某实验3-信号地频域分析报告
数字信号处理实验报告 3
数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。
二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。
2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。
实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。
由此讨论原时域信号不失真地由频域抽样恢复的条件。
实验三:由X32(k)恢复X(z)和X(e jw)。
四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。
信号分析与处理实验报告
信号分析与处理实验报告一、实验目的1.了解信号分析与处理的基本概念和方法;2.掌握信号分析与处理的基本实验操作;3.熟悉使用MATLAB进行信号分析与处理。
二、实验原理信号分析与处理是指利用数学和计算机技术对信号进行分析和处理的过程。
信号分析的目的是了解信号的特性和规律,通过对信号的频域、时域和幅频特性等进行分析,获取信号的频率、幅度、相位等信息。
信号处理的目的是对信号进行数据处理,提取信号的有效信息,优化信号的质量。
信号分析和处理的基本方法包括时域分析、频域分析和滤波处理。
时域分析主要是对信号的时变过程进行分析,常用的方法有波形分析和自相关分析。
频域分析是将信号转换到频率域进行分析,常用的方法有傅里叶级数和离散傅里叶变换。
滤波处理是根据信号的特性选择适当的滤波器对信号进行滤波,常用的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
三、实验内容1.信号的时域分析将给定的信号进行波形分析,绘制信号的时域波形图;进行自相关分析,计算信号的自相关函数。
2.信号的频域分析使用傅里叶级数将信号转换到频域,绘制信号的频域图谱;使用离散傅里叶变换将信号转换到频域,绘制信号的频域图谱。
3.滤波处理选择合适的滤波器对信号进行滤波处理,观察滤波前后的信号波形和频谱。
四、实验步骤与数据1.时域分析选择一个信号进行时域分析,记录信号的波形和自相关函数。
2.频域分析选择一个信号进行傅里叶级数分析,记录信号的频谱;选择一个信号进行离散傅里叶变换分析,记录信号的频谱。
3.滤波处理选择一个信号,设计适当的滤波器对信号进行滤波处理,记录滤波前后的信号波形和频谱。
五、实验结果分析根据实验数据绘制的图像进行分析,对比不同信号在时域和频域上的特点。
观察滤波前后信号波形和频谱的变化,分析滤波效果的好坏。
分析不同滤波器对信号的影响,总结滤波处理的原理和方法。
六、实验总结通过本次实验,我们了解了信号分析与处理的基本概念和方法,掌握了信号分析与处理的基本实验操作,熟悉了使用MATLAB进行信号分析与处理。
matlab信号频域分析实验报告
matlab信号频域分析实验报告Matlab信号频域分析实验报告引言:信号频域分析是一种重要的信号处理技术,通过将信号从时域转换到频域,可以更好地理解信号的频率特性和频谱分布。
本实验旨在利用Matlab软件进行信号频域分析,探索信号的频域特性,并通过实验结果验证频域分析的有效性。
一、实验目的本实验的主要目的是通过Matlab软件进行信号频域分析,了解信号的频域特性和频谱分布,验证频域分析的有效性。
二、实验原理信号频域分析是将信号从时域转换到频域的过程,常用的频域分析方法有傅里叶变换和功率谱估计等。
傅里叶变换可以将信号分解为不同频率的正弦和余弦分量,从而得到信号的频谱分布。
功率谱估计则可以估计信号在不同频率上的功率。
三、实验步骤1. 生成信号:首先,使用Matlab生成一个包含多个频率分量的复合信号。
可以选择正弦信号、方波信号或者其他复杂信号。
2. 时域分析:利用Matlab的时域分析函数,如plot()和stem(),绘制信号的时域波形图。
观察信号的振幅、周期和波形特征。
3. 频域分析:使用Matlab的傅里叶变换函数fft(),将信号从时域转换到频域。
然后,利用Matlab的频域分析函数,如plot()和stem(),绘制信号的频域谱图。
观察信号的频率分量和频谱分布。
4. 功率谱估计:使用Matlab的功率谱估计函数,如pwelch()或periodogram(),估计信号在不同频率上的功率。
绘制功率谱图,观察信号的功率分布。
四、实验结果与分析通过实验,我们生成了一个包含多个频率分量的复合信号,并进行了时域分析和频域分析。
实验结果显示,信号的时域波形图反映了信号的振幅、周期和波形特征,而频域谱图则展示了信号的频率分量和频谱分布。
在时域波形图中,我们可以观察到信号的振幅和周期。
不同频率分量的信号在时域波形图中呈现出不同的振幅和周期,从而反映了信号的频率特性。
在频域谱图中,我们可以观察到信号的频率分量和频谱分布。
《信号与系统》实验三
三:
源程序:
(1):τ/T=1/4时的周期矩形脉冲的幅度谱和相位谱:
