六年级数学拔高之逻辑推理(二)
(完整版)六年级逻辑推理
第一章逻辑推理在数学竞赛中,有一类问题似乎不像数学题,这类问题没有或很少给出数量或数量关系,也不出现任何图形。
解答这类问题没有什么现成的公式可用,甚至不需要什么复杂计算。
也有的问题,似乎像算术或几何问题,但解决它却很少用到算术和集合的知识,而是用逻辑推理的知识来解答。
这类问题称为逻辑推理问题。
逻辑推理是运用已知若干判断去获得一个新判断的思维方法。
在推理过程中,常常需要否定一些错误的可能性,去获得正确的结论。
解决这类问题常用的方法有:直接法;假设法;排除法;图解法;列表法和枚举法等。
逻辑推理问题的解决,需要我们深入地理解条件和结论,分析关键所在,找到突破口,进行合情合理的推理,最后做出正确的判断。
推理的过程,必须要有充足的理由和充分的依据。
论证的才能不是天生的,而是在不断的实践活动中逐渐锻炼、培养出来的。
一、直接法例 1 张、王、李三个工人,在甲、乙、丙三个工厂里分别当车工、钳工和电工,已知:(1)张不在甲厂;(2)王不在乙厂;(3)在甲厂的不是钳工;(4)在乙厂的是车工;(5)王不是电工,这三个人分别在哪个厂?干什么工作?【分析与解】此题可用直接法解答,即直接从特殊条件出发,再结合其他条件往下推,直到推出结论为止。
由条件(5)可知,王不是电工,那么王必是车工或钳工;由条件(2)可知,王不在乙厂,那么王必在甲厂或丙厂;又由条件(4)可知,在乙厂的是车工,所以王只能是钳工;又因为甲厂的不是钳工,则王必是丙厂的钳工;张不在甲厂,必在乙厂或丙厂,而王在丙厂,则张必在乙厂,是乙厂的车工,剩下的李是甲厂的电工。
所以,张是乙厂的车工,王是丙厂的钳工,李是甲厂的电工。
例2 A、B、C、D、E五人参加乒乓球比赛,每两人都要赛一场,并且只赛一场,规定胜者得2分,负者得0分。
现在知道比赛结果是:A和B并列第一名;C 是第三名,D和E并列第四名,求C得多少分?【分析与解】我们从A和B并列第一名,D和E并列第四名的已知条件直接入手分析。
【精品奥数】六年级下册数学思维训练讲义-第十六讲 逻辑推理(二) 人教版(含答案)
第十六讲逻辑推理(二)第一部分:趣味数学六个货架一家超市,六个货架是这样安排的:出售玩具的货架紧紧挨着出售服装的货架,但玩具货架不是一号架。
出售餐具的货架在小家电货架的前一排,日化品在服装前面的第二个货架上,餐具在食品后面的第四个货架出售。
请问:这个超市是怎样安排这六个货架的?【答案】已知:1、出售玩具的货架紧紧挨蓍出售服装的货架,但玩具货架不是一号架。
2、出售餐具的货架在小家电货架的前一排,3、日化品在服装前面的第二个货架上,4、餐具在食品后面的第四个货架出售。
推理:一、从1、3知道日化品在服装前第二个;服装前第一个或后一个可能是玩具;二、从2、4知道餐具在小家电前一排,而餐具在食品后第四个货架,一共是六个货架,餐具在食品之间隔三个,后面还有一个小家电,推出第一排是食品,第五是餐具,第六是小家电;三、其余二、三、四号三个的排序应当是日化、玩具、服装,玩具不可能在服装后,后面五号是餐具。
即:一号架:食品;二号架:日化;三号架:玩具;四号架:服装;五号架:餐具;六号架:小家电。
第二部分:习题精讲解数学题,从已知条件到未知的结果需要推理,也需要计算,通常是计算与推理交替进行,而且这种推理不仅是单纯的逻辑推理,而是综合运用了数学知识和专门的生活常识相结合来运用。
这种综合推理的问题形式多样、妙趣横生,也是小学数学竞赛中比较流行的题型。
解答综合推理问题,要恰当地选择一个或几个条件作为突破口。
统称从已知条件出发可以推出两个或两个以上结论,而又一时难以肯定或否定其中任何一个时,这就要善于运用排除法、反证法逐一试验。
当感到题中条件不够时,要注意生活常识、数的性质、数量关系和数学规律等方面寻找隐蔽条件。
例题1:小华和甲、乙、丙、丁四个同学参加象棋比赛。
每两人要比赛一盘。
到现在为止,小华已经比赛了4盘。
甲赛了3盘,乙赛了2盘,丁赛了1盘。
丙赛了几盘?这道题可以利用画图的方法进行推理,如图32-1所示,用5个点分别表示小华、甲、乙、丙、丁。
六年级数学奥数举一反三数学逻辑推理二32
【思路导航】 用排除法排除不符合条件的情形,最后剩下的情况就是所要的结果。 由(1)、(2)两个图可以看出,1的对面不可能为4,6,2,3,所以1 的对面必为5;由(2)、(3)两个图形可以看出,3的对面不可能为1, 2,4,5,所以3的对面必为6。由此可知,4的对面必定为2。上面正方体 三个朝左一面的数字依次为2,5,6。所以它们的积为2×5×6=60。
3、如图32-5所示,每个正方体的6个面分别写着数字1~6,并且任意两 个相对的面上所写的两个数之和都等于7。把这样的5个正方体一个挨一 个连接起来后,金挨着的两个面上的数字之和等于8。图中写?的这个面 上的数字是几?
小学数学六年级奥数举一反三
【例题3】 某班44人,从A,B,C,D,E五位候选人中选举 班长。A得选票23张。B得选票占第二位,C,D得票相同,E 的选票最少,只得了4票。那么B得选票多少张? 【思路导航】 B,C,D的选票共44—23—4=17(张),C,D的选票至少各5 张。如果他们的选票超过5张,那么B,C,D的选票超过 6+6+6=18(张),这不可能。所以,C,D各得5票,B得17— 5—5=7(张)
小学数学六年级奥数举一反三
【练习4】 1、某年的8月份有4个星期四,5个星期三。这年8月8日是星期几?
2、甲、一两个小朋友各有一袋糖,每袋糖不到20粒。如果甲给乙一定数 量的糖后,甲的糖的粒数是乙的2倍;如果乙给甲同样数量的糖后,甲的 糖的粒数就是乙的3倍。甲、乙两个小朋友共有糖多少粒?
3、某各家庭有四个家庭成员。他们的年龄各不相同,总和是129岁,其 中有三个人的年龄是平方数。如果倒退15年,这四人中仍有三人的年龄 是平方数。你知道他们各自的年龄吗?
小学数学六年级奥数举一反三
六年级数学逻辑推理题
六年级数学逻辑推理题一、例题例1:A、B、C三人中,一位是工人,一位是教师,一位是农民。
已知A比教师体重重,C和教师体重不同,A和农民是朋友。
那么A、B、C三人的职业分别是什么?解析:1. 根据“A比教师体重重”和“C和教师体重不同”,可以推断出B是教师。
2. 然后,因为“A和农民是朋友”,所以A不是农民,那么A只能是工人。
3. 剩下的C就是农民。
例2:甲、乙、丙、丁四人参加数学竞赛,赛后他们四人预测名次如下:甲说:“丙第一,我第三。
”乙说:“我第一,丁第四。
”丙说:“丁第二,我第三。
”丁没有说话。
最后公布结果时,发现他们每人只说对了一半。
请你说出他们四人的名次。
解析:1. 假设甲说的“丙第一”是正确的,那么丙说的“我第三”就是错误的,从而丙说的“丁第二”就是正确的。
这样一来,乙说的“丁第四”就是错误的,那么“我第一”就应该是正确的,但是这与假设的“丙第一”矛盾,所以这个假设不成立。
2. 所以甲说的“我第三”是正确的,那么丙说的“我第三”就是错误的,“丁第二”就是正确的。
因为“丁第二”,所以乙说的“丁第四”就是错误的,“我第一”就是正确的。
丙就是第四。
所以名次依次为乙第一,丁第二,甲第三,丙第四。
二、练习题1. 小王、小张和小李一位是工人,一位是农民,一位是教师。
现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。
问:谁是工人?谁是农民?谁是教师?解析:- 由“小王与农民不同岁”和“农民比小张年龄小”,可知小李是农民。
- 又因为“小李比教师年龄大”且“农民(小李)比小张年龄小”,所以小张不是教师,那么小张是工人。
- 小王就是教师。
2. 有红、黄、蓝、白、紫五种颜色的珠子各一颗,用纸包着放在桌子上排成一排。
甲、乙、丙、丁、戊五个人猜各包里的珠子的颜色。
甲猜:第2包是紫色,第3包是黄色;乙猜:第2包是蓝色,第4包是红色;丙猜:第1包是红色,第5包是白色;丁猜:第3包是蓝色,第4包是白色;戊猜:第2包是黄色,第5包是紫色。
六年级数学思维训练:逻辑推理二
2014年六年级数学思维训练:逻辑推理二一、兴趣篇1.甲、乙两队进行象棋对抗赛,甲队的三人是张、王、李,乙队的三人是赵、钱、孙,按照以往的比赛成绩看,张能胜钱,钱能胜李,李能胜孙,但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?2.甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?3.甲、乙、丙三名选手参加马拉松比赛,起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)4.有10名选手参加乒乓球单打比赛,每名选手都要和其它选手各赛一场,而且每场比赛都分出胜负,请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?5.6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分,请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局,那么各队总分之和是多少?6.红、黄、蓝三支乒乓球队进行比赛,每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次,按照获胜场数进行排名,并按照排名获得一定的分数,第一名得9分,第二名得8分,…,第九名得1分;除产生个人名次外,每个队伍还会计算各自队员的得分总和,按团体总分的高低评出团体名次.最后,比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员,第二名是一位蓝队队员,相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队,总分16分;第二名是红队,第三名是蓝队.请问:红队队员分别得了多少分?7.5支球队进行单循环赛,每两队之间比赛一场,每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,第三名得了7分,并且和第一名打平.请问:这5支球队的得分,从高到低依次是多少?8.有A、B、C三支足球队,每两队比赛一场,比赛结果为:A:两胜,共失2球;B:进4球,失5球;C:有一场踢平,进2球,失8球.则A与B两队间的比分是多少?9.一次考试共有10道判断题,正确的画“√”,错误的画“×”,每道题10分,满分为100分.甲、乙、丙、丁4名同10.赵、钱、孙、李、周5户人家,每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸,而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?12.五行(火水木金土)相生相克,其中每一个元素都生一个,克一个,被一个生和被一个克,水克火是我们熟悉的,有一个俗语叫做“兵来将挡,水来土掩”,是说土能克水.另外,水能生木,火能生土.请把五行的相生相克关系画出来.13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C请问:第五天与A队比赛的是哪支队伍?14.A、B、C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队与另一队进行比赛,败队则休息一天,如此继续下去,最后结果是A队胜10场,B队胜12场,C队胜14场,则A队共打了几场比赛?15.甲、乙、丙、丁四名同学进行象棋比赛,每两人都比赛一场,规定胜者得2分,平局各得1分,输者得0分,请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁是最后一名,那么乙得了多少分?16.五支足球队进行循环赛,即每两个队之间都要赛一场,每场比赛胜者得2分,输者得0分,平局两队各得1分.比赛结果各队得分互不相同.已知:①第一名的队没有平过;②第二名的队没有输过;③第四名的队没有胜过,问:第一名至第五名各得多少分?全部比赛共打平过几场?17.4支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0 分,平局各得1分.比赛结果,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?18.甲、乙、丙、丁、戊五个同学的各科考试成绩如表,已知:①每门功课五个人的分数恰巧分别为l、2、3、4、5;②五个人的总分互不相同,且从高到低的顺序排列是:甲、乙、丙、丁、戊;19.一次足球赛,有A、B、C、D四个队参加,每两队都赛一场,按规则,胜一场得2分,平一场得1分,负一场得0分.比赛结束后,B队得5分,A队得1分.所有场次共进了9个球,B队进球最多,共进了4个球,C队共失了3个球,D队1个球也未进,A队与C队的比赛比分是2:3.问:A队与B队的比赛比分是多少?20.A、B、C、D四个足球队进行循环比赛.赛了若干场后,A、B、C三队的比赛情况如表:问:D赛了几场?D21.九个外表完全相同的小球,重量分别是1,2,…,9.为了加以区分,它们都被贴上了数字标签,可是有一天,不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量,得到如下结果:(1)①②>③④⑤⑥⑦;(2)③⑧=⑦,请问:⑨号小球的重量是多少?22.A、B、C、D、E五位同学分别从不同的途径打听到五年级数学竞赛获得第一名的那位同学的情况:A打听到的:姓李,是女同学,13岁,东城区;B打听到的:姓张,是男同学,11岁,海淀区;C打听到的:姓陈,是女同学,13岁,东城区;D打听到的:姓黄,是男同学,11岁,西城区;E打听到的:姓张,是男同学,12岁,东城区.’实际上第一名同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?三、超越篇23.在一次射击练习中,甲、乙、丙三位战士打了四发子弹,全部中靶,其中命中情况如下:(1)每人四发子弹命中的环数各不相同;(2)每人四发子弹命中的总环数均为17环;(3)乙有两发命中的环数分别与甲其中两发一样,乙另外两发命中的环数与丙其中两发一样;(4)甲与丙只有一发环数相同;(5)每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几?24.一次象棋比赛共有10位选手参加,他们分别来自甲、乙、丙3个队.每人都与其余9人比赛一盘,每盘胜者得1分,负者得0分,平局各得0.5分.结果乙队平均得分为3.6分,丙队平均得分为9分,那么甲队平均得多少分?25.A、B、C、D、E这5支足球队进行循环赛,每两队之间比赛一场.每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,从高到低依次为D、A、E、B、C又已知5支球队当中只有A没输过,只有C没赢过,而且B战胜了E.请问:战胜过C的球队有哪些?26.10名选手参加象棋比赛,每两名选手间都要比赛一次,已知胜一场得2分,平一场得1分,负一场不得分.比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分与后四名所得总分相等,问:前六名的分数各为多少?27.