分式的约分、通分专项练习题(2020年8月整理).pdf
分式的约分练习题
![分式的约分练习题](https://img.taocdn.com/s3/m/245c3f693069a45177232f60ddccda38376be114.png)
分式的约分练习题分式的约分练习题在数学学科中,分式是一个常见的概念。
它是由两个整数或多项式组成的表达式,其中一个数或多项式位于分子,另一个数或多项式位于分母。
分式的约分是指将分子和分母中的公因数约去,使分式达到最简形式。
在本文中,我们将提供一些分式的约分练习题,以帮助读者更好地理解和掌握这一概念。
1. 约分练习题一:将分式 $\frac{12}{18}$ 约分到最简形式。
解答:首先,我们可以找到分子和分母的最大公因数。
12和18的公因数有1、2、3、6,其中6是最大的公因数。
因此,我们可以将分式 $\frac{12}{18}$ 约分为$\frac{2}{3}$。
2. 约分练习题二:将分式 $\frac{16}{24}$ 约分到最简形式。
解答:与上一个练习题类似,我们需要找到分子和分母的最大公因数。
16和24的公因数有1、2、4,其中4是最大的公因数。
因此,我们可以将分式$\frac{16}{24}$ 约分为 $\frac{2}{3}$。
3. 约分练习题三:将分式 $\frac{25}{35}$ 约分到最简形式。
解答:首先,我们找到分子和分母的最大公因数。
25和35的公因数有1、5,其中5是最大的公因数。
因此,我们可以将分式 $\frac{25}{35}$ 约分为 $\frac{5}{7}$。
4. 约分练习题四:将分式 $\frac{8}{12}$ 约分到最简形式。
解答:与之前的练习题相似,我们需要找到分子和分母的最大公因数。
8和12的公因数有1、2、4,其中4是最大的公因数。
因此,我们可以将分式$\frac{8}{12}$ 约分为 $\frac{2}{3}$。
通过以上的练习题,我们可以看出,约分是将分式转化为最简形式的重要步骤。
通过找到分子和分母的最大公因数,我们可以将分式约分为最简形式,使得计算和理解更加简单明了。
除了练习题,我们还可以通过实际生活中的例子来理解分式的约分。
例如,假设我们有一块蛋糕,需要将其平均分给3个人。
分式约分与通分的练习题
![分式约分与通分的练习题](https://img.taocdn.com/s3/m/ea289ce30129bd64783e0912a216147916117e6d.png)
分式约分与通分的练习题以下是关于分式约分与通分的练习题,共计2000字:1. 约分练习题在本节中,我们将练习如何约分分式。
约分是指将一个分数的分子和分母同时除以它们的公约数,以得到一个与原分数相等但分子和分母不能再被约分的新分数。
(略去小标题,直接进入练习题)题一:将下列分数约分到最简形式:a) 10/50首先,我们观察到10和50它们有公约数10。
因此,我们将10/50约分为1/5。
b) 12/36观察到12和36它们有公约数12。
因此,我们将12/36约分为1/3。
题二:约分混合数a) 16 1/4将16写成分数的形式,得到16/1,与1/4组合得到65/4。
观察到65和4它们有公约数1。
因此,我们将65/4约分为16 1/4。
题三:约分小数a) 0.7将0.7写成分数的形式,得到7/10。
观察到7和10它们没有公约数,因此7/10已经是最简形式,无法再约分。
2. 通分练习题在本节中,我们将练习如何将两个分数通分,即找到一个新的分母,使得两个分数的分母相同,从而便于进行比较和运算。
(略去小标题,直接进入练习题)题一:将下列分数通分:a) 1/2, 2/3观察到2和3它们没有公约数,因此两个分数的最小公倍数为2×3=6。
将1/2分母扩大为6,得到3/6。
将2/3分母扩大为6,得到4/6。
题二:将分数与混合数通分:a) 1/4, 3 1/2观察到4和2它们有公约数2。
因此,我们将3 1/2写成分数形式,得到7/2。
两个分数的最小公倍数为4×2=8。
将1/4分母扩大为8,得到2/8。
将7/2分母扩大为8,得到28/8。
题三:将分数与小数通分:a) 3/5, 0.2观察到5和2它们没有公约数,因此两个数的最小公倍数为5×2=10。
将3/5分母扩大为10,得到6/10。
将0.2转化为分数形式,得到2/10。
3. 联合练习题:约分与通分结合应用在本节中,我们将结合练习约分和通分操作,以解决更复杂的问题。
