴ 2解得- 3<m<0. m2+ 2m- 3<0.。

高中数学第三章3.2复数的四则运算(第一课时)复数的加减与乘法运算讲义(含解析)苏教版选修2_2

高中数学第三章3.2复数的四则运算(第一课时)复数的加减与乘法运算讲义(含解析)苏教版选修2_2

3.2复数的四则运算第一课时复数的加减与乘法运算复数的加减法已知复数z1=a+b i,z2=c+d i(a,b,c,d∈R).问题1:多项式的加减实质是合并同类项,类比想一想复数如何加减?提示:两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减).问题2:复数的加法满足交换律和结合律吗?提示:满足.1.复数的加法、减法法则设z1=a+b i,z2=c+d i(a,b,c,d∈R),则z1+z2=(a+b i)+(c+d i)=(a+c)+(b+d)i,z1-z2=(a+b i)-(c+d i)=(a-c)+(b-d)i.即两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减).2.复数加法的运算律(1)交换律:z1+z2=z2+z1;(2)结合律:(z1+z2)+z3=z1+(z2+z3).复数的乘法设z1=a+b i,z2=c+d i,(a,b,c,d∈R)问题1:如何规定两复数相乘?提示:两个复数相乘,类似于两个多项式相乘,只要在所得的结果中把i2换成-1,并且把实部与虚部分别合并即可.即z1z2=(a+b i)(c+d i)=ac+bc i+ad i+bd i2=(ac-bd)+(bc+ad)i.问题2:试验复数乘法的交换律.提示:z1z2=(a+b i)(c+d i)=(ac-bd)+(bc+ad)i,z2z1=(c+d i)(a+b i)=(ac-bd)+(bc+ad)i.故z1z2=z2z1.1.复数的乘法设z 1=a +b i ,z 2=c +d i 是任意两个复数,那么它们的积(a +b i)(c +d i)=ac +bc i +ad i +bd i 2=(ac -bd )+(ad +bc )i(a ,b ,c ,d ∈R ).2.复数乘法的运算律 对于任意z 1、z 2、z 3∈C ,有交换律 z 1·z 2=z 2·z 1结合律 (z 1·z 2)·z 3=z 1·(z 2·z 3)乘法对加法的分配律z 1(z 2+z 3)=z 1z 2+z 1z 3共轭复数问题:复数3+4i 与3-4i ,a +b i 与a -b i(a ,b ∈R )有什么特点? 提示:两复数的实部相等,虚部互为相反数.1.把实部相等,虚部互为相反数的两个复数叫做互为共轭复数. 2.复数z =a +b i 的共轭复数记作z -,即z -=a -b i.3.当复数z =a +b i 的虚部b =0时,z =z -,也就是说,实数的共轭复数仍是它本身.1.复数加、减法的规定:实部与实部相加(减)、虚部与虚部相加(减).两个复数的和或差仍是一个复数.2.复数的乘法与多项式的乘法是类似的,有一点不同即必须在所得结果中把i 2换成-1,再把实部,虚部分别合并、两个复数的积仍是一个复数,可推广到任意多个复数,任意多个复数的积仍然是一个复数.[对应学生用书P38]复数的加减运算[例1] 计算: (1)(3+5i)+(3-4i); (2)(-3+2i)-(4-5i);(3)(5-5i)+(-2-2i)-(3+3i).[思路点拨] 解答本题可根据复数加减运算的法则进行.[精解详析] (1)(3+5i)+(3-4i)=(3+3)+(5-4)i=6+i.(2)(-3+2i)-(4-5i)=(-3-4)+[2-(-5)]i=-7+7i.(3)(5-5i)+(-2-2i)-(3+3i)=(5-2-3)+[-5+(-2)-3]i=-10i.[一点通] 复数加减运算法则的记忆方法:(1)复数的实部与实部相加减,虚部与虚部相加减.(2)把i看作一个字母,类比多项式加减中的合并同类项.1.(3-5i)+(-4-i)-(3+4i)=________.解析:(3-5i)+(-4-i)-(3+4i)=(3-4-3)+(-5-1-4)i=-4-10i.答案:-4-10i2.若(-7i+5)-(9-8i)+(x+y i)=2,则x+y=________. 解析:(-7i+5)-(9-8i)+(x+y i)=(5-9+x)+(-7+8+y)i=(x-4)+(y+1)i.∴(x-4)+(y+1)i=2,即x-4=2,y+1=0.∴x=6,y=-1.∴x+y=5.答案:53.计算:(1)(1+2i)+(3-4i)-(5+6i);(2)5i-[(3+4i)-(-1+3i)].解:(1)原式=(4-2i)-(5+6i)=-1-8i;(2)原式=5i-(4+i)=-4+4i.复数的乘法[例2] 计算:(1)(1-i)(1+i)+(-1+i);(2)(2-i)(-1+5i)(3-4i)+2i.[思路点拨] 应用复数的乘法法则及乘法运算律来解.[精解详析] (1)(1-i)(1+i)+(-1+i)=1-i 2-1+i =1+i. (2)(2-i)(-1+5i)(3-4i)+2i =(-2+10i +i -5i 2)(3-4i)+2i =(-2+11i +5)(3-4i)+2i =(3+11i)(3-4i)+2i =(9-12i +33i -44i 2)+2i =53+21i +2i =53+23i.[一点通] (1)三个或三个以上的复数相乘,可按从左向右的顺序运算,或利用结合律运算.混合运算的顺序与实数的运算顺序一样.(2)平方差公式,完全平方公式等在复数范围内仍然成立.一些常见的结论要熟悉:i 2=-1,(1±i)2=±2i.4.(浙江高考改编)已知i 是虚数单位,则(-1+i)(2-i)=________. 解析:(-1+i)(2-i)=-2+i +2i -i 2=-1+3i. 答案:-1+3i5.若(1+i)(2+i)=a +b i ,其中a ,b ∈R ,i 为虚数单位,则a +b =________. 解析:∵(1+i)(2+i)=1+3i =a +b i ,∴a =1,b =3, 故a +b =4. 答案:46.计算下列各题. (1)(1+i)2;(2)(-1+3i)(3-4i); (3)(1-i)⎝ ⎛⎭⎪⎫-12+32i (1+i).解:(1)(1+i)2=1+2i +i 2=2i.(2)(-1+3i)(3-4i)=-3+4i +9i -12i 2=9+13i. (3)法一:(1-i)⎝ ⎛⎭⎪⎫-12+32i (1+i)=⎝ ⎛⎭⎪⎫-12+32i +12i -32i 2(1+i)=⎝ ⎛⎭⎪⎫3-12+3+12i (1+i)=3-12+3+12i +3-12i +3+12i 2=-1+3i.法二:原式=(1-i)(1+i)⎝ ⎛⎭⎪⎫-12+32i=(1-i 2)⎝ ⎛⎭⎪⎫-12+32i =2⎝ ⎛⎭⎪⎫-12+32i =-1+3i.共轭复数的概念[例3] 已知z ∈C ,z 为z 的共轭复数,若z ·z -3i z =1+3i ,求z . [思路点拨]设z =a +b i (a ,b ∈R )―→z =a -b i(a ,b ∈R )―→代入等式利用复数相等的条件求解.[精解详析] 设z =a +b i(a ,b ∈R ), 则z =a -b i(a ,b ∈R ),由题意得(a +b i)(a -b i)-3i(a -b i)=1+3i , 即a 2+b 2-3b -3a i =1+3i ,则有⎩⎪⎨⎪⎧a 2+b 2-3b =1,-3a =3,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =-1,b =3,所以z =-1或z =-1+3i. [一点通](1)实数的共轭复数是它本身,即z ∈R ⇔z =z ,利用此性质可以证明一个复数是实数. (2)若z ≠0且z +z =0,则z 为纯虚数,利用此性质可证明一个复数是纯虚数.7.已知复数z =1+i ,z 为z 的共轭复数,则z ·z -z -1=________. 解析:∵z =1+i ,∴z =1-i , ∴z ·z =(1+i)(1-i)=2,∴z ·z -z -1=2-(1+i)-1=2-1-i -1=-i. 答案:-i8.复数z 满足(1+2i)z =4+3i ,则z =________. 解析:设z =a +b i ,则z =a -b i. ∴(1+2i)(a -b i)=4+3i ,∴a -b i +2a i +2b =4+3i , 即(a +2b )+(2a -b )i =4+3i ,∴⎩⎪⎨⎪⎧a +2b =4,2a -b =3,解之得a =2,b =1.∴z =2+i. 答案:2+i9.已知复数 z =1+i ,求实数 a ,b 使 az +2b z =(a +2z )2成立. 解:∵z =1+i ,∴az +2b z =(a +2b )+(a -2b )i , (a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i. ∵a ,b 都是实数, ∴由 az +2b z=(a +2z )2,得⎩⎪⎨⎪⎧a +2b =a 2+4a ,a -2b =4(a +2).两式相加,整理得 a 2+6a +8=0.解得 a 1=-2,a 2=-4,对应得 b 1=-1,b 2=2. ∴所求实数为 a =-2,b =-1 或 a =-4,b =2.1.复数的加减运算把复数的代数形式z =a +b i 看作关于“i”的多项式,则复数的加法、减法运算,类似于多项式的加法、减法,只需要“合并同类项”就行,不需要记加、减法法则.2.复数的乘法运算复数的乘法可以把虚数单位i 看作字母,按多项式乘法的法则进行,注意要把i 2化为-1,进行最后结果的化简.[对应学生用书P40]一、 填空题1.计算(-i +3)-(-2+5i)的结果为________. 解析:(-i +3)-(-2+5i) =-i +3+2-5i =-6i +5.答案:5-6i2.若复数z =1-2i ,(i 为虚数单位)则z ·z +z 的实部是________. 解析:∵z =1-2i , ∴z =1+2i ,∴z ·z =(1-2i)(1+2i)=5, ∴z ·z +z =5+1-2i =6-2i. 答案:63.已知3+i -(4+3i)=z -(6+7i),则z =________. 解析:∵3+i -(4+3i)=z -(6+7i) ∴z =3+i -(4+3i)+(6+7i) =(3-4+6)+(1-3+7)i =5+5i. 答案:5+5i4.(北京高考)若(x +i)i =-1+2i(x ∈R ),则x =________. 解析:(x +i)i =-1+x i =-1+2i ,由复数相等的定义知x =2. 答案:25.已知z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t =________. 解析:∵z 2=t +i , ∴z 2=t -i ,∴z 1·z 2=(3+4i)(t -i) =3t -3i +4t i -4i 2=(3t +4)+(4t -3)i , 又∵z 1·z 2是实数, ∴4t -3=0,即t =34.答案:34二、解答题6.计算:(1)⎝ ⎛⎭⎪⎫2-12i +⎝ ⎛⎭⎪⎫12-2i ; (2)(3+2i)+(3-2)i ;(3)(6-3i)+(3+2i)-(3-4i)-(-2+i).解:(1)原式=⎝ ⎛⎭⎪⎫2+12-⎝ ⎛⎭⎪⎫12+2i =52-52i ;(3)(3+2i)+(3-2)i =3+(2+3-2)i =3+3i ;(3)(6-3i)+(3+2i)-(3-4i)-(-2+i) =[6+3-3-(-2)]+[-3+2-(-4)-1]i =8+2i. 7.计算:(1)⎝ ⎛⎭⎪⎫12+32i (4i -6)+2+i ; (2)⎝ ⎛⎭⎪⎫-12+32i ⎝ ⎛⎭⎪⎫32+12i (1+i). 解:⎝ ⎛⎭⎪⎫12+32i (4i -6)+2+i =2i +6i 2-3-9i +2+i =-7-6i.(2)⎝ ⎛⎭⎪⎫-12+32i ⎝ ⎛⎭⎪⎫32+12i (1+i) =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-34-34+⎝⎛⎭⎪⎫34-14i (1+i)=⎝ ⎛⎭⎪⎫-32+12i (1+i) =⎝⎛⎭⎪⎫-32-12+⎝ ⎛⎭⎪⎫12-32i =-1+32+1-32i.8.(江西高考改编)z 是z 的共轭复数.若z +z =2,(z -z )i =2(i 为虚数单位),求z .解:法一:设z =a +b i(a ,b ∈R ),则z =a -b i , ∵z +z =2a =2,∴a =1. 又(z -z )i =2b i 2=-2b =2. ∴b =-1. 故z =1-i.法二:∵(z -z )i =2,∴z -z =2i=-2i又z+z=2.∴z-z+(z+z)=-2i+2,∴2z=-2i+2,∴z=1-i.。

关于复数的知识点总结

关于复数的知识点总结

关于复数的知识点总结复数的知识点总结篇1复数的概念:形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。

全体复数所成的集合叫做复数集,用字母C表示。

复数的表示:复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。

复数的几何意义:(1)复平面、实轴、虚轴:点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。

显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数 (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。

这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。

复数的模:复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=虚数单位i:(1)它的平方等于-1,即i2=-1;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。

