天线增益及半功率角的定义

合集下载

天线的半功率角

天线的半功率角

天线的半功率角天线的半功率角是指天线辐射功率的一半所对应的角度。

在无线通信系统中,天线的半功率角是一个重要的指标,它反映了天线辐射能力的方向性和覆盖范围。

本文将从天线半功率角的定义、影响因素和应用等方面进行阐述。

一、天线半功率角的定义天线的辐射功率是指天线向某一方向发送或接收信号的能力。

而天线的半功率角则是指天线辐射功率的一半所对应的角度范围。

也就是说,在半功率角范围内,天线的辐射功率达到全功率的一半。

二、影响天线半功率角的因素天线半功率角的大小受多种因素的影响,包括天线的类型、频率、形状、尺寸等。

以下是几个主要因素的介绍:1. 天线类型:不同类型的天线具有不同的辐射特性,因此其半功率角也会不同。

例如,定向天线(如方向性天线)通常具有较小的半功率角,而全向天线(如天线柱)通常具有较大的半功率角。

2. 频率:天线的半功率角与频率有关。

一般来说,随着频率的增加,天线的半功率角会变小。

这是因为高频信号具有较短的波长,需要更加精确的辐射方向性才能达到较好的通信效果。

3. 形状和尺寸:天线的形状和尺寸也会影响其半功率角。

较大的天线通常具有较小的半功率角,而较小的天线则相反。

此外,天线的形状(如天线的开口角度)也会对半功率角产生影响。

三、天线半功率角的应用天线半功率角在无线通信系统中具有重要的应用价值,主要体现在以下几个方面:1. 设计和部署无线网络:通过合理选择天线的半功率角,可以优化无线网络的覆盖范围和方向性。