现有A、B、C共3支足球队举行单循环比赛,即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分,平一场积1分,负一场积0分,表1是一张记有比赛详细情况表格,但是,经过核对,发现表中恰好有4个数字是错误的,请你把正确的结果填入表2中.28.9个小朋友从前到后站成一列.现在将红黄蓝三种颜色的帽子各三顶分别戴在这些小朋友的头上.每个小朋友都只能看到站在他前面的小朋友帽子的颜色.后来统计了一下,发现他们看到的红颜色帽子的总次数等于他们看到的黄颜色帽子的总次数,也等于他们看到的蓝颜色帽子的总次数.已知从前往后数第三个小朋友戴着红帽子,第六个小朋友戴着黄帽子,请问:最后一个小朋友戴着什么颜色的帽子?29.有A、B、C三支球队进行比赛,每一轮比赛三个队之间各赛一场.每队胜一场得2分,平一场得1分,负一场不得分.如果三支球队共比赛了7轮,最后A胜的场数最多,B输的场数最少,C的得分最高<这些都没有并列).请问:A得了多少分?30.阿奇和8个好朋友去李老师家玩,李老师给每人发了一顶帽子,并在每个人的帽子上写了一个两位数,这9个两位数互不相同,且每个小朋友只能看见别人帽子上的数.李老师在纸上写了一个自然数A,问这9位同学:“你们知道自己帽子上的数能否被A整除吗?知道的请举手,”结果有4人举手.李老师又问:“现在你们知道自己帽子上的数能否被24整除吗?知道的请举手.”结果有6人举手.已知阿奇两次都举手了,并且这9位同学都足够聪明且从不说谎.请问:除了阿奇之外的人帽子上8个两位数的总和是多少?2014年六年级数学思维训练:逻辑推理二参考答案与试题解析一、兴趣篇1.甲、乙两队进行象棋对抗赛,甲队的三人是张、王、李,乙队的三人是赵、钱、孙,按照以往的比赛成绩看,张能胜钱,钱能胜李,李能胜孙,但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?2.甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?3.甲、乙、丙三名选手参加马拉松比赛,起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)4.有10名选手参加乒乓球单打比赛,每名选手都要和其它选手各赛一场,而且每场比赛都分出胜负,请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?×)5.6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分,请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局,那么各队总分之和是多少?6.红、黄、蓝三支乒乓球队进行比赛,每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次,按照获胜场数进行排名,并按照排名获得一定的分数,第一名得9分,第二名得8分,…,第九名得1分;除产生个人名次外,每个队伍还会计算各自队员的得分总和,按团体总分的高低评出团体名次.最后,比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员,第二名是一位蓝队队员,相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队,总分16分;第二名是红队,第三名是蓝队.请问:红队队员分别得了多少分?7.5支球队进行单循环赛,每两队之间比赛一场,每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,第三名得了7分,并且和第一名打平.请问:这5支球队的得分,从高到低依次是多少?8.有A、B、C三支足球队,每两队比赛一场,比赛结果为:A:两胜,共失2球;B:进4球,失5球;C:有一场踢平,进2球,失8球.则A与B两队间的比分是多少?9.一次考试共有10道判断题,正确的画“√”,错误的画“×”,每道题10分,满分为100分.甲、乙、丙、丁4名同10.赵、钱、孙、李、周5户人家,每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸,而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?12.五行(火水木金土)相生相克,其中每一个元素都生一个,克一个,被一个生和被一个克,水克火是我们熟悉的,有一个俗语叫做“兵来将挡,水来土掩”,是说土能克水.另外,水能生木,火能生土.请把五行的相生相克关系画出来.13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C请问:第五天与A队比赛的是哪支队伍?14.A、B、C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队与另一队进行比赛,败队则休息一天,如此继续下去,最后结果是A队胜10场,B队胜12场,C队胜14场,则A队共打了几场比赛?15.甲、乙、丙、丁四名同学进行象棋比赛,每两人都比赛一场,规定胜者得2分,平局各得1分,输者得0分,请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁是最后一名,那么乙得了多少分?16.五支足球队进行循环赛,即每两个队之间都要赛一场,每场比赛胜者得2分,输者得0分,平局两队各得1分.比赛结果各队得分互不相同.已知:①第一名的队没有平过;②第二名的队没有输过;③第四名的队没有胜过,问:第一名至第五名各得多少分?全部比赛共打平过几场?17.4支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0 分,平局各得1分.比赛结果,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?18.甲、乙、丙、丁、戊五个同学的各科考试成绩如表,已知:①每门功课五个人的分数恰巧分别为l、2、3、4、5;②五个人的总分互不相同,且从高到低的顺序排列是:甲、乙、丙、丁、戊;19.一次足球赛,有A、B、C、D四个队参加,每两队都赛一场,按规则,胜一场得2分,平一场得1分,负一场得0分.比赛结束后,B队得5分,A队得1分.所有场次共进了9个球,B队进球最多,共进了4个球,C队共失了3个球,D队1个球也未进,A队与C队的比赛比分是2:3.问:A队与B队的比赛比分是多少?20.A、B、C、D四个足球队进行循环比赛.赛了若干场后,A、B、C三队的比赛情况如表:问:D赛了几场?D21.九个外表完全相同的小球,重量分别是1,2,…,9.为了加以区分,它们都被贴上了数字标签,可是有一天,不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量,得到如下结果:(1)①②>③④⑤⑥⑦;(2)③⑧=⑦,请问:⑨号小球的重量是多少?22.A、B、C、D、E五位同学分别从不同的途径打听到五年级数学竞赛获得第一名的那位同学的情况:A打听到的:姓李,是女同学,13岁,东城区;B打听到的:姓张,是男同学,11岁,海淀区;C打听到的:姓陈,是女同学,13岁,东城区;D打听到的:姓黄,是男同学,11岁,西城区;E打听到的:姓张,是男同学,12岁,东城区.’实际上第一名同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?三、超越篇23.在一次射击练习中,甲、乙、丙三位战士打了四发子弹,全部中靶,其中命中情况如下:(1)每人四发子弹命中的环数各不相同;(2)每人四发子弹命中的总环数均为17环;(3)乙有两发命中的环数分别与甲其中两发一样,乙另外两发命中的环数与丙其中两发一样;(4)甲与丙只有一发环数相同;(5)每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几?24.一次象棋比赛共有10位选手参加,他们分别来自甲、乙、丙3个队.每人都与其余9人比赛一盘,每盘胜者得1分,负者得0分,平局各得0.5分.结果乙队平均得分为3.6分,丙队平均得分为9分,那么甲队平均得多少分?25.A、B、C、D、E这5支足球队进行循环赛,每两队之间比赛一场.每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,从高到低依次为D、A、E、B、C又已知5支球队当中只有A没输过,只有C没赢过,而且B战胜了E.请问:战胜过C的球队有哪些?26.10名选手参加象棋比赛,每两名选手间都要比赛一次,已知胜一场得2分,平一场得1分,负一场不得分.比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分与后四名所得总分相等,问:前六名的分数各为多少?又后四名棋手相互之间要比赛×27.现有A、B、C共3支足球队举行单循环比赛,即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分,平一场积1分,负一场积0分,表1是一张记有比赛详细情况表格,但是,经过核对,发现表中恰好有4个数字是错误的,请你把正确的结果填入表2中.28.9个小朋友从前到后站成一列.现在将红黄蓝三种颜色的帽子各三顶分别戴在这些小朋友的头上.每个小朋友都只能看到站在他前面的小朋友帽子的颜色.后来统计了一下,发现他们看到的红颜色帽子的总次数等于他们看到的黄颜色帽子的总次数,也等于他们看到的蓝颜色帽子的总次数.已知从前往后数第三个小朋友戴着红帽子,第六个小朋友戴着黄帽子,请问:最后一个小朋友戴着什么颜色的帽子?29.有A、B、C三支球队进行比赛,每一轮比赛三个队之间各赛一场.每队胜一场得2分,平一场得1分,负一场不得分.如果三支球队共比赛了7轮,最后A胜的场数最多,B输的场数最少,C的得分最高<这些都没有并列).请问:A得了多少分?30.阿奇和8个好朋友去李老师家玩,李老师给每人发了一顶帽子,并在每个人的帽子上写了一个两位数,这9个两位数互不相同,且每个小朋友只能看见别人帽子上的数.李老师在纸上写了一个自然数A,问这9位同学:“你们知道自己帽子上的数能否被A整除吗?知道的请举手,”结果有4人举手.李老师又问:“现在你们知道自己帽子上的数能否被24整除吗?知道的请举手.”结果有6人举手.已知阿奇两次都举手了,并且这9位同学都足够聪明且从不说谎.请问:除了阿奇之外的人帽子上8个两位数的总和是多少?。
六年级奥数逻辑推理含答案
逻辑推理知识框架逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。
对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。
本讲我们主要从各个角度总结逻辑推理的解题方法。
一、 列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、 假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、 体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。
有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。
四、 计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.例题精讲一、列表推理法【例 1】 刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?【考点】逻辑推理 【难度】2星 【题型】解答【解析】 因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹.由第二盘看出,小红不是马辉的妹妹.将这些关系画在左下表中,由左下表可得右下表.李强马辉刘刚小丽小红小英××××李强马辉刘刚小丽小红小英×√×××××√√刘刚与小红、马辉与小英、李强与小丽分别是兄妹.【答案】刘刚与小红、马辉与小英、李强与小丽分别是兄妹【巩固】王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?【考点】逻辑推理【难度】2星【题型】解答【解析】为了能清楚地找到所给条件之间的关系,我们不妨运用列表法,列出下表,在表中“√”表示是,“×”表示不是,在任意一行或一列中,如果一格是“√”,可推出其它两格是“×”由⑴⑶可知张贝、李丽都不是跳伞运动员,可填出第一行,即王文是跳伞运动员;由⑶可知,李丽也不是田径运动员,可填出第三列,即李丽是游泳运动员,则张贝是田径运动员.【答案】王文是跳伞运动员,李丽是游泳运动员,张贝是田径运动员【例 2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【考点】逻辑推理【难度】2星【题型】解答【解析】这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系.三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表.我们先将题目条件中所给出的关系用下面的表来表示,由条件⑴得到表1,由条件⑵、⑶得到表2,由条件⑷得到表3.因为各表中,每行每列只能有一个“√”,所以表2可填全为表5.由表5知农民在北京工作,又知席辉不是农民,所以席辉不在北京工作,可以将表1可填全完为表4由表4和表5知得到:张明住在上海,是工人;席辉住在天津,是教师;李刚住在北京,是农民.方法二:由题目条件可知:席辉不在上海工作,而在上海工作的是工人,所以席辉不是工人,又不是农民,那么席辉只能是教师,不在北京工作,就只能是在天津工作,那么张明在上海工作,是工人。
2014年六年级数学思维训练:逻辑推理二讲解