(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

复数模的性质:复数与实数、虚数、纯虚数及0的关系:对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。

两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d。

高中数学(学案)复数的四则运算

高中数学(学案)复数的四则运算

复数的四则运算【第一课时】【学习过程】一、问题导学预习教材内容,思考以下问题:1.复数的加、减法运算法则是什么?运算律有哪些?2.复数的加、减法的几何意义是什么?二、合作探究探究点1:复数的加、减法运算例1:(1)计算:(5-6i)+(-2-i)-(3+4i);(2)设z1=x+2i,z2=3-y i(x,y∈R),且z1+z2=5-6i,求z1-z2.解:(1)原式=(5-2-3)+(-6-1-4)i =-11i . (2)因为z 1=x +2i ,z 2=3-y i ,z 1+z 2=5-6i ,所以(3+x )+(2-y )i =5-6i ,所以⎩⎨⎧3+x =5,2-y =-6,所以⎩⎨⎧x =2,y =8,所以z 1-z 2=(2+2i )-(3-8i )=(2-3)+[2-(-8)]i =-1+10i .探究点2:复数加、减法的几何意义例2:已知平行四边形OABC 的三个顶点O ,A ,C 对应的复数分别为0,3+2i ,-2+4i .(1)求AO→表示的复数;(2)求CA→表示的复数.解:(1)因为AO→=-OA →,所以AO →表示的复数为-(3+2i ),即-3-2i . (2)因为CA→=OA →-OC →, 所以CA →表示的复数为(3+2i )-(-2+4i )=5-2i . 互动探究:1.变问法:若本例条件不变,试求点B 所对应的复数.解:因为OB →=OA →+OC →,所以OB →表示的复数为(3+2i )+(-2+4i )=1+6i .所以点B所对应的复数为1+6i .2.变问法:若本例条件不变,求对角线AC ,BO 的交点M 对应的复数.解:由题意知,点M 为OB 的中点,则OM →=12OB →,由互动探究1中知点B 的坐标为(1,6),得点M 的坐标为⎝ ⎛⎭⎪⎫12,3,所以点M 对应的复数为12+3i . 三、学习小结1.复数加、减法的运算法则及加法运算律 (1)加、减法的运算法则设z 1=a +b i ,z 2=c +d i (a ,b ,c ,d ∈R )是任意两个复数,则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i .(2)加法运算律 对任意z 1,z 2,z 3∈C ,有 ①交换律:z 1+z 2=z 2+z 1.②结合律:(z 1+z 2)+z 3=z 1+(z 2+z 3). 2.复数加、减法的几何意义如图所示,设复数z 1=a +b i ,z 2=c +d i (a ,b ,c ,d ∈R )对应的向量分别为OZ 1→,OZ 2→,四边形OZ 1ZZ 2为平行四边形,则与z 1+z 2对应的向量是OZ →,与z 1-z 2对应的向量是Z 2Z 1→.四、精炼反馈1.(6-3i )-(3i +1)+(2-2i )的结果为( ) A .5-3i B .3+5i C .7-8iD .7-2i解析:选C .(6-3i )-(3i +1)+(2-2i )=(6-1+2)+(-3-3-2)i =7-8i . 2.已知复数z 1=(a 2-2)-3a i ,z 2=a +(a 2+2)i ,若z 1+z 2是纯虚数,则实数a 的值为____________.解析:由z 1+z 2=a 2-2+a +(a 2-3a +2)i 是纯虚数,得⎩⎨⎧a 2-2+a =0,a 2-3a +2≠0⇒a =-2.答案:-23.已知复数z 1=-2+i ,z 2=-1+2i . (1)求z 1-z 2;(2)在复平面内作出复数z 1-z 2所对应的向量.解:(1)由复数减法的运算法则得z 1-z 2=(-2+i )-(-1+2i )=-1-i .(2)在复平面内作复数z 1-z 2所对应的向量,如图中OZ→.【第二课时】【学习过程】一、问题导学预习教材内容,思考以下问题:1.复数的乘法和除法运算法则各是什么?2.复数乘法的运算律有哪些?3.如何在复数范围内求方程的解?二、合作探究探究点1:复数的乘法运算例1:(1)(1-i )⎝ ⎛⎭⎪⎫-12+32i (1+i )=( )A .1+3iB .-1+3iC .3+iD .-3+i(2)已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i )2=( )A .5-4iB .5+4iC .3-4iD .3+4i(3)把复数z 的共轭复数记作z -,已知(1+2i ) z -=4+3i ,求z .解:(1)选B .(1-i )⎝ ⎛⎭⎪⎫-12+32i (1+i )=(1-i )(1+i )⎝ ⎛⎭⎪⎫-12+32i=(1-i 2)⎝ ⎛⎭⎪⎫-12+32i=2⎝ ⎛⎭⎪⎫-12+32i =-1+3i . (2)选D .因为a -i 与2+b i 互为共轭复数, 所以a =2,b =1,所以(a +b i )2=(2+i )2=3+4i . (3)设z =a +b i (a ,b ∈R ),则z -=a -b i ,由已知得,(1+2i )(a -b i )=(a +2b )+(2a -b )i =4+3i ,由复数相等的条件知,{a +2b =4,2a -b =3,解得a =2,b =1,所以z =2+i . 探究点2: 复数的除法运算例2:计算:(1)(1+2i )2+3(1-i )2+i ;(2)(1-4i )(1+i )+2+4i 3+4i .解:(1)(1+2i )2+3(1-i )2+i =-3+4i +3-3i2+i=i2+i=i (2-i )5=15+25i .(2)(1-4i )(1+i )+2+4i 3+4i =5-3i +2+4i 3+4i =7+i 3+4i=(7+i )(3-4i )(3+4i )(3-4i )=21-28i +3i +425=25-25i 25=1-i .探究点3: i 的运算性质 例3:(1)复数z =1-i1+i,则ω=z 2+z 4+z 6+z 8+z 10的值为( ) A .1 B .-1 C .iD .-i(2)⎝ ⎛⎭⎪⎫1+i 1-i 2 019等于________. 解析:(1)z 2=⎝⎛⎭⎪⎫1-i 1+i 2=-1,所以ω=-1+1-1+1-1=-1. (2)⎝ ⎛⎭⎪⎫1+i 1-i 2 019=⎣⎢⎡⎦⎥⎤(1+i )(1+i )(1-i )(1+i )2 019=⎝ ⎛⎭⎪⎫2i 22 019=i 2 019=(i 4)504·i 3=1504·(-i )=-i .答案:(1)B (2)-i 探究点4:在复数范围内解方程例4:在复数范围内解下列方程. (1)x 2+5=0;(2)x 2+4x +6=0.解:(1)因为x 2+5=0,所以x 2=-5, 又因为(5i )2=(-5i )2=-5, 所以x =±5i ,所以方程x 2+5=0的根为±5i . (2)法一:因为x 2+4x +6=0, 所以(x +2)2=-2,因为(2i )2=(-2i )2=-2, 所以x +2=2i 或x +2=-2i , 即x =-2+2i 或x =-2-2i ,所以方程x 2+4x +6=0的根为x =-2±2i . 法二:由x 2+4x +6=0知Δ=42-4×6=-8<0, 所以方程x 2+4x +6=0无实数根.在复数范围内,设方程x 2+4x +6=0的根为x =a +b i (a ,b ∈R 且b ≠0), 则(a +b i )2+4(a +b i )+6=0, 所以a 2+2ab i -b 2+4a +4b i +6=0,整理得(a 2-b 2+4a +6)+(2ab +4b )i =0,所以⎩⎨⎧a 2-b 2+4a +6=0,2ab +4b =0,又因为b ≠0,所以⎩⎨⎧a 2-b 2+4a +6=0,2a +4=0,解得a =-2,b =±2. 所以x =-2±2i ,即方程x 2+4x +6=0的根为x =-2±2i . 三、学习小结1.复数乘法的运算法则和运算律(1)复数乘法的运算法则设z1=a+b i,z2=c+d i(a,b,c,d∈R),则z1·z2=(a+b i)(c+d i)=(ac-bd)+(ad+bc)i.(2)复数乘法的运算律2.复数除法的运算法则设z1=a+b i,z2=c+d i(c+d i≠0)(a,b,c,d∈R),则z1z2=a+b ic+d i=ac+bdc2+d2+bc-adc2+d2i(c+d i≠0).四、精炼反馈1.若复数(1+b i)(2+i)是纯虚数(i是虚数单位,b是实数),则b=()A.-2B.-1 2C.12D.2解析:选D.因为(1+b i)(2+i)=2-b+(2b+1)i是纯虚数,所以b=2.2.已知i为虚数单位,则复数i2-i的模等于()A.5B.3C.33D.55解析:选D.因为i2-i=i(2+i)(2-i)(2+i)=i(2+i)5=-15+25i,所以|i2-i |=|-15+25i|=(-15)2+(25)2=55,故选D.3.计算:(1)2+2i(1-i)2+⎝⎛⎭⎪⎫21+i2 018;(2)(4-i5)(6+2i7)+(7+i11)(4-3i).解:(1)2+2i(1-i)2+⎝⎛⎭⎪⎫21+i2 018=2+2i-2i+⎝⎛⎭⎪⎫22i1 009=i(1+i)+⎝⎛⎭⎪⎫1i1 009=-1+i+(-i)1 009=-1+i-i=-1.(2)原式=(4-i)(6-2i)+(7-i)(4-3i)=22-14i+25-25i=47-39i.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

复数的四则运算 高一数学(北师大版2019必修第二册)

复数的四则运算 高一数学(北师大版2019必修第二册)
(a bi) (c di) a bi (a bi)(c di) c di (c di)(c di)
ac bd (bc ad )i ac bd bc ad
c2 d2
c2 d2 c2 d2 i
分母实数化
例 11.计算(1 2i) (3 4 i)
解: (1 2i) (3 4i)
复数加减法的运算法则:
(1)运算法则:设复数z1=a+bi,z2=c+di,
那么:z1+z2=(a+c)+(b+d)i;
(1)
z1-z2=(a-c)+(b-d)i.
即: 两个复数相加(减)就是实部与实部,
虚部与虚部分别相加(减).
例1.计算(5 6i) (2 i) (3 4i)
解:
例2.设Z=a+bi(a,bϵR),求 Z Z 与 Z - Z
a(b c) ab ac
那么复数应怎样进行加、减、乘运算呢?你认为应
怎样定义复数的加、减、乘运算呢?运算律仍成立吗?
注意到 i2 1,虚数单位 i 可以和实数进行运 算且运算律仍成立,所以复数的加、减、乘运算我 们已经是自然而然地在进行着,只要把这些零散的 操作整理成法则即可了!
知识新授:
证明:设z1=a1+b1i,z2=a2+b2i,a1,b1,a2,b2∈R, 则z1+z2=(a1+b1i)+(a2+b2i)
=(a1+a2)+(b1+b2)i, z2+z1=(a2+b2i)+(a1+b1i)
=(a2+a1)+(b2+b1)i, ∵a1+a2=a2+a1,b1+b2=b2+b1, ∴z1+z2=z2+z1.
例9:求一元二次方程ax2+bx+c=0(a,b,cϵR

PEP小学六年级英语下册复习语法知识及配套习题

PEP小学六年级英语下册复习语法知识及配套习题

小学英语语法及习题一、名词复数规则1.一般情况下,直接加-s,如:book-books,bag-bags,cat-cats,bed-beds2.以s.x.sh.ch结尾,加-es,如:3.以4.以5eI_________him_________this___________her______ watch_______child_______photo________diary______ day________foot________book_______dress________ tooth_______sheep______box_______strawberry_____ thief_______yo-yo______peach______sandwich______man______woman_______paper_______??????juice___________ water________milk________rice__________tea__________ 二、一般现在时一般现在时基本用法介绍【No.1】一般现在时的功能或"-es"一般现在时的变化1.be动词的变化。

否定句:主语+be+not+其它。

如:Heisnotaworker.他不是工人。

一般疑问句:Be+主语+其它。

如:-Areyouastudent?-Yes.Iam./No,I'mnot.特殊疑问句:疑问词+一般疑问句。

如:Whereismybike?2.行为动词的变化。

否定句:主语+don't(doesn't)+动词原形(+其它)。

如:动词12.以s.x.sh.ch.o结尾,加-es,如:guess-guesses,wash-washes,watch-watches,go-goes3.以“辅音字母+y”结尾,变y为i,再加-es,如:study-studies 一般现在时用法专练:一、写出下列动词的第三人称单数drink________go_______stay________make________look_________have_______pass_______????carry____ come________?????watch______plant_______fly________ study_______brush________do_________????teach_______ 二、用括号内动词的适当形式填空。

第7讲 复数的概念-高一数学新教材专题讲义同步辅导+课堂检测(人教A版2019必修第二册)

第7讲 复数的概念-高一数学新教材专题讲义同步辅导+课堂检测(人教A版2019必修第二册)

