混合燃气爆炸极限的确定
常见气体的爆炸极限及爆炸极限计算公式
常见气体的爆炸极限及爆炸极限计算公式(总2页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除爆炸极限计算方法:比较认可的计算方法有两种:莱·夏特尔定律?对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)混合可燃气爆炸上限:UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)此定律一直被证明是有效的。
2.2理·查特里公式理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。
例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369德迈数据计算:废气风量:19000Nm3/h废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算)戊烷体积=7000/72*22.4/1000=2.178 Nm3/h 体积分数=2.178/19000=0.012%甲醛体积分数=25.39 Nm3/h 体积分数=25.39/19000=0.134%混合气体中可燃气体的总体积分数=0.146%由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)得:混合气体的爆炸下限=0.146%/(0.012/1.7+0.134/7)=5.57%结论:混合气体中可燃气体的总体积分数为0.146%,混合气体的爆炸下限为5.57%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!。
混合气体的爆炸极限怎么计算
爆炸极限的计算1 根据化学理论体积分数近似计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:L下≈0.55c0式中——常数;c0——爆炸气体完全燃烧时化学理论体积分数。
若空气中氧体积分数按%计,c0可用下式确定c0=( n0)式中 n0——可燃气体完全燃烧时所需氧分子数。
如甲烷燃烧时,其反应式为CH4 2O2→CO2 2H2O此时n0=2则L下=×( 2)=由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。
2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算目前,比较认可的计算方法有两种:莱?夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1 P2 P3)/(P1/LEL1 P2/LEL2 P3/LEL3)(V%)混合可燃气爆炸上限:UEL=(P1 P2 P3)/(P1/UEL1 P2/UEL2 P3/UEL3)(V%)此定律一直被证明是有效的。
理?查特里公式理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1 V2/L2 …… Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。
例如:一天然气组成如下:甲烷80%(L下=%)、乙烷15%(L下=%)、丙烷4%(L下=%)、丁烷1%(L下=%)求爆炸下限。
Lm=100/(80/5 15/ 4/ 1/)=3 可燃粉尘许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。
碳氢化合物一类粉尘如能完全气化燃尽,则爆炸下限可由布尔格斯-维勒关系式计算:c×Q=k式中c——爆炸下限浓度;Q——该物质每靡尔的燃烧热或每克的燃烧热;k——常数第五节爆炸极限理论与计算一、爆炸极限理论可燃气体或蒸气与空气的混合物,并不是在任何组成下都可以燃烧或爆炸,而且燃烧(或爆炸)的速率也随组成而变。
爆炸极限计算
爆炸极限计算?爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下:(1)爆炸反应当量浓度。
爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。
实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。