比如,在建设城市高楼密集区域的无线网络时,可以选择较小的半功率角的定向天线,以提高信号的覆盖距离和质量。

2. 信号测量和调试:在无线通信系统的维护和调试过程中,对天线的半功率角进行测量可以帮助判断天线的辐射性能是否符合要求,并及时进行调整和优化。

3. 通信系统容量规划:通过合理规划天线的半功率角,可以避免不必要的信号重叠和干扰,提高通信系统的容量和效率。

四、总结天线的半功率角是一个重要的指标,它反映了天线的辐射能力的方向性和覆盖范围。

天线的主要参数

天线的主要参数

天线的主要参数一、引言天线是无线通信系统中至关重要的组成部分,它负责将无线信号转换成电磁波并进行传输。

天线的性能直接影响到通信系统的覆盖范围、传输质量和容量等方面。

本文将探讨天线的主要参数,包括增益、方向性、频率响应、带宽、极化和效率等。

二、增益增益是衡量天线辐射功率相对于理想点源天线的能力的参数。

增益越高,天线辐射的功率越大,覆盖范围也就越广。

增益的单位通常用dBi(dB相对于理想点源天线)来表示。

天线的增益受到天线结构、天线尺寸和工作频率等因素的影响。

三、方向性方向性是指天线在空间中辐射或接收电磁波的能力。

天线的方向性可以分为全向性和定向性两种。

全向性天线可以在水平方向上均匀地辐射或接收信号,适用于需要覆盖全方向的应用场景。

定向性天线则可以将信号主要辐射或接收到某个特定方向,适用于需要特定方向性的应用场景。

四、频率响应频率响应是指天线在不同频率下的辐射或接收能力。

天线的频率响应通常以辐射图或接收图的形式呈现,用于描述天线在不同频段下的辐射或接收特性。

频率响应对于天线的设计和使用非常重要,不同频率下的天线性能差异可能导致通信系统的不稳定性或性能下降。

五、带宽带宽是指天线能够工作的频率范围。

天线的带宽决定了它在不同频段下的适用性。

带宽越宽,天线在不同频段下的性能越稳定。

带宽可以通过调整天线结构和参数来进行优化,以满足不同频段的需求。

六、极化极化是指天线辐射或接收电磁波时电场或磁场的振动方向。

常见的极化方式包括水平极化、垂直极化和圆极化等。

天线的极化方式需要与通信系统中其他设备的极化方式相匹配,以确保信号的传输效果。

七、效率效率是指天线将输入的电能转换成辐射电磁波的能力。

天线的效率越高,输入的电能转换成辐射电磁波的比例就越大,系统的传输效率也就越高。

天线的效率受到天线结构、材料和工作频率等因素的影响。

八、总结天线的主要参数包括增益、方向性、频率响应、带宽、极化和效率等。

这些参数直接影响到天线的性能和应用范围。

功率、增益及手机天线的介绍

功率、增益及手机天线的介绍

功率及增益‎定义1、功率单位m‎W和dBm‎的换算无线电发射‎机输出的射‎频信号,通过馈线(电缆)输送到天线‎,由天线以电‎磁波形式辐‎射出去。

电磁波到达‎接收地点后‎,由天线接收‎下来(仅仅接收很‎小很小一部‎分功率),并通过馈线‎送到无线电‎接收机。

因此在无线‎网络的工程‎中,计算发射装‎置的发射功‎率与天线的‎辐射能力非‎常重要。

Tx是发射‎( Trans‎m its )的简称。

无线电波的‎发射功率是‎指在给定频‎段范围内的‎能量,通常有两种‎衡量或测量‎标准:1、功率( W ): 相对 1 瓦( Watts‎)的线性水准‎。

例如,WiFi 无线网卡的‎发射功率通‎常为 0.036W ,或者说36‎m W 。

2、增益( dBm ):相对 1 毫瓦( milli‎w att )的比例水准‎。

例如 WiFi 无线网卡的‎发射增益为 15.56dBm‎。

两种表达方‎式可以互相‎转换:1、dBm = 10 x log[ 功率 mW]2、mW = 10[ 增益 dBm / 10 dBm]在无线系统‎中,天线被用来‎把电流波转‎换成电磁波‎,在转换过程‎中还可以对‎发射和接收‎的信号进行‎“放大”,这种能量放‎大的度量成‎为“增益(Gain)”。

天线增益的‎度量单位为‎“dBi ”。

由于无线系‎统中的电磁‎波能量是由‎发射设备的‎发射能量和‎天线的放大‎叠加作用产‎生,因此度量发‎射能量最好‎同一度量-增益( dB ),例如,发射设备的‎功率为 100mW‎,或20dB‎m;天线的增益‎为 10dBi‎,则:发射总能量‎=发射功率( dBm )+天线增益( dBi )= 20dBm‎+ 10dBi‎= 30dBm‎或者: = 1000m‎W= 1W在“小功率”系统中(例如无线局‎域网络设备‎)每个 dB 都非常重要‎,特别要记住‎“3 dB 法则”。

每增加或降‎低 3 dB ,意味着增加‎一倍或降低‎一半的功率‎:-3 dB = 1/2 功率-6 dB = 1/4 功率+3 dB = 2x 功率+6 dB = 4x 功率例如, 100mW‎的无线发射‎功率为 20dBm‎,而 50mW 的无线发射‎功率为 17dBm‎,而200m‎W的发射功率‎为 23dBm‎。

天线增益是什么意思?

天线增益是什么意思?

