2020年中考数学必考34个考点专题1:有理数的运算

合集下载

中考数学专题训练第1讲有理数(知识点梳理)

中考数学专题训练第1讲有理数(知识点梳理)

有理数知识点梳理考点01 正数和负数1.正数:像1,2,3,4,0.1等这样大于0的数叫作正数。

正数的前面的“+”可以省略不写。

2.负数:像-0.2.-2.-6这样在正数前面加上符号“-”(负号)的数叫作负数。

3.注意事项:(1)0既不是正数也不是负数.0是正数和负数的分界线;(2)对于正数和负数.不能简单地理解为带“+”号的数就是正数.带负号的数就是负数.要根据正负数的含义.看其是符合正数的定义还是符合负数的定义。

4.正负习惯:习惯上把零上、增加、前进、海平面以上、收入、向南、盈利、上升等记为正.把与它们意义相反的量记为负。

考点02 有理数与数轴1.有理数定义:正整数、0、负整数统称整数.正分数、负分数统称分数.整数和分数统称有理数。

2.有理数的分类3.注意:(1)整数可以看成是分母为1的分数.所以有理数都可以写成分数的形式;有限小数和无限循环小数都可以写成分数形式.所以有限小数和无限循环小数都是有理数。

(2)正数和零统称为非负数;负数和零统称为非正数。

4.零的作用(1)表示数的性质.例如0是自然数;(2)表示没有.例如有5个本子.用+5表示.没有本子用0表示;(3)表示正数与负数的分界。

5.数轴定义:规定了原点、正方向和单位长度的直线叫作数轴。

数轴的三要素即原点、正方向和单位长度。

6.数轴上的点与有理数有理数都可以用数轴上的点来表示.任何一个有理数都能在数轴上找到与它对应的点.而且是唯一的点.但数轴上的点不一定都是有理数。

考点03 相反数和绝对值1.相反数的代数意义:只有符号不同的两个数叫作互为相反数.把其中一个数叫作另一个数的相反数。

0的相反数是0.2.相反数的几何意义:两个互为相反数的数在数轴上所表示的点在原点的两侧且到原点的距离相等;这两点关于原点对称。

3.多重符号的化简:数字前面的“-”号的个数若有偶数个.化简结果为正;有奇数个时.花间结果为负。

4.相反数的性质:如果b a 、互为相反数.那么0=+b a 或b a -=或a b -=;反过来.如果0=+b a .那么b a 、互为相反数。

(完整版)有理数的除法及其运算知识点汇总

(完整版)有理数的除法及其运算知识点汇总

(完整版)有理数的除法及其运算知识点汇

1. 有理数的除法规则
- 有理数除以非零有理数,除数不为负时,商为正,除数为负时,商为负。

2. 有理数的除法步骤
- 将除法转化为乘法:除法问题可以转化为乘法问题,即将除数的倒数与被除数相乘。

- 计算乘积:将除数的倒数与被除数相乘,并化简答案。

3. 有理数的除法性质
- 除法的运算交换律:a ÷ b = b ÷ a
- 除法的运算结合律:(a ÷ b) ÷ c = a ÷ (b × c)
- 除法的运算分配律:a ÷ (b + c) = a ÷ b + a ÷ c
4. 有理数的除法运算技巧
- 将除数写成一个最简分数或小数,有助于计算时减小出错概率。

- 当除数很接近被除数时,可通过调整被除数变成除数的倍数,从而简化除法计算。

5. 有理数除法应用
- 有理数的除法在实际生活中有广泛应用,比如计算货币兑换、计算长短时间等。

6. 实例演算
以下是一个有理数的除法示例演算过程:
例如:计算-0.5 ÷ 0.2
从上述示例可见,有理数的除法运算需要注意符号、化简答案
和特殊情况的处理。

以上是有理数的除法及其运算知识点的汇总。

希望对您有帮助!。

中考数学考点精讲:有理数的运算

中考数学考点精讲:有理数的运算

中考数学考点精讲:有理数的运算为您整理“中考数学考点精讲:有理数的运算”,欢迎阅读参考,更多有关内容请继续关注本网站中考栏目。

中考数学考点精讲:有理数的运算1.有理数的加法:加法一般步骤:①确定符号:同号取相同的符号。

异号取绝对值大的加数的符号。

②确定绝对值:同号将绝对值相加。

异号用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数与0相加,仍得这个数。

用字母表示加法的交换律a+b=b+a;加法结合律a+b+c=(a+b)+c=a+(b+c)。

三个或三个以上有理数相加,可以写成这些数的连加式,对于连加式,根据加法交换律和加法结合律,可以任意交换加数的位置,也可先把其中的某几个数相加。

根据算式的特征,恰当地运用运算律,可以使运算简便:①符号相同的数先相加--同号结合法②互为相反数的先相加--相反数结合法③分母相同的数先相加--同分母结合法④正数与正数,小数与小数相加--同形结合法2.有理数的减法:减法法则:减去一个数,等于加上这个数的相反数。

加减法混合运算,把减法转化为加法再计算。

3.代数和:有理数加减混合运算时,将加减法统一成加法运算,转化为求几个正数或负数的和。

在一个和式中,可以把各个加数的括号和括号前面的加号省略不写,写成省略加号的和的形式。

4.有理数的乘法:乘法步骤:确定符号:同号正,异号负。

绝对值:求积。

任何数与0相乘,都得0。

任何数与-1相乘都得这个数的相反数。

多个有理数相乘的运算:几个非0有理数相乘时,当负因数个数是偶数时,积为正;负因数个数是奇数时,积为负;乘法交换律,乘法结合律,乘法分配律;5.有理数的除法:除法步骤:确定符号:同号正,异号负。

绝对值:相除。

除以一个不等于0的数等于乘上这个数的倒数。

0除以任何一个不等于0的数都得0。

初中数学有理数常考必考知识点总结

初中数学有理数常考必考知识点总结

初中数学有理数常考必考知识点总结一、有理数的概念和性质有理数是整数和分数的统称,包括正数、负数和零。

有理数具有以下性质:1.有理数可以通过有限次四则运算(加、减、乘、除)得到。

2.有理数可以表示为分数形式,其中分子和分母都是整数。

3.有理数可以进行大小比较,即两个有理数可以比较大小,可以用“<”、“>”或“=”来表示大小关系。

二、有理数的加法和减法1.有理数的加法:同号相加,异号相减。

2.有理数的减法:减去一个有理数等于加上它的相反数。

三、有理数的乘法和除法1.有理数的乘法:同号得正,异号得负。

2.有理数的除法:除以一个非零有理数等于乘以它的倒数。

四、有理数的大小比较1.两个正数比较大小时,数值大的数较大。

2.两个负数比较大小时,数值小的数较大。

3.一个正数和一个负数比较大小时,数值大的正数较大。

4.两个正数或两个负数的绝对值相等时,数值大的数较大。

五、有理数的绝对值1.正数的绝对值等于它本身。

2.负数的绝对值等于它的相反数。

3.零的绝对值等于零。

六、有理数的数轴表示和相反数1.数轴可以用来表示有理数,数轴上每个点都对应一个唯一的有理数。

2.数轴上的零点是原点,正数在原点右侧,负数在原点左侧。

3.有理数的相反数表示为在数轴上关于原点对称的点。

七、有理数的四舍五入1.对于正数,四舍五入分两种情况:如果小数部分大于等于5,则整数部分加1;如果小数部分小于5,则保留整数部分。

2.对于负数,四舍五入的规则与正数相同,但是整数部分需要减去1八、有理数的分数表示1.有限小数可以表示为分数形式,将小数部分的每位数作为分子,分母为10的幂次(1、10、100等),最后将分子和分母化简。

