管道运输与订购优化模型(CAI) 数学建模

合集下载

钢管订购和运输优化模型

钢管订购和运输优化模型

钢管运输问题(CUMCM-2000B)
290 S4 S3 S2 690 1200 720 170 520 88 462 S5 S1 20 12 195 3060 1150 600 5 10 10 31 680 201 A8 480 300 A11 70 42 10 220 A12 10 A13 210 62 160 70 30 70 S6 110 420 A14 A15 500 20 30 S7 20
1000km以上每增加1至100km运价增加5万元 公路运输费用为1单位钢管每公里0.1万元(不足整 公里部分按整公里计算) 钢管可由铁路、公路运往铺设地点(不只是运到 点 ,而是管道全线)
问题: (1)请制定一个主管道钢管的订购和运输计 划,使总费用最小(给出总费用)。 (2)请就(1)的模型分析:哪个钢厂钢管 的销价的变化对购运计划和总费用影响最 大,哪个钢厂钢管的产量的上限的变化对 购运计划和总费用的影响最大,并给出相 应的数字结果。 (3)如果要铺设的管道不是一条线,而是一 个树形图,铁路、公路和管道构成网络, 请就这种更一般的情形给出一种解决办法, 并对图二按(1)的要求给出模型和结果。
符号说明:
结点; Aj:主管道与公路的第i个交点,称为结点 结点 Si :第i个钢厂; si :钢厂Si在指定期限内生产钢管的最大数量; pi :由钢厂Si 生产的单位钢管的出厂销价; Xij :从钢厂Si运到主管道结点Aj的钢管数量; Cij :从钢厂Si运一单位钢管到主管道结点Aj的最小费用; Ti1 :从主管道结点Ai向左端铺管道所用钢管的数量; Ti2 :从主管道结点Ai向右端铺管道所用钢管的数量; Ti,j :从主管道结点Ai向Aj方向铺管道所用钢管的数量; H :公路单位运费; Mat(i,j): 结点i到结点j的距离。 钢管的铺设是全线的,而不只是运到点A1,A2,…, A15 。

数学建模案例分析管道运输与订购优化模型(cai)

数学建模案例分析管道运输与订购优化模型(cai)