天线增益是什么意思?展开全文文章导读:天线最大增益系数平时也简称天线最大增益或天线增益。

用分贝数表示。

可以用数学推证,天线最大增益系数等于天线方向性系数和天线效率的乘积。

平时也简称天线最大增益或天线增益。

指在最大场强方向上某点产生相等电场强度的条件下,标准天线(无方向)的总输入功率对定向天线总输入功率的比值,称该天线的最大增益系数。

它是比天线方向性系数更全面的反映天线对总的射频功率的有效利用程度。

并用分贝数表示。

可以用数学推证,天线最大增益系数等于天线方向性系数和天线效率的乘积。

它是指天线辐射出去的功率(即有效地转换电磁波部分的功率)和输入到天线的有功功率之比。

是恒小于1的数值。

电磁波在空间传播时,若电场矢量的方向保持固定或按一定规律旋转,这种电磁波便叫极化波,又称天线极化波,或偏振波。

通常可分为平面极化(包括水平极化和垂直极化)、圆极化和椭圆极化。

极化电磁波的电场方向称为极化方向。

极化电磁波的极化方向与传播方向所构成的平面称为极化面。

无线电波的极化,常以大地作为标准面。

凡是极化面与大地法线面(垂直面)平行的极化波称为垂直极化波。

其电场方向与大地垂直。

凡是极化面与大地法线面垂直的极化波称为水平极化波。

其电场方向与大地相平行。

如果电磁波的极化方向保持在固定的方向上,称为平面极化,也称线极化。

在电场平行于大地的分量(水平分量)和垂直于大地表面的分量,其空间振幅具有任意的相对大小,可以得到平面极化。

垂直极化和水平极化都是平面极化的特例。

当无线电波的极化面与大地法线面之间的夹角从0~360°周期的变化,即电场大小不变,方向随时间变化,电场矢量末端的轨迹在垂直于传播方向的平面上投影是一个圆时,称为圆极化。

在电场的水平分量和垂直分量振幅相等,相位相差90°或270°时,可以得到圆极化。

圆极化,若极化面随时间旋转并与电磁波传播方向成右螺旋关系,称右圆极化;反之,若成左螺旋关系,称左圆极化。

天线增益效率

天线增益效率

天线增益/效率
来自EEWiki.
天线增益是指天线将发射功率往某一指定方向发射的能力。

天线增益定义为:某一指定方向,在场强或辐照度不变且距离相同的情况下,此时用无方向性天线发射时天线所需的输入功率Pi0,与采用定向天线时所需的输入功率Pi之比,常用“G”表示。

即:G=Ρί 0/Ρί。

该比值的单位是分贝。

无特指的情况下,天线增益指最大辐射方向。

特定的极化也可以使用天线增益这个参数。

根据天线增益的定义,天线增益可以理解为:为了使在观察点获得相等的电磁波功率密度,具有方向性天线所需的发射功率要比无方向性天线所需的发射功率小G 倍。

天线本身是一种无源器件,就其对传输而言存在一定的损耗。

这种损耗通常用天线的效率来衡量。

所谓天线效率就是指天线的辐射功率Pf与输入功率Pi之比。

常用“η”来表示,即:η=Ρƒ/Ρί。

天线的五个基本参数

天线的五个基本参数

天线的五个基本参数
1 关于天线的五个基本参数
天线作为无线通讯的核心技术受到各路观众的广泛关注,五个主
要的 parametric 参数是天线特性的重要参考指标,包括增益、驻波比、半功率角、垂直波束宽度和水平波束宽度。

1 增益
增益(也被称为功率增益)是衡量天线收发能力的重要性能指标,
多用来衡量天线的信号增益真实性,一般越大表示接收和发射信号能
力越强。

一个常见单位是dBi,它是相对于理想天线的增益。

2 驻波比
驻波比是衡量天线稳定性的重要指标,表示通过某一频率的有功
功率与负载的比例,驻波比越高,表示天线稳定性越强。

3 半功率角
半功率角是衡量天线波束宽度的重要指标,是指在半功率容量点
(3dB点)处,天线发出和接收能量线与光轴之间夹角,这个角度越小,表示天线空间分布越集中,优度越高。

4 垂直波束宽度
垂直波束宽度是指一条水平线上,从天线输出的重要能量路径两
头向垂直方向投射的角度。

它受到天线结构的影响很大,我们一般认
为越窄的波束宽度,表示发射的范围越窄,表示天线的利用效率越高。

5 水平波束宽度
水平波束宽度是指一条垂直线上,从天线输出的重要能量路径两头向水平方向投射的角度,是衡量天线射向性的重要指标。

天线的水平波束宽度越窄,表示波束能量线对水平方向的散射越少,传输效率越高。

总之,增益、驻波比、半功率角、垂直波束宽度和水平波束宽度都是专业从事无线通信设计必备的参数,这五个参数从不同的角度反映了天线的性能,所有的参数都应该按照项目特点来进行综合评估。