2.循环小数也可以表示为分数形式,将循环部分的每位数作为分子,分子为循环节的位数,分母为9的幂次减1的值,最后将分子和分母化简。

九、有理数的实际应用1.温度计上的温度可以是正数、负数和零。

2.银行账户的余额可以是正数、负数和零。

有理数知识点考点难点总结归纳

有理数知识点考点难点总结归纳

有理数知识点考点难点总结归纳有理数是数学中一种重要的数的概念,在数学学科的学习中经常会涉及到有理数的运算和性质。

掌握有理数的相关知识点、考点和难点,对于学习数学和解题非常重要。

本文将就有理数的知识点、考点和难点进行总结归纳,希望能够对读者有所帮助。

一、有理数的定义有理数是指可以表示为两个整数之比(分数形式)的数,包括正有理数、负有理数和0。

二、有理数的四则运算1. 加法:有理数的加法运算要注意符号的变化,同号相加取相同符号,异号相加取绝对值较大数的符号。

2. 减法:有理数的减法可以转化为加法运算,对减数取相反数,然后进行加法运算。

3. 乘法:有理数的乘法运算结果符号遵循正负号相同为正,正负号不同为负的原则。

4. 除法:有理数的除法可以转化为乘法运算,对除数取倒数,然后进行乘法运算。

三、有理数的性质1. 有理数的封闭性:有理数的加法、减法、乘法和除法的运算结果都是有理数。

2. 有理数的整除性:如果有理数a除以非零有理数b,商等于有理数c,则称a能被b整除,b能整除a;如果商c是整数,则a和b是整数关系;如果商c不是整数,则a和b是非整数关系。

3. 有理数的传递性:对于任意三个有理数a、b、c,如果a<b<c,则a和c之间也存在一个有理数,即b。

四、有理数的比较1. 同号比较:两个正有理数比较大小,绝对值较大的数较大;两个负有理数比较大小,绝对值较小的数较大。

2. 异号比较:正有理数大于负有理数;负有理数小于正有理数。

五、有理数的绝对值有理数a的绝对值表示为|a|,其中正有理数的绝对值等于其本身,负有理数的绝对值等于去掉负号。

六、有理数的约分和化简1. 约分:对于有理数a/b,如果a和b有公因数,可以将a和b同时除以最大公因数,使得a/b约分为最简形式。

2. 化简:对于有理数a+b/c,可以先将a和b进行整数部分的运算,然后将分数部分化简为最简形式。

七、有理数的应用有理数在实际生活中的应用非常广泛,例如在温度计上的正负温度、货币的盈亏计算、海拔的升降等。

中考初中实数等必考知识点精心整理

中考初中实数等必考知识点精心整理

中考初中实数等必考知识点精心整理1.有理数:有理数是可以表示为两个整数的比值的数,可以用分数或小数表示。

例如,所有整数、分数和循环小数都属于有理数。

在考试中,需要对有理数的四则运算、分数的化简和分数的加减乘除等进行灵活运用。

2.无理数:无理数是不能表示为两个整数的比值的数,不能用分数或有限小数表示。

例如,开平方的结果是无理数。

在中考中,常见的无理数有π和⎷5、需要了解无理数的性质和基本运算。

3.数轴:数轴是一个直线,用于表示实数。

数轴上的点与实数一一对应,左侧的点表示负实数,右侧的点表示正实数。

在解实数相关的问题时,可以利用数轴进行直观的判断和分析。

4.绝对值:绝对值表示一个数到原点的距离,用,x,表示,其中x是一个实数。

绝对值的定义如下:-如果x≥0,那么,x,=x-如果x<0,那么,x,=-x绝对值具有以下性质:-,a·b,=,a,·,b-,a+b,≤,a,+,b-,a-b,≥,,a,-,在解绝对值相关的方程和不等式时,需要根据绝对值的性质进行分析和转换。

5. 数列:数列是一系列按照一定顺序排列的实数,通常用 {an} 或(an) 表示。

常见的数列有等差数列和等比数列。

在中考中,数列是一个重要的知识点,需要对数列的概念、通项公式和前 n 项和等进行掌握和运用。

6.实数的比较:实数可以比较大小。

在中考中,可以利用大小关系进行排列、求极值、证明和解方程等。

需要掌握实数比较的基本性质,并能够通过比较解决实际问题。

7.利用实数解决问题:实数是数学在现实生活中的重要应用。

在中考中,会出现一些实际问题,需要利用实数进行建模和解决。

例如,利用实数求解三角形的边长、面积和角度等问题。

(完整版)有理数运算知识点总结

(完整版)有理数运算知识点总结

(完整版)有理数运算知识点总结有理数运算知识点总结1. 有理数的定义有理数是可以用两个整数的比(分数形式)表示的数。

有理数包括正数、负数和零。

2. 有理数的四则运算2.1 加法有理数的加法满足以下运算规则:- 正数与正数相加,结果为正数;- 负数与负数相加,结果为负数;- 正数与负数相加,结果的绝对值为两数绝对值之差,并且符号与绝对值较大的数相同。

2.2 减法有理数的减法可以转化为加法运算,即a - b = a + (-b)。

2.3 乘法有理数的乘法满足以下运算规则:- 正数与正数相乘,结果为正数;- 负数与负数相乘,结果为正数;- 正数与负数相乘,结果为负数。

2.4 除法有理数的除法可以转化为乘法运算,即a ÷ b = a × (1/b)。

3. 有理数的运算性质3.1 交换律加法和乘法满足交换律,即a + b = b + a,a × b = b × a.3.2 结合律加法和乘法满足结合律,即(a + b) + c = a + (b + c),(a × b) × c = a × (b × c).3.3 分配律乘法对加法满足左分配律和右分配律,即a × (b + c) = (a × b) + (a × c),(a + b) × c = (a × c) + (b × c).4. 有理数的大小比较4.1 绝对值比较对于两个有理数a和b,如果|a| = |b|,则a = b,如果|a| > |b|,则a > b,如果|a| < |b|,则a < b.4.2 正负数比较对于一个正数和一个负数,正数大于负数。

4.3 同号数比较对于两个正数或两个负数,绝对值较大的数较大。

5. 有理数的相反数和倒数5.1 相反数一个有理数a的相反数记作-a,即a + (-a) = 0。

中考数学有理知识点总结

中考数学有理知识点总结

中考数学有理知识点总结一、有理数的概念有理数包括整数、分数和小数。

其中,正整数、负整数和零都是整数,正数、负数和零都是有理数。

而正数、负数、零都是实数。

对于有理数a、b,有以下性质:1. 有理数的加法和乘法封闭性对于任意的有理数a、b,a+b和ab也是有理数。

2. 有理数的加法和乘法交换律对于任意的有理数a、b,有a+b=b+a和ab=ba。

3. 有理数的加法和乘法结合律对于任意的有理数a、b、c,有(a+b)+c=a+(b+c)和(a*b)*c=a*(b*c)。

4. 有理数的加法和乘法的分配律对于任意的有理数a、b、c,有a*(b+c)=ab+ac。

5. 有理数的乘法的零元素对于任意的有理数a,有a*0=0*a=0。

6. 有理数的乘法的幂运算对于任意的有理数a,a^0=1。

7. 有理数的乘法的倒数对于任意的非零有理数a,有a*a^(-1)=1。

8. 有理数的加法的逆元素对于任意的有理数a,有a+(-a)=0。

二、有理数的大小比较1. 有理数的大小比较对于任意的有理数a、b,有以下大小关系:- a>b:当且仅当a-b>0- a<b:当且仅当a-b<0- a=b:当且仅当a-b=02. 有理数的大小比较的性质对于任意的有理数a、b、c,如果a>b,那么有以下性质:- a+c>b+c- a-c>b-c- ac>bc(当c>0时成立,当c<0时反号)三、有理数的加减法1. 有理数的加法对于任意的有理数a、b,有以下性质:- 加法逆元素:对于任意的有理数a,有a+(-a)=0- 加法结合律:对于任意的有理数a、b、c,有(a+b)+c=a+(b+c) - 加法交换律:对于任意的有理数a、b,有a+b=b+a2. 有理数的减法对于任意的有理数a、b,有以下性质:- 减法的定义:a-b=a+(-b)- 减法性质:对于任意的有理数a、b、c,有a-(b+c)=a-b-c四、有理数的乘除法1. 有理数的乘法对于任意的有理数a、b,有以下性质:- 乘法封闭性:对于任意的有理数a、b,有ab是有理数- 乘法逆元素:对于任意的非零有理数a,有a*a^(-1)=1- 乘法结合律:对于任意的有理数a、b、c,有(a*b)*c=a*(b*c) - 乘法交换律:对于任意的有理数a、b,有ab=ba- 乘法分配律:对于任意的有理数a、b、c,有a*(b+c)=ab+ac 2. 有理数的除法对于任意的有理数a、b,有以下性质:- 除法的定义:a÷b=a*b^(-1)- 除法的性质:对于任意的有理数a、b、c,有a÷(b*c)=(a÷b)÷c五、有理数的运算规律1. 有理数的混合运算对于有理数的混合运算,首先按照乘除法的优先级进行计算,然后按照加减法的优先级进行计算。