2014年六年级数学思维训练:逻辑推理二一、兴趣篇1.甲、乙两队进行象棋对抗赛,甲队的三人是张、王、李,乙队的三人是赵、钱、孙,按照以往的比赛成绩看,张能胜钱,钱能胜李,李能胜孙,但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?2.甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?3.甲、乙、丙三名选手参加马拉松比赛,起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)4.有10名选手参加乒乓球单打比赛,每名选手都要和其它选手各赛一场,而且每场比赛都分出胜负,请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?5.6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分,请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局,那么各队总分之和是多少?6.红、黄、蓝三支乒乓球队进行比赛,每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次,按照获胜场数进行排名,并按照排名获得一定的分数,第一名得9分,第二名得8分,…,第九名得1分;除产生个人名次外,每个队伍还会计算各自队员的得分总和,按团体总分的高低评出团体名次.最后,比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员,第二名是一位蓝队队员,相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队,总分16分;第二名是红队,第三名是蓝队.请问:红队队员分别得了多少分?7.5支球队进行单循环赛,每两队之间比赛一场,每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,第三名得了7分,并且和第一名打平.请问:这5支球队的得分,从高到低依次是多少?8.有A、B、C三支足球队,每两队比赛一场,比赛结果为:A:两胜,共失2球;B:进4球,失5球;C:有一场踢平,进2球,失8球.则A与B两队间的比分是多少?9.一次考试共有10道判断题,正确的画“√”,错误的画“×”,每道题10分,满分为100分.甲、知赵、钱、孙、李分别订了其中的2、2、4、3种报纸,而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?12.五行(火水木金土)相生相克,其中每一个元素都生一个,克一个,被一个生和被一个克,水克火是我们熟悉的,有一个俗语叫做“兵来将挡,水来土掩”,是说土能克水.另外,水能生木,火能生土.请把五行的相生相克关系画出来.13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C请问:第五天与A队比赛的是哪支队伍?14.A、B、C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队与另一队进行比赛,败队则休息一天,如此继续下去,最后结果是A队胜10场,B队胜12场,C队胜14场,则A队共打了几场比赛?15.甲、乙、丙、丁四名同学进行象棋比赛,每两人都比赛一场,规定胜者得2分,平局各得1分,输者得0分,请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁是最后一名,那么乙得了多少分?16.五支足球队进行循环赛,即每两个队之间都要赛一场,每场比赛胜者得2分,输者得0分,平局两队各得1分.比赛结果各队得分互不相同.已知:①第一名的队没有平过;②第二名的队没有输过;③第四名的队没有胜过,问:第一名至第五名各得多少分?全部比赛共打平过几场?17.4支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0 分,平局各得1分.比赛结果,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?18.甲、乙、丙、丁、戊五个同学的各科考试成绩如表,已知:①每门功课五个人的分数恰巧分别为l、2、3、4、5;②五个人的总分互不相同,且从高到低的顺序排列是:甲、乙、丙、丁、戊;2分,平一场得1分,负一场得0分.比赛结束后,B队得5分,A队得1分.所有场次共进了9个球,B队进球最多,共进了4个球,C队共失了3个球,D队1个球也未进,A队与C队的比赛比分是2:3.问:A队与B队的比赛比分是多少?20.A、B、C、D四个足球队进行循环比赛.赛了若干场后,A、B、C三队的比赛情况如表:问:D赛了几场?D赛的几场的比分各是多少?21.九个外表完全相同的小球,重量分别是1,2,…,9.为了加以区分,它们都被贴上了数字标签,可是有一天,不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量,得到如下结果:(1)①②>③④⑤⑥⑦;(2)③⑧=⑦,请问:⑨号小球的重量是多少?22.A、B、C、D、E五位同学分别从不同的途径打听到五年级数学竞赛获得第一名的那位同学的情况:A打听到的:姓李,是女同学,13岁,东城区;B打听到的:姓张,是男同学,11岁,海淀区;C打听到的:姓陈,是女同学,13岁,东城区;D打听到的:姓黄,是男同学,11岁,西城区;E打听到的:姓张,是男同学,12岁,东城区.’实际上第一名同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?三、超越篇23.在一次射击练习中,甲、乙、丙三位战士打了四发子弹,全部中靶,其中命中情况如下:(1)每人四发子弹命中的环数各不相同;(2)每人四发子弹命中的总环数均为17环;(3)乙有两发命中的环数分别与甲其中两发一样,乙另外两发命中的环数与丙其中两发一样;(4)甲与丙只有一发环数相同;(5)每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几?24.一次象棋比赛共有10位选手参加,他们分别来自甲、乙、丙3个队.每人都与其余9人比赛一盘,每盘胜者得1分,负者得0分,平局各得0.5分.结果乙队平均得分为3.6分,丙队平均得分为9分,那么甲队平均得多少分?25.A、B、C、D、E这5支足球队进行循环赛,每两队之间比赛一场.每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,从高到低依次为D、A、E、B、C又已知5支球队当中只有A没输过,只有C没赢过,而且B战胜了E.请问:战胜过C的球队有哪些?26.10名选手参加象棋比赛,每两名选手间都要比赛一次,已知胜一场得2分,平一场得1分,负一场不得分.比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分与后四名所得总分相等,问:前六名的分数各为多少?27.现有A、B、C共3支足球队举行单循环比赛,即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分,平一场积1分,负一场积0分,表1是一张记有比赛详细情况表格,但是,经过核对,发现表中恰好有4个数字是错误的,请你把正确的结果填入表2中.友的头上.每个小朋友都只能看到站在他前面的小朋友帽子的颜色.后来统计了一下,发现他们看到的红颜色帽子的总次数等于他们看到的黄颜色帽子的总次数,也等于他们看到的蓝颜色帽子的总次数.已知从前往后数第三个小朋友戴着红帽子,第六个小朋友戴着黄帽子,请问:最后一个小朋友戴着什么颜色的帽子?29.有A、B、C三支球队进行比赛,每一轮比赛三个队之间各赛一场.每队胜一场得2分,平一场得1分,负一场不得分.如果三支球队共比赛了7轮,最后A胜的场数最多,B输的场数最少,C的得分最高<这些都没有并列).请问:A得了多少分?30.阿奇和8个好朋友去李老师家玩,李老师给每人发了一顶帽子,并在每个人的帽子上写了一个两位数,这9个两位数互不相同,且每个小朋友只能看见别人帽子上的数.李老师在纸上写了一个自然数A,问这9位同学:“你们知道自己帽子上的数能否被A整除吗?知道的请举手,”结果有4人举手.李老师又问:“现在你们知道自己帽子上的数能否被24整除吗?知道的请举手.”结果有6人举手.已知阿奇两次都举手了,并且这9位同学都足够聪明且从不说谎.请问:除了阿奇之外的人帽子上8个两位数的总和是多少?2014年六年级数学思维训练:逻辑推理二参考答案与试题解析一、兴趣篇1.甲、乙两队进行象棋对抗赛,甲队的三人是张、王、李,乙队的三人是赵、钱、孙,按照以往的比赛成绩看,张能胜钱,钱能胜李,李能胜孙,但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?【分析】张能胜钱,说明第一轮只会碰赵或者孙;钱能胜李,说明第一轮只会碰赵或者孙;钱能胜李,说明第一轮只会碰张,或者是王;而李能胜孙,说明第一轮只会碰赵或者钱;由于都没有碰到对手,说明钱只能对上王,遇张不行,故王与钱;而李由于只能碰赵或者钱,在钱有对手的情况下只能选赵,故李与赵,最后得出张与孙.【解答】解:根据上述分析可知:张能胜钱,说明第一轮只会碰赵或者孙;钱能胜李,说明第一轮只会碰张,或者是王;李能胜孙,说明第一轮只会碰赵或者钱综上所述:第一轮比赛是张与孙,王与钱,李与赵答:第一轮比赛是张与孙,王与钱,李与赵.2.甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?【分析】这道题按照常规思路似乎不太好解决,我们画个图试试,用五个点分别表示参加比赛的五个人,如果某两人已经赛过,就用线段把代表这两个人的点连接起来,因为甲已经赛了4盘,除了甲以外还有4个点,所以甲与其他4个点都有线段相连(见下图),根据图即可做出解答.【解答】解:用五个点分别表示参加比赛的五个人,如果某两人已经赛过,就用线段把代表这两个人的点连接起来,因为甲已经赛了4盘,除了甲以外还有4个点,所以甲与其他4个点都有线段相连(见左下图),因为丁只赛了1盘,所以丁只与甲有线段相连,因为乙赛了3盘,除了丁以外,乙与其他三个点都有线段相连(见右上图),因为丙赛了2盘,右上图中丙已有两条线段相连,所以丙只与甲、乙赛过,由上页右图清楚地看出,小强赛过2盘,分别与甲、乙比赛,答:小强赛过2盘,分别与甲、乙比赛.3.甲、乙、丙三名选手参加马拉松比赛,起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)【分析】据题意可知,甲原为第一名(奇数),第一次位置交换后,甲成了第二名(偶数);第二次位置交换后,甲不是第二名,成了第一名或第三名(奇数);第三次位置变化后,不管之前甲处于第一名还是第三名,这次甲肯定又成了第二名(偶数),…;所以可以知道,当甲交换了奇数次位置时,甲一定是第二名;偶数次时,甲一定不在第二名.【解答】解:据题意可知,当甲与共交换了奇数次位置时,甲一定是第二名;偶数次时,甲一定不在第二名.所以甲共交换了7次位置时,7是奇数,则甲一定是在第二名.答:比赛的结果甲是第二名.4.有10名选手参加乒乓球单打比赛,每名选手都要和其它选手各赛一场,而且每场比赛都分出胜负,请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?【分析】(1)因为每一个选手都和其他选手进行一场比赛,属于单循环赛制中,参赛人数与比赛场数的关系为:比赛场数=×参赛人数×(人数﹣1),由此代入求得问题;【解答】解:(1)×10×(10﹣1)=45(场),答:一共要进行45场比赛.(2)45÷10=4(个)…5(场)(不相同,有余数.)答:这10名选手胜的场数不相同.(3)45可以分成1,2,3,4,5,6,7,8,9,0的数列(有五列,是整数,可以)答:这10名选手胜的场数可以两两不同.5.6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分,请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局,那么各队总分之和是多少?【分析】(1)6支足球队进行单循环比赛,即每两队之间都比赛一场,所以一个球队赛5场,加入五场全胜,则得分最多是:3×5=15分;有一个球队5场全负,得分最少是0分.(2)出现了6场平局,得12分,一共1赛15场,剩下9场就是输或者赢了,9×3=27分,那么总分就是:12+27=39分.【解答】解:(1)每支球队赛5场,全胜得分最多:5×3=15(分)最少得分就是全输得0分:答:各队总分之和最多是15分,最少是0分.(2)6×5÷2=15(场)6×2+(15﹣6)×3=12+27=39(分)答:那么各队总分之和是39分.6.红、黄、蓝三支乒乓球队进行比赛,每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次,按照获胜场数进行排名,并按照排名获得一定的分数,第一名得9分,第二名得8分,…,第九名得1分;除产生个人名次外,每个队伍还会计算各自队员的得分总和,按团体总分的高低评出团体名次.最后,比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员,第二名是一位蓝队队员,相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队,总分16分;第二名是红队,第三名是蓝队.请问:红队队员分别得了多少分?【分析】首先总分是45分,黄队16分,红蓝共29分,又团队第一的是黄队且比赛结果没有并列名次,故只能是红队15分,蓝队14分.第一名是一位黄队队员有9分,第二名是一位蓝队队员有8分,即黄队另两名队员共有7分,蓝队另两名队员共有6分,又每名队员至少1分故第三名是一位红队队员有7分,即红队另两名队员共有8分..又相邻的名次的队员都不在同一个队故第四名的得6分的队员是黄队,此时黄队最后一名队员1分.故得5分的不是蓝队队员,不然蓝队又有一名队员1分矛盾.故得5分为红队队员,此时红队有一名是3分.故剩下的蓝队为4分和2分,刚好共6分.故得分情况如下:黄:9、6、1 蓝:8、4、2 红:7、5、3,据此解答即可.【解答】解:1.由于1到9名分数分别是9到1分,那么总共9人总分就是45分2.由于团队第一名16分,第二名只能是小于等于15,第三名小于等于14.而总分是45.所以第二,第三只能分别是15分,14分.(因为16+15+14=45,没有其他组合等于45分)因此第二名红对共得15分.3.由于单打前两名分别由黄队和蓝队的队员获得.因此红对个人得分最多的一个小于等于7分.又因为相邻名次没有同队的人员,所以红对的三人得分可能是7,5,3或者7,4,2等几种(没有列全).但是红队总分能达到15分的组合只有7+5+3=15.所以红对队员分别得了7,5,3分.答:红队队员分别得了7,5,3分.7.5支球队进行单循环赛,每两队之间比赛一场,每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,第三名得了7分,并且和第一名打平.请问:这5支球队的得分,从高到低依次是多少?【分析】由于5支足球队进行单循环赛,每两队之间进行一场比赛,则每一队都要和其它四队赛一场,即每支球队进行了4场比赛,全胜得12分,第三名得了7分,并且和第一名打平得一分,那么另三场只能是两胜一负,因各队得分都不相同,第一名平一场,如平再负一场就和第三名得分一样,如果再平一场就得8分,这都不符合题意,所以剩下三场只能胜,积3×3+1=10分,也就是胜2、4、5名,第二名只能是三胜一负,积3×3+0=9分.也就是胜3、4、5名;第三名胜4、5,负2,平1;第四名为负1、2、3,第五名也负1、2、3又因各队比分不同则4胜5积3分,第五名全负,积0分.【解答】解:由题意可知,每支球队进行了4场比赛,第三名得了7分,并且和第一名打平,那么另三场只能是两胜一负;因各队得分都不相同,第一名平一场,另三场只能胜,积3×3+1=10分,也就是胜2、4、5名;第二名只能是三胜一负,积3×3+0=9分.也就是胜3、4、5;第三名胜4、5,负2,平1;第四名为负1、2、3,第五名也负1、2、3名;又因各队比分不同则4胜5积3分,则第五名全负,积0分;即:第一名:10分,第二名:9分,第三名:7分,第四名:3分,第五名:0分.