天线波束宽度与增益 公式

天线波束宽度与增益 公式

天线波束宽度与增益公式天线波束宽度与增益公式天线波束宽度和增益是无线通信中重要的参数,它们与天线的构造和性能密切相关。

本文将介绍天线波束宽度和增益的概念,并给出相应的公式。

一、天线波束宽度天线波束宽度是指天线辐射能量主要集中在一个方向上的范围。

在无线通信中,天线波束宽度决定了信号在空间中的覆盖范围和传输距离。

天线波束宽度一般用半功率波束宽度来表示,即当天线辐射功率下降到峰值功率的一半时,对应的角度范围。

天线波束宽度可以用以下公式来计算:θ = 2 * arcsin(λ / D)其中,θ表示天线波束宽度的角度,λ表示信号波长,D表示天线的直径。

这个公式基于夫琅禾费衍射原理,可以给出天线波束宽度与信号波长和天线直径之间的关系。

二、天线增益天线增益是指天线辐射能量相对于理想点源天线辐射能量的增益。

天线增益可以理解为天线在某个方向上辐射功率的增益效果,它与天线的方向性有关。

天线增益一般用dBi来表示,即相对于理想点源天线的增益值。

天线增益可以用以下公式来计算:G = η * D^2 / λ^2其中,G表示天线增益,η表示天线的效率,D表示天线的直径,λ表示信号波长。

这个公式说明了天线增益与天线效率、天线直径和信号波长之间的关系。

三、波束宽度和增益的关系天线波束宽度和增益之间存在一定的关系。

一般来说,天线波束宽度越窄,天线增益越高。

这是因为天线波束宽度的窄化意味着天线更加方向性强,能量更加集中。

在某个方向上的能量增加,相应的增加了天线的增益。

因此,增加天线波束宽度可以提高天线的增益。

天线波束宽度和增益还与天线的构造和性能参数有关。

例如,天线的反射面积、天线的孔径分布和天线的阵列方式等都会影响天线的波束宽度和增益。

在实际应用中,我们需要根据具体的通信需求选择合适的天线波束宽度和增益。

总结:本文介绍了天线波束宽度和增益的概念,并给出了相应的公式。

天线波束宽度决定了信号在空间中的覆盖范围和传输距离,而天线增益则表示天线辐射能量相对于理想点源天线的增益。

常用天线和无源器件技术参数

常用天线和无源器件技术参数

常用天线和无源器件技术参数天线是将电磁能转换为电信号或将电信号转换为电磁能的一种设备。

无源器件是指不含有源(电源)的电子元件,如电阻、电容、电感等。

在通信领域中,常用的天线和无源器件具有一系列的技术参数,下面将对其进行详细介绍。

1.天线技术参数(1) 增益(Gain):天线的增益是指天线辐射功率与理想点源辐射功率之比,单位为dBi。

增益越大,天线辐射的信号强度越大,接收到的信号质量也越好。

(2) 频率范围(Frequency Range):天线的频率范围是指天线能够工作的频带范围。

通常以最小和最大工作频率来表示。

(3)驻波比(VSWR):驻波比是指由于天线阻抗与信号源或负载阻抗不匹配而产生的反射信号的大小。

驻波比越小,表示天线与信号源或负载的匹配度越好,信号损耗越小。

(4) 角度范围(Vertical and Horizontal Beamwidth):天线的角度范围是指天线在水平和垂直方向上能够辐射或接收信号的范围。

角度范围越大,表示天线的辐射范围越广。

(5) 前后比(Front-to-Back Ratio):前后比是指天线在主导方向上的辐射功率与在反向方向上的辐射功率之比。

前后比越大,表示天线在主导方向上的信号强度越大,抗干扰能力越强。

(1) 电阻值(Resistance):电阻值是指无源器件电阻的数值。

通常用欧姆(Ω)来表示。

(2) 电容值(Capacitance):电容值是指无源器件电容的数值。

通常用法拉德(F)来表示。

(3) 电感值(Inductance):电感值是指无源器件电感的数值。

通常用亨利(H)来表示。

(4) 响应频率范围(Frequency Response):响应频率范围是指无源器件在频率范围内的响应情况。

通常以最小和最大工作频率来表示。

(5) 损耗(Loss):无源器件的损耗是指无源器件在信号传输过程中产生的能量损失。

损耗越小,信号传输效率越高。

以上是常用天线和无源器件的一些常见技术参数。

天线的基本参数

天线的基本参数