有理数知识点考点难点总结归纳

有理数知识点考点难点总结归纳

有理数知识点考点难点总结归纳有理数是中学数学中一个非常重要的知识点,涉及到正数、负数、分数等内容。

掌握有理数的概念、运算规则以及解题技巧,对学生学好数学具有重要意义。

本文将对有理数的相关知识点、考点和难点进行总结归纳。

一、有理数的定义有理数包括正数、负数和零,可以表示为分数的形式,例如2、-3、⅔等。

有理数集合为R。

二、有理数的运算1. 加法和减法:正数与正数相加减,负数与负数相加减,正数与负数相减,规则是符号相同则取绝对值相加减,符号不同则取绝对值相减,并保留绝对值的符号。

2. 乘法和除法:正数与正数相乘除,负数与负数相乘除,正数与负数相乘除,规则是符号相同得正数,符号不同得负数。

3. 混合运算:先乘除后加减,按照顺序进行运算。

三、有理数的比较1. 同号比较大小:绝对值大的有理数大。

2. 异号比较大小:正数大于负数。

3. 零的比较:整数大小比较,绝对值大的整数大;分数大小比较,分子乘分母再比较。

四、有理数的绝对值有理数a的绝对值表示为|a|,规则是正数的绝对值等于其本身,负数的绝对值等于去掉负号。

五、有理数的倒数有理数a的倒数表示为1/a,规则是一个非零有理数的倒数等于该有理数的倒数。

六、有理数的乘方有理数a的n次方表示为a^n,规则是一个有理数的正整数次方等于连乘自己n次,负整数次方等于该有理数的倒数的正整数次方。

七、有理数的分数表示在有理数中,每一个整数都可以表示为分数形式,并且满足分母为1。

八、有理数的约分有理数的约分就是将分子和分母同时除以一个相同的非零整数,使得所得分数的分子和分母没有公因数。

九、有理数的化简有理数的化简就是将其小数形式转化为分数形式。

十、有理数的加减运算有理数的加减运算可以通过化为相同的分母,再按照分数的加减法则进行。

十一、有理数的乘除运算有理数的乘除运算可以通过约分和化简,再按照分数的乘除法则进行。

十二、有理数的四则混合运算有理数的四则混合运算可以通过转化为分数形式,并根据运算法则进行运算。

有理数知识点考点难点总结归纳

有理数知识点考点难点总结归纳

有理数知识点考点难点总结归纳理数是数的一种,它包括整数、分数和小数。

在初中数学中,有理数是一个重要的知识点,学生需要掌握有理数的性质、运算和应用。

下面我来总结归纳一下有理数的知识点、考点和难点。

一、有理数的基本概念1.整数:正整数、负整数、零。

整数的性质:加法逆元、乘法逆元、绝对值。

2.分数:分子、分母、约分、通分、分数的比较大小、分数的性质。

3.小数:有限小数、无限循环小数、无限不循环小数。

二、有理数的运算1.四则运算:加法、减法、乘法、除法及其性质。

2.混合运算:不同运算符的运算顺序。

3.绝对值与大小比较:有理数的绝对值性质、绝对值大小的比较。

4.整数幂:整数的正、负、零幂及其性质。

5.分数的四则运算:加法、减法、乘法、除法及其性质。

6.有理数的乘方:有理数的正、负、零次幂及其性质。

三、有理数的应用1.推理与解答问题:通过有理数知识解答实际问题。

2.田字格法则:计算有理数乘法与除法的结果。

3.分数的应用:计算问题中的比例、百分数、利率等。

四、有理数的考点1.正数、负数、零的概念及其性质与运算。

2.分数的概念、运算、比较和应用。

3.分数与整数、分数与小数的转化。

4.有理数四则运算的规则与性质。

5.有理数乘方与有理数四则混合运算。

6.有理数的比较和绝对值的计算。

7.有理数运算在实际问题中的应用。

五、有理数的难点1.分数的约分、通分和比较大小。

2.分数与整数、小数的互化。

3.有理数四则运算的运算顺序。

4.有理数运算的特殊性质的把握。

6.有理数应用题的解答思路与方法。

以上是有理数的知识点、考点和难点的总结归纳。

通过系统学习和不断练习,学生可以掌握有理数的基本概念、运算规则和应用技巧,提高数学能力。

有理数的运算-中考数学一轮复习考点专题复习大全(全国通用)

有理数的运算-中考数学一轮复习考点专题复习大全(全国通用)