初中数学分式的约分通分综合练习题(附答案)
![初中数学分式的约分通分综合练习题(附答案)](https://img.taocdn.com/s3/m/40703cfadb38376baf1ffc4ffe4733687e21fc16.png)
初中数学分式的约分通分综合练习题(附答案)初中数学分式的约分通分综合练题一、单选题1.下列分式中,不论$x$取何值,一定有意义的是()frac{x-1}{x-1}\cdot\frac{x+1}{x-1}$A。
$\frac{x+1}{x}$B。
$x$C。
$\frac{x^2-1}{x}$D。
$\frac{x^2+1}{x}$2.下列代数式中,是分式的为()A。
$\frac{1}{2}$B。
$\frac{x}{3}$C。
$\frac{x}{2}-y$D。
$\frac{5}{x^3}$3.下列各式中,是分式的是()A。
$\frac{2x+1}{x(x-3)}$B。
$2$C。
$\frac{x}{\pi-2}$D。
$\frac{1}{3x^2}$4.当分式$\frac{x}{2x-1}$无意义时,$x$的值是()A。
$2$B。
$-\frac{1}{2}$C。
$0$D。
$1$5.下列各式正确的是()A。
$\frac{b+xa}{b+x}=\frac{a}{b+1}$B。
$\frac{y^2n}{n-ax}=\frac{y}{x^2}$C。
$\frac{n}{ma}=\frac{1}{a}$($a\neq 0$)D。
$m=m-a$6.下列三个分式$\frac{1}{2x^2}$,$\frac{4(m-n)}{3x}$,$\frac{2x+4x^2y}{x^2-1}$,的最简公分母是()A。
$4(m-n)x$B。
$2(m-n)x^2$C。
$\frac{1}{4}x^2(m-n)$D。
$4(m-n)x^2$7.计算$\frac{(x+y)^2-(x-y)^2}{4xy}$的结果为()A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{4}$D。
$0$8.下列分式:$\frac{3x}{-x^2}$,$\frac{x-y}{x^2+y^2}$,$\frac{x+y}{xy+x}$,$\frac{2x+4x^2y}{x^2-1}$,其中是最简分式的有()A。
分式的约分与通分专题训练
![分式的约分与通分专题训练](https://img.taocdn.com/s3/m/2bcf8554a216147916112832.png)
分式的约分与通分练习题选择题1.不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .90 2.下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-a b c +; ④m n m --=-m n m-中,成立的是( ) A .①② B .③④ C .①③ D .②④3.不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• ) A .2332523x x x x +++- B .2332523x x x x -++- C .2332523x x x x +--+ D .2332523x x x x ---+ 4.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 5.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 6.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 7.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b ++=0C .1111ab b ac c --=-- D .221x y x y x y -=-+ 二、 填空题8. .分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零.9.、不改变下列分式的值,使分式的分子、分母首相字母都不含负号。