天线的基本参数
天线是一种用来发射或接收无线电波的装置,它是无线电信号传输的关键部件。

天线是无线电系统的最重要部分,因此其参数决定了无线电系统的性能。

本文将讨论天线的常用参数,包括相对增益、发射功率和功率比等,以便读者了解相关知识。

首先,相对增益是指天线将输入功率转换为输出功率的性能指标。

它的大小可以用分贝dB(dB)来表示,它的值受天线的结构、尺寸等
参数影响。

一般情况下,相对增益越大,天线就能发射出越强的信号。

其次,天线的发射功率也是一个重要参数,它决定了信号传输的质量和距离。

一般情况下,发射功率越高,信号强度就越强,传播距离就越远。

第三,功率比也叫做辐射因数,它描述的是天线发射所有功率所辐射的信号比例。

一般来说,功率比越大,信号传播距离就越远。

还有一些其他重要参数,如天线阻抗,它决定了天线与电路之间电阻的大小,换句话说,天线阻抗会影响信号波形和传播范围。

此外,还有辐射偏振度,它决定了天线不同方向发射的信号强度;还有转动因数,它是指将天线旋转到极端方向时发射功率的百分比。

本文的目的是让读者了解天线的基本参数,它们是构成无线电系统的重要组成部分,比如相对增益、发射功率、功率比等,是决定无线电系统性能的重要指标。

此外,天线阻抗、辐射偏振度和转动因数也是重要的参数。

通过对这些参数的正确设置,可以实现最佳的无线通信效果。

天线的指标与结构

天线的指标与结构

天线的指标与结构
天线的指标是指天线的性能参数,常见的指标有增益、方向性、频率范围、驻波比、工作带宽、极化方式等。

1. 增益:天线的增益是指天线在某一方向上辐射或接收的能量相对于参考天线(理想点源天线)的增益。

增益越高表示天线的辐射或接收能力越强。

2. 方向性:天线的方向性是指天线在不同方向上的辐射或接收能力不同。

一般来说,天线的方向性越强,辐射或接收的能量越集中。

3. 频率范围:天线的频率范围是指天线能够工作的频率范围。

不同的天线适用于不同的频率范围。

4. 驻波比:天线的驻波比是指天线输入端的驻波比,用来描述天线输入端的匹配情况。

驻波比越小,表示天线的输入端匹配度越好。

5. 工作带宽:天线的工作带宽是指天线能够正常工作的频率范围。

工作带宽越大,表示天线能够在更广泛的频率范围内工作。

6. 极化方式:天线的极化方式是指天线辐射或接收电磁波时的电场或磁场方向。

常见的极化方式有垂直极化、水平极化、圆极化等。

天线的结构根据不同的应用和工作频率可以有很多种形式,常见的天线结构包括:
1. 线性天线:如半波长天线、全波长天线、偶极子天线等。

2. 短天线:如螺旋天线、贴片天线、微带天线等。

3. 阵列天线:由多个天线元件组成的天线阵列,可以实现更强的方向性和增益。

4. 反射天线:如抛物面天线、开口天线等,通过反射面来增强辐射或接收能力。

5. 微波天线:如波导天线、开槽天线等,适用于高频率和微波频段的应用。

不同的天线结构适用于不同的应用场景和工作频率,选择适合的天线结构可以提高天线的性能和效果。

发射功率与增益详解

发射功率与增益详解

2011-09-28 15:31:48| 分类:TEC-Hardware|举报|字号订阅本文转载自jason《发射功率与增益详解》无线电发射机输出的射频信号,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。

电磁波到达接收地点后,由天线接收下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。

因此在无线网络的工程中,计算发射装置的发射功率与天线的辐射能力非常重要。

Tx是发射(Transmits)的简称。

无线电波的发射功率是指在给定频段范围内的能量,通常有两种衡量或测量标准:功率(W)-相对1瓦(Watts)的线性水准。

增益(dBm)-相对1毫瓦(Milliwatt)的比例水准。

两种表达方式可以互相转换:dBm = 10 x log[ 功率 mW]mW = 10 [ 增益 dBm / 10 dBm]在无线系统中,天线被用来把电流波转换成电磁波,在转换过程中还可以对发射和接收的信号进行“放大”,这种能量放大的度量成为“增益(Gain)”。