第7讲 复数的概念一、考点梳理考点1 复数的概念1. 虚数单位i(1) 它的平方等于1-,即 2i 1=-;(2) 实数可以与它进行四则运算,进行四则运算时,原有的加、乘法运算仍然成立,即满足交换律与结合律.(3) i 的乘方: 4414243*i 1,i i,i 1,i i,N n n n n n +++===-=-∈,它们不超出i b 的形式.2. 复数的定义形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示 复数通常用字母z 表示,即(,)z a bi a b R =+∈ 3. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R)是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;当a ≠0且b ≠0时,z =bi 叫做非纯虚数的纯虚数;当且仅当a =b =0时,z 就是实数0.4. 复数集与其它数集之间的关系:N Z Q R C.5. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等如果a ,b ,c ,d ∈R ,那么a +bi =c +di ⇔a =c ,b =d一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 当两个复数不全是实数时不能比较大小例1.(1)已知复数z=6﹣4i,则它的实部是6,虚部是﹣4.【分析】利用复数实部和虚部的定义求解.【解答】解:∵复数z=6﹣4i,∴它的实部是6,虚部是﹣4,故答案为:6,﹣4.(2)若复数z=(m+1)+(2﹣m)i(m∈R)是纯虚数,则m=﹣1.【分析】直接利用复数的定义的应用求出结果.【解答】解:复数z=(m+1)+(2﹣m)i(m∈R)是纯虚数,则m+1=0,解得m=﹣1.故答案为:﹣1.(3)i2020=()A.1B.﹣1C.i D.﹣i 【分析】直接利用虚数单位i的运算性质求解.【解答】解:i2020=i4×505=(i4)505=1.故选:A.【变式训练1】.设复数z=3﹣2i,则z的虚部是()A.i B.3C.2D.﹣2【分析】直接由复数的基本概念得答案.【解答】解:复数z=3﹣2i,则z的虚部是:﹣2.故选:D.【变式训练2】.若复数m(m﹣2)+(m2﹣3m+2)i是纯虚数,则实数m的值为0.【分析】由实部为0且虚部不为0列式求解.【解答】解:∵m(m﹣2)+(m2﹣3m+2)i是纯虚数,∴,即m=0.故答案为:0.【变式训练3】.i为虚数单位,i2019=()A.i B.﹣i C.1D.﹣1【分析】直接利用虚数单位i的运算性质求解.【解答】解:∵i4=1,∴i2019=i4×504+3=i3=﹣i.故选:B.考点2 复数的几何意义1. 复平面、实轴、虚轴:点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R)可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面, x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数 (1)实轴上的点都表示实数 (2)虚轴上的点都表示纯虚数(3)原点对应的有序实数对为(0,0) 2. 复数的两种几何意义:3. 复数的模:复数bi a Z +=的模22b a Z +=4. 共轭复数 i z a b =+时,i z a b =-.(1)实数的共轭复数仍然是它本身 (2)22Z Z ZZ ==⋅ (3)两个共轭复数对应的点关于实轴对称例2.(1)已知复数z 满足iz =1﹣i (i 为虚数单位),则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】利用复数的运算法则、几何意义即可得出.【解答】解:iz =1﹣i ⇒z =﹣1﹣i ,故z 在复平面内对应的点为(﹣1,﹣1),在第三象限,故选:C .点向量一一对应 一一对应 一一对应 复数(2)在平行四边形ABCD中,对角线AC与BD相交于点O,若向量,对应的复数分别是3+i,﹣1+3i,则对应的复数是()A.2+4i B.﹣2+4i C.﹣4+2i D.4﹣2i【分析】由==,代入向量,对应的复数计算即可.【解答】解:因为向量,对应的复数分别是3+i,﹣1+3i,所以===3+i﹣(﹣1+3i)=4﹣2i,故选:D.(3)若z=1﹣2i+i2021,则|z|=()A.0B.1C.D.2【分析】化简复数z,再求它的模长|z|.【解答】解:因为z=1﹣2i+i2021=1﹣2i+i=1﹣i,所以|z|==.故选:C.(4)已知复数z=2i,则z的共轭复数等于()A.0B.2i C.﹣2i D.﹣4【分析】直接根据共轭复数的定义求解即可.【解答】解:因为复数z=2i,则z的共轭复数=﹣2i;故选:C.(5)(多选)对于复数z=a+bi(a,b∈R),下列结论错误的是()A.若a=0,则a+bi为纯虚数B.若a﹣bi=3+2i,则a=3,b=2C.若b=0,则a+bi为实数D.纯虚数z的共轭复数是﹣z【分析】复数z=a+bi(a,b∈R),(1)若a=0,且b≠0时,a+bi为纯虚数;(2)若b=0,则为实数;(3)其共轭复数为a﹣bi;(4)两个复数相等,则实部和虚部分别相等.【解答】解:对于A:复数z=a+bi(a,b∈R),若a=0,且b≠0时,a+bi为纯虚数.故A错误.对于B:两个复数相等,则实部和虚部分别相等,所以a=3,b=﹣2,故B错误.由复数定义及运算知,C、D正确.故选:AB.【变式训练1】.在复平面内,复数z=﹣1﹣i的对应点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】求出z在复平面内对应的点的坐标得答案.【解答】解:z=﹣1﹣i在复平面内对应的点的坐标为:(﹣1,﹣1),位于第三象限.故选:C.【变式训练2】.在复平面内点P对应的复数z1=2+i,将点P绕坐标原点O逆时针旋转到点Q,则点Q对应的复数z2的虚部为()A.B.C.D.【分析】由题意求得点Q对应的复数z2,则其虚部可求.【解答】解:设P点对应的向量为,向量绕坐标原点O逆时针旋转得到对应的复数为(2+i)(cos i sin)=(2+i)()=()+()i,∴点Q对应的复数z2的虚部为.故选:B.【变式训练3】.已知a∈R,若有(i为虚数单位),则a=()A.1B.﹣2C.±2D.±1【分析】根据复数模的定义得到关于a的方程,再解出a即可.【解答】解:∵,∴1+a2=5,解得a=±2,故选:C.【变式训练4】.若复数z=(m﹣1)﹣(m+2)i(m∈R)为纯虚数,则复数z的共轭复数为()A.﹣3i B.3i C.4i D.﹣4i【分析】先利用纯虚数的定义可得:m﹣1=0且m+2≠0,求出m的值,求出复数z,再利用共轭复数概念即可求解.【解答】解:∵复数z=(m﹣1)﹣(m+2)i(m∈R)为纯虚数,∴m﹣1=0且m+2≠0,∴m=1,∴z=﹣3i,∴复数z的共轭复数为3i,故选:B.【变式训练5】.(多选)下列关于复数的说法,其中正确的是()A.复数z=a+bi(a,b∈R)是实数的充要条件是b=0B.复数z=a+bi(a,b∈R)是纯虚数的充要条件是b≠0C.若z1,z2互为共轭复数,则z1z2是实数D.若z1,z2互为共轭复数,则在复平面内它们所对应的点关于y轴对称【分析】利用实数和纯虚数的概念即可判定选项A正确,选项B错误,再利用共轭复数的定义即可判定选项C 正确,选项D错误.【解答】解:对于选项A:复数z=a+bi(a,b∈R)是实数的充要条件是b=0,所以选项A正确;对于选项B:复数z=a+bi(a,b∈R)是纯虚数的充要条件是a=0且b≠0,所以选项B错误;对于选项C:若z1,z2互为共轭复数,不妨设z1=a+bi(a∈R,b∈R),则z2=a﹣bi,所以,所以选项C正确;对于选项D:若z1,z2互为共轭复数,不妨设z1=a+bi(a∈R,b∈R),则z2=a﹣bi,则它们在复平面内所对应的点分别为(a,b)和(a,﹣b),关于x轴对称,所以选项D错误,故选:AC.二、课堂检测1.已知a是实数,则复数(a2﹣2a)+(a2+a﹣6)i为纯虚数的充要条件是()A.a=0或a=2B.a=0C.a∈R,且a≠2且a≠﹣3D.a∈R,且a≠2【分析】由实部为0且虚部不为0列式求得a值,则答案可求.【解答】解:∵a是实数,则复数(a2﹣2a)+(a2+a﹣6)i为纯虚数需满足:,解得:a=0,故选:B.2.若集合A={i,i2,i3,i4}(i是虚数单位),B={1,﹣1},则A∩B等于()A.{﹣1}B.{1}C.{1,﹣1}D.∅【分析】利用虚数单位i的运算性质化简A,然后利用交集运算得答案.【解答】解:∵A={i,i2,i3,i4}={i,﹣1,﹣i,1},B={1,﹣1},∴A∩B={i,﹣1,﹣i,1}∩{1,﹣1}={1,﹣1}.故选:C.3.实部为﹣2,虚部为1的复数所对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数的几何意义,即可得到结论.【解答】解:实部为﹣2,虚部为1的复数所对应的点的坐标为(﹣2,1),位于第二象限,故选:B.4.已知复数z,“z+=0”是“z为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也不必要条件【分析】由充分必要条件的判断方法,结合两复数和为纯虚数的条件判断.【解答】解:对于复数z,若z+=0,z不一定为纯虚数,可以为0,反之,若z为纯虚数,则z+=0.∴“z+=0”是“z为纯虚数”的必要非充分条件.故选:B.5.已知i为虚数单位,则z=i+i2+i3+…+i2017=()A.0B.1C.﹣i D.i【分析】利用等比数列的求和公式、复数的周期性即可得出.【解答】解:z====i,故选:D.6.(多选)已知复数z=1+i,则下列命题中正确的为()A.B.=1﹣iC.z的虚部为i D.z在复平面上对应点在第一象限【分析】利用复数的模、共轭复数、虚部及复数与平面内点的对应关系即可判断出正误.【解答】解:复数z=1+i,则.故A正确;,故B正确;z的虚部为1,故C错误;z在复平面上对应点的坐标为(1,1),在第一象限,故D正确.∴命题中正确的个数为3.故选:ABD.7.(多选)已知复数z在复平面上对应的向量,则()A.z=﹣1+2i B.|z|=5C.=1+2i D.z•=5【分析】由题意可得z=﹣1+2i,再由复数的模的公式和共轭复数的定义、复数的乘法运算,可判断正确结论.【解答】解:由题意可得z=﹣1+2i,|z|==,=﹣1﹣2i,z•=(﹣1+2i)(﹣1﹣2i)=1+4=5,则A、D正确,B、C错误.故选:AD.8.若复数z=1+ai(i是虚数单位)的模不大于2,则实数a的取值范围是[].【分析】由于复数的模不大于2,可得不等式,然后求解即可.【解答】解:复数z=1+ai(i是虚数单位)的模不大于2,即:1+a2≤4即a2≤3可得a∈故答案为:9.复数3+4i(i为虚数单位)的实部是3.【分析】根据复数的定义判断即可.【解答】解:复数3+4i(i为虚数单位)的实部是3,故答案为:3.10.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是(1,).【分析】由复数z的实部为a,虚部为1,知|z|=,再由0<a<2,能求出|z|的取值范围.【解答】解:∵复数z的实部为a,虚部为1,∴|z|=,∵0<a<2,∴1<|z|=<.故答案为:(1,).11.在复平面内,复数z=1﹣2i对应的点到原点的距离是.【分析】利用复数的几何意义、两点之间的距离公式即可得出.【解答】解:复数z=1﹣2i对应的点(1,﹣2)到原点的距离d==.故答案:.12.在复平面内,O是原点,向量对应的复数是2+i,若点A关于实轴的对称点为B,则向量对应的复数是2﹣i.【分析】由已知求得A的坐标,再由对称性求得B点坐标,则向量对应的复数可求.【解答】解:由题意,A(2,1),则B(2,﹣1),∴向量对应的复数是2﹣i.故答案为:2﹣i.13.若复数z=(m2+m﹣6)+(m2﹣m﹣2)i,当实数m为何值时(1)z是实数;(2)z是纯虚数;(3)z对应的点在第二象限.【分析】(1)令复数z的虚部为0,即可求解;(2)令复数z的实部为0且虚部不为0,即可求解;(3)根据第二象限点的符号特征,列出不等式,即可求出m的范围.【解答】解:(1)由题意可得:m2﹣m﹣2=0,解得:m=﹣1或2;(2)由题意可得:m2+m﹣6=0,且m2﹣m﹣2≠0,∴m=2或﹣3,且m≠﹣1且m≠2,∴m=﹣3;(3)由题意可得:,解得:﹣3<m<﹣1.。