n=-20:20;
F=zeros(size(n));
forii=-20:20
F(ii+21)= sin(ii*pi/4)/(ii*pi+eps);
end
F(21)=1/4;
实验
内容
1.求图1所示周期信号( , )的傅里叶级数,用Matlab做出其前3、9、21、45项谐波的合成波形与原信号作比较,并做出其单边幅度谱和相位谱。
图1 周期为2的三角脉冲信号
2. 求图2所示的单个三角脉冲( )的傅里叶变换,并做出其幅度谱和相位谱。
图2 单个三角脉冲
3. 求不同占空比下周期矩形脉冲的幅度谱和相位谱,例如 、 。
y=1/4;
forn=1:m
y=y+4/(n*n*pi*pi)*(1-cos(n*pi/2)).*cos(n*pi.*t);
end
源代码:
t=-6:0.01:6;
d=-6:2:6;
fxx=pulstran(t,d,'tripuls');
f1=fourierseries(3,t);
f2=fourierseries(9,t);
n=1:10;
a=zeros(size(n));
fori=1:10
a(i)=angle(4/(i*i*pi*pi)*(1-cos(i*pi/2)))
end
n=0:pi:9*pi
stem(n,a,'fill','linewidth',2);
axis([0,9*pi,-0.2,0.2])
连续时间信号与系统的频域分析报告
连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。
本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。
2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。
傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。
具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。
3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。
频率响应是系统对不同频率输入信号的响应情况。
通过系统函数H(ω)可以计算系统的频率响应。
系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。
4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。
通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。
常用的频域分析方法包括功率谱密度估计、谱线估计等。
5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。
通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。
6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。
通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。
进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。
7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。
频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。
总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。
频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。
数字信号处理实验报告
数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。
在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。
本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。
实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。
通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。
实验设置如下:1. 设置采样频率为8kHz。
2. 生成一个正弦信号:频率为1kHz,振幅为1。
3. 生成一个方波信号:频率为1kHz,振幅为1。
4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。
这体现了正弦信号和方波信号在时域上的不同特征。