答:第一名:10分,第二名:9分,第三名:7分,第四名:3分,第五名:0分.8.有A、B、C三支足球队,每两队比赛一场,比赛结果为:A:两胜,共失2球;B:进4球,失5球;C:有一场踢平,进2球,失8球.则A与B两队间的比分是多少?【分析】A两战两胜,C有一场平说明比赛胜负情况如下:A胜B A胜C B平C;而B C 的比分:0:0 这种情况不存在因为A共失球两个而B C共进球6个1:1 同上2:2 适合条件B另外两个球攻入A的球门3:3 不存在C共进球两个所以得出B:C 为2:2则C另外6个失球失给A,B剩下两个进球,3个失球是跟A比赛的时候故可得出结论:A胜B 3比2A胜C 6比0B平C 2比2【解答】解:总进球=总失球A进球+4+2=2+5+8A进球=9A全胜那么B与C打平又因为B比C多进2球那么B对A进的球比C对A进的球多2个又因为A只失2球那么B对A进2球C对A进0球那么B:C=2:2那么A:B=3;2答:A与B两队间的比分是3:2.9.一次考试共有10道判断题,正确的画“√”,错误的画“×”,每道题10分,满分为100分.甲、为每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道;由此可知第1、4、6、9题的答案分别是×、√、×、√;又丙的1、4、6、9题的答案分别是√、×、√、×;所以丙的这四道题答错,又丙得60分,所以丙的其他题目全部答对,即2,3,5,7,8,10的答案分别是×,×、√、√、×、×.由此可知,这10道题的答案分别是:据此即能得出丁得多少分.【解答】解:由于A、B有1、4、6、9这四道题答案相同,6道题答案不同.且每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道;由此可知第1、4、6、9题的答案分别是×、√、×、√;由于丙的1、4、6、9题的答案分别是√、×、√、×;所以丙的这四道题答错,又丙得60分,所以丙的其他题目全部答对,即2,3,5,7,8,10的答案分别是×,×、√、√、×、×.这10道题的答案分别是:所以丁的只的2题,扣10分,得90分.故答案为:90.10.赵、钱、孙、李、周5户人家,每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸,而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?【分析】通过分析可知:赵钱孙李一共订了:2+2+4+3=11份A,B,C,D一共订了:1+2+2+2=7份根据题意,周至少订了1份5人一共最少订了11+1=12份那么订E的就有12﹣7=5户如果周订的不止1份,假设周至少订了2份那么5人订报总数至少为11+2=13份那么订E的至少有:13﹣7=6户,这与一共有5户矛盾所以周只能订1种,订E的有5户【解答】解:赵钱孙李订的份数:2+2+4+3=11份A,B,C,D订的份数:1+2+2+2=7份根据题意可知周至少订了1份所以5人一共最少订了11+1=12份那么订E的就有12﹣7=5户如果周订的不止1份,假设周至少订了2份那么5人订报总数至少为11+2=13份那么订E的至少有:13﹣7=6户,这与一共有5户矛盾所以周只能订1种,订E的有5户答:周姓订户订有这5种报纸中的1种,报纸E在这5户人家中有5家订户.二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?【分析】从5号队员开始讨论,他和另外5个队员各赛了1场,由此得出1号只跟5号赛了1场,由此类推即可得出结果.【解答】解:因为是每2个人都要赛1盘,所以可以这样推理:①5号赛了5场,说明他与1,2,3,4,6,各赛了1场;②1号赛1场,那么1号只跟5号赛了1场;③4号赛了4场,除了跟5号赛1场,另外3场是跟2,3,6号;④那么2号此时分别和5号、4号已赛了2场;④3号赛了3场,除了和4号,5号之外,又和6号赛了1场.将上述推理过程用图表示为:答:此时6号已经赛了3场.12.五行(火水木金土)相生相克,其中每一个元素都生一个,克一个,被一个生和被一个克,水克火是我们熟悉的,有一个俗语叫做“兵来将挡,水来土掩”,是说土能克水.另外,水能生木,火能生土.请把五行的相生相克关系画出来.【分析】五行有‘五行相生’和‘五行相克’,‘五行相生’是互相生旺的意思,表示生成化育,‘五行相克’就是互相反驳、互相战斗、制衡.五行相生:水生木→木生火→火生土→土生金→金生水五行相克:木克土→土克水→水克火→火克金→金克木据此解答即可.【解答】解:根据五行相生:水生木→木生火→火生土→土生金→金生水五行相克:木克土→土克水→水克火→火克金→金克木得出图为:13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C请问:第五天与A队比赛的是哪支队伍?【分析】因“A、B、C、D、E、F六个国家的足球队单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛”,根据已经进行的比赛场次进行推理,据此解答即可.【解答】解:第二天A不能对B,否则A对B、D对F与第三天D对F矛盾,所以应当B 对F、A对D.第三天A也不能对B,否则C对E与第二天C对E矛盾,应当B对E(不能B对C,与第四天矛盾),A对C.第四天B对C,D对E,A对F,所以第五天A对B.答:第五天与A队比赛的是B支队伍.14.A、B、C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队与另一队进行比赛,败队则休息一天,如此继续下去,最后结果是A队胜10场,B队胜12场,C队胜14场,则A队共打了几场比赛?【分析】根据题意,扣除A、B、C分别赢的场次,得出A、B、C各打了几场,即可得出A 总共打了几场.【解答】解:由A队先取得10连胜,这样BC队就各输5场再由B队取得12连胜,这样AC队就各输6场最后C队取得14连胜,这样AB队就各输7场从A来看,每负一场就休息了一场,总共有10+12+14=36场比赛,A胜了10场,剩下26场是负和休息,那么A负了13场,休息了13场,赛了10+13=23场.同理,B胜了12场,剩下24场是负和休息,那么B负了12场,休息了12场,赛了12+12=24场.C胜了14场,剩下22场是负和休息,那么C负了11场,休息了11场,赛了14+11=25场.答:则A队共打了23场比赛.15.甲、乙、丙、丁四名同学进行象棋比赛,每两人都比赛一场,规定胜者得2分,平局各得1分,输者得0分,请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁是最后一名,那么乙得了多少分?【分析】(1)四名同学总共打的场数是:4×3÷2=6场;(2)四个人最后比赛结果是平局或者胜局,所以一场会得2分,得分为:2×6=12分;(3)我们对乙丙假设进行求解,假设乙丙两胜;假设乙丙一胜一平.看看哪种情况符合题意,进而解决问题.【解答】解:(1)4×3÷2=6(场)答:一共有6场比赛.(2)6×2=12(分)答:四个人最后得分的总和是12分.(3)②不可能三胜,如果三胜肯定得第一,而不是第二名.②假设乙丙两胜,甲则三胜或两胜一平,如果甲三胜,则共有7场胜,总共才6场比赛,不可能.如果甲两胜一平,则乙丙两胜一负,现在总共有6胜,所以总共应该6负则所有比赛都是胜﹣负,没平﹣平,矛盾.所以乙丙两胜也不可能.③假设乙丙一胜一平,正好可以,乙得3分.④其它情况均不成立.答:乙得了3分.16.五支足球队进行循环赛,即每两个队之间都要赛一场,每场比赛胜者得2分,输者得0分,平局两队各得1分.比赛结果各队得分互不相同.已知:①第一名的队没有平过;②第二名的队没有输过;③第四名的队没有胜过,问:第一名至第五名各得多少分?全部比赛共打平过几场?【分析】五个足球队进行循环赛,一共进行5×(5﹣1)=20场,第一名没有平,那就是胜或负;第二名没有负过,就是胜或平;第四名没有胜过,那就是平或负;并且各队得分不同,据此写出合理的比赛结果即可解答.假设第1.2.3.4.5名分别是A.B.C.D.E,结果为:A:负B,赢CDE,得6分;B:赢A,平CDE,得5分;C:负A,平BD,赢E,得4分;D:负A,平BCE,得3分;E:负AC,平BD,得2分;综上,打平的比赛有BC,BD,BE,CD,DE,共5场.【解答】解:由分析得出:。
六年级奥数逻辑推理含答案
逻辑推理知识框架逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。
对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。
本讲我们主要从各个角度总结逻辑推理的解题方法。
一、 列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、 假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、 体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。
有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。
四、 计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.例题精讲一、列表推理法【例 1】 刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?【考点】逻辑推理 【难度】2星 【题型】解答【解析】 因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹.由第二盘看出,小红不是马辉的妹妹.将这些关系画在左下表中,由左下表可得右下表.李强马辉刘刚小丽小红小英××××李强马辉刘刚小丽小红小英×√×××××√√刘刚与小红、马辉与小英、李强与小丽分别是兄妹.【答案】刘刚与小红、马辉与小英、李强与小丽分别是兄妹【巩固】王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?【考点】逻辑推理【难度】2星【题型】解答【解析】为了能清楚地找到所给条件之间的关系,我们不妨运用列表法,列出下表,在表中“√”表示是,“×”表示不是,在任意一行或一列中,如果一格是“√”,可推出其它两格是“×”由⑴⑶可知张贝、李丽都不是跳伞运动员,可填出第一行,即王文是跳伞运动员;由⑶可知,李丽也不是田径运动员,可填出第三列,即李丽是游泳运动员,则张贝是田径运动员.【答案】王文是跳伞运动员,李丽是游泳运动员,张贝是田径运动员【例 2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【考点】逻辑推理【难度】2星【题型】解答【解析】这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系.三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表.我们先将题目条件中所给出的关系用下面的表来表示,由条件⑴得到表1,由条件⑵、⑶得到表2,由条件⑷得到表3.因为各表中,每行每列只能有一个“√”,所以表2可填全为表5.由表5知农民在北京工作,又知席辉不是农民,所以席辉不在北京工作,可以将表1可填全完为表4由表4和表5知得到:张明住在上海,是工人;席辉住在天津,是教师;李刚住在北京,是农民.方法二:由题目条件可知:席辉不在上海工作,而在上海工作的是工人,所以席辉不是工人,又不是农民,那么席辉只能是教师,不在北京工作,就只能是在天津工作,那么张明在上海工作,是工人。
六年级数学竞赛上册奥数高思第7讲逻辑推理二(彩色)(20200403195539)
六年级上册第7讲7逻辑推理二48身体健康逻辑推理二课本这一讲我们学习的主要内容是与比赛有关的逻辑推理问题.这些问题有各种不同的形式:有分析对阵情况的,有计算各队积分的,有利用积分排名的,甚至还有讨论进球数、失球数的.不同类型的问题我们应该用不同的方法来处理.在逻辑推理中,特别有用的方法是画示意图或表格,这种方法相信大家并不陌生,用它来分析比赛问题,能够让我们对比赛的情况更为直观明了.例题1编号为1、2、3、4、5、6的六名同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号一样,那么编号为6的同学赛了几盘?分析为了让问题更加直观,我们可以画出一个示意图,用6个点来表示这6个同学.如果两个同学之间比赛过,则把对应的两个点用实线连起来,如果没比赛过,则用虚线连起来.练习1.A、B、C 三所小学,每所小学派出2支足球队,共6支足球队进行友谊比赛.同一所学校的两队之间不比赛,不同学校的每2个队间只比赛1场,比赛进行了若干天后,A 校的甲队队长发现另外5支球队赛过的场数各不相同.问:这时候 A 校甲队与 A 校乙队哪个队已赛过的场数多?例题2A、B、C、D、E、F 六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B 对D,第二天 C 对E,第三天 D 对F,第四天 B 对C.那么第五天与A 队比赛的是哪个队?分析题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示.如图,第二列从上到下依次表示 A 在5天中分别遇到的对手,第三列表示B 在5天中遇到的对手,依此类推.观察表格,这个表格的每行有几个字母?49身体健康六年级上册第7讲每列有几个字母?每行、每列的字母有什么特点?A B C D E F1 D B2 E C3 F D4 C B5练习2.五个国家足球队A、B、C、D、E 进行单循环比赛,每天进行两场比赛,一队轮空.已知第一天比赛的是 A 与D,C 轮空;第二天 A 与B 比赛,E 轮空;第三天 A 与E 比赛;第四天A 与C 比赛;B 与C 的比赛在与D 的比赛之前进行.那么 C 与E 在哪一天比赛?前两个例题,我们讨论的是比赛场数与对阵情况,接下来要讨论的问题是比赛中的积分情况.例题3甲、乙、丙、丁四个同学进行象棋比赛,每两人都比赛一场,比赛规定:胜者得2分,平局各得1分,输者得0分.请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁最后一名,那么乙得了多少分?分析(1)每两人之间都比赛一场,总比赛场数就是从四个人中挑出两人的方法数;(2)比赛的胜负情况有很多种可能,那么总分也有很多种可能吗?大家考虑一下每场比赛双方的得分之和就知道了;(3)乙、丙最后的分数一样,由于总分是固定的,这个相同的分数既不能太大,也不能太小,那么会是多少呢?50身体健康逻辑推理二课本练习3.有A、B、C、D 四支足球队进行单循环比赛,每两队都比赛一场.比赛规定:胜一场得2分,平局各得1分,负一场得0分.全部比赛结束后,A、B 两队的总分并列第一名,C 队第二名,D 队第三名, C 队最多得多少分?淘汰赛与循环赛淘汰赛:赛程相对较短,可以容纳较多的队参加.