离心泵内载荷及相对速度分布对汽蚀的影响
离心泵的气蚀现象及原因
离心泵的气蚀现象及原因离心泵的气蚀现象及原因(1)气蚀现象离心泵的叶轮在高速旋转时产生很大的离心力,液体在离心力的作用下,使泵的入口处产生低于离心泵的气蚀现象及原因(1)气蚀现象离心泵的叶轮在高速旋转时产生很大的离心力,液体在离心力的作用下,使泵的入口处产生低于大气压的真空度,当入口压力达到在该温度下的液体气化压力时,液体就开始汽化形成气泡。
这样,在运动的液体中形成的气泡随液体一起流动。
当气泡达到静压超过饱和蒸汽压区域时,气泡迅速溃灭。
周围的液体以高速向气泡中心运动,这就形成了高频的水锤作用,打击叶轮表面,并产生噪音和振动。
这种气泡的产生和破灭过程反复进行就对这一区域的叶轮表面产生破坏作用,使泵流量减少,扬程下降,效率降低等,这种现象叫气蚀现象。
(2)造成汽蚀的主要原因有:a.进口管路阻力过大或者管路过细;b.输送介质温度过高;c.流量过大,也就是说出口阀门开的太大;d.安装高度过高,影响泵的吸液量;e.选型问题,包括泵的选型,泵材质的选型等。
(3)离心泵的气缚:由于泵内气体的存在,离心泵的叶轮在高速旋转时,由于气体的密度小,其离心力不能产生足够的真空度,而无法将液体吸上来。
气缚是泵体内有空气,一般发生在泵启动的时候,主要表现在泵体内的空气没排净;而汽蚀是由于液体在一定的温度下达到了它的汽化压力,和输送介质,工况有密切的关系.(4)气蚀余量:泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。
单位用米标注,用(NPSH)r。
吸程即为必需汽蚀余量Δh:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。
离心泵吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)水泵气蚀余量有两个概念:其一是与安装方式有关,称有效的气蚀余量NPSHA,它是指水流经吸入管路到达泵吸入口后所余的高出临界压力能头的那部分能量,是可利用的气蚀余量,属于“用户参数”;其二是与泵结本身有关,称必需的气蚀余量NPSHR,它是流体由泵吸入口至压力最低处的压力降低值,是临界的气蚀余量,属于“厂方参数”。
离心泵的常见汽蚀现象和原因
离心泵的常见汽蚀现象和原因
离心泵的常见汽蚀现象有:
1. 吸入气泡:当泵的进口侧发生压力降低或过高挡齿扩展时,会导致液体中的气体析出,形成气泡。
这些气泡会在离心泵的叶轮中产生均匀的分布,从而降低泵的效率。
2. 涡旋汽蚀:当液体在进口侧发生过高速度变化时,会形成涡旋。
这些涡旋会增加液体的动能,降低液体的压力,从而导致汽蚀现象。
3. 液体蒸发:当液体流经离心泵时,由于压力降低,液体中的低沸点液体或液体中的溶解气体会蒸发。
这些蒸发的液体或气体会形成气泡,从而导致汽蚀现象。
4. 液体沸腾:当液体的温度超过其饱和温度时,液体中的气体会迅速蒸发并形成气泡。
这些气泡在叶轮中会瞬间崩溃,形成震荡振动,从而导致汽蚀现象。
汽蚀的原因主要有:
1. 泵入口压力过低:当泵入口的压力低于饱和汽压时,液体会部分蒸发从而形成气泡,导致汽蚀。
2. 泵出口压力过高:当离心泵的出口压力过高时,液体流速过快,造成液体动能增大,压力降低,从而引发汽蚀。
3. 进口管道设计不当:进口管道过长、过细,存在弯曲或阻塞等情况,会导致液体流速变化过快,形成涡旋,引发汽蚀。
4. 泵运行条件不稳定:如果泵运行条件频繁变化,如流量变化大,压力波动等,会导致液体的压力降低和涩蚀。
5. 液体本身的特性:液体中的溶解气体过多,低沸点液体成分过多,液体温度过高等都会增加汽蚀的风险。