钢管订购和运输优化模型要铺设一条1521A A A →→→ 的输送天然气的主管道, 如图1所示(见反面).经挑选后可以消费这种主管道钢管的钢厂有127,,,S S S .图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位:km).为方便计,1km 主管道钢管称为1单位钢管.一个钢厂假设承担制造这种钢管,至少需要消费500个单位.钢厂i S 在指定期限内能消费该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表:i1 2 3 4 5 6 7 i s800 800 1000 2000 2000 2000 3000 i p1601551551601551501601单位钢管的铁路运价如下表:里程(km) ≤300 301~350 351~400 401~450 451~500 运价(万元) 2023262932里程(km) 501~600 601~700 701~800 801~900 901~1000运价(万元) 37445055601000km 以上每增加1至100km 运价增加5万元.公路运输费用为1单位钢管每千米万元〔缺乏整千米部分按整千米计算〕. 钢管可由铁路、公路运往铺设地点〔不只是运到点1521,,,A A A ,而是管道全线〕.问题:〔1〕请制定一个主管道钢管的订购和运输方案,使总费用最小〔给出总费用).考虑题:〔2〕请就〔1〕的模型分析:哪个钢厂钢管的销价的变化对购运方案和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运方案和总费用的影响最大,并给出相应的数字结果.〔3〕假设要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,请就这种更一般的情形给出一种解决方法,并对图2按〔1〕的要求给出模型和结果.71一、 根本假设1. 沿铺设的主管道以有公路或者有施工公路. 2. 在主管道上,每千米卸1单位的钢管.3. 公路运输费用为1单位钢管每千米万元〔缺乏整千米部分按整千米计算〕 4. 在计算总费用时,只考虑运输费和购置钢管的费用,而不考虑其他费用. 5. 在计算钢厂的产量对购运方案影响时,只考虑钢厂的产量足够满足需要的情况,即钢厂的产量不受限制.6. 假设钢管在铁路运输路程超过1000km 时,铁路每增加1至100km ,1单位钢管17的运价增加5万元.二、符号说明:i S :第i 个钢厂; 7,,2,1 =i i s :第i 个钢厂的最大产量; 7,,2,1 =ij A :输送管道〔主管道〕上的第j 个点; 15,,2,1 =j i p :第i 个钢厂1单位钢管的销价; 7,,2,1 =iij x :钢厂i S 向点j A 运输的钢管量; 7,,2,1 =i 15,,2,1 =jj t :在点j A 与点1+j A 之间的公路上,运输点j A 向点1+j A 方向铺设的钢管量;14,,3,2,1 =j (01=t )ij a :1单位钢管从钢厂i S 运到结点j A 的最少总费用,即公路运费﹑铁路运费和钢管销价之和; 7,,2,1 =i 15,,2,1 =jj b :与点j A 相连的公路和铁路的相交点; 15,,3,2 =j1.+j j A :相邻点j A 与1+j A 之间的间隔 ; 14,,2,1 =j三、模型的建立与求解问题一:讨论如何调整主管道钢管的订购和运输方案使总费用最小由题意可知,钢管从钢厂i S 到运输结点j A 的费用ij a 包括钢管的销价﹑钢管的铁路运输费用和钢管的公路运输费用.在费用ij a 最小时,对钢管的订购和运输进展分配,可得出本问题的最正确方案.1. 求钢管从钢厂i S 运到运输点j A 的最小费用1〕将图1转换为一系列以单位钢管的运输费用为权的赋权图.由于钢管从钢厂i S 运到运输点j A 要通过铁路和公路运输,而铁路运输费用是分段函数,与全程运输总间隔 有关.又由于钢厂i S 直接与铁路相连,所以可先求出钢厂i S 到铁路与公路相交点j b 的最短途径.如图3图3 铁路网络图根据钢管的铁路运价表,算出钢厂i S 到铁路与公路相交点j b 的最小铁路运输费用,并把费用作为边权赋给从钢厂i S 到j b 的边.再将与j b 相连的公路、运输点i A 及其与之相连的要铺设管道的线路〔也是公路〕添加到图上,根据单位钢管在公路上的运价规定,得出每一段公路的运费,并把此费用作为边权赋给相应的边.以1S 为例得图4.图4 钢管从钢厂1S 运到各运输点j A 的铁路运输与公路运输费用权值图2〕计算单位钢管从1S 到j A 的最少运输费用根据图4,借助图论软件包中求最短路的方法求出单位钢管从1S 到j A 的最少运输费用依次为:170.7,160.3,140.2,98.6,38,20.5,3.1,21.2,64.2,92,96,106,121.2,128,142〔单位:万元〕.加上单位钢管的销售价i p ,得出从钢厂1S 购置单位钢管运输到点j A 的最小费用j a 1依次为:330.3,320.3,300.2,258.6,198,180.5,163.1,181.2,224.2,252,256,266,281.2,288,302〔单位:万元〕.同理,可用同样的方法求出钢厂2S ﹑3S ﹑4S ﹑5S ﹑6S ﹑7S 到点j A 的最小费用,从而得出钢厂到点的最小总费用〔单位:万元〕为:表1 i S 到点j A 最小费用A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A 11 A 12 A 13 A 14 A 15 S 1198 163 252 256 266 288 302 2S266 241 297 301 311 333 347 3S 276 251 237 241 251 273 287 4S316 291 222 211 221 243 257 5S 301 276 212 188 206 228 242 6S306281212 201 195161 1782. 建立模型运输总费用可分为两部分:运输总费用=钢厂到各点的运输费用+铺设费用.运输费用:假设运输点j A 向钢厂i S 订购ij x 单位钢管,那么钢管从钢厂i S 运到运输点j A 所需的费用为ij ij x a .由于钢管运到1A 必须经过2A ,所以可不考虑1A ,那么所有钢管从各钢厂运到各运输点上的总费用为:∑∑==15271j i ijij a x.铺设费用:当钢管从钢厂i S 运到点j A 后,钢管就要向运输点j A 的两边1+j j A A 段和j j A A 1-段运输〔铺设〕管道.设j A 向1+j j A A 段铺设的管道长度为j y ,那么j A 向1+j j A A 段的运输费用为()201)21(1.0+=+++⨯j j j t t y 〔万元〕;由于相邻运输点j A 与1+j A 之间的间隔 为1.+j j A ,那么1+j A 向1+j j A A 段铺设的管道长为j j j t A -+1.,所对应的铺设费用为()()2011.1.jj j j j j t A t A-+-++〔万元〕.所以,主管道上的铺设费用为:()()()∑=++⎪⎪⎭⎫⎝⎛-+-++1411.1.201201j j j j j j j j j t A t A t t总费用为:()()()∑∑∑===++⎪⎪⎭⎫⎝⎛-+-+++=711521411.1.201201i j j j j j j j j j j ij ij t A t A t t a x f又因为一个钢厂假设承担制造钢管任务,至少需要消费500个单位,钢厂i S 在指定期限内最大消费量为i s 个单位,故i j ijs x≤≤∑=152500 或0152=∑=j ij x 因此本问题可建立如下的非线性规划模型:14157.1.112171151522.1(1)()(1)min (2020j 2,3,,15500 0s.t. 0 1,,7,2,,150j j j j j j j j ij ijj j i ij j i ij i ij j j ij j j j t t A t A t f x a x n x s x x i j t A ++======++-+-=++⋅⎧==⎪⎪⎪⎪≤≤=⎨⎪⎪≥==⎪≤≤⎪⎩∑∑∑∑∑∑或3. 模型求解:由于MATLAB 不能直接处理约束条件:i j ijs x≤≤∑=152500或0152=∑=j ij x ,我们可先将此条件改为i j ijs x≤∑=152,得到如下模型:用MATLAB 求解,分析结果后发现购运方案中钢厂7S 的消费量缺乏500单位,下面我们采用不让钢厂7S 消费和要求钢厂7S 的产量不小于500个单位两种方法计算:1〕不让钢厂7S 消费计算结果:=1f 1278632〔万元〕〔此时每个钢厂的产量都满足条件〕. 2〕要求钢厂7S 的产量不小于500个单位计算结果:=2f 1279664 〔万元〕 〔此时每个钢厂的产量都满足条件〕. 比较这两种情况,得最优解为, 121),min(min f f f f ===1278632〔万元〕 详细的购运方案如表2:表2 问题一的订购和调运方案14157.1.112171152.1(1)()(1)min (2020j 2,3,,15 s.t. 0 1,,7,2,,150j j j j j j j j ij ijj j i ij j i ij ij ij j j j t t A t A t f x a x n x s x i j t A ++=====++-+-=++⋅⎧==⎪⎪⎪⎪≤⎨⎪⎪≥==⎪≤≤⎪⎩∑∑∑∑∑。