.xy -- = ②y x y x 2---- = ③y x y x --+-= 10.(辨析题)分式434y x a +,2411x x --,22x xy y x y-++,2222a ab ab b +-中是最简分式的有__________________11.若a=23,则2223712a a a a ---+的值等于_______. 12.计算222a ab a b+-=_________. 13.21?11x x x -=+-,则?处应填上_________,其中条件是__________. 14. 有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的是____________. 15. 公式22(1)x x --,323(1)x x --,51x -的最简公分母为____________. 16. 使分式||1x x -无意义,x 的取值是____________.三、当x 取何值时,下列分式的值为零?(12分)① 2212x x x -+- ② 242+-x x ③ 3212-+-x x x四、约分(40 分)⑤ a a ab b 222-- ②2232axy y ax ③2222926yx xy y x -+ ④2435241216c b a c b a⑤ 224422ba b a -+ ⑥12223-++m m m m ⑦22699x x x ++- ⑧mn n m mn 5101522+五、通分(20 分) ①yz x 9,222xzy ②26x ab ,29y a bc ③a 392-,912--a a④)(y x x y x +-,)(y x y y x -+ ⑤2121a a a -++,261a -。
分式的约分和通分练习题及答案
![分式的约分和通分练习题及答案](https://img.taocdn.com/s3/m/93c325407fd5360cba1adb91.png)
分式的约分和通分练习题及答案约分:?x?y??a?b?2⑵⑴ ⑶ab24abc?x?y?2?a?b?38abc324abc2?32abc32?4abc⑸23⑷24abd2316abc4?4x?3⑹222?7x12a⑻2⑺49?2x2?y?x?27a?x?y?321?x⑼222x?3x?2⑽m?2m?1⑾22xya?x 1?ma?ab?b 2⑿x?a2⒀a?b334x?3x?18⒁1?x⒂3x?9x?x?x?1通分:3x⑶1?x ⑷2,?2x?12x?3x?22x?x?3 2,1?x1xx?1x?1x?1 1,2?a?b,3a2,,1,12⑸2?b212⑹m122?99?3m ,12,⑺1x?2,x?2⑻x?1x?3x?211⑼a?b,ba?ba?b,122⑽ a2?2a?1,a2?1,a2?2a?11提高训练1、在a?bx5?xa?b,,,a2??14中,A、1个B、2个C、3个D、4个22、计算的结果是 a2bA.a B.b C.1 D.-b3、一份工作,甲单独做需a天完成,乙单独做需b天完成,则甲乙两人合作一天的工作量是1a?b11; C.;D.? a?b2aba?2b4、如果把分式中的a和b都扩大2倍,即分式的值 abA.a+b; B.A、扩大4倍;B、扩大2倍;C、不变;D缩小2倍5、能使分式x?2的值为零的所有x的值是 x2?4x?4A.x?2B.x??C.x?或x??D.x?2或x?16、下列四种说法分式的分子、分母都乘以a?2,分式的值不变;分式38?y的值可以等于零;方程x?x11???1的解是x??1;2的最小值为零;x?1x?1x?1其中正确的说法有A .1个B.个C. 个 D. 个7. 已知:a?b?2,ab??5,则A. ?8、当x?时,分式B. ?1ab?的值等于 ba192C. ?D. ?51无意义. x?2? a?2?3a?1?。
5xy10axy a?422a?b的值等于. b?aab11??11、a、b为实数,且ab=1,设P=,Q=,则P Q. 12:已知abc?1,求abc??的值。
初中数学分式的约分通分综合练习题(附答案)
![初中数学分式的约分通分综合练习题(附答案)](https://img.taocdn.com/s3/m/21c567c5e87101f69f319546.png)