实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。
在实际应用中,信号的采样和重构对信号处理的准确性至关重要。
实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。
2. 设置采样频率为8kHz。
3. 对正弦信号进行采样,得到离散时间信号。
4. 对离散时间信号进行重构,得到连续时间信号。
5. 将重构的信号通过DAC输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。
这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。
实验三 连续信号与系统的频域分析
学号
0174280
同组人:无
实验项目
实验三连续信号与系统的频域分析
☑必修□选修
□演示性实验☑验证性实验□操作性实验□综合性实验
实验地点
H113
实验仪器台号
F0
指导教师
蒋娜
实验日期及节次
week14->2-12
一、实验目的及要求:
1、目的
1.掌握非周期信号的傅里叶变换:fourier函数和ifourier函数;
四、实验结果与数据处理:
1.利用fourier函数求下列信号的傅里叶变换F(jω),并用ezplot函数绘出其幅度谱和相位谱。
(1)
syms t v w phase im re;%定义变量t,v,w,phase,im re
f=sym('Heaviside(t)-Heaviside(t-2)');%
Fw=fourier(f);
plot([07.0711],[0.7070.707],':');
axis([04001.1]);
grid;
xlabel('角频率(\omega)');
ylabel('幅度');
title('H(j\omega)的幅频特性');
subplot(212);
plot(w,h2*180/pi);
axis([0400200]);
(2)
syms t v w phase im re;%定义变量t,v,w,phase,im re
f=exp(-1*t)*sym('Heaviside(t)');%
Fw=fourier(f);
subplot(311);
实验三用FFT对信号作频谱分析_实验报告
实验三用FFT对信号作频谱分析_实验报告一、实验目的1.学习使用FFT(快速傅里叶变换)对信号进行频谱分析;2.掌握频谱分析的基本原理和方法;3.熟悉使用MATLAB进行频谱分析的操作。
二、实验原理FFT是一种基于傅里叶变换的算法,可以将时域信号转换为频域信号,并将信号的频谱特征展示出来。
在频谱分析中,我们通过分析信号的频谱可以获得信号的频率、幅值等信息,从而对信号的性质和特征进行研究。
对于一个连续信号,我们可以通过采样的方式将其转换为离散信号,再利用FFT算法对离散信号进行频谱分析。
FFT算法可以将信号从时域转换到频域,得到离散的频谱,其中包含了信号的频率分量以及对应的幅值。
MATLAB中提供了fft函数,可以方便地对信号进行FFT分析。
通过对信号进行FFT操作,可以得到信号的频谱图,并从中提取出感兴趣的频率信息。
三、实验步骤1.准备工作:(2)建立新的MATLAB脚本文件。
2.生成信号:在脚本中,我们可以通过定义一个信号的频率、幅值和时间长度来生成一个信号的波形。
例如,我们可以生成一个频率为1000Hz,幅值为1的正弦波信号,并设置信号的时间长度为1秒。
3.对信号进行FFT分析:调用MATLAB中的fft函数,对信号进行FFT分析。
通过设置采样频率和FFT长度,可以得到信号的频谱。
其中,采样频率是指在单位时间内连续采样的次数,FFT长度是指离散信号的样本点数。
4.绘制频谱图:调用MATLAB中的plot函数,并设置x轴为频率,y轴为幅值,可以绘制出信号的频谱图。
频谱图上横坐标表示信号的频率,纵坐标表示信号的幅值,通过观察可以得到信号的频率分布情况。
四、实验结果在实验过程中,我们生成了一个频率为1000Hz,幅值为1的正弦波信号,并对其进行FFT分析。
通过绘制频谱图,我们发现信号在1000Hz处有最大幅值,说明信号主要由这一频率成分组成。
五、实验总结本实验通过使用FFT对信号进行频谱分析,我们可以方便地从信号的波形中提取出频率分量的信息,并绘制出频谱图进行观察。
数字信号处理实验三时域及频域采样定理
Xk1=fft(x1,length(n1)); %采样序列x1(n)的FFT变换
Xk2=fft(x2,length(n2)); %采样序列x2(n)的FFT变换
Xk3=fft(x3,length(n3)); %采样序列x3(n)的FFT变换
k1=0:length(Xk1)-1;
fk1=k1/Tp; %x1(n)的频谱的横坐标的取值
这里给定采样频率如下: ,300Hz,200Hz。分别用这些采样频率形成时域离散信号,按顺序分别用 、 、 表示。选择观测时间 。
3.计算 的傅立叶变换 :
(3.6)
式中, ,分别对应三种采样频率的情况 。采样点数用下式计算:
