排列组合问题的解题策略
解排列组合应用题的21种策略
解排列组合应用题的21种策略
排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.
1.相邻问题绑定方法:标题规定将几个相邻元素绑定成一个组,作为一个大元素参与安排
例1.a,b,c,d,e五人并排站成一排,如果a,b必须相邻且b在a的右边,那么不同的排法种数有
a、 B类60种,C类48种,D类36种,D类24种
2.不相邻问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.
例2七个人并排站成一排。如果甲方和乙方不得相邻,则不同的安排类型为A、1440 B、3600 C、4820 D和4800
3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.
例3 a.B、C、D和e并排站成一排。如果B必须站在a的右边(a和B不能相邻),有多少种不同的安排
a、24种
b、60种
c、90种
d、120种
4.标签排序问题的分步方法:将元素排列到指定位置,首先按照规定排列一个元素,然后在第二步排列另一个元素。如果你继续这样做,你可以依次完成
例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有a、6种b、9种c、11种d、23种
5.有序分配问题:有序分配问题是指将元素分成若干组,可以逐步分成若干组
例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是
高中数学排列组合问题的常见解题方法和策略(完整版)
高中数学排列组合问题的常见解题方法和策略
江西省永丰中学
陈保进
排列组合问题是高中数学的一个难点,它和实际问题联系紧密,题型多样,解题思路灵活多变,学生不容易掌握。下面介绍一些常见的排列组合问题的解题方法和策略。
1.相邻问题捆绑法:将相邻的几个元素捆绑成一组,当作一个大元素参与排列
例1:A ,B ,C ,D ,E 五人站成一排,如果A ,B 必须相邻,则不同的排法种数为_____
解析:把A ,B 捆绑,视为一个整体,整体内部排序,有22A 种情况,再将整体和另外三人排序,有
44A 种情况,所以答案为22A ×44A =48
注意:小集团问题也可以用捆绑法
变式1:7人排成一排,甲、乙两人中间恰好有3人,则不同的排法有_____种解析:把甲、乙及中间3人看作一个整体,答案为720
333522=⨯⨯A A A 2.不相邻问题插空法:不相邻问题,可先把其他元素全排列,再把需要不相邻的元素插入到其他元素的空位或两端
例2:七人并排站成一行,如果甲乙丙两两不相邻,那么不同的排法种数是_____解析:
先将其它4人全排列,共44A 种情况,再将甲乙丙插入到其他4人的空位或两端,共35A 种情况,所以答案为44A ×35A =1440
3.定序问题用除法:若要求某几个元素必须保持一定的顺序,可用除法
例3:A ,B ,C ,D ,E 五人站成一列,如果A 必须在B 前面,则不同的排法种数有_____
解析:先将5人全排列,共5
5A 种情况,考虑A ,B 的顺序有22A 种,符合题意的只有一种,所以答案为60
22
5
排列组合解题策略大全(十九种模型)
先在正副班长中选 1 人:C12
,再在剩余
4
名战士中选 3 人:C34
,最后对选出的 4
人进行全排列:A44
,总共 C12
C34
A
4 4
=192
四、相邻元素捆绑法
要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再 与其它元素一起作排列,同时要注意合并元素内部也必须排列.
1、有 10 个运动员名额,分给 7 个班,每班至少一个,有多少种分配方案? 各解个:元因素为的位10置个,名一额般没地有n差个别同,的把元它素们没排有成限一制排地。安相排邻在名m额个之位间置形上成的9排个列空数隙为。在9种个空档中选6个位置插入隔板,
可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有 C96 种分法。
分析: 把甲、乙、丙三人看作一个“元”,与其余 4 人共 5 个元作全排列,有 A55 种排法,而甲乙、丙、之间又有 A33
种排法,故共有 A55 A33 = 720 种排法。
3、7 人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法? 可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相
三、排列组合混合问题先选后排法
解决排列组合混合问题,先选后排是最基本的指导思想。
排列组合解题方法和策略总结
排列组合解题方法和策略总结
排列组合是数学中一个重要的概念,它涉及到从n个不同元素中取出m个元素(n>m)进行排列或组合的问题。排列组合问题在日常生活和科学研究中有着广泛的应用,因此掌握排列组合的解题方法和策略非常重要。
以下是排列组合解题方法和策略的总结:
1.明确问题要求:在解决排列组合问题时,首先要明确问题的要求,确定是排列问题还是组合问题,以及具体的限制条件。
2.确定元素范围:根据问题要求,确定所选取元素的范围,明确哪些元素可以选取,哪些元素不能选取。
3.列出所有可能的排列或组合:根据排列组合的公式,列出所有可能的排列或组合,确保不遗漏任何一种可能性。
4.分类讨论:对于一些复杂的问题,需要进行分类讨论。根据问题的特点,将问题分成若干个子问题,分别求解子问题的排列组合情况。
5.排除法:在某些情况下,可以通过排除法求解问题。根据问题的限制条件,排除一些不可能的情况,从而减少计算量。
6.递推关系:对于一些具有递推关系的问题,可以利用递推关系求解。通过递推关系,逐步推导出最终的排列组合情况。
7.容斥原理:容斥原理是解决排列组合问题的一种重要方法。通过容斥原理,可以将多个排列或组合的情况合并为一个,从而简化计算过程。
8.实际应用:排列组合问题在日常生活和科学研究中有着广泛的应用。通过实际应用,可以加深对排列组合概念的理解,并掌握解题方法和策略。
解决排列组合问题需要掌握一定的方法和策略。通过明确问题要求、确定元素范围、分类讨论、排除法、递推关系、容斥原理等方法和策略,可以有效地解决各种排列组合问题。同时,通过实际应用,可以加深对排列组合概念的理解,提高解题能力。排列组合在日常生活和科学研究中有着广泛的应用,以下是其中一些典型的应用场景:
专题讲座排列组合问题的解题思路和解题方法
排列组合问题的解题思路和解题方法
一.特殊元素和特殊位置优先策略
例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 113434288C C A =
练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同
的种法?
二.相邻元素捆绑策略