新教材 人教A版高中数学必修第二册 第七章复数 课后练习题及章末测验 精选配套习题 含解析

新教材 人教A版高中数学必修第二册 第七章复数 课后练习题及章末测验 精选配套习题 含解析

第七章 复数1、数系的扩充和复数的概念 ........................................................................................ - 1 -2、复数的几何意义 ........................................................................................................ - 5 -3、复数的加、减运算及其几何意义 ............................................................................ - 9 -4、复数的乘、除运算 .................................................................................................. - 14 -5、复数的三角表示 ...................................................................................................... - 19 - 章末综合测验................................................................................................................ - 23 -1、数系的扩充和复数的概念一、选择题 1.下列命题:(1)若a +b i =0,则a =b =0; (2)x +y i =2+2i ⇔x =y =2;(3)若y ∈R ,且(y 2-1)-(y -1)i =0,则y =1. 其中正确命题的个数为( ) A .0 B .1 C .2D .3B [(1),(2)所犯的错误是一样的,即a ,x 不一定是复数的实部,b ,y 不一定是复数的虚部;(3)正确,因为y ∈R ,所以y 2-1,-(y -1)是实数,所以由复数相等的条件得⎩⎨⎧y 2-1=0,-(y -1)=0,解得y =1.]2.若复数z =(m +2)+(m 2-9)i(m ∈R )是正实数,则实数m 的值为 ( ) A .-2 B .3 C .-3D .±3B [由题知⎩⎨⎧m 2-9=0,m +2>0,解得m =3,故选B .]3.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( ) A .3-3i B .3+i C .-2+2iD .2+2iA [3i -2的虚部为3,3i 2+2i =-3+2i 的实部为-3,故选A .]4.4-3a -a 2i =a 2+4a i ,则实数a 的值为( ) A .1 B .1或-4 C .-4D .0或-4C [由题意知⎩⎨⎧4-3a =a 2,-a 2=4a ,解得a =-4.]5.设a ,b ∈R ,“a =0”是“复数a +b i 是纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件B [因为a ,b ∈R ,“a =0”时“复数a +b i 不一定是纯虚数”.“复数a +b i 是纯虚数”,则“a =0”一定成立.所以a ,b ∈R ,“a =0”是“复数a +b i 是纯虚数”的必要不充分条件.]二、填空题6.设m ∈R ,m 2+m -2+(m 2-1)i 是纯虚数,其中i 是虚数单位,则m =________.-2 [⎩⎨⎧m 2+m -2=0,m 2-1≠0,∴m =-2.]7.(一题两空)已知z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i ,且z 1=z 2,则实数m =________,n =________.2 ±2 [由复数相等的充要条件有 ⎩⎨⎧ n 2-3m -1=-3,n 2-m -6=-4⇒⎩⎨⎧m =2,n =±2.]8.下列命题:①若a ∈R ,则(a +1)i 是纯虚数;②若(x 2-1)+(x 2+3x +2)i(x ∈R )是纯虚数,则x =±1; ③两个虚数不能比较大小. 其中正确命题的序号是________.③ [当a =-1时,(a +1)i =0,故①错误;两个虚数不能比较大小,故③对;若(x 2-1)+(x 2+3x +2)i 是纯虚数,则⎩⎨⎧x 2-1=0,x 2+3x +2≠0,即x =1,故②错.]三、解答题9.若x ,y ∈R ,且(x -1)+y i >2x ,求x ,y 的取值范围. [解] ∵(x -1)+y i >2x ,∴y =0且x -1>2x , ∴x <-1,∴x ,y 的取值范围分别为x <-1,y =0.10.实数m 为何值时,复数z =m (m +2)m -1+(m 2+2m -3)i 是(1)实数;(2)虚数;(3)纯虚数.[解] (1)要使z 是实数,m 需满足m 2+2m -3=0,且m (m +2)m -1有意义,即m -1≠0,解得m =-3.(2)要使z 是虚数,m 需满足m 2+2m -3≠0,且m (m +2)m -1有意义,即m -1≠0,解得m ≠1且m ≠-3.(3)要使z 是纯虚数,m 需满足m m +2m -1=0,m -1≠0,且m 2+2m -3≠0,解得m =0或m =-2.11.(多选题)下列命题正确的是( ) A .1+i 2=0B .若a ,b ∈R ,且a >b ,则a +i>b +iC .若x 2+y 2=0,则x =y =0D .两个虚数不能比较大小AD [对于A ,因为i 2=-1,所以1+i 2=0,故A 正确.对于B ,两个虚数不能比较大小,故B 错.对于C ,当x =1,y =i 时,x 2+y 2=0成立,故C 错.D 正确.]12.已知关于x 的方程x 2+(m +2i)x +2+2i =0(m ∈R )有实根n ,且z =m +n i ,则复数z =( )A .3+iB .3-iC .-3-iD .-3+iB [由题意,知n 2+(m +2i)n +2+2i =0,即n 2+mn +2+(2n +2)i =0. 所以⎩⎨⎧n 2+mn +2=0,2n +2=0,解得⎩⎨⎧m =3,n =-1.所以z =3-i.]13.(一题两空)定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,如果(x +y )+(x +3)i =⎪⎪⎪⎪⎪⎪3x +2y i -y 1,则实数x =________,y =________.-1 2 [由定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc 得⎪⎪⎪⎪⎪⎪3x +2y i -y 1=3x +2y +y i , 故有(x +y )+(x +3)i =3x +2y +y i.因为x ,y 为实数,所以有⎩⎨⎧x +y =3x +2y ,x +3=y ,解得x =-1,y =2.]14.已知复数z 1=4-m 2+(m -2)i ,z 2=λ+2sin θ+(cos θ-2)i(其中i 是虚数单位,m ,λ,θ∈R ).(1)若z 1为纯虚数,求实数m 的值; (2)若z 1=z 2,求实数λ的取值范围. [解] (1)∵z 1为纯虚数, ∴⎩⎨⎧4-m 2=0,m -2≠0,解得m =-2. (2)由z 1=z 2,得⎩⎨⎧4-m 2=λ+2sin θ,m -2=cos θ-2,∴λ=4-cos 2θ-2sin θ =sin 2θ-2sin θ+3 =(sin θ-1)2+2.∵-1≤sin θ≤1,∴当sin θ=1时,λmin =2, 当sin θ=-1时,λmax =6, ∴实数λ的取值范围是[2,6].2、复数的几何意义一、选择题1.复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限C [z =-1-2i 对应点Z (-1,-2),位于第三象限. ] 2.已知z 1=5+3i ,z 2=5+4i ,则下列各式正确的是( ) A .z 1>z 2 B .z 1<z 2 C .|z 1|>|z 2|D .|z 1|<|z 2|D [z 1,z 2不能比较大小,排除选项A ,B ,又|z 1|=52+32,|z 2|=52+42,故|z 1|<|z 2|.]3.已知平行四边形OABC ,O ,A ,C 三点对应的复数分别为0,1+2i,3-2i ,则AB →的模|AB →|等于( )A . 5B .2 5C .4D .13D [由于OABC 是平行四边形,故AB →=OC →,因此|AB →|=|OC →|=|3-2i|=13.] 4.当23<m <1时,复数z =(3m -2)+(m -1)i 在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限D [∵23<m <1,∴3m -2>0,m -1<0,∴点(3m -2,m -1)在第四象限.] 5.如果复数z 满足条件z +|z |=2+i ,那么z =( ) A .-34+i B .34-i C .-34-iD .34+iD [设z =a +b i(a ,b ∈R ),由复数相等的充要条件,得⎩⎨⎧a +a 2+b 2=2,b =1,解得⎩⎪⎨⎪⎧a =34,b =1,即z =34+i.] 二、填空题6.若复数z =(m 2-9)+(m 2+2m -3)i 是纯虚数,其中m ∈R ,则|z |=________. 12 [由条件,知⎩⎨⎧m 2+2m -3≠0,m 2-9=0,所以m =3,因此z =12i ,故|z |=12.]7.复数z =x -2+(3-x )i 在复平面内的对应点在第四象限,则实数x 的取值范围是________.(3,+∞) [∵复数z 在复平面内对应的点位于第四象限, ∴⎩⎨⎧x -2>0,3-x <0.解得x >3.] 8.设z 为纯虚数,且|z -1|=|-1+i|,则复数z =________. ±i [因为z 为纯虚数, 所以设z =a i(a ∈R ,且a ≠0), 则|z -1|=|a i -1|=a 2+1. 又因为|-1+i|=2, 所以a 2+1=2,即a 2=1, 所以a =±1,即z =±i.] 三、解答题9.已知复数z =a +3i(a ∈R )在复平面内对应的点位于第二象限,且|z |=2,求复数z .[解] 因为z 在复平面内对应的点位于第二象限, 所以a <0,由|z |=2知,a 2+(3)2=2,解得a =±1, 故a =-1, 所以z =-1+3i.10.在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i 对应的点. (1)在虚轴上;(2)在第二象限;(3)在直线y =x 上. 分别求实数m 的取值范围.[解] 复数z =(m 2-m -2)+(m 2-3m +2)i 的实部为m 2-m -2,虚部为m 2-3m +2.(1)由题意得m 2-m -2=0. 解得m =2或m =-1. (2)由题意得⎩⎨⎧m 2-m -2<0,m 2-3m +2>0,∴⎩⎨⎧-1<m <2,m >2或m <1, ∴-1<m <1.(3)由已知得m 2-m -2=m 2-3m +2,∴m =2.11.(多选题)设复数z 满足z =-1-2i ,i 为虚数单位,则下列命题正确的是( )A .|z |= 5B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为-1+2iD .复数z 在复平面内对应的点在直线y =-2x 上AC [|z |=(-1)2+(-2)2=5,A 正确;复数z 在复平面内对应的点的坐标为(-1,-2),在第三象限,B 不正确;z 的共轭复数为-1+2i ,C 正确;复数z 在复平面内对应的点(-1,-2)不在直线y =-2x 上,D 不正确.故选AC .]12.已知复数z 的模为2,则|z -i|的最大值为( ) A .1 B .2 C .5D .3D [∵|z |=2,∴复数z 对应的轨迹是以原点为圆心,2为半径的圆,而|z -i|表示圆上一点到点(0,1)的距离,∴|z -i|的最大值为圆上点(0,-2)到点(0,1)的距离,易知此距离为3,故选D .] 13.(一题两空)已知复数z =lg(m 2+2m -14)+(m 2-m -6)i(i 为虚数单位),若复数z 是实数,则实数m =______;若复数z 对应的点位于复平面的第二象限,则实数m 的取值范围为________.3 (-5,-1-15) [若复数z 是实数, 则⎩⎨⎧m 2-m -6=0,m 2+2m -14>0,解得m =3. 若复数z 对应的点位于复平面的第二象限, 则⎩⎨⎧lg (m 2+2m -14)<0,m 2-m -6>0,即⎩⎨⎧0<m 2+2m -14<1,m 2-m -6>0,即⎩⎨⎧m 2+2m -14>0,m 2+2m -15<0,m 2-m -6>0,解得-5<m <-1-15.]14.已知复数(x -2)+y i(x ,y ∈R )的模为3,求yx 的最大值. [解] ∵|x -2+y i|=3,∴(x -2)2+y 2=3,故(x ,y )在以C (2,0)为圆心,3为半径的圆上,yx 表示圆上的点(x ,y )与原点连线的斜率.如图,由平面几何知识,易知yx 的最大值为 3. 15.已知复数z 1=3+i ,z 2=-12+32i. (1)求|z 1|及|z 2|并比较大小;(2)设z ∈C ,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形? [解] (1)|z 1|=(3)2+12=2, |z 2|=⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫322=1,∴|z 1|>|z 2|. (2)由|z 2|≤|z |≤|z 1|及(1)知1≤|z |≤2.因为|z |的几何意义就是复数z 对应的点到原点的距离,所以|z |≥1表示|z |=1所表示的圆外部所有点组成的集合,|z |≤2表示|z |=2所表示的圆内部所有点组成的集合,故符合题设条件点的集合是以O 为圆心,以1和2为半径的两圆之间的圆环(包含圆周),如图所示.3、复数的加、减运算及其几何意义一、选择题1.若(-3a +b i)-(2b +a i)=3-5i ,a ,b ∈R ,则a +b =( ) A .75B .-115 C .-185D .5B [(-3a +b i)-(2b +a i)=(-3a -2b )+(b -a )i =3-5i ,所以⎩⎨⎧-3a -2b =3,b -a =-5,解得a =75,b =-185,故有a +b =-115.] 2.若复数z 满足z +(3-4i)=1,则z 的虚部是( ) A .-2 B .4 C .3D .-4B [z =1-(3-4i)=-2+4i ,故选B .]3.若z 1=2+i ,z 2=3+a i(a ∈R ),且z 1+z 2所对应的点在实轴上,则a 的值为( )A .3B .2C .1D .-1D [z 1+z 2=2+i +3+a i =(2+3)+(1+a )i =5+(1+a )i.∵z 1+z 2所对应的点在实轴上,∴1+a =0,∴a =-1.]4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,若向量OA →,OB →对应的复数分别是3+i ,-1+3i ,则CD →对应的复数是( )A .2+4iB .-2+4iC .-4+2iD .4-2iD [依题意有CD →=BA →=OA →-OB →,而(3+i)-(-1+3i)=4-2i ,即CD →对应的复数为4-2i.故选D .]5.