初中数学分式的约分通分综合练习题一、单选题1.下列分式中,不论x 取何值,一定有意义的是( ) A.11x x -+ B.1x x - C.211x x +- D.211x x -+2.下列代数式中,是分式的为( ) A.12 B. 3x C. 2xy - D.5x3.下列各式中,是分式的是( ) A.213x x +- B.2x C.π2x- D.213x4.当分式21xx -无意义时,x 的值是( ) A.12 B.12- C.0 D.15.下列各式正确的是( ) A.11b x ab x b ++=++ B.22y y x x = C.(0)n naa m ma =≠ D.n n am m a -=-6.下列三个分式21513,,24()x x m n x --,的最简公分母是( )A.()4m n x -B.()22m n x -C.()214x m n - D.()24m n x -7.计算()()224x y x y xy +--的结果为( ) A.1 B.12 C.14 D.08.下列分式:22226,,,3xy y x x y x x y x y --+-+2221,2421xy xx x x y x x +-+++,其中是最简分式的有( )A.1个B.2个C.3个D.4个9.分式11x --可变形为( ) A.11x - B.11x + C.11x -+ D.11x --10.将分式2x yx y +中,x y 的值同时扩大为原来的3倍,则分式的值( )A.扩大3倍B.缩小为原来的19C.缩小为原来的13D.不变 11.下列约分正确的是( ) A.632a a a = B. a x a b x b +=+ C. 22a b a b++ D. 1x y x y --=-+ 12.在下面的分式变形时,不正确的是( ) A. a a b b -=- B.a a b b -=-- C. a a b b =-- D. a a b b--= 13.下列分式是最简分式的是( ) A.24xy x B.426x - C.33x + D.22x y x y -- 14.在下列分式:①223a a ++②22a b a b --③412()a a b -④12x -中,最简分式的个数为( ) A.1B.2C.3D.4 15.分式223a a b-的分母经过通分后变成()()22a b a b -+那么分子应变为( ) A.()()26a a b a b -+ B.()2a b -C.()6a a b -D..()6a a b + 16.如果把分式2y x y+中x 和y 都扩大2倍,那么分式的值( ) A.不变 B.缩小12C.扩大2倍D.扩大4倍 17.下列各式变形正确的是( ) A.2121a a=++ B.21111a a a +=++ C.x y x y x y y x-++=-- D.2111a a a -=-+ 18.计算22()()4x y x y xy+--的结果为( )A.1B. 12C. 14D.0 19.下列各式从左到右的变形一定正确的是( ) A.22222439x x y y= B.2233c c a b a b=-++ C.x y y x x y y x--=++ D.2x x y xy y y y y ⋅==⋅ 20.若,x y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A.2x x y +- B.22y x C.3223y x D.222()y x y - 二、解答题21.先化简,在求值:22344(2)x xy y x y -+-其中2,3x y =-= 三、计算题22.已知分式2321x x --,求: (1)当x 为何值时,此分式有意义;(2)当x 为何值时,此分式无意义.23.先约分,再求值:32322444a ab a a b ab --+,其中12,2a b ==-. 四、填空题24.分式31x a x +-中,当x a =-时,下列结论正确的是 .(填序号) ①分式的值为零;②分式无意义;③若13a ≠-,分式的值为零;④若13a ≠分式的值为零. 25.在式子231235,,,π46xy abc a x +10,,978x y x y++中,分式有 个. 26.化简:22211x x x x x x+++-=+ . 27.将分式,32b ab a c-通分,依次为 .28.化简:22x y y x -=- . 29.分式322312,,,32x a m n x x a b m n x ++-+-中,最简分式的个数是 . 30.不改变分式的值,把分式0.10.20.3x y y++的分子、分母各项系数都化为整数为 . 31.分式2213,,ab a b abc的最简分母是 . 32.分式22,b a b a ab a ab ---+的最简公分母是 . 33.对分式2333123,,234a bc ab a bc进行通分,它们的最简公分母为 . 参考答案1.