例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 522522480A A A =
练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20
三.不相邻问题插空策略
例3.一晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种5456A A 种
练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30
四.定序问题倍缩空位插入策略
例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 (倍缩法):7
373/A A (空位法) 47A (插入法)
练习:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5
10C
五.重排问题求幂策略
例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 共有67种不同的排法
练习题:1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 42
2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法87
数学:解排列组合应用题的21种策略
解排列组合应用题的21种策略
排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.
1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.
例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有( )
A 、60种
B 、48种
C 、36种
D 、24种
解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,
4424A =种,答案:D .
2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.
例 2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )
A 、1440种
B 、3600种
C 、48
D 、4800种
解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同
的排法种数是525
63600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.
例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是( )
A 、24种
B 、60种
C 、90种
D 、1
解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602
解排列组合问题的常用策略
解排列组合问题的常用策略
解决排列组合综合性问题的一般过程如下:
1.认真审题弄清要做什么事;
2.怎样做才能完成所要做的事,即采取分类还是分步,或是分类与分步同时进行,确定分多少类及多少步;
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略
一、特殊元素和特殊位置优先策略
1.由0,1,2,3,4,5可以组成多少个没有重复数字的5位奇数.
2.将7种不同的花种在排成一列的7个花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?
二、相邻元素捆绑策略
3.若 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.
三、不相邻问题插空策略
4.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?
5.某班新年联欢会原定的
5.个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为____.
6.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为____.
7.若 7人排队,其中甲乙丙 3人顺序一定,共有多少不同的排法?
8.若 10人身高各不相同,排成前后两排,每排 5人,要求从左至右身高逐渐增加,共有多少种排法?
9.把 6名实习生分配到 7个车间实习,共有多少种不同的分法?
10.某 8层大楼一楼电梯上来 8名乘客,他们到各自的楼层下电梯,下电梯的方法共有多少种?六、多排问题直排策略
排列组合问题的类型及解答策略
排列组合问题,联系实际,生动有趣,但题型多样,思路灵活,不易掌握;实践证明,备考有效的方法是题型与解法归类,识别模式,熟练运用;本文介绍十二类典型排列组合问题的解答策略,供参考;
一、相邻问题捆绑法
例16名同学排成一排,其中甲、乙两人必须排在一起的不同排法有种
A. 720
B. 360
C. 240
D. 120
解:因甲、乙两人要排在一起,故将甲、乙两人捆在一起视作一人,与其余四人进行全排列有种排法;甲、乙两人之间有种排法;由分步计数原理可知,共有=240种不同排法,选C;
评注:从上述解法可以看出,所谓“捆绑法”,就是在解决对于某几个元素相邻的问题时,可整体考虑将相邻元素视作一个“大”元素;
二、相离问题插空法
例2要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法只要求写出式子,不必计算
解:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法;由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种;
评注:从解题过程可以看出,不相邻问题是要求某些元素不能相邻,由其它元素将它们隔开;此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法;
三、定序问题缩倍法
例3信号兵把红旗与白旗从上到下挂在旗杆上表示信号;现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________用数字作答;
解:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能
排列组合问题的解题策略
排列组合问题的求解策略
一.知识梳理
1.分类加法计数原理
完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理
完成一件事需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.