钢管订购与运输问题一的数学模型与求解

钢管订购与运输问题一的数学模型与求解

钢管订购与运输问题一的数学模型与求解
钢管订购与运输问题是一种组合优化问题,它涉及到钢管的订购和运输,旨在找到最佳的订购和运输方案,以最小的成本获得最大的收益。

这个问题通常可以用数学模型来表示。

设 n 个工地需要订购 m 根钢管,钢管订购和运输费用分别为
c1(订购费用)、c2(运输费用),订购钢管的最早时间 t0 为早订购时间,最迟时间为 t1 为晚订购时间,运输时间不计费用。

则钢管订购与运输问题的数学模型可以表示为:
minimize Σi=1~n c1(t1-t0) + Σj=i+1~n c2(t2-t1)
subject to:
t1≤t0
t2≥t1
t1+t2≤t0+30
x1=1, x2=1, ..., xnm=1
其中,x1、x2、...、xnm 是订购钢管的数量,1 表示订购,0 表示不订购。

通过这个数学模型,我们可以制定出钢管订购与运输问题的求解方法,以找到最佳的订购和运输方案。

在实际问题中,我们通常需要对求解结果进行评估和优化,以便找到更加优秀的方案。

因此,钢管订购与运输问题的数学模型和求解方法只是问题的第一步,实际应用中还需要进行进一步的分析和优化。

管道运输与订购优化模型CAI

管道运输与订购优化模型CAI

管道运输与订购优化模型CAI管道运输与订购优化模型CAI随着全球经济的发展,物流运输如雨后春笋般高速发展,运输方式也越来越多样化。

虽然目前货车和船只仍然是主要的货物运输方式,但管道运输已经成为一种独具优势的运输方式,如油气管道、水利管道等。

相比于其他运输方式,管道运输具有速度快、运输成本低、货物安全等优点。

而CAI(Computer Aided Instruction)作为计算机辅助指导学习的方法,被广泛应用于管道运输和订购优化模型中。

管道运输优势管道运输是指将货物通过管道进行运输,其运输速度快、成本低、安全性高、适合长距离等特点,使其成为许多企业首选运输方式。

将货物通过管道进行运输不需要人工操作,可以减少误差,提高安全性;同时也大大缩短了运输时效。

另外,管道运输的成本相对其它运输方式更低,尤其是在长距离运输时,其节省的运输成本更为明显。

综合来看,管道运输的优点在很大程度上提升了货物的运输效率和安全性,更符合企业资源合理分配以及绿色环保的理念。

管道订购优化模型管道订购是指企业通过订购来安排并管理管道的运输,以提高运输效率和降低成本。

然而,由于管道运输的特殊性质,如品种数目的限制、管道容量的限制等,订购成为了一个很复杂的问题。

针对管道订购中的难点,在实际的管理中需要针对性地采用优化模型对管道订购进行管理。

在采用优化模型进行管道订购时,通常需要做出的决策包括确定运输的货物种类、运输的路径、运输的时间、运输的数量等。

CAI在管道运输中的应用作为一种先进的计算机技术,CAI拥有大量的模型库和计算库,可以快速地进行管道运输中订购和优化模型的计算,属于较为成熟的应用方式。

CAI在服务供应链管理、物流一体化、极速物流等领域都具有广泛的应用。

同时,CAI在管道订购中的应用主要集中在对订购可行性的分析、订购的路径优化和相应的数学模型应用等方面。

相信随着技术的不断进步和优化,CAI在其它的领域也将会得到越来越广泛的应用。

钢管订购和运输优化模型

钢管订购和运输优化模型
1 x(x + 1) ⋅ H 2
x 为非整数时,通过估算可知,铺设管道费用远较订购钢管费用为小,故用上式近似表达铺 设管道费用,对总费用而言,引起的偏差很小。 但当 x 较小时是与实际不符的。这时 x 应看作是连续的。费用为:
1 x2 ⋅H 2
观察图一和图二(图见附录,下略)可知 x 均较大,故可用近似式求解。这样,问题归 结为一个二次规划问题。
感谢您对网站建设一如既往的支持和厚爱
欢迎光临中国数学建模网 ―――
五.问题(1)的模型的建立和求解
1.求从钢厂Si运单位钢管到主管道结点Aj的最小费用 从钢厂Si运单位钢管到主管道结点Aj的费用由两部分组成:公路费用和铁路费用。求最小费 用,即相当于求最短路径。 Dijkstra 给出一种对只含一种权重计算方式的网络求一结点到其它各结点的最短路 径的算法。我们基于其思想,进行加工和改进,得到了对含多种权重计算方式的网络求任意 两点间最小费用的算法。具体步骤如下: 建立由火车站构成的图,确定一源火车站,由 Dijkstra 算法给出源火车站到其它 火车站的最短路径。 ② 改变源火车站,重复1的步骤,可得到任意两个火车站间最短路径。 建立由火车站、主管道结点构成的图(如图一)。用vn表示图的第n个结点,ei,j 表示vi,vj 间的边。任意两点vi,vj:若vi,vj 间有铁路相连(可经过结点),则认为vi,vj 相连接。把两点间的最短路径(由①,②给出)转化为铁路费用,作为ei,j 的权。若vi,vj以 公路相连接且不经过其它结点,则把两点间公路长度转化为公路费用,作为ei,j的权。 ④ 对上图,确定一源结点,由 Dijkstra 算法给出源结点到其它各结点的最短路径。 ⑤ 改变源结点,可求得任意两个结点间最小费用。 算法由程序(见附录三)实现。在求得任一钢厂到每个主管道结点最小费用的同时,并给出对 应的路线。 分析最小费用路径,除去无用结点。 观察最小费用路径,发现主管道结点A2总在任意钢厂Si 到A1最小费用路径上。同样,主管道 结点A5也总在任意钢厂Si 到A4最小费用路径上。因为所求路径表示的是最小费用路径,所以 对于A1和A4这样的点,就可以认为它们是无用的铺设结点。从而A1A2间的管道,全部由A2向 A1铺设;同样A3A4,A4A5间的管道,全部由A3,A5向A4铺设。即:T2,1为常数,等于A2,A1间 的距离;T1,2为常数,等于 0。这样就可简化网络为S1 …S7 与 A2 A3 A5…A15 这 13 个铺设点间 的最小费用。 把原问题归结为最优化问题