离心泵兼顾效率和汽蚀性能的理论分析与设计
羹
sj a hy№。 eu iz
离心泵兼顾效率和汽蚀性 能 的理论 分析 与设 计
秦小建 朱 建 彬
( 国 铝 业 中 州 分 公 司氧 化 铝 J , 南 焦 作 4 4 7) 中 河 5 14
摘 要: 从离心泵效率和抗汽蚀性能两者互为兼顾 的观 点出发, 分析了离心泵叶轮几何参 数与泵效率 、 蚀性能之 间的定性关系 , 汽 结合 设计 经验和实例, 出了1 轮主要几何参数 的取值 范围。 提 1 r
叶 轮 旋 转 角速 度 ( s : : 叶 轮外 径 ( ; 为流 道 水 力 摩擦 损 r )D 为 / m)
g== ・一 … —V 篙=V L 、,z J /三 J 了A ㈤. _ 5 l
} 。 。 . 。 上 _ 。 。,
失 系数 : 为沿 程 阻力 系数 ; R为 叶 轮流 道模 拟 圆管 水 力 半径 ( ; m) 为 叶片 出口角 ( ) K 。 ; 为叶 轮 出 口轴 面速 度 系数 ; 为 设计扬 程 ( : 叶片数 ; 。 叶片 进 口边平 均 直径 ( : k 叶轮流 道扩 m) Z为 D为 m) K 为
数。
其 巾 b D 、 分别 为常 规 设 计 中叶轮 的出 口宽度 和 进 口直 径 。 O 4 设 计 实 例
表 l 中列 举 了应 用上 述 分析 及 设 计方 法 设 计 的几 种 比转 速 离
心 泵 的 、 D 、 6、 。Z几个 几 何 参数 值 及 试验 数 据 ,括 号 内数 值 分 别 为 相 同 流 量 、 扬 程 和 比 转 速 下 G / 3 0— 9 B T1o 7 l中 的 效 率 值 禾I
() 2
() 3
入 口相 对速 度 : 为泵流 量 ; 为容积 效 率 。 Q 其余 符 号意 义 同前 。 当 加 大 时 , 然 。 降 , P H 数 值 变 小 , 改 善泵 汽 蚀 显 下 NS r 对 性 能有好 处 。
离心泵气蚀情况分析及应对措施
案例三:某自来水公司的气蚀预防措施
3. 应对措施
水质调整:根据季节和天气变化,调整自来水的 成分,使其不易发生气蚀。
设计优化:对吸入管路进行优化设计,缩短管路 长度,适当增加管径,以提高泵进口处的压力。
05
总结与展望
离心泵气蚀问题的重要性和挑战性
重要性和挑战性
离心泵在许多工业领域中都有广泛应用,如化工、石油、食品等。然而,离心泵在运行过程中常常会 遇到气蚀问题,导致性能下降、噪音和振动增加,严重时甚至会损坏泵体。气蚀问题已成为离心泵运 行和维护中的重要挑战之一。
2. 原因分析
高温铁水:高温铁水中含有大量的气体,这些气体在泵的进口处因压力降低而析出形成气泡 。
压力变化:由于泵的工作原理,在泵的进口和出口处存在压力变化,导致气泡的形成和破裂 。
案例二:某钢铁厂的气蚀问题及解决方案
• 材料选择:泵体和管道的材料选择不当,无法承受高温和 气蚀的共同作用。
案例二:某钢铁厂的气蚀问题及解决方案
杂质和气泡。
降低输送温度:通过冷却系统 将液体温度控制在一定范围内
,减少液体的氧化。
案例二:某钢铁厂的气蚀问题及解决方案
• 气蚀现象:在某钢铁厂中,离心泵在抽取高温铁水时,由于 高温和压力变化,铁水中的气体不断析出,形成大量气泡, 这些气泡在泵的出口处破裂,导致泵体和管道受到强烈的冲 击和磨损。
案例二:某钢铁厂的气蚀问题及解决方案
气蚀现象的重要性
• 气蚀现象不仅会影响水泵的性能和效率,还会对水泵的部件造成损伤,缩短其使用寿命。因此,对离心泵的气蚀现象进行 分析和采取有效的应对措施是十分必要的。
02
离心泵气蚀的原理及影响
气蚀的原理
气蚀是指液体在压力作用下产生汽化,形成气泡,当气泡破裂时会对液体产生冲 击,从而对设备产生损伤。