若z ∈C ,且|z +2-2i|=1,则|z -2-2i|的最小值是( ) A .2 B .3 C .4D .5B [设z =x +y i ,则由|z +2-2i|=1得(x +2)2+(y -2)2=1,表示以(-2,2)为圆心,以1为半径的圆,如图所示,则|z -2-2i|=(x -2)2+(y -2)2表示圆上的点与定点(2,2)的距离,数形结合得|z -2-2i|的最小值为3.]二、填空题6.已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a =________.3 [由条件知z 1+z 2=a 2-2a -3+(a 2-1)i ,又z 1+z 2是纯虚数,所以⎩⎨⎧a 2-2a -3=0,a 2-1≠0,解得a =3.]7.在复平面内,O 是原点,OA →,OC →,AB →对应的复数分别为-2+i,3+2i,1+5i ,则BC →对应的复数为________.4-4i [BC →=OC →-OB →=OC →-(OA →+AB →),对应的复数为3+2i -(-2+i +1+5i)=(3+2-1)+(2-1-5)i =4-4i.]8.设z 1=x +2i ,z 2=3-y i(x ,y ∈R ),且z 1+z 2=5-6i ,则z 1-z 2=________. -1+10i [∵z 1+z 2=5-6i ,∴(x +2i)+(3-y i)=5-6i , ∴⎩⎨⎧ x +3=5,2-y =-6,即⎩⎨⎧x =2,y =8,∴z 1=2+2i ,z 2=3-8i ,∴z 1-z 2=(2+2i)-(3-8i)=-1+10i.] 三、解答题 9.计算:(1)(2-i)+(-3+5i)+(4+3i); (2)4-(5+12i)-i ;(3)若z -(-3+5i)=-2+6i ,求复数z .[解] (1)(2-i)+(-3+5i)+(4+3i)=(2-3+4)+(-1+5+3)i =3+7i. (2)4-(5+12i)-i =(4-5)+(-12-1)i =-1-13i.(3)法一:设z =x +y i(x ,y ∈R ),因为z -(-3+5i)=-2+6i ,所以(x +y i)-(-3+5i)=-2+6i ,即(x +3)+(y -5)i =-2+6i ,因此⎩⎨⎧x +3=-2,y -5=6,解得⎩⎨⎧x =-5,y =11,于是z =-5+11i.法二:由z -(-3+5i)=-2+6i 可得z =-2+6i +(-3+5i), 所以z =(-2-3)+(6+5)i =-5+11i.10.在复平面内,A ,B ,C 分别对应复数z 1=1+i ,z 2=5+i ,z 3=3+3i ,以AB ,AC 为邻边作一个平行四边形ABDC ,求D 点对应的复数z 4及AD 的长.[解] 如图所示. AC →对应复数z 3-z 1, AB →对应复数z 2-z 1, AD →对应复数z 4-z 1.由复数加减运算的几何意义,得AD →=AB →+AC →, ∴z 4-z 1=(z 2-z 1)+(z 3-z 1),∴z 4=z 2+z 3-z 1=(5+i)+(3+3i)-(1+i)=7+3i.∴AD 的长为|AD →|=|z 4-z 1|=|(7+3i)-(1+i)|=|6+2i|=210. 11.(多选题)已知i 为虚数单位,下列说法中正确的是( )A .若复数z 满足|z -i|=5,则复数z 对应的点在以(1,0)为圆心,5为半径的圆上B .若复数z 满足z +|z |=2+8i ,则复数z =15+8iC .复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模D .复数z 1对应的向量为OZ 1→,复数z 2对应的向量为OZ 2→,若|z 1+z 2|=|z 1-z 2|,则OZ 1→⊥OZ 2→CD [满足|z -i|=5的复数z 对应的点在以(0,1)为圆心,5为半径的圆上,A 错误;在B 中,设z =a +b i(a ,b ∈R ),则|z |=a 2+b 2.由z +|z |=2+8i ,得a +b i +a 2+b 2=2+8i ,∴⎩⎨⎧a +a 2+b 2=2,b =8.解得⎩⎨⎧a =-15,b =8.∴z =-15+8i ,B 错误;由复数的模的定义知C 正确;由|z 1+z 2|=|z 1-z 2|的几何意义知,以OZ 1→,OZ 2→为邻边的平行四边形为矩形,从而两邻边垂直,D 正确.故选CD .]12.设z ∈C ,且|z +1|-|z -i|=0,则|z +i|的最小值为( ) A .0 B .1 C .22D .12C [由|z +1|=|z -i|知,在复平面内,复数z 对应的点的轨迹是以(-1,0)和(0,1)为端点的线段的垂直平分线,即直线y =-x ,而|z +i|表示直线y =-x 上的点到点(0,-1)的距离,其最小值等于点(0,-1)到直线y =-x 的距离,即为22.]13.若复数z 满足z =|z |-3-4i ,则z =________. 76-4i [设复数z =a +b i(a ,b ∈R ),则⎩⎨⎧a =a 2+b 2-3,b =-4,所以⎩⎪⎨⎪⎧a =76,b =-4,所以z =76-4i.]14.在复平面内,A ,B ,C 三点所对应的复数分别为1,2+i ,-1+2i ,其中i 为虚数单位.(1)求AB →,BC →,AC →对应的复数; (2)判断△ABC 的形状; (3)求△ABC 的面积.[解] (1)AB →对应的复数为2+i -1=1+i , BC →对应的复数为-1+2i -(2+i)=-3+i , AC →对应的复数为-1+2i -1=-2+2i. (2)∵|AB →|=2,|BC →|=10,|AC →|=8=22, ∴|AB →|2+|AC →|2=|BC →|2,∴△ABC 为直角三角形. (3)S △ABC =12×2×22=2.15.设z 为复数,且|z |=|z +1|=1,求|z -1|的值. [解] 设z =a +b i(a ,b ∈R ),则z +1=(a +1)+b i , 又|z |=|z +1|=1,所以⎩⎪⎨⎪⎧a 2+b 2=1,(a +1)2+b 2=1,即⎩⎨⎧a 2+b 2=1,a 2+b 2+2a =0,解得⎩⎪⎨⎪⎧a =-12,b 2=34,故|z -1|=|(a +b i)-1|=|(a -1)+b i|=(a -1)2+b 2=⎝ ⎛⎭⎪⎫-12-12+34= 3.4、复数的乘、除运算一、选择题 1.(1+i )3(1-i )2=( ) A .1+i B .1-i C .-1+iD .-1-iD [(1+i )3(1-i )2=2i (1+i )-2i =-1-i ,选D .]2.已知复数z 满足(z -1)i =1+i ,则z =( ) A .-2-i B .-2+i C .2-iD .2+iC [z -1=1+ii =1-i ,所以z =2-i ,故选C .] 3.在复平面内,复数i1+i+(1+3i)2对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限B [i 1+i+(1+3i)2=12+12i +(-2+23i)=-32+⎝ ⎛⎭⎪⎫23+12i ,对应点⎝ ⎛⎭⎪⎫-32,23+12在第二象限.] 4.若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ) A .-4 B .-45 C .4D .45D [∵(3-4i)z =|4+3i|, ∴z =53-4i =5(3+4i )(3-4i )(3+4i )=35+45i. 故z 的虚部为45,选D .]5.设复数z 的共轭复数是 z ,若复数z 1=3+4i ,z 2=t +i ,且z 1·z -2是实数,则实数t 等于( )A .34B .43C .-43D .-34A [∵z 2=t +i ,∴z -2=t -i.z 1·z -2=(3+4i)(t -i)=3t +4+(4t -3)i , 又∵z 1·z -2∈R ,∴4t -3=0,∴t =34.]二、填空题6.i 为虚数单位,若复数z =1+2i2-i ,z 的共轭复数为z ,则z ·z =________.1 [∵z =1+2i 2-i =(1+2i )(2+i )(2-i )(2+i )=5i5=i ,∴z =-i ,∴z ·z =1.]7.已知a +2ii =b +i(a ,b ∈R ),其中i 为虚数单位,则a +b =________. 1 [∵a +2ii =b +i ,∴a +2i =(b +i)i =-1+b i , ∴a =-1,b =2,∴a +b =1.]8.设复数z 1,z 2在复平面内的对应点分别为A ,B ,点A 与B 关于x 轴对称,若z 1(1-i)=3-i ,则|z 2|=________.5 [∵z 1(1-i)=3-i , ∴z 1=3-i 1-i =(3-i )(1+i )(1-i )(1+i )=2+i ,∵A 与B 关于x 轴对称,∴z 1与z 2互为共轭复数, ∴z 2=z 1=2-i ,∴|z 2|= 5.] 三、解答题 9.已知复数z =52-i. (1)求z 的实部与虚部;(2)若z 2+m z +n =1-i(m ,n ∈R ,z 是z 的共轭复数),求m 和n 的值.[解] (1)z =5(2+i )(2-i )(2+i )=5(2+i )5=2+i ,所以z 的实部为2,虚部为1.(2)把z =2+i 代入z 2+m z +n =1-i , 得(2+i)2+m (2-i)+n =1-i , 即2m +n +3+(4-m )i =1-i , 所以⎩⎨⎧2m +n +3=1,4-m =-1.解得m =5,n =-12.10.把复数z 的共轭复数记作z ,已知(1+2i)z =4+3i ,求z 及z z .[解] 设z =a +b i(a ,b ∈R ),则z =a -b i ,由已知得:(1+2i)(a -b i)=(a +2b )+(2a -b )i =4+3i ,由复数相等的定义知,⎩⎨⎧a +2b =4,2a -b =3.得a =2,b =1,∴z =2+i. ∴zz =2+i2-i =2+i 22-i 2+i=3+4i 5=35+45i.11.(多选题)下面是关于复数z =2-1+i(i 为虚数单位)的命题,其中真命题为( )A .|z |=2B .z 2=2iC .z 的共轭复数为1+iD .z 的虚部为-1BD [∵z =2-1+i =2(-1-i )(-1+i )(-1-i )=-1-i ,∴|z |=2,A 错误;z 2=2i ,B 正确; z 的共轭复数为-1+i ,C 错误; z 的虚部为-1,D 正确.故选BD .]12.(多选题)设z 1,z 2是复数,则下列命题中的真命题是( ) A .若|z 1-z 2|=0,则z 1=z 2B .若z 1=z 2,则z 1=z 2C .若|z 1|=|z 2|,则z 1·z 1=z 2·z 2D .若|z 1|=|z 2|,则z 21=z 22ABC [A ,|z 1-z 2|=0⇒z 1-z 2=0⇒z 1=z 2⇒z 1=z 2,真命题;B ,z 1=z 2⇒z 1=z 2=z 2,真命题;C ,|z 1|=|z 2|⇒|z 1|2=|z 2|2⇒z 1·z 1=z 2·z 2,真命题;D ,当|z 1|=|z 2|时,可取z 1=1,z 2=i ,显然z 21=1,z 22=-1,即z 21≠z 22,假命题.]13.(一题两空)若z 1=a +2i ,z 2=3-4i ,且z 1z 2为纯虚数,则实数a 的值为________,z 1z 2=________.83 16-143i [z 1z 2=a +2i 3-4i =(a +2i )(3+4i )9+16=3a +4a i +6i -825=(3a -8)+(4a +6)i25,∵z 1z 2为纯虚数, ∴⎩⎨⎧3a -8=0,4a +6≠0, ∴a =83.∴z 1·z 2=⎝ ⎛⎭⎪⎫83+2i (3-4i)=8-323i +6i +8 =16-143i.]14.已知3+2i 是关于x 的方程2x 2+px +q =0的一个根,求实数p ,q 的值. [解] 因为3+2i 是方程2x 2+px +q =0的根, 所以2(3+2i)2+p (3+2i)+q =0, 即2(9+12i -4)+(3p +2p i)+q =0, 整理得(10+3p +q )+(24+2p )i =0,所以⎩⎨⎧ 10+3p +q =0,24+2p =0,解得⎩⎨⎧p =-12,q =26.]15.设z 是虚数,ω=z +1z 是实数,且-1<ω<2, (1)求|z |的值及z 的实部的取值范围; (2)设u =1-z1+z,证明u 为纯虚数. [解] (1)因为z 是虚数,所以可设z =x +y i ,x ,y ∈R ,且y ≠0. 所以ω=z +1z =x +y i +1x +y i=x +y i +x -y i x 2+y 2=x +x x 2+y 2+⎝ ⎛⎭⎪⎫y -y x 2+y 2i. 因为ω是实数且y ≠0,所以y -yx 2+y 2=0,所以x 2+y 2=1,即|z |=1. 此时ω=2x . 因为-1<ω<2, 所以-1<2x <2, 从而有-12<x <1,即z 的实部的取值范围是⎝ ⎛⎭⎪⎫-12,1.(2)证明:设z =x +y i ,x ,y ∈R ,且y ≠0, 由(1)知,x 2+y 2=1, ∴u =1-z 1+z =1-(x +y i )1+(x +y i )=(1-x -y i )(1+x -y i )(1+x )2+y 2=1-x 2-y 2-2y i (1+x )2+y 2=-y 1+x i.因为x ∈⎝ ⎛⎭⎪⎫-12,1,y ≠0,所以y1+x≠0, 所以u 为纯虚数.5、复数的三角表示一、选择题1.复数12-32i 的三角形式是( ) A .cos ⎝ ⎛⎭⎪⎫-π3+isin ⎝ ⎛⎭⎪⎫-π3B .cos π3+isin π3 C .cos π3-isin π3 D .cos π3+isin 5π6A [12-32i =cos 53π+isin 53π =cos ⎝ ⎛⎭⎪⎫2π-π3+isin ⎝ ⎛⎭⎪⎫2π-π3=cos ⎝ ⎛⎭⎪⎫-π3+isin ⎝ ⎛⎭⎪⎫-π3.] 2.复数sin 50°-isin 140°的辐角的主值是( ) A .150° B .40° C .-40°D .320°D [sin 50°-isin 140°=cos(270°+50°)+isin(180°+140°)=cos 320°+isin 320°.]3.复数sin 4+icos 4的辐角的主值为( ) A .4B .3π2-4C .2π-4D .5π2-4D [sin 4+icos 4=cos ⎝ ⎛⎭⎪⎫52π-4+isin ⎝ ⎛⎭⎪⎫52π-4.] 4.若复数cos θ+isin θ和sin θ+icos θ相等,则θ的值为( ) A .π4B .π4或5π4C .2k π+π4(k ∈Z )D .k π+π4(k ∈Z )D [因为cos θ+isin θ=sin θ+icos θ, 所以cos θ=sin θ,即tan θ=1, 所以θ=π4+k π,(k ∈Z ).]5.如果θ∈⎝ ⎛⎭⎪⎫π2,π,那么复数(1+i)(cos θ-isin θ)的三角形式是( )A .2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫9π4-θ+isin ⎝ ⎛⎭⎪⎫9π4-θB .2[]cos ()2π-θ+isin ()2π-θC .2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫π4+θ+isin ⎝ ⎛⎭⎪⎫π4+θD .2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫3π4+θ+isin ⎝ ⎛⎭⎪⎫3π4+θA [因为1+i =2⎝ ⎛⎭⎪⎫cos π4+isin π4,cos θ-isin θ=cos(2π-θ)+isin(2π-θ), 所以(1+i)(cos θ-isin θ)=2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫π4+2π-θ+isin ⎝ ⎛⎭⎪⎫π4+2π-θ=2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫9π4-θ+isin ⎝ ⎛⎭⎪⎫9π4-θ.]