可燃气体或蒸气分子式一般用CαHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成:CαHβOγ+nO2→生成气体按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示:可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示:也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在空气(或氧气)中的化学当量浓度。
其中。
可燃气体(蒸气)在空气中和氧气中的化学当量浓度(2)爆炸下限和爆炸上限。
各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。
爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影响,但仍不失去参考价值。
1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。
爆炸下限公式:?(体积)爆炸上限公式:?(体积)式中?L下——可燃性混合物爆炸下限;?L上——可燃性混合物爆炸上限;?n——1mol可燃气体完全燃烧所需的氧原子数。
某些有机物爆炸上限和下限估算值与实验值比较如表2:表2 石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较从表中所列数值可以看出,实验所得与计算的值有一定差别,但采用安全系数后,在实际生产工作中仍可供参考。
2)根据化学当量浓度计算爆炸极限和爆炸性混合气完全燃烧时的化学当量浓度,可以估算有机物的爆炸下限和上限。
计算公式如下:此计算公式用于链烷烃类,其计算值与实验值比较,误差不超过10%。
例如甲烷爆炸极限的实验值为5%~15%,与计算值非常接近。
两种可燃气体混合的爆炸极限
两种可燃气体混合的爆炸极限可燃气体混合的爆炸极限是指在一定的条件下,混合气体中可燃物质的浓度范围,使其能够发生爆炸。
爆炸极限包括上爆炸极限和下爆炸极限,下面将分别介绍两种可燃气体混合的爆炸极限。
1. 上爆炸极限:上爆炸极限是指混合气体中可燃物质的最高浓度,超过该浓度将无法发生燃烧。
上爆炸极限的上限取决于可燃物质的燃点、能源、环境温度以及氧气的浓度等因素。
通常,当混合气体中可燃物质的浓度超过上爆炸极限时,可燃物质的浓度过高,无法与氧气充分接触,导致燃烧反应受限,从而无法发生爆炸。
2. 下爆炸极限:下爆炸极限是指混合气体中可燃物质的最低浓度,低于该浓度将无法发生爆炸。
下爆炸极限的下限取决于可燃物质的最小着火能、环境温度以及氧气的浓度等因素。
当混合气体中可燃物质的浓度低于下爆炸极限时,可燃物质的浓度过低,无法达到燃烧所需的最小热量,从而无法发生爆炸。
可燃气体混合的爆炸极限是根据可燃物质与空气的燃烧特性以及相关物理参数确定的。
在实际应用中,研究和掌握可燃气体混合的爆炸极限对于安全工程和防爆设计具有重要意义。
通过确定上爆炸极限和下爆炸极限,可以制定防爆措施,避免可燃气体混合爆炸事故的发生。
考虑到可燃气体种类繁多,下面以甲烷和氧气为例,简要介绍甲烷和氧气混合气体的爆炸极限:甲烷和氧气混合气体的爆炸极限:对于甲烷和氧气混合气体来说,它们构成了最基本的可燃气体组合。
甲烷(CH4)是一种常见的燃气,氧气(O2)是燃烧所需的氧化剂。
在标准大气压和室温(约25°C)下,甲烷和氧气的爆炸极限如下:- 上爆炸极限:约为15%~17%(体积百分比)。
超过这个浓度,混合气体无法发生燃烧。
- 下爆炸极限:约为5%~15%(体积百分比)。
低于这个浓度,混合气体无法发生燃烧。
需要注意的是,甲烷和氧气混合气体的爆炸极限是在标准大气压和室温下给出的,实际情况可能会受到其他因素的影响,如温度、压力等。
此外,不同的可燃气体组合具有不同的爆炸极限范围,而且可燃气体具有不同的燃烧特性和爆炸危险性,因此需要根据具体情况进行详细研究和评估。
混合气体地爆炸极限怎么计算
爆炸极限L=1/(Y1/L1 + Y2/L2 + Y3/L3)其中:Y1、Y2、Y3代表混合物中组成L1、L2、L3代有混合气体各组份相应的爆炸极限求混合物爆炸下限(或上限)时,L1、L2、L3分别为各纯组份的爆炸下限(或下限);爆炸极限的计算1 根据化学理论体积分数近似计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:L下≈0.55c0式中0.55——常数;c0——爆炸气体完全燃烧时化学理论体积分数。
若空气中氧体积分数按20.9%计,c0可用下式确定c0=20.9/(0.209 n0)式中n0——可燃气体完全燃烧时所需氧分子数。