离心泵的汽蚀现象和原因
离心泵的汽蚀现象和原因
(1)汽蚀现象
离心泵运行时,如泵内某区域液体的压力低于当时温度下的液体汽化压力,液体会开始汽化产生气泡;也可使溶于液体中的气体析出,形成气泡。
当气泡随液体运动到泵的高压区后,气体又开始凝结,使气泡破灭。
由于气泡破灭速度极快,使周围的液体以极高的速度冲向气泡破灭前所占有的空间,即产生强烈的水力冲击,引起泵流道表面损伤,甚至穿透。
这种现象称为汽蚀。
离心泵产生汽蚀时,流量、扬程、效率将明显降低,同时伴有噪声增大和泵的剧烈振动。
(2)汽蚀原因
离心泵的汽蚀主要是被送液体进入叶轮时的压力降低,导致液体的压力低于当时温度的液体气化压力而产生的,使泵不能正常工作,长期运行后叶轮将产生蜂窝状损伤或穿透。
引起离心泵吸入压力过低的因素有:上吸泵的安装高度过高,灌注泵的灌注头过低;泵吸入管局部阻力过大;泵送液体的温度高于规定温度;泵的运行工况点偏离额定点过多;闭式系统中的系统压力下降。
5)离心泵的特性曲线
离心泵的主要性能参数流量、扬程、轴功率及效率之间的关系,可用离心泵的特性曲线来说明。
此曲线由泵的制造厂提供,并附于泵的样本或说明书中,供使用部门选泵和操作时参考。
我们是青岛输送机、潍坊输送机、烟台输送机领导者!。
离心泵的工作原理汽蚀现象
离心泵的工作原理汽蚀现象离心泵是一种常用的泵类,工作原理是利用离心力将液体从低压区域抽送到高压区域。
它主要由泵体、叶轮和电机组成。
当电机带动叶轮旋转时,液体被叶轮的离心力甩出,形成真空区,进而产生负压,液体就会被吸入泵体;然后叶轮继续旋转,将液体推向出口,形成高压区,液体就会被排出泵体。
离心泵是一种高效的泵类,具有流量大、扬程高、功率消耗低等优点。
然而,在工作过程中,离心泵可能会出现汽蚀现象。
汽蚀是指液体中存在的气体在压力降低的条件下沸腾产生气泡,随后由于压力恢复,气泡迅速坍塌,产生冲击波并磨蚀泵体内部构件的现象。
汽蚀现象会严重影响离心泵的性能和寿命,因此需要引起足够的注意。
以下是造成汽蚀现象的几个常见原因:1. 进口压力过低:当离心泵的进口液体压力过低时,容易发生汽蚀现象。
可能的原因有进口管道阻塞、进口阀门未完全打开或管道设计不合理等。
2. 进口液体温度过高:液体的温度过高会增加气化的可能性,从而引起汽蚀现象。
这可能是由于液体本身的温度过高,或者由于泵体周围环境温度较高。
3. 泵体密封不良:如果离心泵的泵体密封不良,会导致进口和出口之间有气体泄漏,从而引起汽蚀现象。
这可能是由于密封件老化、磨损或安装不当造成的。
4. 叶轮损坏或磨损:离心泵的叶轮是汽蚀现象的重要因素之一。
叶轮表面的磨损或损坏会增加气化的可能性,从而引起汽蚀现象。
汽蚀现象对离心泵的影响主要有以下几个方面:1. 降低泵的效率:汽蚀会导致液体流量减小,从而降低离心泵的功率和效率。
2. 增加噪音和振动:汽蚀现象会造成泵体内部和管道中的冲击波,产生噪音和振动,影响设备的正常运行。
3. 加速泵体和叶轮的磨损:汽蚀现象会引起泵体内部的冲击和气体泄漏,从而加速泵体和叶轮的磨损。
为避免汽蚀现象,可以采取以下一些措施:1. 检查进口管道和阀门:确保进口管道通畅,阀门完全打开,避免进口压力过低。
2. 控制液体温度:确保液体温度不过高,及时降低液体温度,减少气化的可能性。
离心泵的汽蚀现象
离心泵的汽蚀现象离心泵是一种常见的流体机械设备,广泛应用于工业生产、市政工程和农业灌溉等领域。
然而,在实际应用中,离心泵还会出现一种称为“汽蚀”的现象。
本文将以离心泵的汽蚀现象为标题,探讨其产生原因、影响以及相应的解决方法。