二、填空题6.已知z =cos 2π3+isin 2π3,则arg z 2=________. 43π [因为arg z =2π3,所以arg z 2=2arg z =2×2π3=4π3.]7.把复数1+i 对应的向量按顺时针方向旋转π2,所得到的向量对应的复数是________.1-i [(1+i)⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫-π2+isin ⎝ ⎛⎭⎪⎫-π2=2⎝ ⎛⎭⎪⎫cos π4+isin π4⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫-π2+isin ⎝ ⎛⎭⎪⎫-π2=2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫π4-π2+isin ⎝ ⎛⎭⎪⎫π4-π2 =2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫-π4+isin ⎝ ⎛⎭⎪⎫-π4=1-i.]8.设复数z 1=1+3i ,z 2=3+i ,则z 1z 2的辐角的主值是________.π6 [由题知,z 1=2⎝ ⎛⎭⎪⎫cos π3+isin π3, z 2=2⎝ ⎛⎭⎪⎫cos π6+isin π6,所以z 1z 2的辐角的主值为π3-π6=π6.]三、解答题9.设复数z 1=3+i ,复数z 2满足|z 2|=2,已知z 1z 22的对应点在虚轴的负半轴上,且arg z 2∈(0,π),求z 2的代数形式.[解] 因为z 1=2⎝ ⎛⎭⎪⎫cos π6+isin π6,设z 2=2(cos α+isin α),α∈(0,π), 所以z 1z 22=8⎣⎢⎡⎦⎥⎤cos ⎝⎛⎭⎪⎫2α+π6+isin ⎝ ⎛⎭⎪⎫2α+π6. 由题设知2α+π6=2k π+3π2(k ∈Z ),所以α=k π+2π3(k ∈Z ), 又α∈(0,π),所以α=2π3,所以z 2=2⎝ ⎛⎭⎪⎫cos 2π3+isin 2π3=-1+3i.10.已知z =-1+i i -2i ,z 1-z z 2=0,arg z 2=7π12,若z 1,z 2在复平面内分别对应点A ,B ,且|AB |=2,求z 1和z 2.[解] 由题设知z =1-i ,因为|AB |=2,即|z 1-z 2|=2,所以|z 1-z 2|=|z z 2-z 2|=|(1+i)z 2-z 2|=|i z 2|=|z 2|=2,又arg z 2=7π12, 所以z 2=2⎝ ⎛⎭⎪⎫cos 7π12+isin 7π12=1-32+3+12i ,z 1=z z 2=(1+i)z 2=2⎝ ⎛⎭⎪⎫cos π4+isin π4·2⎝ ⎛⎭⎪⎫cos 7π12+isin 7π12=2⎝ ⎛⎭⎪⎫cos 5π6+isin 5π6=-3+i. 11.若复数z =(a +i)2的辐角的主值是3π2,则实数a 的值是( ) A .1 B .-1 C .- 2D .-3B [因为z =(a +i)2=(a 2-1)+2a i ,arg z =3π2, 所以⎩⎨⎧a 2-1=0,a <0,所以a =-1,故选B .]12.设π<θ<5π4,则复数cos 2θ+isin 2θcos θ-isin θ的辐角的主值为( )A .2π-3θB .3θ-2πC .3θD .3θ-πB [cos 2θ+isin 2θcos θ-isin θ=cos 2θ+isin 2θcos (-θ)+isin (-θ)=cos 3θ+isin 3θ.因为π<θ<5π4,所以3π<3θ<15π4, 所以π<3θ-2π<7π4,故选B .]13.已知复数z 满足z 2+2z +4=0,且arg z ∈⎝ ⎛⎭⎪⎫π2,π,则z 的三角形式为________.z =2⎝ ⎛⎭⎪⎫cos 2π3+isin 2π3 [由z 2+2z +4=0,得z =12(-2±23i)=-1±3i. 因为arg z ∈⎝ ⎛⎭⎪⎫π2,π,所以z =-1-3i 应舍去,所以z =-1+3i =2⎝ ⎛⎭⎪⎫cos 2π3+isin 2π3.]14.设O 为复平面的原点,A 、B 为单位圆上两点,A 、B 所对应的复数分别为z 1、z 2,z 1、z 2的辐角的主值分别为α、β.若△AOB 的重心G 对应的复数为13+115i ,求tan(α+β).[解] 由题意可设z 1=cos α+isin α,z 2=cos β+isin β. 因为△AOB 的重心G 对应的复数为13+115i , 所以z 1+z 23=13+115i ,即⎩⎪⎨⎪⎧cos α+cos β=1,sin α+sin β=15,所以⎩⎪⎨⎪⎧2cos α+β2cos α-β2=1,2sin α+β2cos α-β2=15,所以tan α+β2=15,故tan(α+β)=2tan α+β21-tan 2α+β2=512.章末综合测验(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知z =11-20i ,则1-2i -z 等于( ) A .z -1 B .z +1 C .-10+18iD .10-18iC [1-2i -z =1-2i -(11-20i)=-10+18i.] 2.3+i 1+i =( ) A .1+2iB .1-2iC .2+iD .2-iD [3+i 1+i =(3+i )(1-i )(1+i )(1-i )=3-3i +i +12=2-i.故选D .] 3.若复数z 满足z1-i=i ,其中i 为虚数单位,则z =( )A .1-iB .1+iC .-1-iD .-1+iA [由已知得z =i(1-i)=i +1, 则z =1-i ,故选A .]4.若复数z 满足i z =2+4i ,则在复平面内,z 对应的点的坐标是( ) A .(2,4) B .(2,-4) C .(4,-2)D .(4,2)C [z =2+4ii =4-2i 对应的点的坐标是(4,-2),故选C .] 5.若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1D .2B [∵(2+a i)(a -2i)=-4i ,∴4a +(a 2-4)i =-4i. ∴⎩⎨⎧4a =0,a 2-4=-4.解得a =0.故选B .] 6.若复数2-b i1+2i (b ∈R )的实部与虚部互为相反数,则b =( )A . 2B .23 C .-23 D .2C [因为2-b i 1+2i =(2-b i )(1-2i )5=2-2b 5-4+b 5i ,又复数2-b i1+2i(b ∈R )的实部与虚部互为相反数,所以2-2b 5=4+b 5,即b =-23.]7.设z ∈C ,若z 2为纯虚数,则z 在复平面上的对应点落在( )A .实轴上B .虚轴上C .直线y =±x (x ≠0)上D .以上都不对C [设z =x +y i(x ,y ∈R ),则z 2=(x +y i)2=x 2-y 2+2xy i.∵z 2为纯虚数,∴⎩⎨⎧x 2-y 2=0,xy ≠0.∴y =±x (x ≠0).] 8.已知0<a <2,复数z 的实部为a ,虚部为1,则|z |的取值范围是( ) A .(1,5) B .(1,3) C .(1,5)D .(1,3)C [由已知,得|z |=a 2+1. 由0<a <2,得0<a 2<4, ∴1<a 2+1<5.∴|z |=a 2+1∈(1,5).故选C .]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分)9.给出下列复平面内的点,这些点中对应的复数为虚数的为( ) A .(3,1) B .(-2,0) C .(0,4)D .(-1,-5) ACD [易知选项A 、B 、C 、D 中的点对应的复数分别为3+i 、-2、4i 、-1-5i ,因此A 、C 、D 中的点对应的复数为虚数.]10.已知复数z =a +b i(a ,b ∈R ,i 为虚数单位),且a +b =1,下列命题正确的是( )A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z =z ,则z 是实数C .若z =|z |,则z 是实数D .|z |可以等于12BC [当a =0时,b =1,此时z =i 为纯虚数,A 错误;若z 的共轭复数为z ,且z =z ,则a +b i =a -b i ,因此b =0,B 正确;由|z |是实数,且z =|z |知,z 是实数,C正确;由|z|=12得a2+b2=14,又a+b=1,因此8a2-8a+3=0,Δ=64-4×8×3=-32<0,无解,即|z|不可以等于12,D错误.故选BC.]11.已知复数z0=1+2i(i为虚数单位)在复平面内对应的点为P0,复数z满足|z-1|=|z-i|,下列结论正确的是()A.P0点的坐标为(1,2)B.复数z0的共轭复数对应的点与点P0关于虚轴对称C.复数z对应的点Z在一条直线上D.P0与z对应的点Z间的距离的最小值为2 2ACD[复数z0=1+2i在复平面内对应的点为P0(1,2),A正确;复数z0的共轭复数对应的点与点P0关于实轴对称,B错误;设z=x+y i(x,y∈R),代入|z-1|=|z-i|,得|(x-1)+y i|=|x+(y-1)i|,即(x-1)2+y2=x2+(y-1)2,整理得,y =x,即Z点在直线y=x上,C正确;易知点P0到直线y=x的垂线段的长度即为P0、Z之间距离的最小值,结合平面几何知识知D正确.故选ACD.] 12.对任意z1,z2,z∈C,下列结论成立的是()A.当m,n∈N*时,有z m z n=z m+nB.当z1,z2∈C时,若z21+z22=0,则z1=0且z2=0C.互为共轭复数的两个复数的模相等,且|z|2=|z|2=z·zD.z1=z2的充要条件是|z1|=|z2|AC[由复数乘法的运算律知A正确;取z1=1,z2=i,满足z21+z22=0,但z1=0且z2=0不成立,B错误;由复数的模及共轭复数的概念知结论成立,C正确;由z1=z2能推出|z1|=|z2|,但|z1|=|z2|推不出z1=z2,因此z1=z2的必要不充分条件是|z1|=|z2|,D错误.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.已知复数z=(5+2i)2(i为虚数单位),则z的实部为________.21 [复数z =(5+2i)2=21+20i ,其实部是21.]14.a 为正实数,i 为虚数单位,⎪⎪⎪⎪⎪⎪a +i i =2,则a =________. 3 [a +i i =(a +i )·(-i )i·(-i )=1-a i ,则⎪⎪⎪⎪⎪⎪a +i i =|1-a i|=a 2+1=2, 所以a 2=3.又a 为正实数,所以a = 3.]15.设a ,b ∈R ,a +b i =11-7i1-2i (i 为虚数单位),则a +b 的值为________.8 [a +b i =11-7i 1-2i =(11-7i )(1+2i )(1-2i )(1+2i )=25+15i5=5+3i ,依据复数相等的充要条件可得a =5,b =3.从而a +b =8.]16.设z 的共轭复数是z ,若z +z =4,z ·z =8,则|z |=________,z-z =________(本题第一空2分,第二空3分).22 ±i [设z =x +y i(x ,y ∈R ),则z =x -y i ,由z +z =4,z ·z =8得, ⎩⎨⎧ x +y i +x -y i =4,(x +y i )(x -y i )=8,⇒⎩⎨⎧ x =2,x 2+y 2=8,⇒⎩⎨⎧x =2,y =±2.∴|z |=2 2.所以zz =x -y i x +y i =x 2-y 2-2xy ix 2+y 2=±i.]四、简答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设复数z =lg(m 2-2m -2)+(m 2+3m +2)i ,当m 为何值时,(1)z 是实数? (2)z 是纯虚数? [解] (1)要使复数z 为实数, 需满足⎩⎨⎧m 2-2m -2>0,m 2+3m +2=0,解得m =-2或-1.即当m =-2或-1时,z 是实数.(2)要使复数z 为纯虚数, 需满足⎩⎨⎧m 2-2m -2=1,m 2+3m +2≠0,解得m =3.即当m =3时,z 是纯虚数.18.(本小题满分12分)已知复数z 1=1-i ,z 1·z 2+z 1=2+2i ,求复数z 2. [解] 因为z 1=1-i ,所以z 1=1+i , 所以z 1·z 2=2+2i -z 1=2+2i -(1+i)=1+i. 设z 2=a +b i(a ,b ∈R ),由z 1·z 2=1+i , 得(1-i)(a +b i)=1+i , 所以(a +b )+(b -a )i =1+i ,所以⎩⎨⎧a +b =1,b -a =1,解得a =0,b =1,所以z 2=i.19.(本小题满分12分)已知复数z 满足|z |=1,且(3+4i)z 是纯虚数,求z 的共轭复数z .[解] 设z =a +b i(a ,b ∈R ),则z =a -b i 且|z |=a 2+b 2=1,即a 2+b 2=1.① 因为(3+4i)z =(3+4i)(a +b i)=(3a -4b )+(3b +4a )i ,而(3+4i)z 是纯虚数, 所以3a -4b =0,且3b +4a ≠0.② 由①②联立, 解得⎩⎪⎨⎪⎧a =45,b =35,或⎩⎪⎨⎪⎧a =-45,b =-35.所以z =45-35i ,或z =-45+35i.20.(本小题满分12分)复数z =(1+i )2+3(1-i )2+i ,若z 2+az <0,求纯虚数a .[解] 由z 2+a z <0可知z 2+az 是实数且为负数. z =(1+i )2+3(1-i )2+i =2i +3-3i 2+i =3-i 2+i =1-i.因为a 为纯虚数,所以设a =m i(m ∈R ,且m ≠0),则z 2+a z =(1-i)2+m i 1-i =-2i +m i -m 2=-m 2+⎝ ⎛⎭⎪⎫m 2-2i <0,故⎩⎪⎨⎪⎧-m 2<0,m2-2=0,所以m =4,即a =4i.21.(本小题满分12分)已知等腰梯形OABC 的顶点A ,B 在复平面上对应的复数分别为1+2i ,-2+6i ,OA ∥BC .求顶点C 所对应的复数z .[解] 设z =x +y i(x ,y ∈R ),C (x ,y ), 因为OA ∥BC ,|OC |=|BA |, 所以k OA =k BC ,|z C |=|z B -z A |, 即⎩⎨⎧21=y -6x +2,x 2+y 2=32+42,解得⎩⎨⎧ x 1=-5,y 1=0或⎩⎨⎧x 2=-3,y 2=4.因为|OA |≠|BC |,所以x 2=-3,y 2=4(舍去), 故z =-5.22.(本小题满分12分)已知复数z 满足(1+2i)z =4+3i. (1)求复数z ;(2)若复数(z +a i)2在复平面内对应的点在第一象限,求实数a 的取值范围. [解] (1)∵(1+2i)z =4+3i ,∴z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=10-5i 5=2-i ,∴z =2+i.(2)由(1)知z =2+i ,则(z +a i)2=(2+i +a i)2=[2+(a +1)i]2=4-(a +1)2+4(a +1)i , ∵复数(z +a i)2在复平面内对应的点在第一象限, ∴⎩⎨⎧4-(a +1)2>0,4(a +1)>0,解得-1<a<1,即实数a的取值范围为(-1,1).。