(3.7)
(3.6)式中, 是连续变量。为用计算机进行数值计算,改用下式计算:
下面分析频域采样定理。对信号x(n)的频谱函数 ,在[0,2π]上等间隔采样N点,得到
(3.4)
则N点IDFT[ ]得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值区序列,公式为:
(3.5)
由上式可知,频域采样点数N必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N点IDFT[ ]得到的序列 就是原序列x(n),即 =x(n)。如果N>M, 比原序列尾部多N-M个零点;如果N<M,z则 =IDFT[ ]发生了时域混叠失真,而且 的长度N也比x(n)的长度M短,因此。 与x(n)不相同。
MATLAB实验3信号与系统频域分析的MATLAB实现
举例4 举例4
用有限时宽余弦信号f(t)=cos(2πt/3)(0≤ 40)近似 用有限时宽余弦信号f(t)=cos(2πt/3)(0≤t ≤40)近似 理想余弦信号,用Matlab编程画出该信号及其抽 理想余弦信号,用Matlab编程画出该信号及其抽 样信号的频谱,并对比观察过抽样和欠抽样状态。 解:首先计算该信号的临界抽样角频率 临界抽样频率 临界抽样周期
举例1 举例1
syms t x=exp(-2*abs(t)) F=fourier(x) subplot(211) ezplot(x) subplot(212) ezplot(F)
仿真波形
x4/(4+w^2)
举例2 举例2 傅里叶变换的对称性
命令代码1 命令代码1: syms t r=0.01;%采样间隔 r=0.01;%采样间隔 j=sqrt(j=sqrt(-1); t=-15:r:15; t=f=sin(t)./t;%计算采样函数的离散采样点 f=sin(t)./t;%计算采样函数的离散采样点 f1=pi*(Heaviside(t+1)-Heaviside(t-1));%计算脉 f1=pi*(Heaviside(t+1)-Heaviside(t-1));%计算脉 宽为2 宽为2的门信号的离散采样点 N=500;%采样点数 N=500;%采样点数 W=5*pi*1;%设定采样角频率 W=5*pi*1;%设定采样角频率 w=k*W/N;%对频率采样 w=k*W/N;%对频率采样
一个频谱受限的信号
2 fm
或者说, 或者说,最低抽样频率为 2 最低抽样频率
fm
→
。 称为“奈奎斯特频率” 称为“奈奎斯特频率”。
fs = 2 fm
也就是说:对于带限信号, 也就是说:对于带限信号,当
实验3-采样的时频域分析
一、实验室名称:数字信号处理实验室 二、实验项目名称:采样的时域及频域分析 三、实验原理:1、采样的概念:采样是将连续信号变化为离散信号的过程。
1. A 、理想采样:即将被采样信号与周期脉冲信号相乘B 、实际采样:将被采样信号与周期门信号相乘,当周期门信号的宽度很小,可近似为周期脉冲串。
根据傅里叶变换性质000()()()()ˆˆ()()()()()()(())FTFTa a T n n FTa a T a T a an n x t X j T j xt x t T x nT t nT X j Xj n ωδωδδδω=+∞=+∞=-∞=-∞←−→Ω←−→Ω==-←−→Ω=Ω-Ω∑∑式中T 代表采样间隔,01TΩ=由上式可知:采样后信号的频谱是原信号频谱以0Ω为周期的搬移叠加 结论:时域离散化,频域周期化;频谱周期化可能造成频谱混迭。
)(t T δ^T ^)tC 、低通采样和Nyquist 采样定理设()()a a x t X j ⇔Ω且()0,2a M M X j f πΩ=Ω>Ω=当,即为带限信号。
则当采样频率满足2/22s M M f f π≥Ω=时,可以从采样后的^()()()a assn x t x nT t nT δ∞=-∞=-∑信号无失真地恢复()ax t 。
称2Mf为奈奎斯特频率,12N M T f =为奈奎斯特间隔。
注意:实际应用中,被采信号的频谱是未知的,可以在ADC 前加一个滤波器(防混迭滤波器)。
2、低通采样中的临界采样、欠采样、过采样的时域及频域变化情况。
低通采样中的临界采样是指在低通采样时采样频率2s M f f = 低通采样中的欠采样是指在低通采样时采样频率2s M f f ≤ 低通采样中的欠采样是指在低通采样时采样频率2s M f f ≥ 设一带限信号的频谱如下:ˆ()a xt )(ˆΩj X a()a G j Ω0 m-ΩΩm Ω0T TT-ΩTΩ(1)临界采样(2)过采样(3)欠采样由上图可知,当为临界采样和过采样时,理论上可以无失真的恢复采样信号,但是实际在临界采样时,由于实际滤波器的性能限制,无法无失真的恢复,在欠采样时只能部分恢复原信号的频谱特性。
信号与系统实验报告实验三 连续时间LTI系统的频域分析