一、汽蚀现象的产生原因离心泵的汽蚀现象主要是由于工作液体中存在气体或蒸汽,当液体中的静压力小于液体的饱和蒸汽压力时,液体中的气体就会以气泡的形式析出。
当液体通过离心泵的叶轮时,气泡会随着液体一起进入泵腔,并在压力恢复的地方迅速崩解,形成微小的气泡爆破,产生冲击波,从而对泵体和叶轮造成损坏。
二、汽蚀现象的影响汽蚀现象会导致离心泵的性能下降,降低其工作效率。
同时,汽蚀还会引起泵体和叶轮的磨损加剧,缩短设备的使用寿命。
更严重的是,汽蚀会产生噪音和振动,给工作环境带来不良影响,甚至对周围设备和管道造成破坏。
三、汽蚀的解决方法1. 提高进口压力:通过增加进水管道的直径、降低进水管道的高度差或增加进水泵站的水位,可有效提高进口压力,减少汽蚀现象的发生。
2. 降低液体温度:降低液体的温度可以减少液体中的气体溶解度,从而减少汽蚀的可能性。
可以采取增加冷却设备、增加液体流动速度等方式来降低液体温度。
3. 安装汽蚀阀:在离心泵的吸入管道上安装汽蚀阀,可以有效防止进口压力降低到饱和蒸汽压力以下,从而避免汽蚀现象的发生。
4. 选择适当的材质:对于易受腐蚀的介质,应选择耐蚀性好的材质制成泵体和叶轮,以减少腐蚀引起的气泡析出。
5. 正确维护保养:定期检查离心泵的进水管道、密封件、叶轮等部件,保持设备的正常运行状态,及时清理堵塞物,防止气蚀现象的发生。
四、总结离心泵的汽蚀现象是由液体中气体析出引起的,会影响泵的性能和寿命,并产生噪音和振动。
通过提高进口压力、降低液体温度、安装汽蚀阀、选择适当的材质以及正确的维护保养,可以有效减少汽蚀现象的发生,提高离心泵的工作效率和可靠性。
在实际应用中,对于离心泵的汽蚀问题应引起重视。
简述离心泵的气蚀现象、危害及预防措施
简述离心泵的气蚀现象、危害及预防措施离心泵是常用的一种流体输送装置,它的主要功能是把低粘度的液体输送到一定的高度和距离。
离心泵由液体环境、相关零件和驱动机构组成。
它需要处理流体环境中溶解性物质的液体,而这些液体中可能掺带气体,经常会出现常见的气蚀现象。
气蚀是离心泵工作中常见的一种现象,它的主要原因是离心泵运行中发生的压蚀剧烈的气体,这是由离心泵中流体和气体混合物构成的。
气蚀现象主要有水洗效果、气泡吸入效应和压蚀效应。
气蚀现象会给离心泵带来危害。
其中,水洗效果会使得离心泵的效率降低,影响其输送流量;气泡吸入效应会破坏离心泵的机械稳定性,甚至会引起泵的爆炸;压蚀效应会导致离心泵的部件受损,从而影响到离心泵的正常运行。
为了预防气蚀现象的发生,应采取以下几种预防措施:
首先,要合理选用离心泵,以适合处理需要输送的流体,避免因选用不当而引起的气蚀现象。
其次,要处理好排气,防止液体和气体的混合。
再次,要进行定期的保养,定期清洗离心泵,避免泵内部积聚的污物使其受损,从而产生气蚀现象。
最后,要定期检查泵的工作状态,及时发现和更换损坏的部件,维护离心泵的正常运行,避免气蚀现象的发生。
综上所述,离心泵在工作中常常会出现常见的气蚀现象,这会给离心泵带来严重的危害。
为了保护离心泵,应该采取合理的预防措施,
如选择合适的离心泵、处理好排气、进行定期的保养和定期检查等。
简述离心泵的气蚀现象、危害及预防措施
简述离心泵的气蚀现象、危害及预防措施离心泵具有卓越的性能,且可以有效传输和调节流体的流量和压力,因此在汽轮机、核电站、石油炼油厂、精细化工及食品工业等领域有着广泛的应用。
然而,随着负荷的增加,离心泵的主体部件也会受到外部的破坏,给泵的安全性和可靠性带来威胁。
其中,最常见的一种破坏方式就是气蚀现象。
气蚀现象是由于离心泵吸入口处含有少量气体,混合气体经叶轮旋转时,就会产生中央小真空区,进而使吸入口处空气压力降低,从而形成真空吸力,导致吸入口处发生气蚀现象。
气蚀现象会给离心泵及其相关设备带来诸多危害,主要表现在以下几个方面。