天线增益的度量单位为“dBi”。

由于无线系统中的电磁波能量是由发射设备的发射能量和天线的放大叠加作用产生,因此度量发射能量最好同一度量-增益(dB),例如,发射设备的功率为100mW ,或 20dBm;天线的增益为10dBi,则:发射总能量=发射功率(dBm)+天线增益(dBi)= 20dBm + 10dBi= 30dBm或者:= 1000mW= 1W在“小功率”系统中每个dB都非常重要,特别要记住“3dB法则”。

每增加或降低3dB,意味着增加一倍或降低一半的功率:-3 dB = 1/2 功率-6 dB = 1/4 功率+3 dB = 2x 功率+6 dB = 4x 功率例如,100mW的无线发射功率为20dBm,而50mW的无线发射功率为17dBm,而200mW 的发射功率为23dBm。

0dbm= 左边加10=右边乘10所以0+10DBM=*10W 即10DBM=故得20DBM= 30DBM=1W 40DBM=10W还有左边加3=右边乘2,如40+3DBM=10*2W,即43DBM=20W例如机器20W 在400MHZ频率上使用30米50-7(物理发泡低损耗电缆)到天线上还剩下多少增益20W=43DB30米50-7损耗一米小于按照最大值*30==天线增益16DBi+=就上面的例子我们可以看出增益和功率并非线性变化,所以不能光从功率上来看发射状态。

卫星链路计算公式

卫星链路计算公式

卫星链路计算公式天线的增益与波束宽度有效全向辐射功率自由空间传输损耗转发器的工作点噪声与损耗1. 天线增益:G=收点收到的功率无方向天线辐射时,接点收到的最大功率定向天线辐射时,接收 微波天线增益:G=ηλπ24A半功率角:)(7021度D λθ≈【半功率角是指主叶瓣上场强为主射方向场强的1/2= 0.707时(即功率下降1/2时),两个方向间的夹角。

】2. 接收点的功率密度(单位面积上的功率)为:)/(422m W dG P W T T E π=接收天线收到的功率: 22)4(4d G G P d A G P A W P R T T T T E R πλπηη==⋅=① fR T T R L G G P P = ② 【式②一般性地描述通信线路中信号的传输,称之为“通信距离方程”】3.自由空间传输损耗:2)4(cdf L f π=时,式②与式①相等。

此即自由空间传输损耗。

【物理解释 物理解释:由于电磁波在自由空间无方向性地辐射,使得只有少部分信号被接收点收到,而其他大部分无法被收到的能量即视为损耗。

】4.有效全向辐射功率:T T G P EIRP =若考虑馈线损耗,则 F T T L G P EIRP =【物理解释:在接收点进行测量时,将T P 功率送入增益为T G 、最大辐射方向指向接收点的发射天线时所测得的结果与将T P T G 功率送入无方向性发射天线时所测得的结果是相同的。

】4. 转发器的工作参数:工作点:输入补偿输出补偿多载波与单载波工作时的输出功率1) 2244λπλπηη⋅=⋅===f ES f T T f R T T R L EIRP L G P A L G G P A P W 即 )/)(4lg(10][[EIRP][W]22ES m dBW L f λπ+-=【为使卫星转发器单载波饱和工作,在其接收天线的单位有效面积上应输入的功率,一般以W 或SFD 表示】2)G/T 值:接收天线增益与接收系统总的等效噪声温度的比值称为地球站的G/T 值,也称性能因数或品质因数。

天线增益原理

天线增益原理

天线增益原理天线增益是指天线辐射功率与理想全向辐射天线相比的增益。

天线增益是天线性能的一个重要指标,它可以用来评价天线的辐射效率和指示天线的辐射方向性。

在无线通信系统中,天线增益的大小直接影响着通信质量和通信距离。

因此,了解天线增益原理对于设计和选择天线具有重要意义。

天线增益的原理主要受到天线的辐射特性和辐射方向性的影响。

在天线理论中,天线的辐射功率可以用辐射功率密度来描述,辐射功率密度是指单位面积上通过的辐射功率。

天线的辐射功率密度与辐射功率成正比,而辐射功率与天线输入功率成正比。

因此,天线增益实际上是天线辐射功率密度与理想全向辐射天线辐射功率密度的比值,即增益=G/Go,其中G为实际天线的辐射功率密度,Go为理想全向辐射天线的辐射功率密度。