淘汰赛中,每进行一轮比赛都要淘汰一些队,在比赛中失败的队要退出比赛,再无参与比赛的机会,胜利者之间将继续进行比赛,并由获得最后胜利的队伍赢得冠军.在淘汰赛中,每个队只能与部分队进行比赛.由于各队所遇到对手的强弱不同,加之淘汰赛一场定胜负的方法使比赛产生的名次有一定的偶然性.循环赛:循环赛赛程较长,比赛中每一队轮流与其他队比赛一场(单循环)或两场(双循环),累计成绩最好的队为冠军.循环赛中每个队的对手强弱相同,因此对各参赛队最为公平,比赛名次能够较好的反映每个队的实际水平.两种赛制各有优劣,分别适用于不同情况.以足球为例,目前世界各国的足球联赛大部分采用双循环赛制,各洲杯赛一般都采用淘汰赛.而世界杯赛则采用两种赛制混合的方式,充分的扬长避短,即首先分若干小组进行循环赛,小组前几名出线后再通过淘汰赛角逐最终的冠军.例题44支足球队进行单循环比赛,即每两队之间都比赛一场. 每场比赛胜者得3分,负者得0分,平局各得1分. 比赛结束后,各队的总得分恰好是4个连续的自然数. 问:输给第一名的队的总分是多少?分析4支球队之间一共比赛了多少场?所有比赛的总分最多是多少,最少是多少?你能由此推断出各队的得分吗?练习4.甲、乙、丙、丁4个队举行足球单循环赛.规定:每场比赛胜者得3分,负者得0分,51身体健康六年级上册第7讲平局各得1分.已知:(1)比赛结束后4个队的得分都是奇数;(2)甲队总分超过其他各队,名列第一;(3)乙队恰有两场平局,并且其中一场是与丙队平局.那么丁队得了多少分?四国足球邀请赛荷兰阿姆斯特丹每年都要举办一场四国足球邀请赛,它的得分规则与我们平时所知不尽相同——胜、平、负仍分别得3、1、0分,但为了鼓励进攻,突出荷兰攻势足球的特点,同时也为了使比赛更富有激情,大赛规定每一个进球也能得1分.这样做确实提高了比赛的观赏性,因此不少人建议国际足联把现在的积分规则也改为阿姆斯特丹杯的积分规则,但每次都没有成功.这是为什么呢?提高比赛的观赏度难道不好吗?其实四国赛规则并不是无懈可击的,在这种情况下,很容易出现两队事先商量好放弃防守、一味进攻的情况.如果打出100:100的比分,那么两个队一场比赛就能得101分.进球数越是可观,由胜负决出的那三分就越可以忽略不计,甚至可能会出现三战全败的队获得总冠军的情况.(请你想一想,这种结果会在什么情况下出现?)设想一下,如果四国赛不是一场普通的邀请赛,而是一场举足轻重的大赛,那估计比赛早就会变成一个灌球大赛了!在本讲的最后,我们以两道综合较强的逻辑推理问题作结尾,一道注重极端分析,一道注重整体分析,这两种方法前的学习中已经有所涉及,这里再回顾一下,希望同学们能够重视,因为它们在各类组合问题(即逻辑推理、构造论证、最值问题等)中都是极其常用并且行之有效的方法.例题5有九个外表完全相同的小球,重量分别是1克,2克,…,9克.为了加以区分,它们都被贴上了数字标签.可是有一天,这些标签不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量,得到如下结果:(1)①②>③④⑤⑥⑦;(2)③⑧= ⑦.请问:⑨号小球的重量是多少?分析在条件(1)中,左边两个球竟比右边五个球还重!这两个球肯定比较重,会是怎样的两个球呢?再结合条件(2),你能知道⑨号小球有多重吗?52身体健康逻辑推理二课本练习5.有九个外表完全相同的小球,重量分别是1克,2克,…,9克.为了加以区分,它们都被贴上了数字标签.可是有一天,这些标签不知被哪个调皮鬼重新乱贴了一通.我们用天平做了三次称量,得到如下结果:(1)①>②③④;(2)⑤>⑥⑦;(3)⑧>⑨.请问:⑨号小球的重量是多少?例题6A、B、C、D、E 五位同学分别从不同的途径打听到五年级那位获得数学竞赛第一名的同学的情况:A 打听到的:姓李,是女同学,13岁,东城区;B 打听到的:姓张,是男同学,11岁,海淀区;C 打听到的:姓陈,是女同学,13岁,东城区;D 打听到的:姓黄,是男同学,1岁,西城区;E 打听到的:姓张,是男同学2岁,东城区.实际上该同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?分析每个同学打听到的消息都只有一项正确,可谓相当的少!5×4=20个判断,一共才5个正确的,其中关于姓氏、性别、年龄、地区的判断各有几项是正确的呢?练习6.某商品的编号是一个三位数.现有5个三位数:874、765、123、364、925,其中每一个数与商品编号恰好有一个数字完全对得上(即位置和大小都一样,例如912与925只有百位的9对得上).那么这个三位数是多少?53身体健康六年级上册第7讲思考题A、B、C、D 四个足球队进行循环比赛,赛了若干场后,A、B、C 三队的比赛情况如下:场数胜平负进球失球A 321020B 211043C 200236D问:D 赛了几场? D 所参与的各场比赛的比分分别是什么?本讲知识点汇总一、画图、列表分析方法在逻辑推理问题中的应用.二、与比赛积分有关的推理问两种常见的计分法:1. 2分制计分法:“每场比赛胜者得2分,负者得0分,平局各得1分”.这种情况下,每场比赛无论结果如何,双方总分都是2分,因此所有参赛选手的总分就等于“比赛场数×2”.2. 3分制计分法:“每场比赛胜者得3分,负者得0分,平局各得1分”.这种情况下,总分就是“胜负场数×3+ 平局场数×2”,或者写成“比赛场数×3-平局场数”.三、极端思想与整体思想在逻辑推理问题中的应用.作业1. A、B、C、D 四支球队进行足球比赛,每两队都要比赛一场.已知A、B、C 三队的成绩分别是: A 队二胜一负, B 队二胜一平, C 队一胜二负.那么 D 队的成绩是什么?54身体健康逻辑推理二课本2.6名同学进行象棋比赛,每两人都比赛一场,比赛规定胜者得2分,平局各得1分,输者得0分.请问:(1)一共有多少场比赛?(2)6个人最后得分的总和是多少?(3)得分最高的三名同学的分数之和最多是多少?3.六个人参加乒乓球比赛,每两人之间都要比赛一场,胜者得2分,负者得0分,没有平局.比赛结束时发现,有两人并列第二名,两人并列第五名.那么第一名和第四名各得了多少分?4.足球甲 A 联赛共有12个足球俱乐部参加,实行主客场双循环赛制,即任何两队分别在主场和客场各比赛一场,胜一得3分,平一场各得1分,负一场得0分,在联赛结束后按积分的高低排出名次.,在积分榜上第一名与第二名的积分差距最多可达多少分?5.有六个外表完全相同的小球,重量分别是1克,2克,……,6克.为了加以区分,它们都被贴上了数字标签.可是有一天,不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量,得到如下结果:(1)①②>③④⑤⑥;(2)③④⑤= ②.请问:①号小球的重量是多少克?55身体健康。
六年级数学思维训练逻辑推理二
2019年六年级数学思维训练:逻辑推理二一、兴趣篇1.甲、乙两队进行象棋对抗赛,甲队的三人是张、王、李,乙队的三人是赵、钱、孙,按照以往的比赛成绩看,张能胜钱,钱能胜李,李能胜孙,但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?2.甲、乙、丙、丁及小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘.问:小强已经赛了几盘?分别及谁赛过?3.甲、乙、丙三名选手参加马拉松比赛,起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)4.有10名选手参加乒乓球单打比赛,每名选手都要和其它选手各赛一场,而且每场比赛都分出胜负,请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?5.6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分,请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局,那么各队总分之和是多少?6.红、黄、蓝三支乒乓球队进行比赛,每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次,按照获胜场数进行排名,并按照排名获得一定的分数,第一名得9分,第二名得8分,…,第九名得1分;除产生个人名次外,每个队伍还会计算各自队员的得分总和,按团体总分的高低评出团体名次.最后,比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员,第二名是一位蓝队队员,相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队,总分16分;第二名是红队,第三名是蓝队.请问:红队队员分别得了多少分?7.5支球队进行单循环赛,每两队之间比赛一场,每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,第三名得了7分,并且和第一名打平.请问:这5支球队的得分,从高到低依次是多少?8.有A、B、C三支足球队,每两队比赛一场,比赛结果为:A:两胜,共失2球;B:进4球,失5球;C:有一场踢平,进2球,失8球.则A及B两队间的比分是多少?9.一次考试共有10道判断题,正确的画“√”,错误的画“×”,每道题10分,满分为100分.甲、乙、丙、丁4名同学的解答及甲、乙、丙3名同学得分如下表所示.丁应得_________ 分.题号学生12345678910得分甲××√√××√×√√70乙×√×√√××√√×70丙√×××√√√×××60丁×√×√√×√×√×10.赵、钱、孙、李、周5户人家,每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸,而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?12.五行(火水木金土)相生相克,其中每一个元素都生一个,克一个,被一个生和被一个克,水克火是我们熟悉的,有一个俗语叫做“兵来将挡,水来土掩”,是说土能克水.另外,水能生木,火能生土.请把五行的相生相克关系画出来.13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都及其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B对D,第二天C对E,第三天D对F,第四天B对C请问:第五天及A队比赛的是哪支队伍?14.A、B、C三个篮球队进行比赛,规定每天比赛一场,每场比赛结束后,第二天由胜队及另一队进行比赛,败队则休息一天,如此继续下去,最后结果是A队胜10场,B 队胜12场,C队胜14场,则A队共打了几场比赛?15.甲、乙、丙、丁四名同学进行象棋比赛,每两人都比赛一场,规定胜者得2分,平局各得1分,输者得0分,请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁是最后一名,那么乙得了多少分?16.五支足球队进行循环赛,即每两个队之间都要赛一场,每场比赛胜者得2分,输者得0分,平局两队各得1分.比赛结果各队得分互不相同.已知:①第一名的队没有平过;②第二名的队没有输过;③第四名的队没有胜过,问:第一名至第五名各得多少分?全部比赛共打平过几场?17.4支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0 分,平局各得1分.比赛结果,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?18.甲、乙、丙、丁、戊五个同学的各科考试成绩如表,已知:①每门功课五个人的分数恰巧分别为l、2、3、4、5;②五个人的总分互不相同,且从高到低的顺序排列是:甲、乙、丙、丁、戊;③丙有四门功课的分数相同.请你把表格补充完整.语文数学英语音乐美术总分田24乙丙丁4戊3519.一次足球赛,有A、B、C、D四个队参加,每两队都赛一场,按规则,胜一场得2分,平一场得1分,负一场得0分.比赛结束后,B队得5分,A队得1分.所有场次共进了9个球,B队进球最多,共进了4个球,C队共失了3个球,D队1个球也未进,A队及C队的比赛比分是2:3.问:A队及B队的比赛比分是多少?20.A、B、C、D四个足球队进行循环比赛.赛了若干场后,A、B、C三队的比赛情况如表:问:D赛了几场?D赛的几场的比分各是多少?场数胜平负进球失球A 3 2 1 0 2 0B 2 11 0 4 3C 20 0 2 3 6D21.九个外表完全相同的小球,重量分别是1,2,…,9.为了加以区分,它们都被贴上了数字标签,可是有一天,不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量,得到如下结果:(1)①②>③④⑤⑥⑦;(2)③⑧=⑦,请问:⑨号小球的重量是多少?22.A、B、C、D、E五位同学分别从不同的途径打听到五年级数学竞赛获得第一名的那位同学的情况:A打听到的:姓李,是女同学,13岁,东城区;B打听到的:姓张,是男同学,11岁,海淀区;C打听到的:姓陈,是女同学,13岁,东城区;D打听到的:姓黄,是男同学,11岁,西城区;E打听到的:姓张,是男同学,12岁,东城区.’实际上第一名同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?三、超越篇23.在一次射击练习中,甲、乙、丙三位战士打了四发子弹,全部中靶,其中命中情况如下:(1)每人四发子弹命中的环数各不相同;(2)每人四发子弹命中的总环数均为17环;(3)乙有两发命中的环数分别及甲其中两发一样,乙另外两发命中的环数及丙其中两发一样;(4)甲及丙只有一发环数相同;(5)每人每发子弹的最好成绩不超过7环.问:甲及丙命中的相同环数是几?24.一次象棋比赛共有10位选手参加,他们分别来自甲、乙、丙3个队.每人都及其余9人比赛一盘,每盘胜者得1分,负者得0分,平局各得0.5分.结果乙队平均得分为3.6分,丙队平均得分为9分,那么甲队平均得多少分?25.A、B、C、D、E这5支足球队进行循环赛,每两队之间比赛一场.每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,从高到低依次为D、A、E、B、C又已知5支球队当中只有A没输过,只有C没赢过,而且B战胜了E.请问:战胜过C的球队有哪些?26.10名选手参加象棋比赛,每两名选手间都要比赛一次,已知胜一场得2分,平一场得1分,负一场不得分.比赛结果:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分及后四名所得总分相等,问:前六名的分数各为多少?27.现有A、B、C共3支足球队举行单循环比赛,即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分,平一场积1分,负一场积0分,表1是一张记有比赛详细情况表格,但是,经过核对,发现表中恰好有4个数字是错误的,请你把正确的结果填入表2中.表1场数胜负平进球失球积分A 22010 2 3B 21 1 0 3 6 2C 12 1 2 0 1 1表2场数胜负平进球失球积分A B C28.9个小朋友从前到后站成一列.