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法与特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习与掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续与离散时间系统的频域数学模型与频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波与滤波器的概念,掌握利用MATLAB 计算与绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response),就是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况与响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号与响应信号,h(t)就是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3、1或者: )()()(ωωωj X j Y j H =3、2)(ωj H 为系统的频域数学模型,它实际上就就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()( 3、3由于H(j ω)实际上就是系统单位冲激响应h(t)的傅里叶变换,如果h(t)就是收敛的,或者说就是绝对可积(Absolutly integrabel)的话,那么H(j ω)一定存在,而且H(j ω)通常就是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的就是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3、4上式中,)j (ωH 称为幅度频率相应(Magnitude response),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
信号频谱测量实验报告
一、实验目的1. 理解信号频谱测量的基本原理和方法。
2. 掌握使用MATLAB进行信号频谱测量的操作流程。
3. 分析不同信号在频域的特性,加深对信号频谱的理解。
二、实验原理信号频谱测量是指将信号从时域转换到频域,分析信号中不同频率成分的强度和分布情况。
常用的信号频谱分析方法有傅里叶变换(FFT)和快速傅里叶变换(FFT)。
1. 傅里叶变换:将一个连续或离散信号分解为不同频率的正弦波和余弦波的线性组合,从而得到信号的频谱。
2. 快速傅里叶变换(FFT):一种高效的傅里叶变换算法,可以快速计算出信号的频谱。
三、实验仪器与软件1. 仪器:信号发生器、示波器、信号分析仪、计算机2. 软件:MATLAB四、实验步骤1. 使用信号发生器产生不同类型的信号,如正弦波、方波、三角波等。
2. 将信号输入到示波器,观察信号的时域波形。
3. 使用信号分析仪测量信号的频率、幅度等参数。
4. 将信号输入到计算机,使用MATLAB进行频谱分析。
5. 利用MATLAB的FFT函数对信号进行快速傅里叶变换,得到信号的频谱。
6. 分析信号的频谱,观察不同频率成分的强度和分布情况。
五、实验结果与分析1. 正弦波信号实验结果:正弦波信号的频谱为一个位于零频率处的峰值,其幅度与信号幅度成正比。
分析:正弦波信号是一个单一频率的信号,其频谱只有一个频率成分。
2. 方波信号实验结果:方波信号的频谱为一个以基波频率为间隔的无限多个频率成分,其幅度随着频率的增加而逐渐减小。
分析:方波信号是一个周期性信号,由多个不同频率的正弦波组成。
其频谱包含了基波及其谐波,基波频率为信号频率,谐波频率为基波频率的整数倍。
3. 三角波信号实验结果:三角波信号的频谱为一个以基波频率为间隔的无限多个频率成分,其幅度随着频率的增加而逐渐减小。
分析:三角波信号是一个周期性信号,由多个不同频率的正弦波组成。
其频谱包含了基波及其谐波,基波频率为信号频率,谐波频率为基波频率的整数倍。
数字信号处理实验三:离散时间信号的频域分析
实验三:离散时间信号的频域分析一.实验目的1.在学习了离散时间信号的时域分析的基础上,对这些信号在频域上进行分析,从而进一步研究它们的性质。
2.熟悉离散时间序列的3种表示方法:离散时间傅立叶变换(DTFT),离散傅立叶变换(DFT)和Z变换。
二.实验相关知识准备1.用到的MATLAB命令运算符和特殊字符:< > .* ^ .^语言构造与调试:error function pause基本函数:angle conj rem数据分析和傅立叶变换函数:fft ifft max min工具箱:freqz impz residuez zplane三.实验内容1.离散傅立叶变换在MATLAB中,使用fft可以很容易地计算有限长序列x[n]的离散傅立叶变换。
此函数有两种形式:y=fft(x)y=fft(x,n) 求出时域信号x的离散傅立叶变换n为规定的点数,n的默认值为所给x的长度。
当n取2的整数幂时变换的速度最快。
通常取大于又最靠近x的幂次。