考向02 有理数的运算【考点梳理】考点一:有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0; ②除以一个不为0的数,等于乘以这个数的倒数考点二、有理数乘法的运算律:(1)乘法的交换律:ab=ba ; (2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .考点三、比较两个数的大小(1)负数< 0 < 正数,任何一个正数都大于一切负数 (2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小 (4)两数相乘(或相除),同号得正 > 0,异号得负 < 0考点四、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n, 当n 为正偶数时: (-a)n=an或 (a-b)n =(b-a)n.考点五、科学记数法:一个大于10的数记成a ×10n 的形式,a 是整数数位只有一位的数,这种记数法叫科学记数法.考点六、非负数的性质:若02=++c b a ,则000===c b a 且且【题型探究】题型一:有理数的加法运算1.(2022·浙江温州·中考真题)计算9(3)+-的结果是( ) A .6B .6-C .3D .3-2.(2022·云南省昆明市第十中学三模)在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),如图1表示的是213211+-=-的计算过程,则图2表示的过程是在计算( )A .(13)(23)10-++=B .(31)(32)1-++=C .(13)(23)36+++=D .(13)(23)10++-=-3.(2022·贵州贵阳·一模)综合实践课上,同学们在如图所示的三阶幻方中,填写了一些数、式子和图案(其中每个式子或图案都表示一个数),若处于每一横行、每一竖列、两条斜对角线上的3个数之和都相等,则y x 的值为( )A .8-B .2C .16D .64题型二:有理数的减法运算4.(2022·黑龙江·哈尔滨市萧红中学校模拟预测)哈市某天的最高气温为15℃,最低气温为2-℃,则最高气温与最低气温的差为( ) A .5℃B .17℃C .17-℃D .5-℃5.(2022·山西·三模)计算()85---的结果是( ) A .3B .-3C .13D .-136.(2020·浙江温州·二模)如图是我国常年(1991~2020年)冬春两季各节气的平均气温折线统计图,根据图中的信息,各节气的平均气温最大值与最小值的差是( )A .8.75B .13.86C .18.28D .18.91题型三:有理数的加减混合运算7.(2022·湖南·长沙市中雅培粹学校二模)茶颜悦色是长沙本土知名奶茶品牌,更是被全国奶茶爱好者所知的“网红”品牌,2013年创立于长沙,目前在长沙地区有100多家直营门店.黄经理负责其中一家门店,若一杯幽兰拿铁成本是7元,卖17元,某顾客来买了一杯幽兰拿铁,给了黄经理一张50元纸币,黄经理没零钱,于是找邻居换了50元零钱.事后邻居发现那50元纸币是假的,最后黄经理又赔了邻居50元.请问黄经理一共亏了 __元.8.(2021·江苏宿迁·三模)如果△+△=★,〇=□+□,△=〇+〇+〇+〇,那么★÷□的值为_____.9.(2022·河北·邯郸市邯山区芳园实验中学一模)已知一列数2,0,﹣1.﹣12. (1)求最大的数和最小的数的差;(2)若再添上一个有理数m ,使得五个有理数的和为0,求m 的值.题型四:有理数的乘法运算律10.(2022·浙江丽水·三模)如图,运算中的( )处,填写的理由是( ) 5(12)(37)6-⨯-⨯537126=⨯⨯(乘法交换律)537126⎛⎫=⨯⨯ ⎪⎝⎭( ) 3710370=⨯=.A .乘法交换律B .乘法结合律C .分配律D .加括号11.(2022·河北唐山·一模)计算117313(24)126424⎛⎫-+-⨯- ⎪⎝⎭的结果是( )A .1B .1-C .10D .10-12.(2022·河北邯郸·二模)在简便运算时,把47249948⎛⎫⨯- ⎪⎝⎭变形成最合适的形式是( )A .12410048⎛⎫⨯-+ ⎪⎝⎭B .12410048⎛⎫⨯-- ⎪⎝⎭C .47249948⎛⎫⨯-- ⎪⎝⎭D .47249948⎛⎫⨯-+ ⎪⎝⎭题型五:有理数的除法13.(2022·山西·模拟预测)计算()62-÷的结果是( ) A .-3B .3C .-12D .1214.(2021·安徽·郎溪实验一模)两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗的座位,已知火车上的座位的排法如图所示,那么下列座位号码符合要求的是( )A .48,49B .62,63C .75,76D .84,8515.(2021·四川·绵阳外国语实验学校一模)如果□×(﹣12019)=1,则“□”内应填的实数是( ) A .12019B .2019C .﹣12019D .﹣2019题型六:有理数的乘法16.(2022·河北唐山·二模)计算222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个( )A .32m n +B .23+m nC .23m n +D .23n m +17.(2022·广东番禺中学三模)若2423y x x =--,则2022()x y +等于( )A .1B .5C .5-D .1-18.(2022·湖北鄂州·中考真题)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n 来表示.即:21=2,22=4,23=8,24=16,25=32,……,请你推算22022的个位数字是( ) A .8B .6C .4D .2题型七:科学计算法19.(2022·浙江·南海实验学校三模)据国家统计局数据公报,2021年虽受“新冠疫情”影响,但全年国内生产总值仍高达1143670亿元,比上年同比增长8.1%.数据“1143670”用科学记数法可表示为( ) A .511.4367010⨯ B .61.14367010⨯C .71.14367010⨯D .80.114367010⨯20.(2022·吉林·长春市第一〇八学校二模)第24届冬季奥林匹克运动会,于2022年2月4日在我国首都北京开幕,据统计,北京冬奥会开幕式电视直播观众规模达3.16亿,是历史上收视率最高的一届冬奥会,数据3.16亿用科学记数法可以表示为( ) A .93.1610⨯ B .90.31610⨯C .731.610⨯D .83.1610⨯21.(2022·四川·威远县凤翔中学二模)据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( ) A .733.8610⨯B .83.38610⨯C .90.338610⨯D .93.38610⨯题型八:近似数22.(2022·河北沧州·一模)网聚正能量,构建同心圆.以“奋斗的人民 奋进的中国”为主题的2021中国正能量“五个一百”网络精品征集评选展播活动进入火热的展播投票阶段.截至2021年11月26日18点,“五个一百”活动投票量累计13909615次,数据13909615用科学记数法表示并精确到百万位为( ) A .80.13910⨯B .71.3910⨯C .80.1410⨯D .71.410⨯23.(2022·江苏盐城·一模)西溪天仙缘景区建筑以汉朝风格为主,美丽的传说,各式传统的小吃,吸引着无数游客心驰神往.景区游客日最大接待量为55500人,数字55500用四舍五入法精确到千位可以表示为( ) A .55.610⨯B .45.610⨯C .45610⨯D .50.5610⨯24.(2022·上海金山区世界外国语学校一模)某市参加毕业考试的学生人数约为8.63×410人.关于这里的近似数8.63×410,下列说法正确的是( ) A .精确到百分位,有3个有效数字; B .精确到百位,有3个有效数字; C .精确到百分位,有5个有效数字;D .精确到百位,有5个有效数字.题型九:有理数的混合运算25.(2022·广西·宾阳县教育局教学研究室三模)计算:()()2231524÷-+⨯-+-.26.(2022·河北沧州·一模)计算:()44881999⎛⎫-⨯-÷- ⎪.(1)解法1是从第______步开始出现错误的;解法2是从第______步开始出现错误的;(填写序号即可) (2)请给出正确解答.27.(2022·山东济宁·一模)阅读材料: 求2320212022122222++++++的值.解:设2320212022122222S =++++++①将①×2得:234202220232222222S =++++++②由②-①得:202321S =-, 即2320212022202312222221++++++=-请你仿照此法计算:2313333n +++++(其中n 为整数)【必刷基础】一、单选题28.(2022·河南洛阳·二模)今年的“两会”上,李克强总理在谈到今年需要就业的新增劳动力时,指出今年高校毕业生1076万,是历年最高.数据“1076万”用科学记数法表示为( ) A .71.07610⨯B .81.07610⨯C .610.7610⨯D .80.107610⨯29.(2022·江苏·常州市北郊初级中学二模)42-的值为( ) A .16-B .16C .8-D .830.(2022·四川·绵阳中学英才学校二模)已知点P 的坐标为(),m n ,且22440m n n n -+++=,则点P 关于x 轴的对称点坐标为( ) A .()4,2-B .()4,2-C .()4,2D .()2,4-31.(2022·广东·深圳市南山外国语学校三模)已知a 、b 互为相反数,c 、d 互为倒数,则代数式()52a b cd +-的值为( ) A .3B .2-C .3-D .032.(2022·广东·东莞市光明中学三模)在6-,12,()5--,3--,21-,0这六个数中,负数的个数有( ) A .0个B .1个C .2个D .3个33.(2022·宁夏·中考真题)已知实数a ,b 在数轴上的位置如图所示,则a ba b+的值是( )A .2-B .1-C .0D .234.(2022·内蒙古包头·中考真题)若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( ) A .8-B .5-C .1-D .1635.(2022·黑龙江齐齐哈尔·中考真题)下列计算正确的是( ) A .2ab ab b ÷= B .222()a b a b -=- C .448235m m m +=D .33(2)6-=-a a36.