现在将红黄蓝三种颜色的帽子各三顶分别戴在这些小朋友的头上.每个小朋友都只能看到站在他前面的小朋友帽子的颜色.后来统计了一下,发现他们看到的红颜色帽子的总次数等于他们看到的黄颜色帽子的总次数,也等于他们看到的蓝颜色帽子的总次数.已知从前往后数第三个小朋友戴着红帽子,第六个小朋友戴着黄帽子,请问:最后一个小朋友戴着什么颜色的帽子?29.有A、B、C三支球队进行比赛,每一轮比赛三个队之间各赛一场.每队胜一场得2分,平一场得1分,负一场不得分.如果三支球队共比赛了7轮,最后A胜的场数最多,B输的场数最少,C的得分最高<这些都没有并列).请问:A得了多少分?30.阿奇和8个好朋友去李老师家玩,李老师给每人发了一顶帽子,并在每个人的帽子上写了一个两位数,这9个两位数互不相同,且每个小朋友只能看见别人帽子上的数.李老师在纸上写了一个自然数A,问这9位同学:“你们知道自己帽子上的数能否被A 整除吗?知道的请举手,”结果有4人举手.李老师又问:“现在你们知道自己帽子上的数能否被24整除吗?知道的请举手.”结果有6人举手.已知阿奇两次都举手了,并且这9位同学都足够聪明且从不说谎.请问:除了阿奇之外的人帽子上8个两位数的总和是多少?2019年六年级数学思维训练:逻辑推理二参考答案及试题解析一、兴趣篇1.甲、乙两队进行象棋对抗赛,甲队的三人是张、王、李,乙队的三人是赵、钱、孙,按照以往的比赛成绩看,张能胜钱,钱能胜李,李能胜孙,但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?考点:逻辑推理.专题:逻辑推理问题.分析:张能胜钱,说明第一轮只会碰赵或者孙;钱能胜李,说明第一轮只会碰赵或者孙;钱能胜李,说明第一轮只会碰张,或者是王;而李能胜孙,说明第一轮只会碰赵或者钱;由于都没有碰到对手,说明钱只能对上王,遇张不行,故王及钱;而李由于只能碰赵或者钱,在钱有对手的情况下只能选赵,故李及赵,最后得出张及孙.解答:解:根据上述分析可知:张能胜钱,说明第一轮只会碰赵或者孙;钱能胜李,说明第一轮只会碰张,或者是王;李能胜孙,说明第一轮只会碰赵或者钱综上所述:第一轮比赛是张及孙,王及钱,李及赵答:第一轮比赛是张及孙,王及钱,李及赵.点评:本题考查逻辑推理:根据题意及其条件从假设入手,认真分析即可.2.甲、乙、丙、丁及小强五位同学一起比赛象棋,每两人都要比赛一盘.到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘.问:小强已经赛了几盘?分别及谁赛过?考点:最佳方法问题.分析:这道题按照常规思路似乎不太好解决,我们画个图试试,用五个点分别表示参加比赛的五个人,如果某两人已经赛过,就用线段把代表这两个人的点连接起来,因为甲已经赛了4盘,除了甲以外还有4个点,所以甲及其他4个点都有线段相连(见下图),根据图即可做出解答.解答:解:用五个点分别表示参加比赛的五个人,如果某两人已经赛过,就用线段把代表这两个人的点连接起来,因为甲已经赛了4盘,除了甲以外还有4个点,所以甲及其他4个点都有线段相连(见左下图),因为丁只赛了1盘,所以丁只及甲有线段相连,因为乙赛了3盘,除了丁以外,乙及其他三个点都有线段相连(见右上图),因为丙赛了2盘,右上图中丙已有两条线段相连,所以丙只及甲、乙赛过,由上页右图清楚地看出,小强赛过2盘,分别及甲、乙比赛,答:小强赛过2盘,分别及甲、乙比赛.点评:解答此题的关键是,运用图文结合的方法,将问题简单化.3.甲、乙、丙三名选手参加马拉松比赛,起跑后甲处在第一的位置,在整个比赛过程中,甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)考点:逻辑推理.专题:逻辑推理问题.分析:据题意可知,甲原为第一名(奇数),第一次位置交换后,甲成了第二名(偶数);第二次位置交换后,甲不是第二名,成了第一名或第三名(奇数);第三次位置变化后,不管之前甲处于第一名还是第三名,这次甲肯定又成了第二名(偶数),…;所以可以知道,当甲交换了奇数次位置时,甲一定是第二名;偶数次时,甲一定不在第二名.解答:解:据题意可知,当甲及共交换了奇数次位置时,甲一定是第二名;偶数次时,甲一定不在第二名.所以甲共交换了7次位置时,7是奇数,则甲一定是在第二名.答:比赛的结果甲是第二名.点评:完成本题的关键是通过分析题意得出交换次数的奇偶性及获得名次的奇偶性的关系.4.有10名选手参加乒乓球单打比赛,每名选手都要和其它选手各赛一场,而且每场比赛都分出胜负,请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?考点:逻辑推理.专题:逻辑推理问题.分析:(1)因为每一个选手都和其他选手进行一场比赛,属于单循环赛制中,参赛人数及比赛场数的关系为:比赛场数=×参赛人数×(人数﹣1),由此代入求得问题;解答:解:(1)×10×(10﹣1)=45(场),答:一共要进行45场比赛.(2)45÷10=4(个)…5(场)(不相同,有余数.)答:这10名选手胜的场数不相同.(3)45可以分成1,2,3,4,5,6,7,8,9,0的数列(有五列,是整数,可以)答:这10名选手胜的场数可以两两不同.点评:解答此题一定要理清是两两配对进行淘汰赛:2只能剩1;由此再据人数分情况探讨得出结论.在单循环赛制中,参赛人数及比赛场数的关系为:比赛场数=参赛人数×(参赛人数﹣1)÷2.5.6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分,请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局,那么各队总分之和是多少?考点:逻辑推理.专题:逻辑推理问题.分析:(1)6支足球队进行单循环比赛,即每两队之间都比赛一场,所以一个球队赛5场,加入五场全胜,则得分最多是:3×5=15分;有一个球队5场全负,得分最少是0分.(2)出现了6场平局,得12分,一共1赛15场,剩下9场就是输或者赢了,9×3=27分,那么总分就是:12+27=39分.解答:解:(1)每支球队赛5场,全胜得分最多:5×3=15(分)最少得分就是全输得0分:答:各队总分之和最多是15分,最少是0分.(2)6×5÷2=15(场)6×2+(15﹣6)×3=12+27=39(分)答:那么各队总分之和是39分.点评:此题应结合题意进行分析,分析过程中最好通过实践操作得出问题答案,并进行验证.6.红、黄、蓝三支乒乓球队进行比赛,每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次,按照获胜场数进行排名,并按照排名获得一定的分数,第一名得9分,第二名得8分,…,第九名得1分;除产生个人名次外,每个队伍还会计算各自队员的得分总和,按团体总分的高低评出团体名次.最后,比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员,第二名是一位蓝队队员,相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队,总分16分;第二名是红队,第三名是蓝队.请问:红队队员分别得了多少分?考点:逻辑推理.专题:逻辑推理问题.分析:首先总分是45分,黄队16分,红蓝共29分,又团队第一的是黄队且比赛结果没有并列名次,故只能是红队15分,蓝队14分.第一名是一位黄队队员有9分,第二名是一位蓝队队员有8分,即黄队另两名队员共有7分,蓝队另两名队员共有6分,又每名队员至少1分故第三名是一位红队队员有7分,即红队另两名队员共有8分..又相邻的名次的队员都不在同一个队故第四名的得6分的队员是黄队,此时黄队最后一名队员1分.故得5分的不是蓝队队员,不然蓝队又有一名队员1分矛盾.故得5分为红队队员,此时红队有一名是3分.故剩下的蓝队为4分和2分,刚好共6分.故得分情况如下:黄:9、6、1 蓝:8、4、2 红:7、5、3,据此解答即可.解答:解:1.由于1到9名分数分别是9到1分,那么总共9人总分就是45分2.由于团队第一名16分,第二名只能是小于等于15,第三名小于等于14.而总分是45.所以第二,第三只能分别是15分,14分.(因为16+15+14=45,没有其他组合等于45分)因此第二名红对共得15分.3.由于单打前两名分别由黄队和蓝队的队员获得.因此红对个人得分最多的一个小于等于7分.又因为相邻名次没有同队的人员,所以红对的三人得分可能是7,5,3或者7,4,2等几种(没有列全).但是红队总分能达到15分的组合只有7+5+3=15.所以红对队员分别得了7,5,3分.答:红队队员分别得了7,5,3分.点评:本题主要考查了学生根据题意分析推理的能力.7.5支球队进行单循环赛,每两队之间比赛一场,每场比赛胜者得3分,负者得0分,打平则双方各得1分,最后5支球队的积分各不相同,第三名得了7分,并且和第一名打平.请问:这5支球队的得分,从高到低依次是多少?考点:逻辑推理.专题:逻辑推理问题.分析:由于5支足球队进行单循环赛,每两队之间进行一场比赛,则每一队都要和其它四队赛一场,即每支球队进行了4场比赛,全胜得12分,第三名得了7分,并且和第一名打平得一分,那么另三场只能是两胜一负,因各队得分都不相同,第一名平一场,如平再负一场就和第三名得分一样,如果再平一场就得8分,这都不符合题意,所以剩下三场只能胜,积3×3+1=10分,也就是胜2、4、5名,第二名只能是三胜一负,积3×3+0=9分.也就是胜3、4、5名;第三名胜4、5,负2,平1;第四名为负1、2、3,第五名也负1、2、3又因各队比分不同则4胜5积3分,第五名全负,积0分.解答:解:由题意可知,每支球队进行了4场比赛,第三名得了7分,并且和第一名打平,那么另三场只能是两胜一负;因各队得分都不相同,第一名平一场,另三场只能胜,积3×3+1=10分,也就是胜2、4、5名;第二名只能是三胜一负,积3×3+0=9分.也就是胜3、4、5;第三名胜4、5,负2,平1;第四名为负1、2、3,第五名也负1、2、3名;又因各队比分不同则4胜5积3分,则第五名全负,积0分;即:第一名:10分,第二名:9分,第三名:7分,第四名:3分,第五名:0分.答:第一名:10分,第二名:9分,第三名:7分,第四名:3分,第五名:0分.点评:完成本题的关键是抓住“各队得分都不相同,第三名得了7分,并且和第一名打平”这两个条件,以此为突破口,根据赛制及得分之间的逻辑关系进行推理分析,得出结论.8.有A、B、C三支足球队,每两队比赛一场,比赛结果为:A:两胜,共失2球;B:进4球,失5球;C:有一场踢平,进2球,失8球.则A及B两队间的比分是多少?考点:逻辑推理.专题:逻辑推理问题.分析:A两战两胜,C有一场平说明比赛胜负情况如下:A胜B A胜C B平C;而B C 的比分:0:0 这种情况不存在因为A共失球两个而B C共进球6个1:1 同上2:2 适合条件 B另外两个球攻入A的球门3:3 不存在 C共进球两个所以得出B:C 为2:2则C另外6个失球失给A,B剩下两个进球,3个失球是跟A比赛的时候故可得出结论:A胜B 3比2A胜C 6比0B平C 2比2解答:解:总进球=总失球A进球+4+2=2+5+8A进球=9A全胜那么B及C打平又因为B比C多进2球那么B对A进的球比 C对A进的球多2个又因为A只失2球那么B对A进2球 C对A进0球那么B:C=2:2那么A:B=3;2答:A及B两队间的比分是3:2.点评:解答此题的关键是通过题意,结合比赛结果进行分析,进而得出结论.9.一次考试共有10道判断题,正确的画“√”,错误的画“×”,每道题10分,满分为100分.甲、乙、丙、丁4名同学的解答及甲、乙、丙3名同学得分如下表所示.丁应得90 分.题号学生12345678910得分甲××√√××√×√√70乙×√×√√××√√×70丙√×××√√√×××60丁×√×√√×√×√×考点:逻辑推理.专题:逻辑推理问题.分析:观察甲及乙的答案可知,A、B有1、4、6、9这四道题答案相同,6道题答案不同.因为每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道;由此可知第1、4、6、9题的答案分别是×、√、×、√;又丙的1、4、6、9题的答案分别是√、×、√、×;所以丙的这四道题答错,又丙得60分,所以丙的其他题目全部答对,即2,3,5,7,8,10的答案分别是×,×、√、√、×、×.由此可知,这10道题的答案分别是:据此即能得出丁得多少分.解答:解:由于A、B有1、4、6、9这四道题答案相同,6道题答案不同.且每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道;由此可知第1、4、6、9题的答案分别是×、√、×、√;由于丙的1、4、6、9题的答案分别是√、×、√、×;所以丙的这四道题答错,又丙得60分,所以丙的其他题目全部答对,即2,3,5,7,8,10的答案分别是×,×、√、√、×、×.这10道题的答案分别是:所以丁的只的2题,扣10分,得90分.故答案为:90.点评:此题解题的关键是认真审题,结合题意,通过看图进行分析,进而得出正确答案.10.赵、钱、孙、李、周5户人家,每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸,而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?考点:逻辑推理.专题:逻辑推理问题.分析:通过分析可知:赵钱孙李一共订了:2+2+4+3=11份A,B,C,D一共订了:1+2+2+2=7份根据题意,周至少订了1份5人一共最少订了11+1=12份那么订E的就有12﹣7=5户如果周订的不止1份,假设周至少订了2份那么5人订报总数至少为11+2=13份那么订E的至少有:13﹣7=6户,这及一共有5户矛盾所以周只能订1种,订E的有5户解答:解:赵钱孙李订的份数:2+2+4+3=11份A,B,C,D订的份数:1+2+2+2=7份根据题意可知周至少订了1份所以5人一共最少订了11+1=12份那么订E的就有12﹣7=5户如果周订的不止1份,假设周至少订了2份那么5人订报总数至少为11+2=13份那么订E的至少有:13﹣7=6户,这及一共有5户矛盾所以周只能订1种,订E的有5户答:周姓订户订有这5种报纸中的1种,报纸E在这5户人家中有5家订户.点评:此题应结合题意进行分析,分析过程中利用推理得出问题答案,并进行验证.二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?考点:逻辑推理.专题:逻辑推理问题.分析:从5号队员开始讨论,他和另外5个队员各赛了1场,由此得出1号只跟5号赛了1场,由此类推即可得出结果.解答:解:因为是每2个人都要赛1盘,所以可以这样推理:①5号赛了5场,说明他及1,2,3,4,6,各赛了1场;②1号赛1场,那么1号只跟5号赛了1场;③4号赛了4场,除了跟5号赛1场,另外3场是跟2,3,6号;④那么2号此时分别和5号、4号已赛了2场;④3号赛了3场,除了和4号,5号之外,又和6号赛了1场.将上述推理过程用图表示为:。
六年级数学竞赛上册奥数高思第7讲逻辑推理二(彩色)