(即一般在使用fft函数前用n=2^nextpow2(length(x))得到最合适的n)。
当x的长度小于n时,fft函数在x的尾部补0,以构成长为n点数据。
当x的长度大于n时,fft函数将序列x截断,取前n点。
一般情况下,fft求出的函数多为复数,可用abs及angle分别求其幅度和相位。
注意:栅栏效应,截断效应(频谱泄露和谱间干扰),混叠失真例3-1:fft函数最通常的应用是计算信号的频谱。
考虑一个由100hz和200hz正弦信号构成的信号,受零均值随机信号的干扰,数据采样频率为1000hz。
通过fft函数来分析其信号频率成分。
t=0:0.001:1;%采样周期为0.001s,即采样频率为1000hzx=sin(2*pi*100*t)+sin(2*pi*200*t)+1.5*rand(1,length(t));%产生受噪声污染的正弦波信号subplot(2,1,1);plot(x(1:50));%画出时域内的信号y=fft(x,512);%对x进行512点的fftf=1000*(0:256)/512;%设置频率轴(横轴)坐标,1000为采样频率subplot(2,1,2);plot(f,y(1:257));%画出频域内的信号实验内容3-2:频谱泄漏和谱间干扰假设现有含有三种频率成分的信号x(t)=cos(200πt)+sin(100πt)+cos(50πt)用DFT分析x(t)的频谱结构。
实验三用FFT对信号作频谱分析_实验报告
实验三用FFT对信号作频谱分析_实验报告一、实验目的1.理解离散傅里叶变换(FFT)的原理和应用;2.学会使用FFT对信号进行频谱分析;3.掌握频谱分析的基本方法和实验操作。
二、实验原理离散傅里叶变换(FFT)是一种用来将时域信号转换为频域信号的数学工具。
其基本原理是将连续时间信号进行离散化,然后通过对离散信号进行傅里叶变换得到离散频域信号。
傅里叶变换(Fourier Transform)是一种将时域信号转换为频域信号的方法。
在信号处理中,经常需要对信号的频谱进行分析,以获取信号的频率分量信息。
傅里叶变换提供了一种数学方法,可以将时域信号转换为频域信号,实现频谱分析。
在频谱分析中,我们常常使用快速傅里叶变换(Fast Fourier Transform,FFT)算法进行离散信号的频谱计算。
FFT算法可以高效地计算出离散信号的频谱,由于计算复杂度低,广泛应用于信号处理和频谱分析的领域。
频谱分析的流程一般如下:1.采集或生成待分析的信号;2.对信号进行采样;3.对采样得到的信号进行窗函数处理,以改善频谱的分辨率和抑制信号泄漏;4.使用FFT算法对窗函数处理得到的信号进行傅里叶变换;5.对傅里叶变换得到的频谱进行幅度谱和相位谱分析;6.对频谱进行解释和分析。
三、实验内容实验所需材料和软件及设备:1.信号发生器或任意波形发生器;2.数字示波器;3.计算机。
实验步骤:1.连接信号发生器(或任意波形发生器)和示波器,通过信号发生器发送一个稳定的正弦波信号;2.调节信号频率、幅度和偏置,得到不同的信号;3.使用数字示波器对信号进行采样,得到离散时间信号;4.对采样得到的信号进行窗函数处理;5.对窗函数处理得到的信号进行FFT计算,得到频谱;6.使用软件将频谱进行幅度谱和相位谱的分析和显示。
四、实验结果与分析1.信号频谱分析结果如下图所示:(插入实验结果图)从频谱图中可以看出,信号主要集中在一些频率上,其他频率基本没有,表明信号主要由该频率成分组成。
信号与系统实验报告实验三连续时间LTI系统的频域分析
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
连续时间信号的卷积及信号的频域分析实验报告(1)
连续时间信号的卷积及信号的频域分析实验报告(1)连续时间信号的卷积及信号的频域分析实验报告一、实验目的本实验的主要目的是通过对于两个时间域信号的卷积运算,掌握信号卷积运算的基本原理及操作方法;同时,利用MATLAB软件完成信号的傅里叶变换,了解信号在频域的频谱特征。
二、实验内容1、连续时间信号的卷积运算利用MATLAB软件中conv函数进行两个信号的卷积运算,并观察结果。
2、信号在频域的频谱特征- 利用MATLAB软件中fft函数对信号进行傅里叶变换,并获取其频域表示;- 利用MATLAB软件中ifft函数对信号进行逆傅里叶变换,恢复其原始时间域信号;- 观察不同频率成分对于信号的影响,并分析其原因。
三、实验步骤1、连续时间信号的卷积运算首先在MATLAB软件中定义两个连续时间信号,如下所示:t1 = 0:0.1:10;x1 = sin(2*pi*5*t1); % 正弦波信号t2 = 0:0.1:10;x2 = exp(-(t2-5).^2); % 高斯脉冲信号然后,使用conv函数进行卷积运算,并绘制出卷积后的信号图像。