新高考数学一轮复习考点知识专题讲解与练习 22 复数

新高考数学一轮复习考点知识专题讲解与练习 22 复数

新高考数学一轮复习考点知识专题讲解与练习考点知识总结22复数高考概览高考在本考点的常考题型为选择题,分值为5分,低难度考纲研读1.理解复数的基本概念2.理解复数相等的充要条件3.了解复数的代数表示法及其几何意义4.会进行复数代数形式的四则运算5.了解复数代数形式的加、减运算的几何意义一、基础小题1.(-1+i)(2i+1)=()A.1-i B.1+i C.-3-i D.-3+i答案C解析由题意,得(-1+i)(2i+1)=-2i-1-2+i=-3-i.故选C.2.复数z=21+i(i为虚数单位)在复平面上对应的点的坐标为()A.(1,1) B.(1,-1)C.(-1,1) D.(-1,-1)答案B解析 z =21+i =2(1-i )(1+i )(1-i )=1-i ,故复数z =21+i 在复平面内对应的点的坐标是(1,-1).故选B.3.已知复数z =(1+a i)(1-2i)(a ∈R )为纯虚数,则实数a =( ) A .2 B .-2 C.12 D .-12 答案 D解析 z =(1+2a )+(a -2)i ,由已知得1+2a =0且a -2≠0,解得a =-12.故选D. 4.若复数z =1-i ,则⎪⎪⎪⎪⎪⎪z 1-z =( )A .1 B. 2 C .2 2 D .4 答案 B解析 由z =1-i ,得z 1-z =1-i i =-1-i ,则⎪⎪⎪⎪⎪⎪z 1-z =|-1-i|= 2.5.已知复数z =i +i 2022,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 B解析 ∵i +i 2022=-1+i ,∴i +i 2022在复平面内对应的点的坐标为(-1,1),该点在第二象限.故选B.6.若复数z =i1+i (i 为虚数单位),则z z -=( )A.12i B .-14 C.14 D.12解析 解法一:∵z =i 1+i =i (1-i )2=1+i 2=12+12i ,∴z -=12-12i ,∴z z -=⎝ ⎛⎭⎪⎫12+12i ⎝ ⎛⎭⎪⎫12-12i =12.故选D. 解法二:∵z =i 1+i ,∴|z |=1|1+i|=22,∴z z -=|z |2=12.故选D.7. 如图,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,若z 1=zz 2,则z 的共轭复数z -=( )A.12+32iB.12-32I C .-12+32i D .-12-32i 答案 A解析 由题图可知z 1=1+2i ,z 2=-1+i ,所以z =z 1z 2=1+2i-1+i =(1+2i )(-1-i )(-1+i )(-1-i )=1-3i2,所以z -=12+32i.故选A.8.设复数z 满足|z -1+i|=1,z 在复平面内对应的点为P (x ,y ),则点P 的轨迹方程为( )A .(x +1)2+y 2=1B .(x -1)2+y 2=1C .x 2+(y -1)2=1D .(x -1)2+(y +1)2=1解析 由题意得z =x +y i ,则由|z -1+i|=1得|(x -1)+(y +1)i|=1,即(x -1)2+(y +1)2=1,则(x -1)2+(y +1)2=1.故选D.9.(多选)设z 1,z 2,z 3为复数,z 1≠0,下列命题中正确的是( ) A .若|z 2|=|z 3|,则z 2=±z 3 B .若z 1z 2=z 1z 3,则z 2=z 3 C .若z -2=z 3,则|z 1z 2|=|z 1z 3| D .若z 1z 2=|z 1|2,则z 1=z 2 答案 BC解析 由复数模的概念可知,|z 2|=|z 3|不能得到z 2=±z 3,例如z 2=1+i ,z 3=1-i ,A 错误;由z 1z 2=z 1z 3可得z 1(z 2-z 3)=0,因为z 1≠0,所以z 2-z 3=0,即z 2=z 3,B 正确;因为|z 1z 2|=|z 1||z 2|,|z 1z 3|=|z 1||z 3|,而z -2=z 3,所以|z -2|=|z 3|=|z 2|,所以|z 1z 2|=|z 1z 3|,C 正确;取z 1=1+i ,z 2=1-i ,显然满足z 1z 2=|z 1|2,但z 1≠z 2,D 错误.故选BC.10.(多选)欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.下列结论正确的是( )答案 ACD⎝ ⎛⎭⎪⎫22,22位于第一象限,正确;对于D ,e n πi =cos n π+isin n π,当n 为奇数时,e n πi=-1,|e n πi |=1,当n 为偶数时,e n πi =1,|e n πi |=1,故e n πi 的模为1,正确.故选ACD.二、高考小题11.(2022·北京高考)在复平面内,复数z 满足(1-i)z =2,则z =( ) A .2+i B .2-i C .1-i D .1+i 答案 D解析 由题意可得,z =21-i =2(1+i )(1-i )(1+i )=2(1+i )2=1+i.故选D. 12.(2022·新高考Ⅱ卷)复数2-i1-3i 在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 A解析 2-i 1-3i=(2-i )(1+3i )10=5+5i 10=1+i2,所以该复数在复平面内对应的点为⎝ ⎛⎭⎪⎫12,12,该点在第一象限.故选A. 13.(2022·新高考Ⅰ卷)已知z =2-i ,则z (z -+i)=( ) A .6-2i B .4-2i C .6+2i D .4+2i 答案 C解析 z (z -+i)=(2-i)(2+i +i)=(2-i)(2+2i)=4+4i -2i -2i 2=6+2i.故选C. 14.(2022·浙江高考)已知a ∈R ,(1+a i)i =3+i(i 为虚数单位),则a =( ) A .-1 B .1 C .-3 D .3 答案 C解析 解法一:因为(1+a i)i =-a +i =3+i ,所以-a =3,解得a =-3.故选C. 解法二:因为(1+a i)i =3+i ,所以1+a i =3+ii=1-3i ,所以a =-3.故选C. 15.(2022·全国甲卷)已知(1-i)2z =3+2i ,则z =( ) A .-1-32i B .-1+32i C .-32+i D .-32-i 答案 B解析 由(1-i)2z =3+2i ,得z =3+2i (1-i )2=3+2i -2i=3i -22=-1+32i.故选B. 16.(2022·全国乙卷)设2(z +z -)+3(z -z -)=4+6i ,则z =( ) A .1-2i B .1+2i C .1+i D .1-i答案 C解析 设z =a +b i(a ,b ∈R ),则z -=a -b i,2(z +z -)+3(z -z -)=4a +6b i =4+6i ,所以a =1,b =1,所以z =1+i.17.(2022·全国Ⅰ卷)若z =1+i ,则|z 2-2z |=( ) A .0 B .1 C. 2 D .2 答案 D解析 z 2=(1+i)2=2i ,则z 2-2z =2i -2(1+i)=-2,故|z 2-2z |=|-2|=2.故选D. 18.(2022·全国Ⅲ卷)复数11-3i 的虚部是( )A .-310B .-110 C.110 D.310 答案 D解析 因为11-3i =1+3i (1-3i )(1+3i )=110+310i ,所以复数11-3i的虚部为310.故选D.19.(2022·天津高考)i 是虚数单位,复数9+2i2+i=________. 答案 4-i 解析9+2i 2+i =(9+2i )(2-i )(2+i )(2-i )=20-5i5=4-i. 20.(2022·全国Ⅱ卷)设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________.答案 23解析 解法一:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ,∵|z 1|=|z 2|=2,∴a 2+b 2=4,c 2+d 2=4,∵z 1+z 2=a +b i +c +d i =3+i ,∴a +c =3,b +d =1,∴(a +c )2+(b +d )2=a 2+c 2+2ac +b 2+d 2+2bd =4,∴2ac +2bd =-4,∵z 1-z 2=a +b i -(c +d i)=a -c +(b -d )i ,∴|z 1-z 2|=(a -c )2+(b -d )2 = a 2+c 2-2ac +b 2+d 2-2bd =a 2+b 2+c 2+d 2-(2ac +2bd )=4+4-(-4)=2 3.解法二:∵|z 1|=|z 2|=2,可设z 1=2cos θ+2sin θ·i ,z 2=2cos α+2sin α·i ,∴z 1+z 2=2(cos θ+cos α)+2(sin θ+sin α)i =3+i ,∴⎩⎨⎧2(cos θ+cos α)=3,2(sin θ+sin α)=1.两式平方作和,得4(2+2cos θcos α+2sin θsin α)=4,化简得cos θcos α+sin θsin α=-12.∴|z 1-z 2|=|2(cos θ-cos α)+2(sin θ-sin α)·i| =4(cos θ-cos α)2+4(sin θ-sin α)2=8-8(cos θcos α+sin θsin α)=8+4=2 3. 三、模拟小题21.(2022·山西五市联考)已知复数z 满足2z(1+i )2=1-i ,其中i 为虚数单位,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 由题意得z =(1-i )(1+i )22=(1-i)i =1+i ,即z 在复平面内所对应的点为(1,1),在第一象限.故选A.22.(2022·福州三中高三质量检测二)已知复数z =(1+2i)·i 2022,则z -=( ) A .-2-i B .-2+I C .2-i D .2+i 答案 A解析 z =(1+2i)·i2022=(1+2i)i =-2+i ,所以z -=-2-i.故选A.23.(2022·山东青岛自主检测)若复数z 1,z 2在复平面内对应的点关于虚轴对称,且z 1=2-i ,则复数z 1z 2=( )A .-1B .1C .-35+45i D.35-45i 答案 C解析 依题意可得z 2=-2-i ,所以z 1z 2=2-i -2-i =(2-i )(-2+i )5=-35+45i.故选C. 24.(2022·广东茂名五校第三次联合考试)已知(a +b i)(1-i)=2+i(a ,b ∈R ),则ab =( )A .-34B .-32 C.34 D.32 答案 C解析 因为(a +b i)(1-i)=(a +b )+(b -a )i ,所以⎩⎨⎧a +b =2,b -a =1,解得a =12,b =32,从而ab =34.故选C.25.(多选)(2022·湖北高三月考)设z 1,z 2是复数,则( ) A.z 1-z 2=z -1-z -2 B .若z 1z 2∈R ,则z 1=z -2 C .若|z 1-z 2|=0,则z -1=z -2D .若z 21+z 22=0,则z 1=z 2=0答案 AC解析 设z 1=a +b i ,z 2=x +y i ,a ,b ,x ,y ∈R ,z 1-z 2=(a -x )+(b -y )i =(a -x )-(b -y )i =a -b i -(x -y i)=z -1-z -2,A 成立;|z 1-z 2|=|(a -x )+(b -y )i|=0,则(a -x )2+(b -y )2=0,所以a =x ,b =y ,从而z 1=z 2,所以z -1=z -2,C 成立;对于B ,取z 1=i ,z 2=2i ,满足z 1z 2∈R ,但结论不成立;对于D ,取z 1=i ,z 2=1,满足z 21+z 22=0,但结论不成立.故选AC.26.(多选)(2022·江苏淮安高三入学考试)已知复数z =(m 2-1)+(m -3)(m -1)i(m ∈R ),则下列说法正确的是( )A .若m =0,则共轭复数z -=1-3i B .若复数z =2,则m =3 C .若复数z 为纯虚数,则m =±111 / 11 D .若m =0,则4+2z +z 2=0答案 BD解析 对于A ,m =0时,z =-1+3i ,则z -=-1-3i ,故A 错误;对于B ,若复数z =2,则满足⎩⎨⎧ m 2-1=2,(m -3)(m -1)=0,解得m =3,故B 正确;对于C ,若复数z 为纯虚数,则满足⎩⎨⎧m 2-1=0,(m -3)(m -1)≠0,解得m =-1,故C 错误;对于D ,若m =0,则z =-1+3i ,4+2z +z 2=4+2(-1+3i)+(-1+3i)2=0,故D 正确.故选BD.。