分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.
3.排列与组合的概念
4
(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用A错误!表示.
(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有
不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用C m n表示.
5.排列数、组合数的公式及性质
排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握。解排列组合问题的基础是两个基本原理,分类用加法原理,分步用乘法原理,问题在于怎样合理地进行分类、分步,特别是在分类时如何做到既不重复,又不遗漏,正确分每一步,这是比较困难的。要求我们周密思考,细心分析,理解并掌握解题的常用方法和技巧,掌握并能运用分类思想、转化思想、整体思想、正
排列组合常见的解题策略
排列组合常见的解题策略
第一篇:排列组合常见的解题策略
“排列组合常见的解题策略”课例
张玉华
一、教材分析
排列和组合是数学基础知识的重要组成部分之一,它在解决实际问题以及科学技术的研究中都有广泛的应用;在排列组合问题中充分体现了分类、化归的数学思想。它应用性强,具有题型多变,条件隐晦,思维抽象,分类复杂,问题交错,易出现重复和遗漏以及不易发现错误等特征。因而在这部分教学中,应充分调动学生的积极性,强调学生的主体作用,明确基本原理,注重思维过程的分析,让学生在问题解决的过程中不断反思探索规律,体验成功,从而提升学生的思维能力。而且是概率的基础。
二、学情分析
高三(1)班的同学基础差,但勤奋好学,有一定的潜力。
三、教学目的
1、认知目标:
使学生进一步理解并掌握处理排列组合问题的基本策略,进一步体会分类与化归的数学思想方法以及分析与解决问题的能力,培养学生的探索创新意识。
2、技能目标:
充分发挥教师的主导和学生的主体作用,使学生的自主意识、自学能力、探索创新意识得到发展。
3、情感目标:
培养学生的自信心和学习兴趣,树立实事求是的科学态度和不怕困难的进取精神,积极探索,进而培养学生的创新能力。
四、教法分析
根据排列组合的知识特点“条件隐晦,思维抽象”,在教学中采用发现法,坚持“思路教学”,深钻教材,注意从实验入手,模拟发
现,从特殊到一般,归纳出一般的规律,优化学生的思路,激活学生的思维。
五、教学过程分析
1、复习思考
(1)处理排列组合问题的常见解题策略(提问学生作答)问题
一、街道旁有编号1、2、3、4、5、6、7、8、9、10共十只路灯,为节约用电又不影响照明,可以把其中的三只灯相灭,但不能同时熄灭相邻两只,在两端的两只路灯不熄灭的情况下,问不同的熄灯方法有多少种? ①通过复习提问总结解决排列组合问题的基本思路和方法。
排列组合问题的解题技巧
排列组合问题的解题技巧
陕西武功梁小宁
排列组合问题历来是高中数学教学的一个难点,其思考方法独特,求解思路灵活,因而在解题中极易出现“重复”或“遗漏”的错误.虽然近几年高考将侧重点放在两个计数原理的考察上,但当对问题类型把握准确时,解答的准确性上将会有很大的提升,解答速度也会大大提高.以下介绍几类典型排列组合问题的解答技巧:
1、相邻问题捆绑法
例16名同学排成一排,其中甲、乙两人必须排在一起的不同排法有()种。
A、720
B、360
C、240
D、120
解:因甲、乙两人要排在一起,故将甲乙两人捆在一起视作一人有
种排法,与其余四人进行全排列有种排法,由乘法原理可知,共有 =240种不同排法,故选(C)。
点评:从上述解法可以看出,所谓“捆绑法”,就是对元素进行整体处理的形象化表述,体现数学中的整体思想。对于以“某些元素必须相邻”为附加条件的排列组合问题,只要把必须相邻的元素“捆”成一个整体,视作一个“大”元素,再考虑相邻元素内部的排列或组合,就能保证这些元素相邻而不散乱。
训练: 3名男教师,3名女教师,6名学生站成一排,要求男教师和女教师必须站在一起,且教师不站在两端,则一共有多少种站法?
2、相隔问题插空法
例2排一张5个歌唱节目和4个舞蹈节目的演出节目单
(1)任何两个舞蹈节目不相邻的排法有多少种?
(2)舞蹈节目和歌唱节目间隔排列的方法有多少种?