x3 = conv(x1,x2,'same'); % 卷积运算figure; % 绘制卷积后的信号图像subplot(3,1,1);plot(t1,x1);xlabel('时间/s');ylabel('幅值');title('正弦波信号');subplot(3,1,2);plot(t2,x2);xlabel('时间/s');ylabel('幅值');title('高斯脉冲信号');subplot(3,1,3);plot(t1,x3);xlabel('时间/s');ylabel('幅值');title('卷积信号');2、信号在频域的频谱特征首先,通过fft函数对于时间域信号进行傅里叶变换,获取其频域表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,实验目的四,心得体会了解信号频谱和信号频域,掌握其特性。
一,实验原理实验主要分为四个部分,分别分析了连续和离散信号的周期、非周期情况下特性。
1.连续周期信号的频谱分析首先手算出信号的傅里叶级数,得出信号波形,然后通过代码画出信号波形图。
2.连续非周期信号的频谱分析先由非周期信号的时域信号得到它的频谱X(w),再通过MATLAB求出其傅里叶变换并绘出图形。
X=fourier(x)x=ifourier(x)①符号运算法syms t②数值积分法quad(fun,a,b)③数值近似法3.离散周期信号的频谱分析X=fft(x)4.离散非周期信号的频谱分析可以化为两个相乘的矩阵,从而由MATLAB实现。
三,实验内容(1)已知x(t)是如图周期矩形脉冲信号。
1).计算该信号的傅里叶级数。
2).利用MATLAB绘出由前N次谐波合成的信号波形,观察随着N 的变化合成信号波形的变化规律。
3).利用MATLAB绘出周期矩形脉冲信号的频谱,观察参数T和τ变化时对频谱波形的影响。
思考下列问题:①什么是吉伯斯现象?产生吉伯斯现象的原因是什么?②以周期矩形脉冲信号为例,说明周期信号的频谱有什么特点。
③周期矩形脉冲信号参数τ/T的变化,其频谱结构(如频谱包络形状、过零点、频谱间隔等)如何变化?(2)已知x(t)是如图所示矩形脉冲信号。
1).求该信号的傅里叶变幻。
2). 利用MATLAB绘出周期矩形脉冲信号的频谱,观察参数T和τ变化时对频谱波形的影响。
3). 让矩形脉冲宽度始终等于一,改变矩形脉冲宽度,观察矩形脉冲信号时域波形和频谱随矩形脉冲宽度的变化趋势。
①比较矩形脉冲信号和周期矩形脉冲信号的频谱,两者之间有何异同。
②让矩形脉冲的面积始终等于一,改变矩形脉冲的宽度,观察矩形脉冲信号时域波形和频谱波形随矩形脉冲宽度的变化趋势。
(1)已知x(t)是如图所示的周期矩形脉冲信号①,计算该信号的傅里叶级数答:由图中x(t)波形可知信号为通过计算,可以知道所以x(t)的傅里叶级数为。
②利用MATLAB绘出前N次谐波合成的信号波形,观察随着N的变化合成信号波形的变化规律。
Matlab程序如下:t=-1.5:0.01:1.5N=input('N=')A=1T=2*pita=T/2syms xtfor i=1:(length(N))x=A*ta/Tendfor k=1:N(i)x=x+2/(k*pi)*sin(k*pi*ta/T)*cos(2*pi*k*t/T) endif mod(i,4)==1figureflag=13endsubplot(2,2,flag)ezplot(x)str_title=['N=',sprintf('%d',N(i))]title(str_title)grid on程序执行结果:由图形可知,随着N的增大,选取的傅里叶级数增加,合成波形越来越接近原有的矩形脉冲信号。
③利用MATLAB绘出周期矩形脉冲信号的频谱,观察参数T和τ变化时,对频谱波形的影响。
答:由计算,MATLAB程序如下:N=input('N=')A=input('A=')T=input('T=')i=input('c=')n1=-N:-1c1=A./n1./pi.*sin(n1.*pi.*i./T)c0=A.*i./Tn2=1:Nc2=A./n2./pi.*sin(n2.*pi.*i./T)cn=[c1 c0 c2]n=-N:Nsubplot(211)stem(n,abs(cn),'filled')xlabel('w/w0')title('Magnitude of ck')subplot(212)stem(n,angle(cn),'filled')xlabel('w/w0')title('Phaseof ck')程序执行结果:①输入N=18,A=3,T=3,c=0.1:②输入N=18,A=3,T=3,c=1:③输入N=18,A=3,T=1,c=1:由程序执行结果可知,频谱波形与τ/T有关,当比值相同时,频谱波形图相同,比值不同时,随比值的减小,频谱包络性状趋于收敛、过零点越少、谱线越密。
思考:①什么是吉伯斯现象?产生吉伯斯现象的原因是什么?答:项进行合成。
当选取的项数越多,在所合成的波形中出现的峰起越靠近原信号的不连续点。
当选取的项数很大时,该峰起值趋于一个常数,大约等于总跳变值的9%。
这种现象称为吉伯斯现象。
产生原因:当一个信号通过某一系统时,如果这个信号不是连续时间函数,则由于一般物理系统对信号高频分量都有衰减作用,从而产生。