首先,气蚀现象会影响离心泵的运行效率,使体积流量减少,运转速度降低,从而导致发动机燃料消耗量增加。
其次,气蚀现象会严重影响离心泵的密封性能,从而导致腐蚀介质泄漏、凝结介质凝固、噪声增大、发动机流程终端及其他关键控制设备失灵,以及各种安全隐患的出现。
此外,气蚀现象还可能导致泵壳及泵内各部件的磨损和烧毁,安全性及可靠性大大降低。
为了有效防止气蚀现象的发生,应采取以下预防措施。
首先,在离心泵吸入口处应安装过滤器,以滤除介质中的少量气体,减少气蚀现象的发生。
其次,应检查泵体及泵内所有连接件,保证截面尺寸一致,从而降低泵内压力降低,避免出现气蚀现象。
此外,应针对介质的特性采取相应的措施,例如,采用低粘度润滑油,以缩短涡轮的起动时间,从而减少气蚀现象的发生。
最后,在负荷变化时,应制定实
行严格的维护保养计划,确保离心泵的安全运行。
综上所述,气蚀现象是离心泵中一种最常见的破坏方式,它会严重影响离心泵的运行安全性、可靠性和性能,必须采取有效的预防措施,以确保离心泵的安全运行。
什么是离心水泵的气蚀及出现后的影响
什么是离心水泵的气蚀及出现后的影响
离心水泵的叶轮在迅速转动时发生很大的离心力,介质在离心力的用处下,流体动力使泵的入口处发生低于大汽压的真空度,这种流动介质的汽压减低到该温度下的介质汽化压头时,介质就开始气蚀造成汽泡。
还有,当压头减低时,溶解在介质中的汽体常在汽化之前释放出,造成汽泡,这样,在运动的介质中造成的汽泡随介质一起流动,当汽泡满足静压过饱与蒸气压区域时,汽泡中的泡体又突然凝结而使汽泡破灭,当汽泡破灭后,周边的介质以迅速向汽泡中心运动,这就造成了高频的水锤用处。
高频水锤打击叶轮表层,并发生噪音与震动。
这种汽泡的发生与破灭流程反复进行就对这一区域的叶轮表层发生冲击破坏用处,使泵泵流量减少,泵扬程下降,效率减低等,这种状况叫气蚀状况。
影响:离心水泵在运作中由于吸入压头过低或是介质的温度较高,在泵内发生气蚀,气蚀出现后轻者泵流量、泵扬程下降,严重时激烈震动无法运转。
常常受到气蚀用处的叶轮将很快损坏,会发生抱轴与断轴,机封损坏。
泵—离心泵的汽蚀现象
装高度 Hg 。即:
H g [H g ] (1 ~ 0.5) 2.7 (1 ~ 0.5) 1.7 ~ 2.2(m)
改善离心泵汽蚀性能的途径
目 录
1 改善离心泵汽蚀性能的途径
改善离心泵汽蚀性能的途径
提高离心泵抗汽蚀性能可以从两个方面进行考虑: 一方面合理设计泵的吸入装置及安装高度,使泵入口处具有足够大的汽蚀余量。 另一方面改进泵的结构参数或结构形式,使泵具有尽可能小的允许汽蚀余量。
分析:已知:流量:Q=468m3/h、 扬程:H=38.5m、允许吸上真空高度:[HS]=6m、 吸入管路损失:∑hs =2m。
解题:因为在样本中查得的流量和相关参数是在标准大气压,温度为293K,介质 为清水而侧得的,所以如果条件与上述条件相差很多,则必须进行修正。
(1)输送293K的清水时,泵的允许安装高度为:
这种气泡不断形成、生长和破裂、使材料受到破坏的过程,总称为汽蚀现象。
3. 汽蚀产生的原因和条件
① 从汽蚀现象发生的条件来看,主要时由于进入叶轮 吸入口液体的压头降低的太多。
② 真正的低压部位见图2-43中的K点所示。
③ 要控制叶轮入口附近低压区K点的压力,使 pk>pt , 才不会出现汽蚀现象。
图2-43 液流低压部位
② 泵本身的汽蚀性能,通常用汽蚀余量△h表示,也可用NPSH 表示。所以,避免 汽蚀现象的方法是改变离心泵自身的结构。
2. 与泵的吸入装置情况有关
① 对同一台泵来说,在某种吸入装置条件下运行时会发生汽蚀,若改变吸入装置 条件,就可能不发生汽蚀,这说明泵在运转中是否发生汽蚀与泵的吸入装置情 况也有关系。