全国数模竞赛优秀论文钢管订购与运输的优化模型(浙江师范大学 胡国英 柯 懿 张惠锋) 精品

全国数模竞赛优秀论文钢管订购与运输的优化模型(浙江师范大学 胡国英 柯 懿 张惠锋) 精品

(1)如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,请就这种更一般的情形给出一种解决办法,并对图二(见附录一)按(1)的要求给出模型和结果。

(二)问题的分析本题要铺设一条A1~A15的天然气管道,使得总费用最小。

可以这样考虑问题:我们可以先把钢厂生产的钢管运到各个站点Ai(i≠1)再往两边运送,再计算出总的费用使之最小。

事实上我们并不知道每个站点上要运去多少货,所以设每个钢厂运往站点的数量为一变量及站点运往两边的钢管量也为变量,再通过图中已知信息相应的列出一些恒等式和约束条件。

为了使问题便于求解,我们把铁路费用及销价相应转换为公路费用(其简化的图示见附录一的图三),又因为铁路运费为一分段函数,故要对一些点之间加线使运费相当。

转换完毕后再利用赋权图的性质求出厂到站点的最短路。

(其具体数据见附录三)(三)模型的假设(1)运钢管过程中若用火车则可直接把钢管运到公路与铁路交接处,即下了火车不上火车。

(2)假设运输单位可提供足够的火车与汽车。

(3)费用计算时按照钢管数量来算,不考虑其他计费方法及因素。

(4)运费中不足整公里部分按整公里计。

(5)假设向每个钢管厂都订购钢管。

(6)设1Km主管道钢管为1单位钢管。

(7)路中铺设的钢管只允许由其相邻站点提供。

(8)不计各个环节中的装卸费用。

(四)符号说明Si: 表示生产钢管的钢厂(i=1,2…7)。

Ai:表示暂存钢管的站点。

(i=1,2…15)X1,+kk 与X1,-kk:分别表示Ak运往A1+k方向的钢管的数量和Ak运往A1-k方向的钢管的数量。

(其中K=2,3…15 X21=104, X16,15=0)Bk :表示存放在Ak处的钢管数量(k=2,3…15).Yij : 表示从Si->Aj所运的钢管数量。

F(Xij ,Yij): 表示总的费用。

(单位:万元)△Pi :表示钢管销价的变化量。

(五)模型的建立与求解题Ⅰ:为了使问题简化,我们可采取如下原则:(1)总费用公路化原则:就是将铁路运费及钢管销价恰当的转换为公路运费。

钢管的订购和运输问题数学建模论文

钢管的订购和运输问题数学建模论文

摘要本文针对钢管订购和运输的一般特点和要求,建立了两个遵循题目要求的非线性规划模型。

在给定钢管需求量,运输方式及价格,厂家生产量上下线,运输路线图等条件下,非线性规划模型和图论的最短路算法,从而得到线最优的钢管订购运输方案,是成本达到最小。

对于问题一,我们选取了钢管订购和运输的总费用最小作为模型的目标函数,用floyd算法分别求出铁路最短路矩阵和公路最短路矩阵,利用费用转化公式,得到两个矩阵的最小费用,将两者综合求得总体最小运输费用矩阵C(i,j)。

然后用lingo求解得到最优的钢管订购运输方案。

对于问题二,我们根据要求改变钢厂钢管的销价和钢厂钢管的产量上限,然后用lingo求解,观察得到的图表,对改变以上两个条件后总运费及方案受到的影响进行分析。

考虑到问题三与问题一很相似,不同之处在于问题三中的钢管铺设路线变成了树形,因此我们仍然采用问题一的建模思路,对于特殊之处进行修改。

采用图论中的floyd算法,求得总体最小运输费用矩阵C(i,j)。

然后用lingo求解得到最优的钢管订购运输方案。

对问题一模型的求解得到最优钢管订购运输方案为:总费用=1278632万元每家厂家的生产量:对问题二求解得:厂家s5和厂家s6的单位钢管销售价发生变化时,对方案中总运费的影响最大。