答案:D解析:选项A ,当1x =-时,11x x -+没有意义选项B ,当0x =时,1x x-没有意义选项C ,当1x =±时,211x x +-没有意义选项D ,分母21x +恒大于0. 2.答案:D 解析:选项A 中,12是单项式,属于整式;选项B 中,3x 是单项式,属于整式;选项C 中,2x y -分母中不含字母,是整式;选项D 中,5x 分母中含有字母,是分式 3.答案:A 解析:212π23x x x -,,的分母中均不含有字母,因此它们是整式,而不是分式;213x x +-的分母中含有字母,因此是分式.故选A.4.答案:A 解析:分式21x x -无意义,210x ∴-=,解得12x =.故选A 5.答案:C解析:根据分式的基本性质来判别,只有选项C 是正确的故选C.6.答案:D 解析:分式21513,,24()x x m n x--的分母分别是()224,x m x n -,,故最简公分母是()24m n x -.故选D.7.答案:A解析:原式()()4x y x y x y x y xy ++-+-+=2214x y xy⋅==. 8.答案:A 解析:623xy y x-=-,22y x x y x y -=---,212424xy x y x x y xy ++=++,2211211x x x x x --=+++,都不是最简分式;22x y x y++是最简分式,故选A. 9.答案:A 解析:1111x x -=--.故选A 10.答案:B 解析:把分式2x y x y +中,x y 的值同时扩大为原来的3倍为()2233933x y x y x y x y ++=⋅219x y x y+=⋅,则分式的值缩小为原来的19.故选B. 11.答案:D解析:选项A 中,原式4a =,故本选项错误;选项B 中,不能化简,故本选项错误;选项C 中,不能化简,故本选项错误;选项D 中,()1x y x y x y x y---+=-++,故本选项正确. 12.答案:B解析:选项A 中,a ab b-=-,变形正确,不合题意; 选项B 中,a a b b-=--,变形错误,符合题意; 选项C 中,a a b b=--,变形正确,不合题意; 选项D 中,a a b b--=,变形正确,不合题意; 13.答案:C 解析:A 选项,244xy y x x =,不是最简分式;B 选项,42263x x =--,不是最简分式;C 选项,33x +是最简分式;D 选项,()()22x y x y x y x y x y --=-+-1x y=+,不是最简分式.故选C. 14.答案:B解析:①④中分子分母没有公因式,是最简分式.②中22()()a b a b a b a b a b --=-+-,有公因式()a b -,③中4412()43()a aa b a b =-⨯-,有公约数4,所以②③不是最简分式故选B15.答案:C 解析:222332()6()()()2()2()()a a ab a a b a b a b a b a b a b a b --==-+---+故选C 16.答案:A解析: 分别用2,2x y 去代换原分式中的,x y 得2242222()y y y x y x y x y ⨯==+++,可见新分式与原分式相等.17.答案:D解析: 选项A 中,2121a a ≠++,此选项错误;选项B 中,21111a a a +≠++,此选项错误;选项C 中,x y x y x y y x -++=--,此选项错误;选项D 中,()()211111a a a a a +--=++1a =-,此选项正确. 18.答案:A 解析:原式()()22144x y x y x y x y x y xy xy++-+-+⋅=== 19.答案:D 解析:选项A 中,22222639x x y y =,错误;选项B 中,2233c c a b b a=-+-,错误;选项C 中,x y x y x y y x --=++,错误;选项D 中,2x x y xy y y y y ⋅==⋅,正确.故选D. 20.答案:D解析:将,x y 的值均扩大为原来的3倍,A 选项,23233x x x y x y ++≠--,错误;B 选项,22629y y x x≠,错误;C 选项3322542273y y x x≠,错误;D 选项22221829()()y y x y x y =--,正确;故选D. 21.