六年级数学竞赛上册奥数高思第7讲逻辑推理二(彩色)上册第7讲逻辑推理二48逻辑推理二这一讲我们学习的主要内容是与比赛有关的逻辑推理问题.这些问题有各种不同的形式:有分析对阵情况的,有计算各队积分的,有利用积分排名的,甚至还有讨论进球数、失球数的.不同类型的问题我们应该用不同的方法来处理.在逻辑推理中,特别有用的方法是画示意图或表格,这种方法相信大家并不陌生,用它来分析比赛问题,能够让我们对比赛的情况更为直观明了.编号为1、2、3、4、5、6的六名同学进行围棋比赛,每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号一样,那么编号为6的同学赛了几盘?分析为了让问题更加直观,我们可以画出一个示意图,用6个点来表示这6个同学.如果两个同学之间比赛过,则把对应的两个点用实线连起来,如果没比赛过,则用虚线连起来.1.A、B、C 三所小学,每所小学派出2支足球队,共6支足球队进行友谊比赛.同一所学校的两队之间不比赛,不同学校的每2个队间只比赛1场,比赛进行了若干天后,A 校的甲队队长发现另外5支球队赛过的场数各不相同.问:这时候A 校甲队与A 校乙队哪个队已赛过的场数多?A、B、C、D、E、F 六个国家的足球队进行单循环比赛(即每队都与其他队赛一场),每天同时在3个场地各进行一场比赛,已知第一天B 对D,第二天C 对E,第三天D 对F,第四天B 对C.那么第五天与A 队比赛的是哪个队?分析题目的条件比较多,如何才能看清楚呢?我们可以用下面的表格来表示.如图,第二列从上到下依次表示A 在5天中分别遇到的对手,第三列表示B 在5天中遇到的对手,依此类推.观察表格,这个表格的每行有几个字母?49上册第7讲每列有几个字母?每行、每列的字母有什么特点?A B C D E F1 D B2 E C3 F D4 C B52.五个国家足球队A、B、C、D、E 进行单循环比赛,每天进行两场比赛,一队轮空.已知第一天比赛的是A 与D,C 轮空;第二天A 与B 比赛,E 轮空;第三天A 与E 比赛;第四天A 与C 比赛;B 与C 的比赛在与D 的比赛之前进行.那么C 与E 在哪一天比赛?前两个例题,我们讨论的是比赛场数与对阵情况,接下来要讨论的问题是比赛中的积分情况.甲、乙、丙、丁四个同学进行象棋比赛,每两人都比赛一场,比赛规定:胜者得2分,平局各得1分,输者得0分.请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一,乙、丙并列第二,丁最后一名,那么乙得了多少分?分析(1)每两人之间都比赛一场,总比赛场数就是从四个人中挑出两人的方法数;(2)比赛的胜负情况有很多种可能,那么总分也有很多种可能吗?大家考虑一下每场比赛双方的得分之和就知道了;(3)乙、丙最后的分数一样,由于总分是固定的,这个相同的分数既不能太大,也不能太小,那么会是多少呢?50逻辑推理二3.有A、B、C、D 四支足球队进行单循环比赛,每两队都比赛一场.比赛规定:胜一场得2分,平局各得1分,负一场得0分.全部比赛结束后,A、B 两队的总分并列第一名,C 队第二名,D 队第三名,C 队最多得多少分?淘汰赛与循环赛淘汰赛:赛程相对较短,可以容纳较多的队参加.淘汰赛中,每进行一轮比赛都要淘汰一些队,在比赛中失败的队要退出比赛,再无参与比赛的机会,胜利者之间将继续进行比赛,并由获得最后胜利的队伍赢得冠军.在淘汰赛中,每个队只能与部分队进行比赛.由于各队所遇到对手的强弱不同,加之淘汰赛一场定胜负的方法使比赛产生的名次有一定的偶然性.循环赛:循环赛赛程较长,比赛中每一队轮流与其他队比赛一场(单循环)或两场(双循环),累计成绩最好的队为冠军.循环赛中每个队的对手强弱相同,因此对各参赛队最为公平,比赛名次能够较好的反映每个队的实际水平.两种赛制各有优劣,分别适用于不同情况.以足球为例,目前世界各国的足球联赛大部分采用双循环赛制,各洲杯赛一般都采用淘汰赛.而世界杯赛则采用两种赛制混合的方式,充分的扬长避短,即首先分若干小组进行循环赛,小组前几名出线后再通过淘汰赛角逐最终的冠军.4支足球队进行单循环比赛,即每两队之间都比赛一场. 每场比赛胜者得3分,负者得0分,平局各得1分. 比赛结束后,各队的总得分恰好是4个连续的自然数. 问:输给第一名的队的总分是多少?分析4支球队之间一共比赛了多少场?所有比赛的总分最多是多少,最少是多少?你能由此推断出各队的得分吗?4.甲、乙、丙、丁4个队举行足球单循环赛.规定:每场比赛胜者得3分,负者得0分,51上册第7讲平局各得1分.已知:(1)比赛结束后4个队的得分都是奇数;(2)甲队总分超过其他各队,名列第一;(3)乙队恰有两场平局,并且其中一场是与丙队平局.那么丁队得了多少分?四国足球邀请赛荷兰阿姆斯特丹每年都要举办一场四国足球邀请赛,它的得分规则与我们平时所知不尽相同——胜、平、负仍分别得3、1、0分,但为了鼓励进攻,突出荷兰攻势足球的特点,同时也为了使比赛更富有激情,大赛规定每一个进球也能得1分.这样做确实提高了比赛的观赏性,因此不少人建议国际足联把现在的积分规则也改为阿姆斯特丹杯的积分规则,但每次都没有成功.这是为什么呢?提高比赛的观赏度难道不好吗?其实四国赛规则并不是无懈可击的,在这种情况下,很容易出现两队事先商量好放弃防守、一味进攻的情况.如果打出100:100的比分,那么两个队一场比赛就能得101分.进球数越是可观,由胜负决出的那三分就越可以忽略不计,甚至可能会出现三战全败的队获得总冠军的情况.(请你想一想,这种结果会在什么情况下出现?)设想一下,如果四国赛不是一场普通的邀请赛,而是一场举足轻重的大赛,那估计比赛早就会变成一个灌球大赛了!在本讲的最后,我们以两道综合较强的逻辑推理问题作结尾,一道注重极端分析,一道注重整体分析,这两种方法前的学习中已经有所涉及,这里再回顾一下,希望同学们能够重视,因为它们在各类组合问题(即逻辑推理、构造论证、最值问题等)中都是极其常用并且行之有效的方法.有九个外表完全相同的小球,重量分别是1克,2克,…,9克.为了加以区分,它们都被贴上了数字标签.可是有一天,这些标签不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量,得到如下结果:(1)①②>③④⑤⑥⑦;(2)③⑧= ⑦.请问:⑨号小球的重量是多少?分析在条件(1)中,左边两个球竟比右边五个球还重!这两个球肯定比较重,会是怎样的两个球呢?再结合条件(2),你能知道⑨号小球有多重吗?52逻辑推理二5.有九个外表完全相同的小球,重量分别是1克,2克,…,9克.为了加以区分,它们都被贴上了数字标签.可是有一天,这些标签不知被哪个调皮鬼重新乱贴了一通.我们用天平做了三次称量,得到如下结果:(1)①>②③④;(2)⑤>⑥⑦;(3)⑧>⑨.请问:⑨号小球的重量是多少?A、B、C、D、E 五位同学分别从不同的途径打听到五年级那位获得数学竞赛第一名的同学的情况:A 打听到的:姓李,是女同学,13岁,东城区;B 打听到的:姓张,是男同学,11岁,海淀区;C 打听到的:姓陈,是女同学,13岁,东城区;D 打听到的:姓黄,是男同学,1岁,西城区;E 打听到的:姓张,是男同学2岁,东城区.实际上该同学的情况在上面都出现过,而且这五位同学的消息都仅有一项正确,那么第一名的同学应该是哪个区的,今年多少岁呢?分析每个同学打听到的消息都只有一项正确,可谓相当的少!5×4=20个判断,一共才5个正确的,其中关于姓氏、性别、年龄、地区的判断各有几项是正确的呢?6.某商品的编号是一个三位数.现有5个三位数:874、765、123、364、925,其中每一个数与商品编号恰好有一个数字完全对得上(即位置和大小都一样,例如912与925只有百位的9对得上).那么这个三位数是多少?53上册第7讲思考题A、B、C、D 四个足球队进行循环比赛,赛了若干场后,A、B、C 三队的比赛情况如下:场数胜平负进球失球A 321020B 211043C 200236D问:D 赛了几场?D 所参与的各场比赛的比分分别是什么?一、画图、列表分析方法在逻辑推理问题中的应用.二、与比赛积分有关的推理问两种常见的计分法:1. 2分制计分法:“每场比赛胜者得2分,负者得0分,平局各得1分”.这种情况下,每场比赛无论结果如何,双方总分都是2分,因此所有参赛选手的总分就等于“比赛场数×2”.2. 3分制计分法:“每场比赛胜者得3分,负者得0分,平局各得1分”.这种情况下,总分就是“胜负场数×3+ 平局场数×2”,或者写成“比赛场数×3?平局场数”.三、极端思想与整体思想在逻辑推理问题中的应用.1. A、B、C、D 四支球队进行足球比赛,每两队都要比赛一场.已知A、B、C 三队的成绩分别是:A 队二胜一负,B 队二胜一平,C 队一胜二负.那么D 队的成绩是什么?54逻辑推理二2.6名同学进行象棋比赛,每两人都比赛一场,比赛规定胜者得2分,平局各得1分,输者得0分.请问:(1)一共有多少场比赛?(2)6个人最后得分的总和是多少?(3)得分最高的三名同学的分数之和最多是多少?3.六个人参加乒乓球比赛,每两人之间都要比赛一场,胜者得2分,负者得0分,没有平局.比赛结束时发现,有两人并列第二名,两人并列第五名.那么第一名和第四名各得了多少分?4.足球甲A 联赛共有12个足球俱乐部参加,实行主客场双循环赛制,即任何两队分别在主场和客场各比赛一场,胜一得3分,平一场各得1分,负一场得0分,在联赛结束后按积分的高低排出名次.,在积分榜上第一名与第二名的积分差距最多可达多少分?5.有六个外表完全相同的小球,重量分别是1克,2克,……,6克.为了加以区分,它们都被贴上了数字标签.可是有一天,不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量,得到如下结果:(1)①②>③④⑤⑥;(2)③④⑤= ②.请问:①号小球的重量是多少克?55。
小学六年级逻辑推理题解题技巧
小学六年级逻辑推理题解题技巧
小学六年级的孩子,大多数都接触过逻辑推理题,但要准确的解出此类题目却是比较困难的。
如何让小学六年级的孩子正确的解决逻辑推理题,特别是有一些较为复杂的题目,成为了六年级学生学习的重点。
本文将介绍六年级学生解决逻辑推理题的一些技巧,以期能够提高学生的逻辑思维能力,提高解决逻辑推理题的能力。
首先,六年级学生在解决逻辑推理题时,要仔细阅读题干内容,分析可能性,找出关键的线索和信息。
这一点很重要,因为题干里的关键信息常常是解答问题的关键。
其次,学生要在解答逻辑推理题时根据所给的线索,把可以推断连接起来,进行从前推后,从现象推本质等推理,这样会更容易解决问题。
再次,学生要学会做比较和归纳,运用比较和归纳方法分析题干,可以更容易解决逻辑推理题。
例如:当出现“A B”,“C大于D”类的题目时,学生可以先把各种类型的A、B、C、D的答案做一比较,再根据规律,对比出最终的答案。
此外,学生还要把其他题目的信息和本题的线索联系起来,也就是要全面考虑问题,以确定最终的答案。
当学生面对有一些较为复杂的题目时,可以通过分步的方式把问题分解,以便更容易解决,有时候甚至可以通过图表、模型等方式来帮助学生更加清晰、准确的解答问题。
最后,六年级学生在处理逻辑推理题时,要多思考、多问答,这样才能够找出问题的最终解决办法,更加深入、全面的了解问题。
总之,六年级学生解决逻辑推理题的技巧有很多,比如细心阅读、把可以推断的信息连接起来、使用比较和归纳的方法、对题目进行分步的分析等,都是非常有用的方法。
正确的使用这些技巧,将有助于学生更好的理解并解决逻辑推理题,帮助学生在学习中更好的发展。
小学六年级逻辑推理题解题技巧
小学六年级逻辑推理题解题技巧
小学六年级是学习逻辑推理的关键时期,学习思维能力和思维方法可以帮助孩子更好地解决问题,所以学习和掌握逻辑推理的解题技巧变得尤为重要。
本文将就小学六年级逻辑推理题解题技巧进行详细介绍,以便帮助孩子更好地理解逻辑推理,并加强逻辑推理能力。
首先,在学习小学六年级的逻辑推理题时,要熟悉各种推理概念,如比较、猜测、判断、推断、推理等,掌握这些基本的概念,能够更好地帮助孩子解题。
其次,要注意分析题目的细节。
有时候,我们可能忽略了题干中的一些重要细节,这可能会导致答案的出错。
因此,在作答前,要细心观察,看看题干中是否有关键信息,以及结果是如何推出的。
再次,孩子们在解题时,要学会从宏观层面分析问题,问题的解决不仅仅要在正确的逻辑推理和思维方法的基础上,还要从更宏观的层次去观察问题,从而做出正确的解释。
最后,孩子们要学会运用相关材料解题。
逻辑推理题中经常会提供若干材料作为指导,孩子们要把握这些材料,从中抽取有用的信息,帮助自己更好地解决问题,这是一个非常重要的步骤,也是孩子们更好地解题的关键。
通过以上介绍,我们可以看出小学六年级逻辑推理题解题技巧有很多。
孩子们要熟悉推理概念,仔细分析题干,从宏观层面分析问题,运用关联材料解题,这是比较重要的技巧。
当孩子们坚持不懈地学习和练习,最终掌握了这些技巧,他们就能够解决各种逻辑推理题了。
小学六年级逻辑推理题解题技巧
小学六年级逻辑推理题解题技巧
随着教育程度的提高,小学六年级的考试以逻辑推理题为主,有些学生会发现解题很困难,不知道怎样去解这种题。
实际上,在做逻辑推理题时,学生可以借助一些技巧,来对题目做出准确的解答。
首先,学生在做逻辑推理题的时候,要先仔细阅读题干,要把握准确的问题内容,而不是根据自己的理解去猜想,所以一定要认真阅读。
其次,学生要多积累相关知识,把自己掌握的知识点完善起来,这样才能够更好地解决逻辑推理题。
一般情况下,学生在解答逻辑推理题时,一般会根据自己所掌握的相关知识来分析题干,找出答案。
然后,学生在做逻辑推理题时,要动脑想,先假设一个正确的答案,然后根据题目中的一些线索来推理一下,这样可以节省不少时间。
最后,学生在解答逻辑推理题时,一定要及时总结,将所解答出的答案与原题干进行比较,来判断是否符合题干要求,以确保自己的答案是正确的。
总之,学生在解答小学六年级逻辑推理题时,要认真仔细地阅读题干,多积累相关知识,动脑想,及时总结,才能正确地解答逻辑推理题,达到良好的解题效果。
- 1 -。
六年级数学逻辑推理能力
六年级数学逻辑推理能力逻辑推理能力是六年级数学学习中的核心技能之一。
它不仅是解答复杂数学题目的关键,还对学生的综合思维能力和问题解决能力有着深远的影响。
通过系统的逻辑推理训练,学生能够更好地理解数学概念、提高解题效率,并在面对多样化的问题时展现出更加严谨的思维方式。
本文将探讨六年级数学中如何培养和提升逻辑推理能力。
逻辑推理是通过已知条件得出合理结论的过程。
在六年级数学中,逻辑推理主要包括演绎推理和归纳推理两种方式。
演绎推理是从一般原则出发,通过逻辑推导得出特定结论,而归纳推理则是从具体实例中总结出一般规律。
理解这两种推理方式是培养逻辑推理能力的基础,有助于学生在解决问题时运用正确的推理方法。
逻辑推理要求思维过程严谨且有条理。
在解答数学问题时,学生需要从问题中提取关键信息,按照逻辑顺序进行推理。
培养严谨的思维方式可以通过多做逻辑推理题目来实现。
例如,在解决几何问题时,学生应先明确图形的性质,再根据已知条件逐步推导结论。
这种严谨的思维方式能够帮助学生清晰地分析问题、解决难题。
在六年级数学中,掌握一些基本的推理技巧是提高逻辑推理能力的有效途径。
常见的推理技巧包括假设法、排除法、归纳法等。
例如,假设法通过设立假设进行推理,排除法通过排除不符合条件的选项得出结论,归纳法则通过总结规律进行推理。
学生可以通过练习这些技巧,逐渐掌握解决复杂问题的方法。