厂家s1的钢管总产量上限变化对总费用影响最大。

对问题三的模型求解得到最优钢管订购运输方案为:总费用=1403233万元。

每家厂家的生产量:关键词: floyd算法非线性规划模型总体最小运输费用矩阵一、问题重述要铺设一条输送天然气的主管道。

经筛选后可以生产这种主管道钢管的钢厂有七家。

图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。

为方便计,1km主管道钢管称为1单位钢管。

一个钢厂如果承担制造这种钢管,至少需要生产500个单位。

数学建模:钢管订购和运输

数学建模:钢管订购和运输

钢管订购和运输摘要:本文运用线性规划理论建立了钢管订购和运输计划问题的数学模型。

在求解时分别利用了图论中求最短路长的算法、整数规划中的0—1规划的解法及运输问题的表上作业法。

关键词:线性规划,运输问题一、问题重述有一条从A1→A2→ →A15的天然气管道需要铺设,如图1。

经筛选,只有7家厂商获得认可,分别记为S1,S2, ,S7。

图中粗线表示铁路,单细线表示公路,双细线表示管道(假设管道沿线有公路或建有施工公路)。

圆圈表示公路,每段铁路公路和管道旁的数字表示管道的里程(单位km),记1km为一个单位。

一个钢厂如果承担这种钢管的生产,则最少需要500个单位。

钢厂Si在制定期内最多能生产钢管的数量记为si个单位,钢管出场售价为每单位Pi万元,如下表。

一单位钢管的铁路运价如下表:1000km每增加100km运费增加5万元公路运输费为每公里0.1万元(不足整公里部分按1公里计算)。

1:制定一个主管道的订购和运输计划,市总费用最小(给出总费用)。

2:就问题1的模型进行分析,那个钢管厂的钢管销售价格变化对够运计划和总费用影响最大;哪个钢管厂钢管的产量上限的变化对够运计划和总费用的影响最大,并给出相应的数字结果。

3:如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,对这种更一般的情形给出一种解决办法,并对图2按问题1的要求给出模型和结果。

二、基本假设假设铺设钢管可从Aj向前后两个方向铺设或向同一方向铺设和不考虑火车运载与汽车运载的装卸费。

三、符号说明1 第Si 个钢管厂承担制造钢管的任务。

0 - 1变量Ri, Ri=0 第Si 个钢管厂不承担制造钢管的任务。

ai 表示向第Si 个钢管厂订购的钢管的数量。

xij 表示从钢管厂Si 沿着费用最小的路线运输到火车站Aj 点的钢管的数量。

bj 表示从各个钢管厂运输到Aj 点的钢管的总数。

cij 表示从钢管厂Si 运输单位钢管到Aj 的最小费用。

关于钢管订购和运输的优化模型

关于钢管订购和运输的优化模型

附件2《运筹学》最短路、最小费用最大流经典作品关于钢管订购和运输的优化模型队员:陈显健陈瑜斌陈振松2007年6月5日摘 要: 本文首先运用图论知识中的最短路算法求出i S 到j A 的最优路径。

然后将模型转化为最小费用最大流的网络优化问题,从而求出近似最优解。

在分析出求解该网络优化模型的解法后,运用Lingo 软件包求出了该问题的近似最优解。

对问题一而言,求出了较优的订购和运输计划(见表三),其最小费用为1291630万元。

对于第二个问题而言,可得出钢厂6S 的钢管销价的变化对购运计划和总费用的影响最大;钢管厂1S 的钢管产量的上限的变化对总费用的影响最大,钢管厂3S 的产量上限的变化对购运计划的影响最大。

对问题三,给出了一般解,求出了较优的订购和运输计划(见表四),其最小费用为1396099万元,最后对模型进行了综合评价并提出了改进方向。

关键词:网络流 最小费用最大流一、 问题重述要铺设一条1521A A A →→→ 的输送天然气的主管道,如图一所示,经筛选后可以生产这种主管道的钢厂有721,,,S S S 。

图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km )。

为了方便,1km 主管道称为1单位钢管。

一个钢厂如果承担制造这种钢管,至少需要生产500个单位。

钢厂i S 在指定期限内能生产该钢管的最大生产数量为i s 个单位,钢厂出厂销价为i p 万元,如下表:表一1单位钢管的铁路运价如下表:(表二)里程(km ) 501~600 601~700 701~800 801~900 901~1000 运价(万元) 37445055601000km 以上每增加1至100km 运价增加5万元。

公路运输费用为1单位管道每公里0.1万元(不足整公里的按整公里计算)。

管道可由铁路、公路运往铺设地点(不只是运到点1521A A A →→→ ,而是管道全线)。

钢管订购和运输的数学模型

钢管订购和运输的数学模型

1钢管订购和运输的数学模型摘要: 本文先对钢管订购和运输问题做了深入的分析,通过对问题的简化和等价转换,将问题归结为一非线性规划模型,利用软件LINGO 和LINDO 对问题1和3都作出最优解(分别为:127.966亿元与140.5170 亿元),在解1时给出简化模型和算法(解为:130.057亿元)。

在解问题3时,充分考虑了网络的特性,简化了算法。

由于本题是铁路,公路混合网,本文提出等价转换方法将之变为纯公路网,运用固有最段路径算法简化了计算过程.1 问题的提出计划铺设一条输送天然气的主管道,已知有五个生产主管道钢管的钢厂和铁路,公路混合的交通运输网。