答案:2223344(2)1(2)(2)2x xy y x y x y x y x y-+-==--- 把2,3x y =-=代入,得11122238x y ==----⨯ 解析:22.答案:(1)当分母210x -≠,即1x ≠且1x ≠-时,分式2321x x --有意义. (2)当分母210x -=,且1x =或1x =-时,分式2321x x --无意义. 解析: 23.答案:原式2222(4)(44)a a b a a ab b -=-+2(2)(2)(2)a b a b a b +-=-22a b a b+=-. 当12,2a b ==-时,原式122()121322()2+⨯-==-⨯-. 解析:24.答案:③解析:由310x -≠,得13x ≠,故把x a =-代入分式31x a x +-中,当x a =-且13a -≠,即13a ≠-时,分式的值为零.25.答案:3 解析:式子1510,,96x a x y++的分母中含有字母,是分式.其他的式子分母中不含字母,不是分式.26.答案:0 解析:27.答案:26bc ac和236a b ac - 解析:两个分式分母分别为3,2a c ,未知数系数的最小公倍数为326⨯=,,a c 的最高次数为1,∴最简公分母为6ac ,将,32b ab a c -通分依次为26bc ac和236a b ac -. 28.答案:1x y-+ 解析: 221()()x y x y y x x y x y x y--==---+-+ 29.答案:2解析:321x x x =,221m n m n m n +=--,∴最简分式是312,32a x a b x+-+. 30.答案:2310x y y++ 解析: 要想将分式0.10.20.3x y y++的分子、分母各项系数都化为整数,可将分子、分母同乘10,即原式()()100.10.22100.3310x y x y y y⨯++==⨯++. 31.答案:2a bc解析:最简公分母2,,ab a b abc 的最高次幂的积,即为2a bc . 32.答案:()()a a b a b +-解析:分式22,b a b a ab a ab---+的分母分别是22(),()a ab a a b a ab a a b -=-+=+,故最简公分母是()()a a b a b +-33.答案:33312a b c解析:分母23332,3,4a bc ab a bc 中,未知数系数2,3,4的最小公倍数为12,字母,,a b c 的最高次幂均为3,所以它们的最简公分母为33312a b c .。
分式约分通分练习题
![分式约分通分练习题](https://img.taocdn.com/s3/m/4f2dff381611cc7931b765ce050876323112742c.png)
分式约分通分练习题1. 将分式约分为最简形式。
a) $\frac{15}{25}$b) $\frac{12}{30}$c) $\frac{8}{16}$d) $\frac{50}{100}$e) $\frac{3}{9}$f) $\frac{24}{36}$2. 将分式通分。
a) $\frac{2}{3}$ 和 $\frac{5}{6}$b) $\frac{7}{8}$ 和 $\frac{3}{4}$c) $\frac{1}{2}$ 和 $\frac{3}{5}$d) $\frac{4}{5}$ 和 $\frac{2}{9}$e) $\frac{5}{6}$ 和 $\frac{7}{10}$f) $\frac{3}{4}$ 和 $\frac{2}{5}$3. 解答下列问题。
a) $\frac{2}{3}$ 和 $\frac{4}{5}$ 哪个更大?b) $\frac{1}{4}$ 和 $\frac{2}{9}$ 哪个更小?c) $\frac{5}{6}$ 和 $\frac{7}{8}$ 哪个更大?d) $\frac{1}{5}$ 和 $\frac{3}{10}$ 哪个更小?4. 将下列分数转换为百分数。
a) $\frac{1}{2}$b) $\frac{3}{4}$c) $\frac{2}{5}$d) $\frac{3}{10}$5. 解答下列问题。
a) 将 $\frac{3}{5}$ 转换为小数。
b) 将 $0.75$ 转换为分数。
c) 将 $0.4$ 转换为百分数。
d) 将 $60\%$ 转换为分数。
6. 解答下列问题。