负六平方的平方根

负六平方的平方根

负六平方的平方根全文共四篇示例,供读者参考第一篇示例:负六平方是指将-6自乘一次,即-6的平方是36。

而负六平方的平方根则是指开根号之后得到的结果。

在数学中,平方根是指一个数的平方根,例如数字4的平方根是2,因为2的平方等于4。

但是当我们谈论负数的平方根时,就会引入复数的概念。

在这篇文章中,我们将详细讨论负六平方的平方根,并探讨其在数学领域中的重要性和应用。

我们来看一下负六平方的平方根是多少。

由于负数的平方根是复数,我们可以通过以下公式来计算负六的平方根:√(-6) = √6i其中i是虚数单位,满足i^2 = -1。

我们可以将负六平方根表示为√6i。

这意味着负六的平方根是一个实部为0,虚部为6的复数。

虽然负数的平方根在实际生活中没有直接的应用,但在数学和物理学中却有重要的意义。

在数学中,复数和负数的概念在解决方程和图形表示上起着至关重要的作用。

复数可以用来表示在二维平面上的点,其中实部表示点在x轴上的位置,虚部表示点在y轴上的位置。

负六的平方根在复平面上对应着一个点(0,6),在某些问题中可以通过这个点来进行计算和分析。

在物理学中,负数的平方根也被广泛应用。

在量子力学中,波函数是描述微观粒子行为的函数。

波函数的平方表示粒子出现的概率密度,而复数的形式则可以描述波函数的相位和振幅。

负六的平方根在某些波函数表达式中可能会出现,对于理解微观世界的特性非常重要。

在工程学和金融学等领域中,负数的平方根也有着重要的应用。

例如在信号处理中,复数的形式可以用来表示频率和相位,帮助工程师设计滤波器和通信系统。

在金融学中,复利和复数的概念可以描述利息的计算和投资回报率,帮助投资者做出更加明智的决策。

负六的平方根虽然在日常生活中并不常见,但在数学、物理学和工程学等学科中却有着重要的应用和意义。

通过了解和掌握负数的平方根,我们可以更好地理解复数和负数的性质,提高数学水平并拓展思维方式。

希望本文对读者有所启发,让大家对数学和复数有更深入的了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如,如果复数 z1=a1 + b1i 与 z 2=a 2 + b2 i , 满足 z1 = kz 2 ( k ≠ 0, k ∈ R),则 a1 = ka2 , b1 = kb2 . 两个复数不全是实数,就不能比较大小.
1.例 1 指出下列复数中哪些是实数?哪些是纯虚数?哪些
应该满足什么 条件?
是虚数?并分别指出它们的实部与虚部. 2 3 − 2i , 5 , (6 − 3 )i , 4i 2 , i 3 . 分钟) (55 分钟) 3 知识运用
广东省技工学校文化理论课教案
课程:数学 课程 授课班级 授课班级: 班级 班
第4页 (共 5 页)
教学环节
教学内容 解: 4i 2=4 × (−1) = −4 ,
2 3 2 2 2 2 i = i ⋅ i = i ⋅ (−1) = − i . 3 3 3 3
说明
结果如下表所示:
复数
3 − 2i 5
知识运用
1.课堂小结 本节课主要学习了复数的概念、复数的实部和虚部、复 数集、复数的代数形式、共轭复数、复数相等等相关知识及 性质,在理解复数的有关概念时应注意: (1)明确什么是复数的 实部与虚部; (2)弄清实数、虚数、纯虚数分别对实部与虚 部的要求; (3)两个复数不全是实数就不能比较大小.
本节重点: 复数的概 念,复数相等的 充要条件、共轭 复数的概念.
所以 Z = R + jX L = (15 + j 31.4) Ω.
X L = 2πfL .
广东省技工学校文化理论课教案
课程:数学 课程 授课班级 授课班级: 班级 班
第 5 页(共 5 页)
教学环节 教学内容 所以 Z = R + jX L = (15 + j 31.4) Ω 4.随堂练习:第 1 题、第 2 题. 说明
3 − 2 x = 1 , 2 + 3 y = −4 ,
注: RL 串联电路 中 , 复 阻 抗
所以,有 x=1,y=-2. 例 3 我们来解决本节开头提出的求电路中的复阻抗问 题. 解:由 L=100mH=0.1H,f=50Hz,得
Z = R + jX L ,
其 中 感 抗
X L = 2 πfL ≈ 2 × 3.14 × 0.1 × 50 = 31.4 Ω,
第3页 (共 5 页)
教学环节
教学内容
说明
数的实部和虚部. b = 0 时, 当 复数 a + bi 就是实数; b≠ 0 资料卡: 当 时,复数 a + bi 叫做虚数;当 b≠0 且 a=0 时,复数 bi 叫做纯 的性质:
虚数单位 i
3 虚数.例如: i , − i , 5i , − i , π i 等都是纯虚数.其 是正整数,那么 2 i 4n = 1 关系表示如下:
2.两个复数的关系:
i0 = 1 .
复数 a − bi 与 a + bi 为一对共轭复数,复数 z 的共轭复数 记作 z .即:若 z = a + bi ,则 z=a − bi .
思考:
如果两个复数的实部相等,虚部也相等,那么这两个复 如 果 a + bi = 0 那么,实数 a,b 数相等,即:
a1 + b1i = a 2 + b2 i ⇔ a1 = a 2 且 b1 = b2 .
实部 3
5
虚部 -2 0
6− 3
类别 虚数 实数 纯虚数 实数 纯虚数
(6 − 3 )i
4i 2 2 3 i 3
0 -4 0
0

2 3
知识运用
2.随堂练习:第 3 题 第二节课
3.例 2 求适合方程 (3 − 2 x) + (2 + 3 y )i = 1 − 4i 的实数 x 和 y 例
的值. 解:根据题意得
一般地, n 若
实数(b = 0) 复数(a + bi ) 纯虚数(a = 0) 虚数(b ≠ 0)非纯虚数(a ≠ 0)
i 4n +1 = i i 4n +2 = -1 i 4 n+3 = -i .
我们规定:
复数常用记号 z 表示, z = a + bi , 即 我们把 a + bi 叫做复 数的代数形式. 复数包含了所有的实数和虚数,由全体复数组成的集合 相关知识 称为复数集,用字母 C 表示.
课堂小结 及 作业布置 分钟) (7 分钟)
2.作业布置: 作业册…… 预习 《第三节复平面及复数的向量表示》 中复平面的概念、 复数的向量表示方法.
教学后记
授课教师: 授课教师:
提交日期: 提交日期:
审阅签名: 审阅签名
审阅日期: 审阅日期:
广东省技工学校文化理论课教案
课程:数学 课程 授课班级 授课班级: 班级 班
第2页 (共 5 页)
教学环节
教学内容 第一节课 1.创设问题情境: 随着生产力和科学的发展,数的概念也得到扩展.从解
说明
方程来看,方程 x + 7 = 2 在自然数集 N 中无解,在整数集 Z 力. 中就有一个解 x = −5 ;方程 3 x = 8 在整数集 Z 中无解,而在 有理数集Q中就有一个解 x =
广东省技工学校文化理论课教案
课程:数学 课程 授课班级 授课班级: 班级 班
第 1 页(共 5 页)
教学章节 教学章节 教学周次 课前准备
第六章第二节 第 周
课题 课时
复数的概念 2 课时
课型 新授课
教师:制作好课件、备好直尺. 学生:预习本节课本内容. 授课方式 讲授法 演示法 练习法
1.掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相 等、共轭复数的概念; 教学目标 2.正确对复数进行分类,掌握数集之间的从属关系; 3.培养学生数形结合的数学思想,训练学生逻辑思维能力.
x 2 + 1 = 0 的根,即方程 x 2 + 1 = 0 的解为: x1= − i , x2 i . =
1.复数的概念: 形如 a + bi 的数叫做复数,其中 a,b 都是实数,分别叫做复 相关知识 (20 分钟) 分钟)
广东省技工学校文化理论课教案
课程:数学 课程 授课班级 授课班级: 班级 班
1.正确复数的实部与虚部,复数的实部和虚部都是实数; 教学重点 2.正确地对复数进行分类,弄清数集之间的关系. 1.关于共轭复数、两个复数相等的概念; 教学难点 2.复数能否比较大小. 1.通过平面向量减法的运算,进一步理解三角形法则的特点; 突出 2.通过引例求物体位移的大小和方向,引导学生理解向量坐标的实际意义; 重点 处 理 思 2.对于复数的定义,特别要抓住复数的标准形式以及是实部和虚部都是实 路 化解 数这一概念; 难点 3.对复数进行分类要求不重复、不遗漏,同一级分类标准要统一,要弄清 数集之间的关系. 3.通过例 1、例 2 的讲解,让学生理解向量减法的运算方法. 1.要求学生课前做好知识预备;
8 ; 方程 x 2 = 5 在有理数集Q中 3
用贴近生活、专 业实际的设疑, 攫取学生注意
无解,在实数集 R 中就有两个解 x = ± 5 ;方程 x 2 + 1 = 0 是 不是一定无解? 2.提出问题: 方程 x 2 + 1 = 0 的解是什么? 3.简要分析: 实际问题 分钟) (8 分钟) 在目前所学的实数范围内,方程 x 2 + 1 = 0 是无解的,但 并不意味方程永远无解, 我们需要将数的范围进行适当扩充. 4.导入新课: 在 16 世纪,由于解方程的需要,人们进一步将数系进行 扩充,引进一个新数 i,叫做虚数单位.并规定这个新数具有 如下性质: (1) 它的平方是-1,即 i 2 = −1 ; (2) 它和实数在一起可以) 2 ⋅ i 2 = −1 , 所 以 − i 和 i 都 是 方 程
相关文档
最新文档