(2022·安徽·三模)下列各数中,化简结果最小的是( ) A .-5B .5C .()15--D .()25-37.(2022·新疆·乌鲁木齐市第六十八中学模拟预测)计算:()()1202011322π-⎛⎫-⨯-+-+- ⎪⎝⎭.38.(2022·浙江杭州·中考真题)计算:()32623⎛⎫-⨯-- ⎪⎝⎭■.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算()3216232⎛⎫-⨯-- ⎪⎝⎭.(2)如果计算结果等于6,求被污染的数字.【必刷培优】一、单选题39.(2022·湖南·吉首市教育科学研究所模拟预测)观察下列等式:122=,224=,328=,4216=,5232=,6264=,⋅⋅⋅,根据这个规律,则1234202222222++++⋅⋅⋅+的末尾数字是( )A .0B .2C .4D .640.(2022·江苏苏州·中考真题)下列运算正确的是( ) A .()277-=- B .2693÷= C .222a b ab += D .235a b ab ⋅=41.(2022·河北·中考真题)若x 和y 互为倒数,则112x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的值是( )A .1B .2C .3D .442.(2022·湖北武汉·中考真题)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .1243.(2022·湖南娄底·中考真题)在古代,人们通过在绳子上打结来计数.即“结绳计数”.当时有位父亲为了准确记录孩子的出生天数,在粗细不同的绳子上打结(如图),由细到粗(右细左粗),满七进一,那么孩子已经出生了( )A .1335天B .516天C .435天D .54天44.(2022·湖南娄底·中考真题)若10x N =,则称x 是以10为底N 的对数.记作:lg x N =.例如:210100=,则2lg100=;0101=,则0lg1=.对数运算满足:当0M >,0N >时,()lg lg lg M N MN +=,例如:lg3lg5lg15+=,则()2lg5lg5lg 2lg 2+⨯+的值为( ) A .5B .2C .1D .0二、填空题45.(2022·江苏·靖江市滨江学校三模)5-的倒数是 ____.46.(2022·重庆八中模拟预测)计算:1122-⎛⎫-+-= ⎪⎝⎭________.47.(2022·江苏·常州市北郊初级中学二模)为做好新冠疫情常态化防控,更好保护人民群众身体健康,常州市开展新冠疫苗检测工作.截至4月底,已累计新冠疫苗检测27000000剂次,数据27000000用科学记数法可表示_____ 48.(2022·江苏·盐城市初级中学三模)小余同学计划在某外卖网站点如下表所示的菜品,已知每份订单的配送费为4元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元,如果小余在购买下表中所有菜品时,采取适当的下单方式,那么他点餐总费用最低可为____________元. 菜品单价(含包装费) 数量 水煮牛肉(小份)30元1 醋溜土豆丝(小份) 12元 1 豉汁排骨(小份) 30元1 手撕包菜(小份) 12元1 米饭 3元249.(2022·重庆文德中学校二模)计算:()2022120221212-⎛⎫⋅+-= ⎪⎝⎭______.50.(2022·广东·深圳市南山外国语学校三模)某种细菌培养过程中每半小时分裂1次,每次一分为二,若这种细菌由1个分裂到128个,那么这个过程要经过______小时. 51.(2022·西藏·中考真题)已知a ,b 都是实数,若2120220a b ,则b a =_____.三、解答题52.(2022·广西·南宁二中三模)计算:21116(2)324⎛⎫⨯---÷ ⎪⎝⎭.53.(2023·河北·九年级专题练习)对于任意的实数x ,y ,规定运算“※”如下:x y ax by =+※. (1)当3a =,4b =时,求12-※()的值; (2)若5316=※,232-=-※(),求a 与b 的值.54.(2022·河北·平泉市教育局教研室二模)在城区老旧小区改造中,为了提高居民的宜居环境,某小区规划修建一个广场(平面图如图中阴影部分所示).(1)用含m ,n 的式子表示广场(阴影部分)的面积S ;(2)若30m =米,20n =米,修建每平方米需费用200元,用科学记数法表示修建广场的总费用W 的值.55.(2022·安徽·二模)古老而悠久的民族文化宝典中,有一颗璀璨夺目的明珠一一河图洛书(如图1).人们为河图洛书神话般的传说、高深的奥义、丰富的内容、简洁的形式万分惊讶,对河图洛书与中国的思想文化、社会科学、自然科学的密切联系更是迷惑不解,然而,令我们每个人吃惊和迷惑不解的是,河图洛书只是两个简单的数字图,如图2,在33⨯的九官格中,每行每列及每条对角线上的三数之和都相等.(1)将图2九宫格中的数改为如图3的形式,则九宫格中n= ,e= ;(2)若用-5,-4,-3,-2,-1,0,1,2,3这九个数填在如图4的九宫格中,试求图中m的值.参考答案:1.A【分析】根据有理数的加法法则计算即可.【详解】解:9(3)+-(93)=+-=6故选:A .【点睛】本题考查了有理数的加法,掌握绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值时解题的关键.2.A【分析】根据图1可知,一横表示10,一竖表示1,白色为正,黑色为负,由此即可得出答案.【详解】解:由图1可知,一横表示10,一竖表示1,白色为正,黑色为负,则图2表示的过程是在计算()()132310-++=,故选:A .【点睛】本题考查了有理数的加减法,掌握理解每个算筹所表示的数是解题关键.3.D【分析】根据幻方的特点列出算式-2+y +6=2y +y +0=x -2+0,再根据法则计算可得.【详解】解:根据题意知-2+y +6=2y +y +0=x -2+0,则y +4=3y ,3y =x -2,∴y =2,x =3y +2=8,∴y x =82=64,故选:D .【点睛】本题主要考查有理数的加法和乘方,解题的关键是掌握有理数的加减运算法则及幻方的特点.4.B【分析】用该市当天的最高气温减去最低气温,即可求出结果.【详解】解:最高气温与最低气温的差为:()--=15217℃故选:B .【点睛】本题考查了有理数的减法,熟练掌握有理数的运算法则是解决本题的关键.5.C【分析】根据绝对值的意义和有理数的减法运算法则计算即可.【详解】解:原式=8+5=13.故选:C .【点睛】本题考查绝对值的意义,有理数的减法运算,熟练掌握这些知识点是解题关键.6.D【分析】观察折线统计图可得各节气的平均气温最大值为13.86℃,最小值为-5.05℃,即可求解.【详解】解:根据题意得:各节气的平均气温最大值为13.86℃,最小值为-5.05℃,∴各节气的平均气温最大值与最小值的差是()13.86 5.0518.91--=℃.故选:D【点睛】本题主要考查了折线统计图,准确从统计图获取信息是解题的关键.7.40【分析】首先算出黄经理总的支出,再求出他的总收入,进而得出黄经理的亏损.【详解】解:根据题意可得:总支出:幽兰拿铁成本是7元,找零钱()5017-元,赔邻居50元,共()750175090+-+=(元),总收入:和邻居换钱得50元,总共50元,剩余:509040-=-(元),即黄经理一共亏了40元.故答案为:40.【点睛】本题考查有理数加减运算的实际应用,读懂题意,计算出总的收入和总的支出是解题的关键.8.16【分析】根据题意可知★=2个△=8个〇=16个□,再代入★÷□即可计算求解.【详解】解:∵△+△=★,∴★=2个△,∵△=〇+〇+〇+〇,∴★=8个〇,∵〇=□+□,∴★=16个□,∴★÷□=16.故答案为:16.【点睛】本题考查了等式的性质与有理数的混合运算,由题得出★=16个□是解题关键.9.(1)3;(2)m =-12.【分析】(1)首先得出最大数和最小数,进而得出答案;(2)根据题意列出方程,解方程即可求解.(1)解:∵最大的数是2,最小的数是-1,∴最大的数与最小的数之差为2-(-1)=2+1=3;(2)解:根据题意得:2+0+(-1)+(-12)+m =0, 解得:m =-12. 【点睛】本题考查有理数的运算,一元一次方程的应用;熟练掌握解一元一次方程的方法和步骤是解本题的关键.10.B【分析】根据运算过程可知是根据乘法结合律.【详解】解:()()512376-⨯-⨯ 537126=⨯⨯(乘法交换律) 537126⎛⎫=⨯⨯ ⎪⎝⎭(乘法结合律) 3710=⨯=370故选:B .【点睛】本题考查了有理数的乘法运算律,熟练掌握和运用有理数的乘法运算律是解决本题的关键.11.A【分析】原式利用乘法分配律计算即可求出值【详解】解:原式=117313(24)(24)(24)(24) 126424⨯--⨯-+⨯--⨯-=-22+28-18+13=6-18+13=-12+13=1,故选:A【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.A【分析】根据乘法分配律即可求解.【详解】47249948⎛⎫⨯-⎪⎝⎭=12410048⎛⎫⨯-+⎪⎝⎭计算起来最简便,故选A.【点睛】此题主要考查有理数的运算,解题的关键是熟知乘法分配律的运用.13.A【分析】根据有理数的除法法则即可解答.【详解】解:−6÷2=-3,故选A.【点睛】本题考查了有理数的除法,解决本题的关键是熟记有理数的除法法则.14.D【分析】根据图形中的数据变化,可得被5除余1的数,和能被5整除的座位号靠窗,座位连在一起,且有一个靠窗的座位,通过分析选项即可得结论.【详解】解:由已知图形中座位的排列顺序,可得:被5除余1的数,和能被5整除的座位号靠窗,由于两位旅客希望座位连在一起,且有一个靠窗的座位,48593÷=,故A选项不符合;625122÷=,故B选项不符合;75515÷=,故C选项不符合;85517÷=,故D符合,故选:D.【点睛】本题考查了数据的变化规律,对数据的处理,并能正确找出其中的规律是解题的关键.15.D【分析】根据乘除互逆运算的关系求解可得.【详解】解:1÷(﹣12019 )=﹣2 019 故选:D .【点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的乘法与除法是互逆的运算关系.16.D【分析】根据乘法的含义,可得:222m ++⋅⋅⋅+=个2m ,根据乘方的含义,可得:333n ⨯⨯⋅⋅⋅⨯=个3n ,据此求解即可.