试根据钢厂的位置距离销价生产能力以及运输费用等情况制定钢管订购和运输的最佳方案,使总费用最少。

已知运输网(略)及以下数据:(注:为方便计,1km 主管道钢管称为1单位钢管)钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表:1单位钢管的铁路运价如下表:公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算)。

2 问题假设H1:运输通路畅通无阻,即任一厂的钢管可到达网络上任一点。

H2:运输费用只与里程和所经过的线路有关,不考虑在铁路和公路之间转换时所增加的额外费用。

H3:总费用只包括运输费和所用钢管的总价格。

H4:钢管必须运到管道全线,设堆放点之间最小距离为1km。

H5:公路运输时不考虑空车来回开的费用3符号说明A i 节点iB i 铁路公路交点C ji厂j到节点i的单位费用(包括销价)S j厂j2*r i运到i点的钢量r i - w i ,r i+w i , r1i,r2i节点i向两侧铺运的距离,r3i为往第三方铺运的距离x ij厂j向i点供的钢量D 问题1中的管道总长d j j厂的销价v i 节点A i与节点A i+1之间的距离4问题分析4.1 问题1的分析1.将运输费用分成两部分:①在管道通路上的运费f1,简称铺运费,这种运输方式称铺运。

管道订购与运输问题-2000年全国数学建模竞赛B题优秀论文

管道订购与运输问题-2000年全国数学建模竞赛B题优秀论文

管道订购与运输问题1 问题重述2 基本假设(1)只考虑订购费用和运输费用,不考虑装卸等其它费用. (2)钢管单价与订购量、订购次数、订购日期无关.(3)订购汁划是指对每个厂商的定货数量;运输方案是指具有如下属性的一批记录:管道区间,供应厂商,具体运输路线.(4)将每一单位的管道所在地看成一个需求点,向一单位管道的所在地运输钢管即为向一个点运输钢管.3 符号说明M :钢厂总数. n :单位管道总数.:i S 第i 个钢厂 :i S 第i 个钢厂的产量上限。

:i p 第i 个钢厂单位钢管的销售价 i A 管道线上第i 个站点。

i d 管道线上第i 个单位管道的位置。

F :总费用。

:ij C 从钢厂(1,2,,)i S i m =到点(1,2,,)j d j n =的最低单位费用。

4 问题的简化求 S AP 矩阵的基本思路是图的最短路算法 . 由于铁路的运输费用与线路的长度不是线性关系 ,必须对铁路网做一些预处理才能套用图的标准最短路算法 . 下面叙述求 S AP 矩阵的过程:1.利用图的标准最短路算法 ,从铁路网络得出图中任两个点之间的最短路径表 T (如果两个点之间不连通 ,认为它们之间的最短路长度为+ ∞ ) .2.利用题中的铁路运价表将 T 中的每个元素 (即最短距离 )转化为运输费用 ,将运输费用表记为 C.3.将公路的长度换算为运输费用 ,由公路路程图 (包括要沿线铺设管道的公路 )得出公路费用图 G,若 i, j 不连通 ,则令 Gij = + ∞ .4.对于任一组 ( i , j)∈ { 1,… n }× { 1,… m } 如果 Cij <+ ∞ ,且小于 Gij ,那么就在公路费用图中加一条边. 即令 Gij = min{Cij , Gij } .5.利用图的标准最短路算法 ,求公路费用图中任一个 S 点到任一个 A 点的最小费用路径 ,得出 S AP 矩阵. 如表 1所示:SAP 矩阵A123 4 5 6 7 8 9 10 11 12 13 14 15 S1 170716031402986 380 205 31 212 642 920 960 1060 1212 1280 14202 215720531902 1716 1110 955 860 712 1142 1420 1460 1560 1712 1780 19203 230722032002 1816 1210 1055 960 862 482 820 860 960 1112 1180 13204 260725032352 2166 1560 1405 1310 1162 842 620 510 610 762 830 9705 255724532252 2066 1460 1305 1210 1112 792 570 330 510 712 730 8706 265725532352 2166 1560 1405 1310 1212 842 620 510 450 262 110 2807 275726532452 2266 1660 1505 1410 1312 992 760 660 560 382 260 205问题分析运输费用等价转换法则:按单位运费相等原则将任意两点间的最短铁路线转换为公路 线.对于铁路线上的任意两点,i j V V ,用F1oyd 算法找出两点间最短铁路路线的长度ij L 查铁路运价表求得ij L ,对应的铁路单位运费ij f ;又设与该段铁路等费用的公路长度为ij l ,则:0.1ij ij f l =⨯由此,我们就在,i j V V 之间用一条等价的公路线来代替,i j V V 间的最短铁路线.如果,i j V V 之间原来就有公路,就选择新旧公路中较短的一条.这样,我们就把铁路运输网络转换成了公路运输网络.销价等价转换法则:按单位费用相等将任意钢厂的单位销价转换为公路单位运价.对于钢厂S i 的销售单价P i ,我们可以虚设一条公路线,连接钢厂S i 及另一虚拟钢厂'i s ,其长度为i l ,并且满足0.1i i l p =⨯;从而将钢厂的销售单价转换成公路运输单价,而新钢厂'i s 的销售价为0.将铁路和销价转换为公路的过程可以由计算机编程实现. 通过上述的分析,我们可以将原问题化为一个相对简单的产量未定的运输问题,利用115A A 到之间的管道距离和钢厂和站点之间的公路距离建立一个产量未定的运输问题的模型.但是由于1215,A A A ,并不能代表所有的实际需求点(实际需求点是n 个单位管道),因此,我们可以用F1oyd 算法进一步算出7个钢厂到所有实际的n 个需求点(对于问题一,n =5171;对于问题三,n =5903)的最短路径,并由此得出一个具有7个供应点、n 个需求点的产址未定的运输模型.6 模型的建立产量未定的运输模型根据假设4,我们可以将每一单位的管道看成一个需求点,向一单位管道的所在地运输钢管即为向一个点运输钢管.对每个点,我们可以根据该点的位置和最短等价公路距离,求出各钢厂与该点之间最小单位运输费用ij C (销价已经归人运输费用之中了).设总共有m 个供应点(钢厂),n 个需求点,我们就可以得到一个产量未定的运输模型:有m 个供应点、n 个需求点,每个供应点的供应量{0}{500,}i i u s ∈;每个需求点需要1单位,运输单价矩阵为C ,求使得总运输费用最小的运输方案.其数学规划模型: 11minmnij ij i j F C x ===∑∑11{0}{500,}1,2,,..11,2,01nij i j mij i ij x S i ms tx j n x ==⎧∈=⎪⎪⎪==⎨⎪⎪=⎪⎪⎩∑∑或其中: 1112112n m m mn C C C C CC C ⎛⎫⎪=⎪ ⎪⎝⎭为单位费用矩阵 1112112n m m mn x x x X x x x⎛⎫⎪=⎪ ⎪⎝⎭为决策矩阵,也为0-1矩阵 代码如下7 模型的求解对于本题,上述0-1规划规模宏大,现有的一些算法不能胜任,我们必须具体问题具体分析,结合本题实际情况,寻找行之有效的算法.(1)初始方案的改进的最小元素法和改进的伏格尔法 *改进的最小元素法改进的最小元素法又称为贪婪法或瞎子爬山法,它的宗旨是每一步都取当前的最优值算法步骤为,对费用矩阵C 作n 次下列循环:①C 中找一个最小值ij C ; ②令1;ij x =③C 的第j 的所有数据改为+∞;④如果1nij i j x s ==∑,第i 个供应点的供应量已达上限,将C 的第i 行数据全改为+∞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢管订购和运输优化模型要铺设一条1521A A A →→→ 的输送天然气的主管道, 如图一所示(见反面)。