如甲烷燃烧时,其反应式为CH4 2O2→CO2 2H2O此时n0=2则L下=0.55×20.9/(0.209 2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。
2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算目前,比较认可的计算方法有两种:2.1 莱?夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1 P2 P3)/(P1/LEL1 P2/LEL2 P3/LEL3)(V%)混合可燃气爆炸上限:UEL=(P1 P2 P3)/(P1/UEL1 P2/UEL2 P3/UEL3)(V%)此定律一直被证明是有效的。
2.2 理?查特里公式理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1 V2/L2 …… Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。
常见气体的爆炸极限及爆炸极限计算公式精修订
常见气体的爆炸极限及爆炸极限计算公式标准化管理部编码-[99968T-6889628-J68568-1689N]爆炸极限计算方法:比较认可的计算方法有两种:莱·夏特尔定律?对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)混合可燃气爆炸上限:UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)此定律一直被证明是有效的。
2.2理·查特里公式理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。
例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369德迈数据计算:废气风量:19000Nm3/h废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算)戊烷体积=7000/72*22.4/1000=2.178Nm3/h体积分数=2.178/19000=0.012%甲醛体积分数=25.39Nm3/h体积分数=25.39/19000=0.134%混合气体中可燃气体的总体积分数=0.146%由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)得:混合气体的爆炸下限=0.146%/(0.012/1.7+0.134/7)=5.57%结论:混合气体中可燃气体的总体积分数为0.146%,混合气体的爆炸下限为5.57%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!。
常见气体的爆炸极限及爆炸极限计算公式
爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律
对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)
此定律一直被证明是有效的。
2.2 理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已
知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1+V2/L2+……+Vn/Ln)
式中Lm——混合气体爆炸极限,%;
L1、L2、L3——混合气体中各组分的爆炸极限,%;
V1、V2、V3——各组分在混合气体中的体积分数,%。
例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369。
混合气体的爆炸极限怎么计算
混合气体的爆炸极限怎么计算混合气体的爆炸极限怎么计算爆炸极限L=1/(Y1/L1 Y2/L2 Y3/L3)其中:Y1、Y2、Y3代表混合物中组成、L2、L3代有混合气体各组份相应的爆炸极限求混合物爆炸下限(或上限)时,L1、L2、L3分别为各纯组份的爆炸下限(或下限);爆炸极限的计算根据化学理论体积分数近似计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:下≈0.55c0式中 0.55——常数;——爆炸气体完全燃烧时化学理论体积分数。
若空气中氧体积分数按20.9%计,c0可用下式确定=20.9/(0.209 n0)式中 n0——可燃气体完全燃烧时所需氧分子数。
如甲烷燃烧时,其反应式为2O2→CO2 2H2O此时n0=2则L下=0.55×20.9/(0.209 2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。