【详解】解:222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个2m +3n .故选:D .【点睛】此题主要考查了有理数的乘法、有理数的乘方,解答此题的关键是要明确乘法、乘方的含义.17.A【分析】直接利用二次根式中被开方数是非负数,得出x 的值,进而得出y 的值,再利用有理数的乘方运算法则计算即可. 【详解】解:由题意可得:20420x x -≥⎧⎨-≥⎩, 解得:x =2,故y =-3,∴20222022()(213)=x y +=-.故选:A .【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.18.C【分析】利用已知得出数字个位数的变化规律进而得出答案.【详解】解:∵21=2,22=4,23=8,24=16,25=32,…,∴尾数每4个一循环,∵2022÷4=505……2,∴22022的个位数字应该是:4.故选:C .【点睛】此题主要考查了尾数特征,根据题意得出数字变化规律是解题关键.19.B【分析】直接利用科学记数法表示即可得到答案.【详解】解:61.143611436707010⨯=,故选B .【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,解题关键是确定a 和n 的值.20.D【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:3.16亿8316000000 3.1610==⨯.故选:D .【点睛】此题考查科学记数法的表示方法,解题的关键是掌握科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.21.B【分析】科学记数法要表示成()n 1010⨯<<0a a .【详解】解:数字338 600 000用科学记数法可简洁表示为83.38610⨯,故选B .【点睛】本题主要考查科学记数法的运用,能够熟练根据要求转化数字是解题关键.22.D【分析】首先精确到百万位,再用科学记数法表示.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:原数精确到百万位为:13909615≈14000000,再用科学记数法表示为:14000000=1.4×107,故选D .【点睛】本题考查取近似数和科学记数法的综合应用,熟练掌握精确度的意义和四舍五入的方法、科学记数法的意义和算法是解题关键.23.B【分析】先用科学记数法表示出所给的数,再按精确度的要求进行四舍五入即可得到答案.【详解】解:用科学记数法表示:455500 5.5510=⨯,四舍五入法精确到千位得:445.551015.60≈⨯⨯.故选:B .【点睛】本题考查了近似数和科学记数法.解题的关键是先用科学记数法表示出所给的数,再按精确度的要求进行四舍五入,注意近似数末尾有意义的0.24.B【分析】在标准形式a ×10n 中a 的部分中,从左边第一个不为0的数字数起,共有3个有效数字是8,6,3,且其展开后可看出精确到的是百位.【详解】解:8.63×104=86300,所以有3个有效数字,8,6,3,精确到百位.故选:B .【点睛】此题主要考查科学记数法与有效数字,解答的关键是明确用科学记数法表示的数的有效数字的确定方法.25.3【详解】解:原式()91104=÷+-+()9104=+-+3=.【点睛】本题考查了有理数的混合运算,解题关键是熟记有理数混合运算顺序和法则,准确进行计算.26.(1)①;③(2)解答过程见详解【分析】(1)根据有理数运算法则判断即可;(2)按照运算法则,先进行乘除运算,再进行加减运算即可.【详解】(1)解:解法1,步骤①中“先算加减后算乘除”不符合有理数混合运算法则,故步骤①错误; 解法2,11363622-+≠-,步骤③不符合有理数加法法则,故步骤③错误. 故答案为:①;③.(2)解:原式()44981998⎛⎫=-⨯-⨯- ⎪⎝⎭ 1236=-+ 1235=- 【点睛】本题主要考查了有理数的混合运算,解题关键在于熟练掌握有理数混合运算的运算法则.27.1312n -+ 【分析】仿照材料中的方法解答即可.【详解】解:设231133333n n S -=+++++①,将等式两边同时乘3,得231333333n n S +=+++++②, ②−①,得3S −S =131n -+,即2S =131n -+,则S =1312n -+, 所以23113312333n n+++++=-+. 【点睛】本题主要考查数字的变化规律,解答的关键是理解清楚所给的解答方式,并灵活运用. 28.A【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数,由此即可得到答案.【详解】解:7107610760000 1.07610==⨯万.故选:A .【点睛】本题主要考查了科学记数法,解题的关键是熟练掌握科学记数法的定义.29.A【分析】根据乘方定义计算即可.【详解】422222=16-=-⨯⨯⨯.故选:A .【点睛】本题主要考查了乘方的运算,理解定义是解题的关键. 30.A【分析】根据二次根式的非负性和完全平方公式求出m ,n 的值,进而即可求解.【详解】解:2440n n ++=,()220n+=,∴20,20m n n-=+=,解得:4,2m n=-=-,∴P的坐标为()4,2--,∴点P关于x轴的对称点坐标为()4,2-.故选:A.【点睛】本题主要考查二次根式与平方的非负性,点的坐标,轴对称变换,根据非负数的性质,求出m,n 的值是关键.31.B【分析】根据a,b互为相反数,c,d互为倒数,可以得到a+b=0,cd=1,然后代入所求式子计算即可.【详解】解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴5(a+b)﹣2cd=5×0﹣2×1=0﹣2=﹣2,故选:B.【点睛】本题考查了相反数和倒数,有理数的混合运算,解答本题的关键是求出a+b、cd的值.32.D【分析】先利用相反数、绝对值和乘方的意义计算出()55--=,33--=-,211-=-,然后根据实数的分类求解.【详解】解:()55--=,33--=-,211-=-,所以这六个数中,负数为6-,3--,21-.故选:D.【点睛】本题考查了有理数的分类,有理数乘方:求n个相同因数积的运算,叫做乘方.也考查了绝对值和相反数,熟知相关知识是解题的关键.33.C【分析】根据数轴上点的位置可得a<0,0b>,据此化简求解即可.【详解】解:由数轴上点的位置可得a<0,0b >, ∴110a b a b a b a b+=+=-+=-, 故选:C .【点睛】本题主要考查了化简绝对值,根据数轴上点的位置判断式子符号,有理数的除法,正确得到a<0,0b >是解题的关键.34.C【分析】根据a ,b 互为相反数,可得0a b +=,c 的倒数是4,可得14c =,代入即可求解. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c 的倒数是4, ∴14c =, ∴334a b c +-()34a b c =+-130414=⨯-⨯=-, 故选:C 【点睛】本题考查了代数式的求值问题,利用已知求得0a b +=,14c =是解题的关键. 35.A 【分析】根据单项式除以单项式,完全平方公式,合并同类项,有理数的乘方的运算法则进行计算求解即可.【详解】解:A 中2ab ab b ÷=,正确,故符合题意;B 中()222222-=-+≠-a b a ab b a b ,错误,故不符合题意;C 中44482355m m m m +=≠,错误,故不符合题意;D 中()333286a a a -=-≠-,错误,故不符合题意;故选A .【点睛】本题考查了单项式除以单项式,完全平方公式,合并同类项以及有理数的乘方.解题的关键在于熟练掌握运算法则并正确的计算.36.A【分析】分别计算绝对值,负整数指数幂,乘方运算,再比较各数的大小,从而可得答案. 【详解】解:12155,5,525,5而15525,5 125555, 所以最小的数是5,-故选:A【点睛】本题考查的是绝对值的含义,负整数指数幂的含义,有理数的乘方运算,有理数的大小比较,掌握以上基础知识是解本题的关键.37.1【分析】根据()1n -运算、零指数幂、负整数指数幂及绝对值运算分别求解后,利用有理数的混合运算法则求解即可得到结论 【详解】解:()()12020011322π-⎛⎫-⨯-+-+- ⎪⎝⎭ 1122=⨯-+1=. 【点睛】本题考查有理数混合运算,涉及到()1n-运算、零指数幂、负整数指数幂及绝对值运算等知识,熟练掌握运算法则及运算顺序是解决问题的关键.38.(1)-9(2)3【分析】(1)根据有理数混合运算法则计算即可;(2)设被污染的数字为x ,由题意,得()326263x ⎛⎫-⨯--= ⎪⎝⎭,解方程即可; 【详解】(1)解:()()32116268326⎛⎫-⨯--=-⨯- ⎪⎝⎭189=--=-; (2)设被污染的数字为x ,由题意,得()326263x ⎛⎫-⨯--= ⎪⎝⎭,解得3x =, 所以被污染的数字是3.【点睛】本题主要考查有理数的混合运算、一元一次方程的应用,掌握相关运算法则和步骤是接替的关键.39.D【分析】通过观察发现2n 的个位数字是2、4、8、6四个数字依次不断循环,直接填空即可;【详解】解:通过观察发现2n的个位数字是2、4、8、6四个数字依次不断循环,且2+4+8+6=20,尾数为02022÷4=500……2,则尾数为2+4=6,故选D.【点睛】此题考查幂的乘方末尾的数字规律,注意观察循环的数字规律,利用规律解决问题.40.Ba=,判断A选项不正确;C选项中2a、2b不是同类项,不能合并;D选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B 选项正确.【详解】A.7,故A不正确;B.2366932÷=⨯=,故B正确;C. 222a b ab+≠,故C不正确;D. 236a b ab⋅=,故D不正确;故选B.【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.41.B【分析】先将112x yy x⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭化简,再利用互为倒数,相乘为1,算出结果,即可【详解】112111 221212121x yy xxy x yx y xyxyxyxyxy⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭=-⋅+⋅-=-+-=-+∵x和y互为倒数∴1xy=。