经筛选后可以生产这种主管道钢管的钢厂有721,,S S S 。

图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。

为方便计,1km 主管道钢管称为1单位钢管。

一个钢厂如果承担制造这种钢管,至少需要生产500个单位。

钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表:1单位钢管的铁路运价如下表:1000km 以上每增加1至100km 运价增加5万元。

公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算)。

钢管可由铁路、公路运往铺设地点(不只是运到点1521,,,A A A ,而是管道全线)。

问题:(1)请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用)。

思考题:(2)请就(1)的模型分析:哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果。

(3)如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,请就这种更一般的情形给出一种解决办法,并对图二按(1)的要求给出模型和结果。

7一. 基本假设:1. 沿铺设的主管道以有公路或者有施工公路。

2. 在主管道上,每公里卸1单位的钢管。

3. 公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算) 4. 在计算总费用时,只考虑运输费和购买钢管的费用,而不考虑其他费用。

5. 在计算钢厂的产量对购运计划影响时,只考虑钢厂的产量足够满足需要的情况,即钢厂的产量不受限制。

6. 假设钢管在铁路运输路程超过1000km 时,铁路每增加1至100km ,1单位钢管7的运价增加5万元。

二.符号说明:i S :第i 个钢厂; 7,,2,1 =i i s :第i 个钢厂的最大产量; 7,,2,1 =ij A :输送管道(主管道)上的第j 个点; 15,,2,1 =j i p :第i 个钢厂1单位钢管的销价; 7,,2,1 =iij x :钢厂i S 向点j A 运输的钢管量; 7,,2,1 =i 15,,2,1 =jj t :在点j A 与点1+j A 之间的公路上,运输点j A 向点1+j A 方向铺设的钢管量;14,,3,2,1 =j (01=t )ij a :1单位钢管从钢厂i S 运到结点j A 的最少总费用,即公路运费﹑铁路运费和钢管销价之和; 7,,2,1 =i 15,,2,1 =jj b :与点j A 相连的公路和铁路的相交点; 15,,3,2 =j1.+j j A :相邻点j A 与1+j A 之间的距离; 14,,2,1 =j三.模型的建立与求解问题一:讨论如何调整主管道钢管的订购和运输方案使总费用最小由题意可知,钢管从钢厂i S 到运输结点j A 的费用ij a 包括钢管的销价﹑钢管的铁路运输费用和钢管的公路运输费用。

在费用ij a 最小时,对钢管的订购和运输进行分配,可得出本问题的最佳方案。

1、 求钢管从钢厂i S 运到运输点j A 的最小费用1)将图一转换为一系列以单位钢管的运输费用为权的赋权图。

由于钢管从钢厂i S 运到运输点j A 要通过铁路和公路运输,而铁路运输费用是分段函数,与全程运输总距离有关。

又由于钢厂i S 直接与铁路相连,所以可先求出钢厂i S 到铁路与公路相交点j b 的最短路径。

如图三图三 铁路网络图依据钢管的铁路运价表,算出钢厂i S 到铁路与公路相交点j b 的最小铁路运输费用,并把费用作为边权赋给从钢厂i S 到j b 的边。

再将与j b 相连的公路、运输点i A 及其与之相连的要铺设管道的线路(也是公路)添加到图上,根据单位钢管在公路上的运价规定,得出每一段公路的运费,并把此费用作为边权赋给相应的边。