对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算目前,比较认可的计算方法有两种:.1 莱?夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:=(P1 P2 P3)/(P1/LEL1 P2/LEL2 P3/LEL3)(V%)混合可燃气爆炸上限:=(P1 P2 P3)/(P1/UEL1 P2/UEL2 P3/UEL3)(V%)此定律一直被证明是有效的。
.2 理?查特里公式理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
=100/(V1/L1 V2/L2 …… Vn/Ln):x式中Lm——混合气体爆炸极限,%;、L2、L3——混合气体中各组分的爆炸极限,%;、V2、V3——各组分在混合气体中的体积分数,%。
常见气体的爆炸极限及爆炸极限计算公式
爆炸极限计算方法:比较认可的计算方法有两种:莱·夏特尔定律????对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)混合可燃气爆炸上限:UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)?(V%)?此定律一直被证明是有效的。
2.2?理·查特里公式????理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1+V2/L2+……+Vn/Ln)????式中Lm——混合气体爆炸极限,%;????L1、L2、L3——混合气体中各组分的爆炸极限,%;????V1、V2、V3——各组分在混合气体中的体积分数,%。
????例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
????Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369德迈数据计算:废气风量:19000Nm3/h废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算)戊烷体积=7000/72*22.4/1000=2.178Nm3/h体积分数=2.178/19000=0.012%甲醛体积分数=25.39Nm3/h体积分数=25.39/19000=0.134%混合气体中可燃气体的总体积分数=0.146%由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)得:混合气体的爆炸下限=0.146%/(0.012/1.7+0.134/7)=5.57%结论:混合气体中可燃气体的总体积分数为0.146%,混合气体的爆炸下限为5.57%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!。
常见气体的爆炸极限及爆炸极限计算公式
常见气体的爆炸极限及爆炸极限计算公式
The final revision was on November 23, 2020
爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律?对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)
此定律一直被证明是有效的。
理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极
限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。
例如:一天然气组成如下:甲烷80%(L下=%)、乙烷15%(L下=%)、丙烷4%(L下=%)、丁烷1%(L下=%)求爆炸下限。
Lm=100/(80/5+15/+4/+1/)=。
混合气体的爆炸极限怎么计算
爆炸极限L=1/(Y1/L1 + Y2/L2 + Y3/L3)其中:Y1、Y2、Y3代表混合物中组成L1、L2、L3代有混合气体各组份相应的爆炸极限求混合物爆炸下限(或上限)时,L1、L2、L3分别为各纯组份的爆炸下限(或下限);爆炸极限的计算1 根据化学理论体积分数近似计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:L下≈0.55c0式中 0.55——常数;c0——爆炸气体完全燃烧时化学理论体积分数。