数学中考知识点归纳2024

数学中考知识点归纳2024

数学中考知识点归纳2024一、数与代数。

(一)有理数。

1. 有理数的概念。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

- 能准确区分有理数和无理数,无理数是无限不循环小数,如π、√(2)等。

2. 有理数的运算。

- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。

- 减法:减去一个数,等于加上这个数的相反数。

- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0;几个不为0的数相乘,负因数的个数为偶数时,积为正,负因数的个数为奇数时,积为负。

- 除法:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。

a^n中,a 叫做底数,n叫做指数。

正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

- 运算顺序:先算乘方,再算乘除,最后算加减;有括号的先算括号里面的。

(二)实数。

1. 平方根、算术平方根、立方根。

- 平方根:如果x^2 = a(a≥slant0),那么x叫做a的平方根,记作x=±√(a)。

- 算术平方根:正数a的正的平方根叫做a的算术平方根,记作√(a),0的算术平方根是0。

- 立方根:如果x^3 = a,那么x叫做a的立方根,记作x = sqrt[3]{a}。

2. 实数的大小比较。

- 正数大于0,0大于负数,正数大于负数。

- 两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。

- 还可以通过数轴比较实数大小,数轴上右边的数总比左边的数大。

(三)代数式。

1. 代数式的概念。

- 用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。

有理数的运算公式

有理数的运算公式

有理数的运算公式有理数的运算公式,那咱们可得好好说道说道。

咱先从加法说起哈。

有理数加法法则很简单,同号两数相加,取相同的符号,并把绝对值相加。

比如说,5 + 3,都是正数,符号相同,那就把它们的绝对值 5 和 3 相加,结果就是 8 呗。

而异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

举个例子,5 + (-3),一个正数一个负数,正数的绝对值大,那就取正号,然后用 5 的绝对值 5 减去 3 的绝对值 3,结果就是 2 啦。

再来说说减法,其实减法就是加法的逆运算。

减去一个数,等于加上这个数的相反数。

就像 5 - 3 ,可以看成 5 + (-3) ,这样一转换,是不是就很好理解啦?乘法也不难。

两数相乘,同号得正,异号得负,并把绝对值相乘。

比如 2×3 ,同号,结果就是 6 ;而 2×(-3) ,异号,结果就是 -6 。

除法呢,除以一个不等于 0 的数,等于乘这个数的倒数。

比如说6÷3 ,就等于 6×1/3 ,结果是 2 。

我记得有一次给学生们讲这些运算公式的时候,有个小家伙特别有意思。

当时我在黑板上写了一道题:(-5) + 8 。

我就问大家答案是多少,那小家伙一脸迷茫地看着我,嘴里还嘟囔着:“这咋算呀?”我就引导他,先看符号,一个负数一个正数,正数的绝对值大,所以结果是正数,然后用 8 的绝对值 8 减去 5 的绝对值 5 ,就是 3 。

那小家伙恍然大悟的表情,我到现在都还记得,眼睛一下子亮了起来,大声说:“哦,原来是这样啊!”那一刻,我就觉得当老师可真有意思,能看到孩子们一点点地理解和掌握知识。

在实际应用中,有理数的运算公式用处可大了。

比如说咱们买东西算账的时候,商品价格有涨有跌,这价格的变化就涉及到有理数的运算。

还有气温的变化,今天比昨天升高或者降低了几度,这也是有理数的运算呀。

有理数的运算公式看起来好像有点复杂,但只要咱们多练习,多琢磨,其实很容易掌握的。

2020年广东省中考数学总复习:第2讲《有理数的运算》

2020年广东省中考数学总复习:第2讲《有理数的运算》

2020年广东省中考数学总复习:第2讲《有理数的运算》1. 理解并掌握加减法法则且能熟练运用法则计算2. 理解并掌握乘除法法则且能熟练运用法则计算3. 能利用有理数的运算法则简化运算4. 能借助数轴比较有理数的大小古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷了下棋。

为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。

大臣说:“就在这个棋盘上放一些米粒吧。

第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒、......一直到第64格。

”“你真傻!就要这么一点米粒?!”国王哈哈大笑。

大臣说:”就怕您的国库里没有这么多米!“后等于: +++21222……+632=642-1 =18446744073709551615粒 约2200多吨模块一、有理数加法运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.例题精讲课前故事重难点中考要求②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差.有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a+=+(加法交换律)②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.++=++(加法结合律)()()a b c a b c有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.【例1】同号两数相加某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:(1)某人向东走5米,再向东走3米,两次一共走了多少米?(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?总结:__________________________________________________.异号两数相加(3)某人向东走5米,再向西走5米,两次一共向东走了多少米?(4)某人向东走5米,再向西走3米,两次一共向东走了多少米?(5)某人向东走3米,再向西走5米,两次一共向东走了多少米?总结:_______________________________________________________.【难度】1星【解析】利用实际情境来推导加法法则,强调和的符号及和与绝对值的关系,进而总结出加法法则【例2】计算下列各题:(1) (一11)+(一9); (2) (一3.5)+(+7);(3)(一1.08)+0; (4)(23+)+(23-)(5)[(-22)+(-27)]+(+27); (6)(-22)+[(-27)+(+27)].【难度】1星【解析】利用加法法则计算。

2020年中考数学总复习知识点总结归纳

2020年中考数学总复习知识点总结归纳

第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等第二章整式的加减考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