解:(1)先排歌唱节目有种,歌唱节目及两端有6个空位,从这6个空位中选4个放入舞蹈节目,共有种方法,所以任何两个舞蹈节目不相邻的排法有种。
(3)先排舞蹈节目有种排法,在舞蹈节目和两端有5个空位,恰好供5个歌唱节目放入,所以舞蹈节目和歌唱节目间隔排列的方法有种。
组合问题的解题方法与策略
组合问题的解题方法与策略
组合问题是离散数学中的一个重要分支,涉及到从给定的元素中选出特定数量的元素进行排列或组合的问题。在实际生活中,组合问题的应用非常广泛,例如从一堆物品中选出特定数量的物品进行组合,或者从一个人群中选出特定数量的人进行配对等等。
解决组合问题的方法和策略主要包括以下几个方面:
1. 排列组合公式
排列组合公式是解决组合问题的基本公式,包括排列公式和组合公式。排列公式指的是从n个元素中选取r个元素进行排列的方案数为
A(n,r)=n!/(n-r)!,组合公式指的是从n个元素中选取r个元素进行组合的方案数为C(n,r)=n!/r!(n-r)!。
2. 构造组合问题的模型
在解决组合问题时,需要首先将问题抽象化成组合问题的模型,确定元素的个数、选取的元素数量、元素的性质等等。例如,在从一堆物品中选取特定数量的物品进行组合的问题中,需要确定物品的数量、选取的物品数量、每个物品的性质等等。
3. 使用递归或回溯算法
递归和回溯算法是解决组合问题的常见方法。递归算法通过将大问题递归拆分成小问题进行求解,直到问题规模减小到可以直接求解为止。回溯算法则是在求解问题的过程中,遇到无法继续向下求解的情况时,返回上一层重新选择其他分支进行求解。
4. 利用数学归纳法
数学归纳法是解决组合问题的另一种常见方法。它通过证明基本情况成立,然后假设某个情况成立,证明下一个情况也成立,以此类推,最终证明所有情况都成立。
总之,解决组合问题需要掌握基本的排列组合公式,构建问题模型,使用递归或回溯算法,以及利用数学归纳法等方法。通过不断练习和实践,可以提高解决组合问题的能力和效率。
排列组合问题的解题策略
排列组合问题的解题策略
关键词: 排列组合,解题策略
一、相临问题——捆绑法
例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?
解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进
行排列,并考虑甲乙二人的顺序,所以共有A 22*A 66种。
评注:一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决,共有 种排法。
二、不相临问题——选空插入法
例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?
解:甲、乙二人不相邻的排法一般应用“插空”法,先把剩下的5人排列,5人之间有6个空,把甲乙在6个空中选2个插入,所以甲、乙二人不相邻的排法总数应为:2655A A ⋅ 种 .
评注:若 个人站成一排,其中 个人不相邻,可用“插空”法解决,共有 种排法。
三、复杂问题——总体排除法
在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.
解:从7个点中取3个点的取法有 种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有32个.
四、特殊元素——优先考虑法
对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4. (1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法 种.
解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有13A 种,而其余学生的排法有44A 种,所以共有13
排列组合的解题常用策略
解:分两步进行
第一步排2个相声和3个独唱共有 A (55 第一步跟顺序有关,排列问题)
第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共
有A
4 (第二步依旧与顺序有关,排列问题)
6
由分步计数原理,节目的不同顺序共有 A
5 5
A
4 6
策略说明
元素不相邻问题可先把没有位置要求的元素进行排队,再把不相邻元素插入中间 和两端。
C153C84C44 / A22
2.某校高二年级共有六个班级,现从外地转入4名学生,要安排到
该年级的两个班级且每班安排2名,则不同的安排方案种数为
______
C
2 4
C
2 2
A
2 2
A
2 6
90
3.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分 在同一组,有多少种不同的分组方法 (1540)
将n个相同的元素分成m份(n,m为正整数),每份至少一个元
素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,
所有分法数为 C
m 1 n 1
练习1:有10个相同的小球,装入4个盒内,每个盒子 至少有一个球,共有多少种不同的装法?
练习2:(1)10个优秀指标分配给6个班级,每个班级 至少一个,共有多少种不同的分配方法? (2)10个优秀指标分配到1、2、 3三个班,若名额数 不少于班级序号数,共有多少种不同的分配方法?