若空气中氧体积分数按20.9%计,c0可用下式确定c0=20.9/(0.209 n0)式中 n0——可燃气体完全燃烧时所需氧分子数。
如甲烷燃烧时,其反应式为CH4 2O2→CO2 2H2O此时n0=2则L下=0.55×20.9/(0.209 2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。
2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算目前,比较认可的计算方法有两种:2.1 莱?夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1 P2 P3)/(P1/LEL1 P2/LEL2 P3/LEL3)(V%)混合可燃气爆炸上限:UEL=(P1 P2 P3)/(P1/UEL1 P2/UEL2 P3/UEL3)(V%)此定律一直被证明是有效的。
2.2 理?查特里公式理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1 V2/L2 …… Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。
混合气体的爆炸极限怎么计算
爆炸极限L=1/(Y1/L1+Y2/L2+Y3/L3)其中:Y1、Y2、Y3代表混合物中组成L1、L2、L3代有混合气体各组份相应的爆炸极限求混合物爆炸下限(或上限)时,L1、L2、L3分别为各纯组份的爆炸下限(或下限);爆炸极限的计算1 根据化学理论体积分数近似计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:L下≈0.55c0式中0.55——常数;c0——爆炸气体完全燃烧时化学理论体积分数。
若空气中氧体积分数按20.9%计,c0可用下式确定c0=20.9/(0.209 n0)式中n0——可燃气体完全燃烧时所需氧分子数。
如甲烷燃烧时,其反应式为CH4 2O2→CO2 2H2O此时n0=2则L下=0.55×20.9/(0.209 2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。
2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算目前,比较认可的计算方法有两种:2.1 莱?夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。
用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1 P2 P3)/(P1/LEL1 P2/LEL2 P3/LEL3)(V%)混合可燃气爆炸上限:UEL=(P1 P2 P3)/(P1/UEL1 P2/UEL2 P3/UEL3)(V%)此定律一直被证明是有效的。
2.2 理?查特里公式理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。
该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。
Lm=100/(V1/L1 V2/L2 …… Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。
例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L 下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。
气体混合物爆炸的爆炸极限(二)
气体混合物爆炸的爆炸极限(二)(二)影响爆炸极限的因素爆炸极限并非固定数值,受多种因素的影响,主要因素有初始温度、初始压力、氧含暈、点火能等。
1.初始温度混合物的初始温度越高,则爆炸极限范围扩大变宽,即下限降低,上限上升,危急性增大;反之爆炸极限范围变窄。
由于系统的温度上升,分子或原子的动能增强,即增强了活化分子的冲击能量,从而加速分子之间的碰撞频率和次数。
例如,的爆炸极限在0℃时为4.2%~8.0%,而在100℃时为3.2%~10.0%。
2.初始压力在压力变幻的状况下,爆炸极限的变幻比较复杂。
普通压力增强,爆炸极限变宽,危急性增强。
这是由于系统压力增强,分子间的距离缩短,分子碰撞的概率加大,危急性就增大;反之,爆炸极限范围变小,当压力降至一定值时,其上下限重合,此时的压力称为爆炸的临界压力。
假如压力降到临界压力以下,系统就不能爆炸,所以,降压操作相对平安一些。
压力对上限的影响较显然,而对下限的影响较小。
例如,的爆炸极限在0.1MPa时为5.6%~14.3%,在5MPa时为5.4%~29.4%。