以1S 为例得图四图四 钢管从钢厂1S 运到各运输点j A 的铁路运输与公路运输费用权值图2)计算单位钢管从1S 到j A 的最少运输费用根据图四,借助图论软件包中求最短路的方法求出单位钢管从1S 到j A 的最少运输费用依次为:170.7,160.3,140.2,98.6,38,20.5,3.1,21.2,64.2,92,96,106,121.2,128,142(单位:万元)。

加上单位钢管的销售价i p ,得出从钢厂1S 购买单位钢管运输到点j A 的最小费用j a 1依次为:330.3,320.3,300.2,258.6,198,180.5,163.1,181.2,224.2,252,256,266,281.2,288,302(单位:万元)。

同理,可用同样的方法求出钢厂2S ﹑3S ﹑4S ﹑5S ﹑6S ﹑7S 到点j A 的最小费用,从而得出钢厂到点的最小总费用(单位:万元)为:表一 i S 到点j A 最小费用a2a3a4a5a6a7a8a9a10 a11 a12a13a14 a15s1 320.3 300.2 258.6 198 180.5 163 181.2 224.2 252 256 266 281.2 288 302 s2 360.3 345.2 326.6 266 250.5 241 226.2 269.2 297 301 311 326.2 333 347 s3 375.3 355.2 336.6 276 260.5 251 241.2 203.2 237 241 251 266.2 273 287 s4 410.3 395.2 376.6 316 300.5 291 276.2 244.2 222 211 221 236.2 243 257 s5 400.3 380.2 361.6 301 285.5 276 266.2 234.2 212 188 206 226.2 228 242 s6 405.3 385.2 366.6 306 290.5 281 271.2 234.2 212 201 195 176.2 161 178 s7 425.3 405.2 386.6 326 310.5 301 291.2 259.2 237 226 216 198.2 186 1622、建立模型运输总费用可分为两部分:运输总费用=钢厂到各点的运输费用+铺设费用。

运输费用:若运输点j A 向钢厂i S 订购ij x 单位钢管,则钢管从钢厂i S 运到运输点j A 所需的费用为ij ij x a 。

由于钢管运到1A 必须经过2A ,所以可不考虑1A ,那么所有钢管从各钢厂运到各运输点上的总费用为:∑∑==15271j i ijij a x。

铺设费用:当钢管从钢厂i S 运到点j A 后,钢管就要向运输点j A 的两边1+j j A A 段和j j A A 1-段运输(铺设)管道。

设j A 向1+j j A A 段铺设的管道长度为j y ,则j A 向1+j j A A 段的运输费用为()201)21(1.0+=+++⨯j j j t t y (万元);由于相邻运输点j A 与1+j A 之间的距离为1.+j j A ,那么1+j A 向1+j j A A 段铺设的管道长为j j j t A -+1.,所对应的铺设费用为()()2011.1.jj j j j j t A t A-+-++(万元)。

所以,主管道上的铺设费用为:()()()∑=++⎪⎪⎭⎫⎝⎛-+-++1411.1.201201j j j j j j j j j t A t A t t总费用为:()()()∑∑∑===++⎪⎪⎭⎫⎝⎛-+-+++=711521411.1.201201i j j j j j j j j j j ij ij t A t A t t a x f又因为一个钢厂如果承担制造钢管任务,至少需要生产500个单位,钢厂i S 在指定期限内最大生产量为i s 个单位,故i j ijs x≤≤∑=152500 或0152=∑=j ij x 因此本问题可建立如下的非线性规划模型:3、模型求解:015,,2,7,,1 00 500,152,3,j ..20)1)((20)1((min 1.15215271152711411.1.⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤≤==≥=≤≤==⋅+-+-++=+======++∑∑∑∑∑∑j j j ij j ij j i ij i j ij j i ijijj j j j j j j j j A t j i x x s x n x t s a xt A t A t t f 或由于MATLAB 不能直接处理约束条件:i j ijs x≤≤∑=152500或0152=∑=j ij x ,我们可先将此条件改为i j ijs x≤∑=152,得到如下模型:用MATLAB 求解,分析结果后发现购运方案中钢厂7S 的生产量不足500单位,下面我们采用不让钢厂7S 生产和要求钢厂7S 的产量不小于500个单位两种方法计算:1)不让钢厂7S 生产计算结果:=1f 1278632(万元)(此时每个钢厂的产量都满足条件)。

2)要求钢厂7S 的产量不小于500个单位计算结果:=2f 1279664 (万元) (此时每个钢厂的产量都满足条件)。

比较这两种情况,得最优解为, 121),min(min f f f f ===1278632(万元) 具体的购运计划如表二:表二 问题一的订购和调运方案015,,2,7,,1 0 ,152,3,j ..20)1)((20)1((min 1.15271152711411.1.⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤≤==≥≤==⋅+-+-++=+=====++∑∑∑∑∑j j j ij j i ij i j ij j i ijijj j j j j j j j j A t j i x s x n x t s a xt A t A t t f。

相关文档
最新文档