[H g ]
pa
g
pt
g
[h]
hAS
离心泵的汽蚀现象及其防范措施
离心泵的汽蚀现象及其防范措施离心泵的用途十分广泛,如化工、采矿、火力发电,建筑消防、给排水等。
水泵的汽蚀、磨蚀及其联合作用的破坏一直是水泵运行、维护及管理工作中的一个重要问题。
泵在运行过程中,由于设计不合理、吸入口压力过低或输送液体温度过高等原因,会发生气蚀。
汽蚀对水泵危害很大,使离心泵不能正常工作,甚至停运。
一、汽蚀现象由于水的物理特性,我们知道,水和汽可以互相转化,转化的条件即温度与压力。
一个大气压下的水,当温度上升到100℃时就开始汽化。
但在高原地区,水在不到1O0℃就开始汽化。
如水温一定,降低水的压力,当压力下降到某一数值时,水就开始汽化并产生汽泡,此时的压力就称作该对应水温下的汽化压力。
汽化发生后,就有大量的蒸汽及溶解在水中的气体逸出,形成许多蒸汽与流体混合的小汽泡。
当汽泡随水从低压区流向高压区时,在高压作用下,迅速凝结而破裂。
在破裂瞬间,产生局部空穴,高压水以极高的速度流向原汽泡占有空间,形成一个冲击力。
由于汽泡中的气体和蒸汽来不及在瞬间全部溶解和凝结,在冲击力作用下又形成小汽泡再被高压水压缩凝结,如此多次反复,在流道表面极微小的面积上,冲击力形成的压力可高达几百甚至上千兆帕,冲击频率可达每秒几百万次。
材料表面在水击压力的作用下,形成疲劳而遭严重破坏,从开始的点蚀到严重的海绵状空洞,甚至蚀穿材料壁面。
另外,产生的汽炮中还夹杂着某种活性气体如氧气,它们借助气泡凝结时放出的热量可使局部温度升至200—300℃,对金属起化学腐蚀作用。
我们把这种汽化产生汽泡,汽泡进入高压区破裂以致材料受到破坏的全部过程称为汽蚀现象。
关于汽泡形成机理的研究发现,如果液体与固体的接触面上的缝隙中存在微波的气核,在汽化发生时,缝隙中的这些微笑气核首先迅速成长成为肉眼可见的气泡(或称空泡),而汽核的存在对汽化产生的压力具有明显的影响,在无气核条件下,汽化发生于热力学平衡态所对应的饱和蒸汽压力;气核越大对应的汽化压力也比热力学饱和蒸汽压力高出越多。
离心泵的气蚀现象和气缚现象
离心泵的气蚀现象和气缚现象一、引言离心泵是一种常见的流体输送设备,广泛应用于各个领域。
然而,在使用过程中,离心泵会出现气蚀和气缚等问题,导致泵的性能下降甚至无法正常工作。
因此,对离心泵的气蚀现象和气缚现象进行深入研究,对于提高离心泵的工作效率和可靠性具有重要意义。
二、离心泵的基本原理离心泵是一种利用离心力将流体从低压区域抽到高压区域的机械设备。
其基本结构包括叶轮、泵壳、进口管道、出口管道等部分。
当电机带动叶轮旋转时,由于叶轮的旋转产生了离心力,使得进入泵壳内部的液体被迫沿着叶轮旋转方向流动,并在出口处形成高压区域。
三、气蚀现象气蚀是指在离心泵中由于液体中存在气体或液体温度过高而导致局部真空产生,使得液体中溶解的空气逸出并形成气泡,从而破坏了液体的连续性,使得泵的效率下降或者无法正常工作。
气蚀现象主要表现在以下几个方面:1. 声音异常当离心泵出现气蚀时,会发出异常的噪音。
这是由于气泡在液体中爆炸产生的冲击声和振动所导致的。
2. 泵出水量下降气蚀会导致离心泵出水量下降,这是因为气泡占据了液体中的一部分空间,使得流经叶轮的液体减少。
3. 泵压力变化当离心泵出现气蚀时,由于局部真空产生,使得进入叶轮的液体压力下降,导致泵压力变化。
4. 叶轮损坏气蚀还会导致叶轮表面产生严重磨损和腐蚀,甚至会使叶片断裂。
四、气缚现象气缚是指在离心泵中由于进口管道或者吸入口处存在空气或者其他非流体物质而导致局部阻塞,使得液体无法进入叶轮,从而导致泵的性能下降或者无法正常工作。