数量关系中排列组合问题的七大解题策略
数量关系中排列组合问题的七大解题策略
【概述】
排列组合问题是历年公务员考试行测的必考题型,并且随着近年公务员考试越来越热门,国考中这部分题型的难度也在逐渐的加大,解题方法也趋于多样化。解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧。
一、排列和组合的概念
排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。
【步骤】
二、七大解题策略
1.特殊优先法
特殊元素,优先处理;特殊位置,优先考虑。对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。
例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()
(A)280种(B)240种(C)180种(D)96种
正确答案:【B】
解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有C(4,1)×A(5,3)=240种,所以选B。
2.科学分类法
史上最全的排列组合22种解题策略
解题篇题法
高二数学2021年5月史上最全的排列组合22种解题
■福建省泉州市第七中学彭耿铃
排列组合问题联系生活实际且生动有趣,但题型多样,思路灵活,不易掌握$实践证明,掌握题型和解题方法,识别模型,熟练运用,是解决排列组合应用题的有效途径$本文旨在探究题型规律,揭示解题方法、提供解题策略,希望对同学们的学习有所帮助。
策略一特殊元素或特殊位置优先法,所谓“优先法”是指在解决排列组合问题时,对有限制条件的元素(或位置)要优先考虑!!由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数/
解析:由于末位和首位有特殊要求,应该优先安排数字,以免不合要求的元素占了这两个位置$先排末位,共有#1种方法,然后排首位,共有#4种方法,最后排其他位置,共有A)种方法,由分步计数原理知有#1#1/3 =288!种)方法。
!"在由数字0、1、2、3、4、5所组成的没有重复数字的四位数中,不能被5整除的数共有_____个$
解法一(元素优先"数字0、1、2、3、4、5中含有0,当组成四位数时,0不能放在首位$又所求四位数不能被5整除,因而可以根据是否含有0和5两个元素将所求四位数分成四类:第一类,含0不含5的四位数,共有#1/3=48(个"第二类,含5不含0的四位数,共有C3A)=72(个"第三类,含0也含5的四位数,共有#—#—A)=48(个"第四类,不合0也不含5的四位数,共有A)=24(个)$所以,符合条件的四位数共有48+72+48+ 24=192(个"
解法二(位置优先"根据所求四位数对首末两个位置的特殊要求可以分步解答:第一步,排个位,个位上的数字只能从1、2、3、4这4个数字中任选1个,共有C)种选法;第二步,排千位,千位上的数字只能从1、2、3、4这4个数字被个位选掉后剩余的3个数字及数字5中任选1个,共有#1种选法;第三步,排中间两位,中间两位可以从个位和首位排好后剩余的4个数字中任选2个,共有A2种选法。所以符合条件的四位数共有#1#1/2 =4X4X4X3=192(个"
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合问题的解题策略
排列组合问题的解题策略
一、相临问题——捆绑法
例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?
解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。
评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。
二、不相临问题——选空插入法
例2.7名学生站成一排,甲乙互不相邻有多少不同排法?
解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .
评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。
三、复杂问题——总体排除法
在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.
解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.
四、特殊元素——优先考虑法
对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.
解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.
例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.
解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.
五、多元问题——分类讨论法
对于元素多,选取情况多,可按要求进行分类讨论,最后总计。
例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A )
A.42 B.3 0 C.20 D.12
解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。
例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相
邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答)
解:区域1与其他四个区域相邻,而其他每个区域都与三个区域相邻,因此,可以涂三种或四种颜色.用三种颜色着色有=24种方法, 用四种颜色着色有=48种方法,从而共有24+48 =72种方法,应填72.
六、混合问题——先选后排法
对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略.
例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有()
A.种B.种
C.种D.种
解:本试题属于均分组问题。则12名同学均分成3组共有种方法,分配到三个不同的路口的不同的分配方案共有:种,故选A。
例9.(2003年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有()A.24种B.18种C.12种
D.6种
解:先选后排,分步实施. 由题意,不同的选法有: C32种,不同的排法有:
A31·A22,故不同的种植方法共有A31·C32·A22=12,故应选C.
七.相同元素分配——档板分隔法
例10.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考这些方法是否适
合更一般的情况?
本题考查组合问题。
解:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有种插法,即有15种分法。
总之,排列、组合应用题的解题思路可总结为:排组分清,加乘明确;有序排列,无序组合;分类为加,分步为乘。
具体说,解排列组合的应用题,通常有以下途径:
(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素。
(2)以位置为主体,即先满足特殊位置的要求,再考虑其他位置。
(3)先不考虑附加条件,计算出排列或组合数,再减去不合要求的排列组合数。
排列组合问题的解题方略
湖北省安陆市第二高级中学张征洪
排列组合知识,广泛应用于实际,掌握好排列组合知识,能帮助我们在生产生活中,解决许多实际应用问题。同时排列组合问题历来就是一个老大难的问题。因此有必要对排列组合问题的解题规律和解题方法作一点归纳和总结,以期充分掌握排列组合知识。
首先,谈谈排列组合综合问题的一般解题规律:
1)使用“分类计数原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用“分类计数原理”,需要分步来完成这件事时就用“分步计数原理”;那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。