②以周期矩形脉冲信号为例,说明周期信号的频谱有什么特点。
答:周期信号的频谱是具有周期性的一系列脉冲信号,谱线间隔为w,谱线长度岁谐波次数增高趋于收敛。
③周期矩形脉冲信号的有效频带宽度与信号的时域宽度之间有什么关系?答:有效频宽与信号的时域宽度成反比。
④随着矩形脉冲信号参数τ/T的变化,其频谱结构如何变化?答:比值越小,频谱包络性状趋于收敛、过零点越少、谱线越密。
(2)已知x(t)是如图所示的矩形脉冲信号。
①求该信号的傅里叶变换。
由所给波形可知,Matlab程序如下:syms tA=input('A=')c=input('c=')x=A*(heaviside(t+c/2)-heaviside(t-c/2))X=fourier(x)collect(X)则当A=1,c=1,可得ans=(2*sin(w/2))/w=Aτsinc(wτ/2) 所以x(t)的傅里叶变换为②利用MATLAB绘出矩形脉冲信号的频谱,观察矩形脉冲宽度τ变化时对频谱波形的影响。
Matlab程序如下:syms t wm=input('m=')X=int(exp(-j*w*t),t,-m/2,m/2)ezplot(X,[-6*pi,6*pi])xlabel('w')ylabel('Magnitude')title('X(w) ¦Ó=1')程序执行如下:由程序执行结果可知,当矩形脉冲宽度增大时,信号占有频带减小,二者呈反比关系。
③让矩形脉冲的面积始终等于1,观察矩形脉冲信号时域波形和频谱随矩形脉冲宽度的变化趋势。
Matlab程序如下:syms wB=input('B=')A=1x=(2*A/w)*sin(w*B/2)subplot(211)ezplot(abs(x),[-6*pi,6*pi])grid onxlabel('\omege')ylabel('Magnitude')title('|x(\omega)|')X=heaviside(t+B/2)-heaviside(t-B/2)subplot(212)ezplot(X,[-5:5])程序执行如下:B=0.5: B=1B=3由程序执行结果可知,时域波形幅值越大,信号占有的频带宽度越宽。
思考:①比较矩形脉冲信号和周期矩形脉冲信号的频谱,两者之间有何异同?答:同:它们的有效频带宽度都是与脉冲宽度成反比。
异:周期矩形脉冲信号的频谱是离散的,而矩形脉冲信号的频谱连续。
②根据矩形脉冲宽度变化时频谱的变化规律,说明信号的有效频带宽度与其时域宽度之间的关系。
当脉冲宽度趋于0,脉冲的面积始终等于一,其频谱有何特点?答:矩形脉冲信号的有效频带宽度与其时域宽度成反比;当脉冲宽度趋于0,脉冲的面积始终等于一,其频谱会无限趋近于高度为1的一条直线。
(3)已知x(n)是如图所示的周期方波序列。
利用MATLAB绘制周期方波序列的频谱波形,改变参数N和N1的大小,观察频谱波形的变化趋势。
Matlab程序如下:N=input('N=')N1=input('N1=')n=-N1:N1x1=ones(size(n))n=N1+1:N-N1-1x2=zeros(size(n))x=[x1,x2]n=-N1:N-N1-1X=fft(x)subplot(211)stem(n,x,'filled')xlabel('n')title('x(n)')subplot(212)stem(n,X,'filled')xlabel('k')title('X(k)')程序执行如下:N=9,N1=2N=8,N1=3N=10,N1=2N=11,N1=1思考:①以周期方波序列为例,说明周期序列与连续周期信号的频谱有何异同。
答:同:周期序列与连续周期信号的频谱都是离散的,且都有收敛性和谐波性。
异:连续周期信号在一个周期内要用无限多项级数来表示,而周期序列用有限项级数就可以表示。
②随着周期方波序列占空比的变化,其频谱如何随之变化?答:方波序列占空比越小,频谱的谱线越密机,谱线高度越高。
(4)已知一矩形脉冲序列。
X(n)={1,|n |≤n10,|n |>n1利用MATLAB 绘制周期方波序列的频谱波形,改变矩形脉冲序列的宽度,观察频谱波形的变化趋势。
MATLAB 程序如下:N1=input('N1=')n=-N1:N1w=-pi:0.01:pix=ones(size(n))X=x*exp(-j*n'*w)subplot(211)stem(n,x,'filled')xlabel('n')title('x(n)')subplot(212)plot(w/pi,abs(X))grid onxlabel('\omega/\pi')title('|X£¨e^j^\omega£©|')程序执行如下:N1=2N1=4N1=8可以看出,随矩形脉冲序列宽度的增加,其频谱的有效频带宽度减小,二者成反比。
思考:①随着矩形脉冲序列宽度的变化,其频谱如何随之变化?其宽度与频谱的有效频带宽度有何关系?答:随着矩形脉冲序列宽度的增加,其频谱的有效频带宽度减小,二者成反比。
四,心得体会傅里叶变换作为信号与系统课程的基础,其计算的繁琐常常让人为难。
而MATLAB在这方面对我起到了极大的帮助。