气缚现象主要表现在以下几个方面:1. 声音异常当离心泵出现气缚时,会发出异常的噪音。
这是由于液体无法进入叶轮而产生的冲击声和振动所导致的。
2. 泵出水量下降气缚会导致离心泵出水量下降,这是因为液体无法进入叶轮,从而使得流经泵壳的液体减少。
3. 泵压力变化当离心泵出现气缚时,由于进口管道或者吸入口处存在空气或者其他非流体物质,使得进入叶轮的液体压力下降,导致泵压力变化。
离心泵的汽蚀现象介绍
离心泵的汽蚀现象介绍
离心泵的汽蚀现象是指在泵运行过程中,由于流体在泵叶轮周围形成了负压区域,造成液体中的蒸汽产生泡沫和空化现象,从而影响离心泵的正常工作。
离心泵的汽蚀现象主要原因有以下几个方面:
1. 进口压力过低:当进口压力过低时,会导致负压区域扩大,形成空化现象,进而引起汽蚀。
这可能是由于系统进口管道设计不当、管道内有空气或气体混入,或者是由于液位下降等引起进口压力降低。
2. 流体速度过高:当液体进入离心泵时速度过高,会导致液体在叶轮周围产生过高的负压,形成空化现象,进而引起汽蚀。
这可能是由于泵的转速过高或泵的进口截面积过小。
3. 液体中含有气体或蒸汽:液体中含有气体或蒸汽会增大液体的蒸汽压力,使液体易产生汽蚀现象。
4. 泵的设计或制造缺陷:离心泵的叶轮或叶片设计不当,叶轮与泵壳之间的间隙过大,也会导致泵产生汽蚀现象。
离心泵汽蚀的危害包括:降低泵的工作效率、降低泵的扬程、增加能量消耗、增加振动和噪音,甚至会导致泵的损坏。
为了避免离心泵的汽蚀现象,可以采取以下措施:
1. 确保泵的进口压力不低于设计要求,避免进口压力过低。
2. 合理设计进口管道,确保管道内无气体或空气混入。
3. 控制泵的流量,避免流速过高。
4. 减少液体中的气体含量,通过适当的脱气措施。
5. 选择合适的泵型和合理的泵设计,避免泵的鼓风效应。
对于离心泵来说,汽蚀是一种常见的故障现象,需要注意泵设计、操作和维护,以避免或减少汽蚀的发生。
化工原理离心泵的汽蚀现象
化工原理离心泵的汽蚀现象离心泵的汽蚀现象是指在离心泵工作过程中,由于液体的压力降低,发生气体凝结,析出气泡,甚至产生水蒸汽,进而影响泵的正常运行。
汽蚀现象不仅会导致泵的效率下降,甚至还可能损坏泵的部件,对离心泵的正常运行造成重大影响。
汽蚀的原因可以归结为两个方面:液体压力降低和液体中的气体的析出。
首先,离心泵在工作过程中,由于液体的流体阻力和摩擦阻力,在泵的进口和出口处会产生一定程度的压力损失。
当液体通过泵的各个部件时,速度加快,压力降低,因此会导致液体的压力下降。
当液体的压力降低到饱和蒸汽压以下时,液体中的气体就会析出形成气泡。
随着液体继续通过泵的运动,这些气泡会被带到泵的出口处,进一步膨胀形成气隙,造成泵的性能下降。
其次,在液体中存在溶解的气体,在液体的温度升高、压力降低的情况下,这些气体会析出形成气泡。
这些气泡会在液体中聚集,随着液体通过离心泵的运动,气泡会随着离心力的作用,从液体中分离出来,形成空腔,进一步导致泵的性能下降。
汽蚀现象对离心泵的影响有以下几个方面:首先,汽蚀降低了泵的效率,使泵的扬程降低,流量减小,进而导致泵的性能下降。
因为当液体存在气蚀的时候,液体的密度会发生变化,密度减小会导致液体的质量不足,降低泵的扬程和流量。
其次,汽蚀还可能导致泵的振动增大,对泵的稳定性产生不利影响。
当气泡和空腔通过泵的转子时,会产生振动和冲击力,加速泵的磨损,导致泵的性能下降,甚至损坏泵的部件。
最后,汽蚀还会对泵的寿命产生影响。
当泵发生汽蚀时,会产生冲击力和振动,加速泵部件的磨损,进而影响泵的寿命。
为了避免汽蚀现象的发生,可以采取以下措施:首先,增加泵的进口压力。