逻辑推理能力的提升离不开解题策略的运用。
在解答数学问题时,学生需要选择合适的解题策略,如分步解题、从简单到复杂的逐步推进等。
例如,在解决应用题时,学生可以先将问题分解为几个简单的子问题,然后逐步解决,最终得出总体结论。
有效的解题策略能够帮助学生在逻辑推理中保持清晰的思路,提高解题效率。
通过例题和练习是巩固逻辑推理能力的重要方法。
学生可以通过做各种逻辑推理题目,如数学游戏、推理题和思维训练题等,来提高自己的推理能力。
例如,可以利用数学竞赛中的经典题目进行练习,锻炼解决复杂问题的能力。
小学六年级逻辑推理题解题技巧
小学六年级逻辑推理题解题技巧
在小学六年级,学生们从具体的数学概念和实际问题中,开始渗透着更复杂的逻辑推理题。
逻辑推理题不仅是考小学六年级学生智力发展的重要指标,而且也是教学质量与学习效果的重要依据。
解答逻辑推理题的关键就在于掌握有效的解题技巧。
首先,在解题前应先分析整题,弄清题目所涵盖的知识点,以及所求的答案类型,这样才能有效的把握题目的内涵,准确的确定解题思路。
其次,在解题步骤中,要将知识整理起来,识别与题目有关的概念,挖掘出问题本身暗含的定义与规则,结合条件进行排除,从而把握全局,有效的解决问题。
有效的解题技巧还包括:一,有效地识别逻辑推理题中暗含的定义,类比、概括和推断等。
二,分析题目,画出清晰的解题思路,结构清楚的步骤或表格,帮助解题。
三,利用图形的方式总结题目的解题步骤,便于解题。
四,在解题时,要善于利用暗含的定理及其证明,特别是要通过建立关系,将题目拆分成若干步骤进行解答。
小学六年级逻辑推理题解题技巧不容易掌握,有时候学生们解题时遇到一些比较复杂的情况,很难把握。
因此,学生们应该重视对抽象概念的掌握和理解,及时去练习逻辑推理题,熟练掌握有效的解题技巧,才能在解题过程中熟练的应用这些技巧。
除了自学练习之外,学生们还可以多向老师请教,当有疑问时,应及时向老师提出,多与老师合作探讨,这样才能得到有效的指导,才能加深对逻辑推理题的理解,才能更好的掌握解题技巧,从而在考
试中取得成功。
综上所述,解决小学六年级逻辑推理题的关键在于掌握有效的解题技巧,这些技巧不仅需要学生们熟练掌握,家长们也应多给孩子提供解题技巧的指导,从而帮助孩子们解决逻辑推理题,取得有效的学习效果。
六年级第32讲 逻辑推理(二)
丁丙乙甲小华第32讲 逻辑推理(二)一、知识要点解数学题,从已知条件到未知的结果需要推理,也需要计算,通常是计算与推理交替进行,而且这种推理不仅是单纯的逻辑推理,而是综合运用了数学知识和专门的生活常识相结合来运用。
这种综合推理的问题形式多样、妙趣横生,也是小学数学竞赛中比较流行的题型。
解答综合推理问题,要恰当地选择一个或几个条件作为突破口。
统称从已知条件出发可以推出两个或两个以上结论,而又一时难以肯定或否定其中任何一个时,这就要善于运用排除法、反证法逐一试验。
当感到题中条件不够时,要注意生活常识、数的性质、数量关系和数学规律等方面寻找隐蔽条件。
二、精讲精练【例题1】小华和甲、乙、丙、丁四个同学参加象棋比赛。
每两人要比赛一盘。
到现在为止,小华已经比赛了4盘。
甲赛了3盘,乙赛了2盘,丁赛了1盘。
丙赛了几盘? 这道题可以利用画图的方法进行推理,如图所示,用5个点分别表示小华、甲、乙、丙、丁。
如果两人之间已经进行了比赛,就在表示两人的点之间连一条线。
现在小华赛4盘,所以小华应与其余4个点都连线……甲赛了3盘。
由于丁只赛了一盘,所以甲与丁之间没有比赛。
那么,就连接甲、乙和甲、丙。
这时,乙已有了两条线,与题中乙赛2盘相结合,就不再连了。
所以,从中可以看出,丙与小华、甲各赛一盘。
即丙赛了两盘。
练习1: 1、A ,B ,C ,D ,E 五位同学一起比赛象棋,每两人都要比赛一盘。
到现在为止,A 已经比赛了4盘。
B 赛了3盘,C 赛了2盘,D 赛了1盘。
E 赛了几盘?2、A先生和A太太以及三对夫妻举行了一次家庭晚会。
规定每两人最多握手一次,但不和自己的妻子握手。
握手完毕后,A先生问了每个人(包括他妻子)握手几次?令他惊讶的是每人答复的数字各不相同。
那么,A太太握了几次手?3、五位同学一起打乒乓球,两人之间最多只能打一盘。
打完后,甲说:“我打了四盘”。
乙说:“我打了一盘”。
丙说:“我打了三盘”。
丁说:“我打了四盘”。
六年级数学重点复习内容 逻辑推理
六年级数学重点复习内容逻辑推理(一)专题简析:逻辑推理题不涉及数据,也没有几何图形,只涉及一些相互关联的条件。
它依据逻辑汇率,从一定的前提出发,通过一系列的推理来获取某种结论。
解决这类问题常用的方法有:直接法、假设法、排除法、图解法和列表法等。
逻辑推理问题的解决,需要我们深入地理解条件和结论,分析关键所在,找到突破口,进行合情合理的推理,最后作出正确的判断。
推理的过程中往往需要交替运用“排除法”和“反正法”。
要善于借助表格,把已知条件和推出的中间结论及时填入表格内。
填表时,对正确的(或不正确的)结果要及时注上“√”(或“×”),也可以分别用“1”或“0”代替,以免引起遗忘或混乱,从而影响推理的速度。
推理的过程,必须要有充足的理由或重复内的根据,并常常伴随着论证、推理,论证的才能不是天生的,而是在不断的实践活动中逐渐锻炼、培养出来的。
例题1:星期一早晨,王老师走进教室,发现教室里的坏桌凳都修好了。
传达室人员告诉他:这是班里四个住校学生中的一个做的好事。
于是,王老师把许兵、李平、刘成、张明这四个住校学生找来了解。
(1)许兵说:桌凳不是我修的。
(2)李平说:桌凳是张明修的。
(3)刘成说:桌凳是李平修的。
(4)张明说:我没有修过桌凳。
后经了解,四人中只有一个人说的是真话。
请问:桌凳是谁修的?根据“两个互相否定的思想不能同真”可知:(2)、(4)不能同真,必有一假。
假设(2)说真话,则(4)为假话,即张明修过桌凳。
又根据题目条件了:只有1人说的是真话:可退知:(1)和(3)都是假话。
由(1)说的可退出:桌凳是许兵修的。
这样,许兵和张明都修过桌凳,这与题中“四个人中只有一个人说的是真话”相矛盾。
因此,开头假设不成立,所以,(2)李平说的为假话。
由此可退知(4)张明说了真话,则许兵、刘成说了假话。
所以桌凳是许兵修的。
练习1:1、小华、小红、小明三人中,有一人在数学竞赛中得了奖。
老师问他们谁是获奖者,小华说是小红,小红说不是我,小明也说不是我。
小学数学思维训练逻辑推理 2
小学数学思维训练-----逻辑推理一、知识讲解:所谓逻辑推理,就是依据逻辑规律,从已知的结论为出发点,推出新的结论的过程。
逻辑推理问题是一类很少进行计算的数学题,它主要运用严密的逻辑推理来解决问题。
在解决这类问题时,必须依据事情的逻辑关系进行合情的推理,最后做出正确的判断。
逻辑推理题的特点是条件繁杂交错,必须仔细分析,选择突破口,并且经常采用借助于图表分析的方法,步步深入,使问题得到较快的解决。
二、例题解析:例1 、田径场上A、B、C、D、E、F六人参加百米决赛。
对于谁是冠军,看台上的甲、乙、丁、丙有以下猜测:甲说:冠军不是A就是B。
乙说:冠军不是C。
丙说:D、E、F都不可能是冠军。
丁说:冠军是D、E、F中的一人。
比赛的结果是,这四个人中只有一人的猜测是正确的。
你能判断谁是冠军吗?解:根据题意,假设甲猜的是正确的,则乙和丙的猜测也正确,这不符合题意。
(四人中只有一人猜测是正确的)。
因此甲的猜测不正确;假设乙的猜测是正确的,则甲和丁的猜测也正确,又不符合题意。
因此,乙的猜测不正确,冠军应该是C。
这样只有丙的猜测是正确的,甲、乙、丁的猜测都不正确,符合题意。
答:C是冠军。
例2少先队员采访一位科学家,但不知道科学家姓什么。
宾馆看门的老爷爷告诉说:张的三位科技会议代表。
其中一位是科学家,一位“二楼住着姓李、姓王和姓是技术员,一位是编辑。
同时还有三位来自不同地方的旅客,也是姓王、姓李、姓张各一位。
”已知:(1)姓李的旅客来自北京;(2)技术员在广州一家工厂工作;(3)姓王的旅客说话有口吃毛病,不做老师;(4)与技术员同姓的旅客来自上海;(5)技术员和一位教师来自同一个城市;(6)姓张的代表赛乒乓球总是输给编辑。
例3李老师、王老师和张老师分别是语文、历史和外语老师。
这里老师的顺序同各科的顺序不一定相同。
已知:(1)李老师上课用汉语。
(2)外语老师是小明的妈妈。
(3)张老师是历史老师的哥哥。
问:三位老师各上什么课?解:首先,明确一个科目只有三种可能的任教老师,如果能否定其中的两个,那么剩下的就是该科目的任教老师。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丁
丙乙甲小华逻辑推理(二)
【例题1】小华和甲、乙、丙、丁四个同学参加象棋比赛。
每两人要比赛一盘。
到现在为止,小华已经比赛了4盘。
甲赛了3盘,乙赛了2盘,丁赛了1盘。
丙赛了几盘? 这道题可以利用画图的方法进行推理,如图所示,用5个点分别表示小华、甲、乙、丙、丁。
如果两人之间已经进行了比赛,就在表示两人的点之间连一条线。
现在小华赛4盘,所以小华应与其余4个点都连线……
甲赛了3盘。
由于丁只赛了一盘,所以甲与丁之间没有比赛。
那么,就连接甲、乙和甲、丙。
这时,乙已有了两条线,与题中乙赛2盘相结合,就不再连了。
所以,从中可以看出,丙与小华、甲各赛一盘。
即丙赛了两盘。
练习1: 1、A ,B ,C ,D ,E 五位同学一起比赛象棋,每两人都要比赛一盘。
到现在为止,A 已经比赛了4盘。
B 赛了3盘,C 赛了2盘,D 赛了1盘。
E 赛了几盘?
2、A先生和A太太以及三对夫妻举行了一次家庭晚会。
规定每两人最多握手一次,但不和自己的妻子握手。
握手完毕后,A先生问了每个人(包括他妻子)握手几次?令他惊讶的是每人答复的数字各不相同。
那么,A太太握了几次手?
3、五位同学一起打乒乓球,两人之间最多只能打一盘。
打完后,甲说:“我打了四盘”。
乙说:“我打了一盘”。
丙说:“我打了三盘”。
丁说:“我打了四盘”。
戊说:“我打了三盘”。
你能肯定其中有人说错了吗?为什么?
【例题2】如图是同一个标有1,2,3,4,5,6的小正方体的三种不同的摆法。
图中正方体三个朝左的一面的数字之积是多少?
用排除法排除不符合条件的情形,最后剩下的情况就是所要的结果。
由(1)、(2)两个图可以看出,1的对面不可能为4,6,2,3,所以1的对面必为5;由(2)、(3)两个图形可以看出,3的对面不可能为1,2,4,5,所以3的对面必为6。
由此可知,4的对面必定为2。
上面正方体三个朝左一面的数字依次为2,5,6。
所以它们的积为2×5×6=60。
练习2:
1、如图是同一个标有1,2,3,4,5,6的小正方体的三种不同的摆法。
图中正方体三个朝左的一面的数字之和是多少?
2、将红、黄、蓝、白、黑、绿六种颜色分别涂在正方体各面上(每一面只涂一种颜色)。
现有涂色方式完全一样的相同的四块小正方体,把它们拼成长方体(如图32-4所示),每个小正房体红色面的对面涂的是什么颜色?黄色对面的?黑色对面呢?
3、如图32-5所示,每个正方体的6个面分别写着数字1~6,并且任意两个相对的面上所写的两个数之和都等于7。
把这样的5个正方体一个挨一个连接起来后,金挨着的两个面上的数字之和等于8。
图中写?的这个面上的数字是几?
【例题3】某班44人,从A,B,C,D,E五位候选人中选举班长。
A得选票23张。
B得选票占第二位,C,D得票相同,E的选票最少,只得了4票。
那么B得选票多少张?
B,C,D的选票共44—23—4=17(张),C,D的选票至少各5张。
如果他们的选票超过5张,那么B,C,D的选票超过6+6+6=18(张),这不可能。
所以,C,D各得5票,B得17—5—5=7(张)练习3:
1、某商品编号是一个三位数,现有5个三位数:874、765、123、364、925。
其中每一个数与商品编号恰好在同一数位上有一个相同的数字,这个商品编号是多少?
2、某楼住着4个女孩和两个男孩,他们的年龄各不相同,最大的10岁,最小的4岁。
最大的男孩比最小的女孩大4岁,最大的女孩比最小的男孩大4岁。
最大的男孩多少岁?
3、小明将玻璃球放进大、小两种盒子中。
大盒装12个玻璃球,小盒装5个玻璃球,正好装完。
如果玻璃球总数为99,盒子超过10个,那么两种盒子各有多少个?
【例题4】将1,2,3,4,5,6,7,8八个数字分成两组,每组4个数,并且两组数之和相等。
从A组拿一个到B组后,B组五个数之和将是A组剩下三数之和的2倍。
从B组拿一个数到A组后,B组剩下的三个数之和A组五个数之和的5/7。
这八个数如何分成两组?
八个数的和是1+2+3+4+5+6+7+8=26,所以每组的四个数之和是36÷2=18。
从A组取出一个数到B,两组总和不变。
现在A组三个数之和是36÷(1+2)=12,原来A组四个数之和是18,说明A组中取6到B 组。
同样道理,从B组取一个数到A组后,现在B组三个数之和是36÷(1+5/6)×5/7=15。
说明B组中取出的数为18—15=3。
除去6和3,还剩6个数。
A组的另外三个数之和应是18—6=12,在剩下的6个数中只有1,4,7三个数,它们的和是12。
所以
A组四个数是1,4,6,7。
B组四个数是2,3,5,8。
练习4:
1、某年的8月份有4个星期四,5个星期三。
这年8月8日是星期几?
2、甲、一两个小朋友各有一袋糖,每袋糖不到20粒。
如果甲给乙一定数量的糖后,甲的糖的粒数是乙的2倍;如果乙给甲同样数量的糖后,甲的糖的粒数就是乙的3倍。
甲、乙两个小朋友共有糖多少粒?
3、某各家庭有四个家庭成员。
他们的年龄各不相同,总和是129岁,其中有三个人的年龄是平方数。
如果倒退15年,这四人中仍有三人的年龄是平方数。
你知道他们各自的年龄吗?
【例题5】在一次设计联系中,小张、小王、小李各打4发子弹,全部中靶。
命中的情况如下:
(1)每人4发子弹所命中的环数各不相同。
(2)每人4发子弹所命中的总环数均为17槐。
(3)小王有两法命中的环数分别与小张命中的两法一样;小王另两发命中的环数与小李命中的两法一样。
(4)小张和小李只有一发环数相同。
(5)每人每发子弹的最好成绩不超过7环。
小张、小李命中相同的环数是几环?
首先,用枚举法找出符合条件(1)、(2)、(5)的所有情况。
其次,再用筛选法从这些情况中去掉不符合条件(3)、(4)的情况。
剩下的就符合要求了。
(1)1+7+3+6=17(环)
(2)1+7+4+5=17(环)
(3)2+6+4+5=17(环)
(4)2+7+3+5=17(环)
对照条件可知(2)、(1)式和(3)式分别代表王、张、李,所以,小张和小李命中相同的环数是6环,
练习5:
1、甲、乙、丙三人玩转盘(如图所示),转盘上的数字表示应得的分。
甲说:“我转8次得26分”。
乙说:“我转7次得34分”。
丙说:“我转9次得41分”。
其中有一人没说真话,他是谁?
2、将3张数字卡片(均不超过10)分给甲、乙、丙三人,各人记下所得卡片上的数再重新分。
分了3次后,每人将各字记下的数相加,甲为13,乙为15,丙为23。
你能西饿出三张卡片上的数吗?
3、A,B,C三个足球队进行一次比赛,每两个队赛一场。
按规定每升一场得2分,平一场得1分,负一场得0分。
现在已知:
(1)B对一球未进,结果得一分;
(2)C队进一球,失2球,并且胜一场;
求A队结果是得几分,并写出每场比赛的具体比分。