a) $\frac{2}{5}$ 的 $\frac{3}{4}$ 是多少?b) $\frac{1}{3}$ 的 $\frac{5}{6}$ 是多少?c) $\frac{3}{7}$ 的 $\frac{2}{9}$ 是多少?d) $\frac{4}{9}$ 的 $\frac{7}{8}$ 是多少?7. 解答下列问题。
分式约分与通分的练习题
![分式约分与通分的练习题](https://img.taocdn.com/s3/m/5fdf649b7e192279168884868762caaedc33ba57.png)
分式约分与通分的练习题分式约分与通分的练习题分式是数学中常见的一种表达方式,它由分子和分母组成,分子表示被分割的部分,分母表示整体的大小。
在分式的运算中,约分和通分是两个常见的操作。
约分是指将分式中的分子和分母同时除以一个相同的数,使其变为最简形式;而通分是指将两个或多个分式的分母化为相同的分母,以便进行比较和运算。
下面,我们来练习一些分式约分与通分的题目。
1. 约分练习题:a) 将分式 $\frac{12}{36}$ 约分为最简形式。
解答:首先,我们可以找到分子和分母的最大公约数,即12和36的最大公约数。
12可以被2整除,36也可以被2整除,所以它们的最大公约数是2。
将分子和分母同时除以2,得到最简形式 $\frac{6}{18}$。
再次约分,得到$\frac{1}{3}$。
b) 将分式 $\frac{24}{60}$ 约分为最简形式。
解答:我们可以找到24和60的最大公约数。
24可以被2整除,60也可以被2整除,所以它们的最大公约数是2。
将分子和分母同时除以2,得到最简形式$\frac{12}{30}$。
再次约分,得到 $\frac{2}{5}$。
2. 通分练习题:a) 将分式 $\frac{2}{3}$ 和 $\frac{5}{6}$ 通分。
解答:我们可以将两个分式的分母相乘,得到一个相同的分母,然后将分子按照相同的倍数进行扩展。
分式 $\frac{2}{3}$ 的分母是3,分式 $\frac{5}{6}$ 的分母是6。
将3和6相乘,得到18。
然后,将 $\frac{2}{3}$ 的分子扩展为$\frac{12}{18}$,将 $\frac{5}{6}$ 的分子扩展为 $\frac{15}{18}$。
现在,两个分式的分母相同,可以进行比较和运算。
b) 将分式 $\frac{3}{4}$ 和 $\frac{1}{2}$ 通分。
解答:分式 $\frac{3}{4}$ 的分母是4,分式 $\frac{1}{2}$ 的分母是2。
分式通分约分练习题
![分式通分约分练习题](https://img.taocdn.com/s3/m/d2d6dac7bdeb19e8b8f67c1cfad6195f312be813.png)
分式通分约分练习题在学习分数运算的过程中,分式的通分和约分是非常重要的概念和技巧。
通分是将两个或多个分式的分母化为相同的公倍数,以便进行加、减、乘、除等运算;而约分则是将分数化简为最简形式,使分子和分母没有公约数。
接下来,我们将提供一些分式通分和约分的练习题,以帮助你巩固这些概念和技巧。
1. 通分练习题:1) 将分式1/3和2/5通分。
解答:首先,寻找1/3和2/5两个分母的最小公倍数,即3和5的最小公倍数为15。
然后,将1/3扩展为15的分式,得到5/15;将2/5扩展为15的分式,得到6/15。
所以,通分后的结果为5/15和6/15。
2) 将分式2/7和3/4通分。
解答:首先,寻找2/7和3/4两个分母的最小公倍数,即7和4的最小公倍数为28。
然后,将2/7扩展为28的分式,得到8/28;将3/4扩展为28的分式,得到21/28。
所以,通分后的结果为8/28和21/28。
2. 约分练习题:1) 将分数12/18约分为最简形式。
解答:我们需要找出分数12/18的最大公约数。
12和18的公约数有1、2、3、6,其中6是最大的公约数。
将分子和分母同时除以6,得到2/3。
所以,12/18约分为最简形式的结果是2/3。
2) 将分数16/24约分为最简形式。
解答:我们需要找出分数16/24的最大公约数。
16和24的公约数有1、2、4,其中4是最大的公约数。
将分子和分母同时除以4,得到4/6。
接着,我们可以继续约分4/6,最大公约数为2。
将分子和分母同时除以2,得到2/3。
所以,16/24约分为最简形式的结果是2/3。
通过以上练习题,我们可以发现通分和约分是分数运算中非常常用的技巧。
掌握这些技巧对于解决分数运算问题非常重要。
希望通过这些练习题的练习,你能够更加熟练地运用分式通分和约分的方法。