可以通过在泵的进口处增加一个进口管道,将液体引导到泵的进口处,增加液体的进口压力,从而降低汽蚀的发生。
其次,增加液体的温度。
当液体的温度升高时,溶解在液体中的气体析出的可能性会减小,从而减少汽蚀的发生。
最后,可采用改进泵的结构设计,例如在泵的进口处增加一个气体分离器,可以将液体中的气体分离出来,减少气泡和空腔的形成,从而减少汽蚀的发生。
离心泵的气蚀现象
离心泵的气蚀现象与允许吸上高度(一)离心泵的气蚀现象问题:叶轮入口形成的低压越低,液体被吸入泵的可靠性越大?当入口压强p1〈输送液体温度下的饱和蒸汽压p s时,液体会汽化。
汽化量与△p=p1-p s成正比。
气泡与叶片间的液体一同抛向叶轮外缘,过程中气泡受到压力的作用迅速地凝结或破裂,气泡的消失产生局部的真空,其周围的液体以极其高速涌向该空间造成达几万kPa的极大冲击压力,冲击频率高达每秒几万次,冲击使泵体产生震动并发出噪音。
气泡多发生在叶轮入口附近,气泡凝结破裂时,液体象许多细小的高频冲击“水锤”(600~25000Hz)那样击打着叶轮和壳体的表面,使材料表面出现麻点以致穿孔,严重时金属晶粒松动并剥落冲蚀成蜂窝状,甚至断裂,以至叶轮或泵壳不能使用。
这种现象——气蚀。
除机械破坏外,气蚀还伴有电解、化学腐蚀等多种复杂的作用。
泵在气蚀条件下运行,泵体震动发出噪音、流量明显下降,压头、效率大幅度降低。
严重时不能吸上液体。
为避免气蚀现象,必须保证P1,min>Ps。
有效方法:按泵的“允许吸上高度”(或“气蚀余量”)结合输送液体的性质确定泵的“安装高度”。
(二)离心泵的允许吸上高度(允许安装高度,极限)泵的饿允许吸上高度:泵的许入口与吸口侧储槽液面间允许达到的最大垂直距离,Hg,m。
设泵在允许的安装高度操作,在0-1间列柏努利方程式:由图示可见P1>P1,min,其差包括:安装真空表处与压强最小处之间的压强差和流动损失等。
表示泵吸上能力的指标:1、允许吸上真空度H s'=(P a-P1)/ρg (2-21)P a-P1——液面到泵入口间的真空度,P1>P1,min>P s,H s'用输送液体柱高度表示的真空度,[m液柱]。
(2-21)代入(2-19):H g=H s'-(u1)2/2g-H f,0-1 (2-22)H'与泵的结构、输送液体的流量、物性及当地大气压强有关。
离心泵气蚀现象
离心泵气蚀现象
离心泵是工业生产中常用的一种泵类,其通过转子的高速旋转将液体靠离心力向外抛出,实现输送液体的功能。
在某些情况下,离心泵会出现气蚀现象,导致其正常运行受到影响。
下面我们将介绍离心泵气蚀现象的一般特征。
气蚀是指离心泵中由于液体内部存在空气、气体或蒸汽,造成气体在高压区域突然膨胀形成瞬态空化,再在低压区域瞬间坍塌产生冲击波,最终导致流动噪音、振动和泵的效率下降的现象。
当离心泵内部存在气蚀时,其工作状态将受到较大的干扰。
气蚀现象的主要表现是在离心泵的进口和叶轮(或叶片)之间产生气泡或气腔,这些气泡和气腔以一定频率在液体中传播并瞬间坍塌。
气蚀通常伴随着明显的噪音和振动,同时也会导致泵的性能下降,流量减小,扬程降低,甚至无法正常工作。
这会对生产系统带来严重的影响。
气蚀的产生原因很多,包括泵内装置不当、泵入口管道设计不良、工作介质中含有过多的气体或蒸汽等等。
为了避免气蚀现象的发生,需要正确选择泵的技术参数,保证泵的进口压力足够,避免进口压力过低;合理设计泵的进口管道,减少出现流动涡旋和气体积聚的位置;在选用泵时,应当提前分析液体中是否含有气体,并采取相应的措施减少或排出气体。
气蚀现象是离心泵运行中的一种常见故障,会导致泵的性能下降和生产工艺的中断。
对于离心泵的运行,我们需要进行科学的设计和合理的操作,以避免气蚀现象的发生,并保证生产过程的正常进行。