第三章一元一次方程考点一、一元一次方程的概念(6分)1、方程含有未知数的等式叫做方程。

中考重点有理数的加减乘除

中考重点有理数的加减乘除

中考重点有理数的加减乘除有理数是我们数学学习中的重要内容之一,也是中考的重点之一。

在中考中,涉及到有理数的加减乘除的题目屡见不鲜。

下面我将详细介绍有理数的加减乘除的相关知识,希望能够对广大考生有所帮助。

一、有理数的加法有理数的加法很简单,只需要按照正负数的原则进行操作即可。

具体步骤如下:步骤一:判断两个数的符号,如果两数符号相同,则将它们的绝对值相加,符号不变即可;如果两数符号不同,则将它们的绝对值相减,取绝对值较大的符号即可。

例如:(-7) + (-3) = -10,(-7) + 3 = -4,7 + (-3) = 4,7 + 3 = 10步骤二:将所得的结果与零比较,如果结果为零,则直接写出零;如果结果大于零,则标记为正数;如果结果小于零,则标记为负数。

例如:(-7) + (-3) = -10,结果小于零,标记为负数;7 + 3 = 10,结果大于零,标记为正数二、有理数的减法有理数的减法实际上是加法的逆运算,所以它的操作和加法是一样的。

具体步骤如下:步骤一:将减法转化为加法,即 a - b 可以写成 a + (-b) 的形式。

步骤二:按照加法的规则进行操作。

例如:(-5) - (-3) = (-5) + 3 = -2,(-5) - 3 = (-5) + (-3) = -8,5 - (-3) = 5 + 3 = 8,5 - 3 = 2三、有理数的乘法有理数的乘法简单易懂,只需要按照正负数的原则进行操作即可。

具体步骤如下:步骤一:判断两个数的符号,如果两数符号相同,则将它们的绝对值相乘,结果为正数;如果两数符号不同,则将它们的绝对值相乘,结果为负数。

例如:(-4) × (-3) = 12,(-4) × 3 = -12,4 × (-3) = -12,4 × 3 = 12步骤二:将所得的结果与零比较,如果结果为零,则直接写出零;如果结果大于零,则标记为正数;如果结果小于零,则标记为负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学 专题01有理数的运算1.有理数:整数和分数统称有理数⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

2.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.3.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 4.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.5.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.6.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).7.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).8.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.专题知识回顾9.有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .10.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .11.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n ,当n 为正偶数时: (-a)n =an 或 (a-b)n =(b-a)n . 12.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;13.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.14.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.15.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.16.混合运算法则:先乘方,后乘除,最后加减.【例题1】(2019•江苏苏州)5的相反数是( )A .15B .15-C .5D .5-【答案】D【解析】考察相反数的定义,简单题型.5的相反是为5-。

【例题2】(2019•广东省广州市)|﹣6|=( )A .﹣6B .6C .﹣D . 【答案】B .【解析】本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是专题典型题考法及解析它的相反数;0的绝对值是0.根据负数的绝对值等于它的相反数解答.﹣6的绝对值是|﹣6|=6.【例题3】(2019•湖南株洲)﹣3的倒数是()A.﹣B.C.﹣3 D.3【答案】A【解析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.【例题4】(台湾)算式743×369﹣741×370之值为何?( )A.﹣3 B.﹣2 C.2 D.3【答案】A【解析】根据乘法分配律,可简便运算,根据有理数的减法,可得答案.原式=743×(370﹣1)﹣741×370=370×(743﹣741)﹣743=370×2﹣743=﹣3【例题5】(2019•湖北孝感)中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为.【答案】1.25×109.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.将数1250 000 000用科学记数法可表示为1.25×109.【例题6】(经典题)按照要求,用四舍五入法表示数。

(1)1.804(精确到0.01)(2)0.0158(精确到0.001)【答案】(1)1.80(2)0.016【解析】精确到0.01,意思就是把这个数保留到小数点后两位,关键要看小数点后第三位要等于大于5就把小数点后面第二位进1。

小数点后第三位要小于5,小数点后面第二位不变。

精确到0.001,意思就是把这个数保留到小数点后三位,关键要看小数点后第四位要等于大于5就把小数点后面第三位进1。

小数点后第四位要小于5,小数点后面第三位不变。

(1)1.804(精确到0.01)=1.80 (2)0.0158(精确到0.001)=0.016专题典型训练题一、选择题1.(2019•铜仁)2019的相反数是()A.B.﹣C.|2019| D.﹣2019【答案】D【解析】2019的相反数是﹣20192.(2019•广西贺州)﹣2的绝对值是()A.﹣2 B.2 C.D.﹣【答案】B【解析】根据绝对值的定义,可直接得出﹣2的绝对值.|﹣2|=23.(2019•山东省德州市)﹣的倒数是()A.﹣2 B.C.2 D.1【答案】A【解析】根据倒数的定义求解即可.﹣的到数是﹣24.(2019•广西贺州)某图书馆现在有图书约985000册,数据985000用科学记数法可表示为()A.985×103B.98.5×104C.9.85×105D.0.985×106【答案】C.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于985000有6位,所以可以确定n=6﹣1=5.985000=9.85×1055.(2019•广西贺州)计算++++…+的结果是()A.B.C.D.【答案】B.【解析】本题是一个规律计算题,主要考查了有理数的混合运算,关键是把分数乘法转化成分数减法来计算.把每个分数写成两个分数之差的一半,然后再进行简便运算.原式===. 二、填空题6.(2019四川成都)若1 m 与-2互为相反数,则m 的值为 .【答案】1【解析】此题考察的是相反数的代数意义,互为相反数的两个数和为0.所以m+1+(-2)=0,所以m =17.(2019▪黑龙江哈尔滨)将数6260000用科学记数法表示为 .【答案】6.26×106.【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.6260000用科学记数法可表示为6.26×1068.(2019•广东)计算20190+(31)﹣1=____________. 【答案】4【解析】零指数幂和负指数幂的运算原式=1+3=49.(2019•广西贵港)有理数9的相反数是 .【答案】﹣9【解析】根据相反数的求法即可得解;9的相反数是﹣910.(2019•湖南邵阳)的相反数是 . 【答案】﹣ 【解析】根据相反数的意义,即可求解。

的相反数是﹣。

11.(2019•山东省德州市)|x﹣3|=3﹣x,则x的取值范围是.【答案】x≤3;【解析】根据绝对值的意义,绝对值表示距离,所以3﹣x≥0,即可求解;【解答】解:3﹣x≥0,∴x≤3,故答案为x≤3。

12.(2019•江苏无锡)2019年6月29日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约20000000人次,这个年接待客量可以用科学记数法表示为人次.【答案】2×107.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将20000000用科学记数法表示为:2×107.13.(2019•山东省聊城市)计算:(﹣﹣)÷=.【答案】﹣.【解析】有理数的混合运算。

先计算括号内的减法,同时将除法转化为乘法,再约分即可得.原式=(﹣)×=﹣14.(2019•贵州省安顺市)若实数a、b满足|a+1|+=0,则a+b=.【答案】1【解析】∵|a+1|+=0,∴,解得a=﹣1,b=2,∴a+b=﹣1+2=1.15. (2019黑龙江绥化)某年一月份,哈尔滨市的平均气温约为-20℃,绥化市的平均气温约为-23℃,则两地的温差为________℃.【答案】3【解析】-20-(-23)=316.(2019湖北咸宁)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是.【答案】﹣384【解析】∵一列数为1,﹣2,4,﹣8,16,﹣32,…,∴这列数的第n个数可以表示为(﹣2)n﹣1,∵其中某三个相邻数的积是412,∴设这三个相邻的数为(﹣2)n﹣1、(﹣2)n、(﹣2)n+1,则(﹣2)n﹣1•(﹣2)n•(﹣2)n+1=412,即(﹣2)3n=(22)12,∴(﹣2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384三、解答题17.(2019•河北省)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【答案】见解析。

相关文档
最新文档