也有例外,如与氧混合,普通不反应,若将压力降至一定值,混合物反而会骤然爆炸。
又如在含有空气的氢化硅混合物的容器内,造成一定负压(抽真空)会发生爆炸。
3.惰性气体浓度在混合物中,假如惰性气体浓度增强,则爆炸极限缩小,当惰性气体浓度提高到某一数值时,混合物就不能爆炸。
这是由于惰性气体浓度的增强表示系统中氧的浓度相对削减,于是爆炸上限大大下降,从而缩小了爆炸极限范围。
当惰性气体增强到一定浓度时,在爆炸物分子和氧分子之间会形成惰性气体障碍层,最初的反应就不简单举行。
所以,研发或生产中常在易燃或易爆的气体或蒸气中掺入氮气、氩气或等惰性气体加以庇护,其目的就是降低混合物中的氧含量,缩小爆炸极限范围,避开爆炸事故的发生。
4.点火能外能(如静电火花、撞击摩擦火花)的能量、热表面面积、火源与混合物的接触时光等,对爆炸极限都有影响。
两种可燃气体混合的爆炸极限
两种可燃气体混合的爆炸极限文章标题:探索可燃气体混合的爆炸极限:从安全性到应用价值一、引言可燃气体混合的爆炸极限是指在一定条件下,混合气体中可燃气体与空气以特定的比例混合后产生爆炸的最低和最高浓度范围。
这一概念对于燃气安全、工业生产和应用价值具有重要意义。
本文将基于这一主题,深入探讨可燃气体混合的爆炸极限,从其安全性到应用价值作全面评估和讨论。
二、爆炸极限的基本概念及实验方法1. 爆炸极限的定义及意义爆炸极限是指可燃气体与空气混合气体的最低和最高浓度范围,处于这个范围内时可燃气体将发生燃烧或爆炸。
这一概念是确保工业生产安全和防止火灾爆炸事故的基础。
2. 爆炸极限的实验测定方法实验测定爆炸极限常用的方法有容器法、导火索法、火焰传播法等。
这些方法都在一定程度上可以准确测定可燃气体混合的爆炸极限,为安全防范和工艺优化提供了重要数据支撑。
三、可燃气体混合的爆炸极限与燃气安全1. 可燃气体混合的爆炸极限对燃气安全的影响可燃气体混合的爆炸极限是燃气安全的基本概念之一。
在工业生产中,合理控制可燃气体的浓度范围,是确保生产安全和人员健康的关键。
理解和掌握可燃气体混合的爆炸极限,对于预防事故、降低风险具有重要意义。
2. 爆炸极限与燃气安全技术的发展随着燃气安全技术的不断发展,对可燃气体混合的爆炸极限进行精准测定和监测技术得到了广泛应用。
各种气体传感器、监测装置的推出,使得对可燃气体混合的爆炸极限及时监测和控制成为可能,为燃气安全提供了可靠的技术保障。
四、可燃气体混合的爆炸极限在工业和科学研究中的应用价值1. 工业生产中的应用在化工、石油、生物质能源等领域,对可燃气体混合的爆炸极限进行准确测定和控制,对于提高生产效率、降低成本、减少事故风险具有重要作用。
比如在煤矿、石化等行业,对可燃气体混合的爆炸极限进行精准控制,可以有效防范爆炸事故的发生。
2. 科学研究中的应用可燃气体混合的爆炸极限研究不仅在工业领域有着重要应用,同时在科学研究中也具有重要的意义。
混合气体的爆炸级别判定
做化工项目,爆炸气体的级别是最基本的工作之一。
但对于混合爆炸气体,还需经过计算才能得出,特别是含有氢气的混合气体。
涉及规范:《爆炸危险环境电力装置设计规范》GB50058-2014根据《爆规》第3.4.1条可知,分级是按最大试验安全间隙MESG来判定的。
对于常见的气体对应关系如下:IIA :甲烷、柴油等(数量多)IIB :乙烯、乙二醇等(数量多)IIC :氢气、乙炔、二硫化碳、硝酸乙酯、水煤气对于设备来讲,气体爆炸环境中,IIC的保护等级最高。
二、混合气体的分级对于混合气体的分级,《爆规》附录给了一个公式某项目涉及到煤气,其成分如下:一氧化碳:85%~90%氢气:1%~4%甲烷:5%~8%氮气、二氧化碳:1%~2%其中氮气和二氧化碳为非爆炸气体,另外三种气体的成分如下计算时,将氢气取最大值4%,一氧化碳取值87%,甲烷则按7%取值。
计算结果如下:查表3.4.1可知,此时混合气体的级别成了IIB类的。
四、总结1、并不是混合气体只要含有氢气就需要IIC级别。
具体需要看氢气的含量和其他气体的含量。
比如在《爆规》的附录C中第33项,就明确了含15%以下(按体积计)氢气的甲烷混合气,只需按IIA考虑即可。
2、混合气体不能看做几种独立气体来划分。
以上面案例来讲,若按独立气体考虑,则小范围内需要IIC,但其他区域仅需IIA,满足不了计算后的气体级别IIB。
3、但在工程实际中,更多时候是很难得到混合气体的比例,且就算晓得某一设备内的混合气体比列,待其进入下一段工艺,比列又变化了,不少同仁会选择更严的防爆等级。
4、《爆规》的5.2.3条文说明中的计算方法引用的是NFPA497-2008。
NFPA497从2012年版本升版了方法,计算中增加了各组分氧气消耗量的考量。
目前《爆规》的计算更严格,但NFPA497新的计算方法更加符合实际。
SH/T3413-2019《石油化工石油气管道阻火器选用、检验及验收标准》6.1条文说明也给出了混合气体组别的计算方法,与NFPA497的新方法相同。
室内燃气爆炸极限
室内燃气爆炸极限
室内燃气爆炸极限是指燃气与空气混合达到一定浓度范围时,能够引发爆炸的下限和上限浓度。
对于大多数的燃气(如天然气、液化石油气等),其爆炸极限浓度一般在以下范围内:
1.下限浓度(Lower Explosive Limit,LEL):也称为爆炸下限,
是指燃气与空气混合物中燃气浓度刚刚达到能够支持燃烧
的最低浓度。
低于下限浓度,混合物中的燃气无法燃烧。
对于大多数燃气而言,它们的下限浓度通常在2% 到 5%之
间。
2.上限浓度(Upper Explosive Limit,UEL):也称为爆炸上限,
是指燃气与空气混合物中燃气浓度刚刚达到能够支持燃烧
的最高浓度。
超过上限浓度,混合物中的燃气也无法燃烧。
对于大多数燃气而言,它们的上限浓度通常在10%到15%
之间。
爆炸极限浓度范围内的混合物能够形成可燃的环境,当引入点火源(如明火、电火花等)时,会引发爆炸。
因此,在室内使用燃气时,了解和掌握燃气的爆炸极限是非常重要的,以保证安全使用和避免事故发生。
需要注意的是,不同类型的燃气在空气中的爆炸极限可能会有所不同,且环境因素(如温度、压力等)也可能对爆炸极限产生影响。
因此,具体的爆炸极限数据应该参考相应的燃气
安全资料或咨询专业人士。
同时,在室内使用燃气时,确保设备的正确安装和良好通风,以保障人身安全。
甲烷爆炸极限
甲烷爆炸极限甲烷是一种常见的天然气,也是主要的温室气体之一。
它广泛应用于各个领域,包括能源生产、化学工业和家庭使用等。
然而,由于甲烷具有爆炸性,对其爆炸极限的了解变得至关重要。
本文将探讨甲烷爆炸的极限条件以及相关的安全措施。
甲烷爆炸的极限条件是指燃气混合物在特定的气体浓度范围内能够发生爆炸反应。
这个范围由最低爆炸限和最高爆炸限所定义。
最低爆炸限(LEL)是指甲烷与空气混合气体中甲烷的最低浓度,可以支持火焰的燃烧。
低于LEL的甲烷浓度无法形成燃烧。
而最高爆炸限(UEL)则是指甲烷与空气混合气体中甲烷的最高浓度,超过这个浓度将无法形成燃烧。
甲烷爆炸的LEL通常为5% (体积百分比)左右,而UEL则约为15%。
这意味着如果混合气体中的甲烷浓度低于5%或高于15%,将无法发生爆炸。
因此,在工业和家庭使用中,必须注意避免燃气浓度超出这个范围。
了解甲烷爆炸极限对于安全设计和操作至关重要。
在工业环境中,特别是涉及甲烷使用和制造的场所,必须确保甲烷浓度维持在安全范围内。
对于化学工业和能源生产领域,严格控制甲烷浓度以及合适的通风系统是降低爆炸风险的重要措施。
同时,使用可靠的气体检测仪器可以帮助监测混合气体的甲烷浓度,防止超出爆炸极限。
在家庭使用中,尤其是使用天然气的情况下,也需要小心处理以确保安全。
家庭用户必须始终确保燃气供应系统和燃气设备的安全性,并定期进行维护和检查。
如果存在甲烷泄露的迹象,则需要尽快采取措施,如关闭燃气开关和通风系统,并寻求专业人员的帮助。
应急情况下,对于甲烷爆炸,安全人员和紧急救援人员必须熟悉应急程序和措施。
这包括进行适当的疏散和救援行动,为被困人员提供安全的逃生通道,并确保火势得到及时控制。
此外,教育和培训也是预防甲烷爆炸的关键。
对于从事甲烷相关任务的工作人员,他们必须接受相关的培训,以了解甲烷爆炸的危险性,并且必须知道如何正确应对潜在的爆炸风险。
总结起来,了解甲烷爆炸的极限条件对于预防爆炸事故至关重要。
燃气爆炸临界条件
燃气爆炸临界条件
燃气爆炸的临界条件涉及到可燃气体与氧气的混合比例、点火源的存在以及足够的能量来引发爆炸。
以下是一些关键因素:
1. 燃料-空气混合比:对于大多数燃气(如天然气,主要成分是甲烷),存在一个特定的燃料-空气混合比范围,称为爆炸极限或爆炸范围。
这个范围通常分为两个部分:下限和上限。
如果燃气浓度低于下限或高于上限,即使有点火源也不会发生爆炸。
2. 点火源:必须有能量足够高的点火源来点燃燃气混合物。
这可以是明火、火花、电弧、热表面或其他能提供足够激活能的源头。
3. 受限空间:爆炸需要在一定的空间内发生,以便压力和热量能够累积,导致爆炸性的燃烧。
4. 氧气浓度:环境中的氧气浓度也会影响爆炸的可能性。
如果氧气浓度太低,即使燃气浓度在爆炸极限内,也可能不会发生爆炸。
5. 温度和压力:环境的温度和压力也会影响爆炸的可能性。
高温可以加速化学反应,而高压可以增加爆炸的强度。
了解这些临界条件对于预防燃气爆炸至关重要,特别是在工业设置和家庭环境中,确保燃气安全使用和储存。