天线增益的大小与天线的辐射方向性有关。

一般来说,天线的辐射方向性越强,天线增益就越大。

在实际应用中,通常会根据通信需求选择合适的天线增益。

例如,在城市中心地区,由于建筑物密集,信号传播距离较近,可以选择辐射角度较大的天线,而在郊区或者远距离通信中,需要选择辐射角度较小的天线,以获得更远的通信距离。

天线增益的大小也受到频率的影响。

一般来说,天线的增益随着频率的增加而增加。

这是因为天线的尺寸与频率有关,当频率增加时,天线的尺寸相对于波长来说就会减小,从而增加天线的增益。

因此,在实际应用中,需要根据通信频率选择合适的天线,以获得最佳的通信效果。

总的来说,天线增益是天线辐射功率密度与理想全向辐射天线辐射功率密度的比值,它反映了天线辐射性能和辐射方向性。

在无线通信系统中,天线增益的大小直接影响着通信质量和通信距离。

因此,在设计和选择天线时,需要充分考虑天线增益的原理和影响因素,以获得最佳的通信效果。

在实际应用中,天线增益的大小需要根据通信需求、频率和环境等因素进行综合考虑。

合理选择天线增益,可以提高通信质量,扩大通信覆盖范围,满足不同场景下的通信需求。

因此,深入了解天线增益原理对于无线通信系统的设计和优化具有重要意义。

天线增益详解

天线增益详解

无线增益天线的主要参数在认识无线增益天线之前我们有必要先来认识它的几个重要参数:频率范围:是指天线工作在哪个频段,这个参数决定了它适用于哪个无线标准的无线设备。

比如某天线的技术指标中频率范围为:2400 ~ 2485 MHz 表示它适用于工作频率在2.4GHz的802.11b和802.11g标准的无线设备。

而802.11a标准的无线设备则需要频率范围在5GHz的天线来匹配,所以在购买天线时一定要认准这个参数对应相应的产品。

增益:增益表示天线功率放大倍数,数值越大表示信号的放大倍数就越大,也就是说当增益数值越大,信号越强,传输质量就越好。

增益的单位是:dBi极化方向:所谓天线的极化方向,就是指天线辐射时形成的电场强度方向。

我们中学学过物理就知道电场周围会产生电磁场,而电磁场的方向垂直于电场,所以当电场强度方向垂直于地面时,此电波就称为垂直极化波,此时无线电波是水平向外传播的;当电场强度方向平行于地面时,此电波就称为水平极化波,此时无线电波是向垂直方向传播的。

由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。

无线天线有多种类型,按照天线的部署位置分为室内天线和室外天线。

室内天线用于室内传输距离近,发射接收功率较弱的环境,相反,室外天线一般传输距离远,发射接收功率大。

按照天线辐射和接收在水平面的方向性分为定向天线与全向天线。

所谓定向天线是指天线在对某个特定方向传来的信号特别灵敏并且发射信号时能量也是集中在某个特定方向上。

而全向天线可以接受水平方向来自各个角度的信号和向各个角度辐射信号。

另外,还有一种天线界于定向与全向之间就是扇面天线,它具有能量定向聚焦功能,可以在水平180,120,90的范围内进行有效覆盖,例如远程连接点在某一个角度范围内信号都比较集中而不是仅仅在某个特定方向信号较强时,可以采用扇面天线。

天线基础知识

天线基础知识

天线基础知识1、前后比方向图中,前后瓣最大值之比称为前后比,记为 F / B 。

前后比越大,天线的后向辐射(或接收)越小。

前后比F / B 的计算十分简单------F / B = 10 Lg {(前向功率密度)/(后向功率密度)}对天线的前后比F / B 有要求时,其典型值为(18 ~ 30)dB,特殊情况下则要求达(35 ~ 40)dB.2、增益增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。

它定量地描述一个天线把输入功率集中辐射的程度。

增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。

可以这样来理解增益的物理含义------为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需100 / 20 =5W . 换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。

3、波瓣宽度方向图通常都有两个或多个瓣,其中辐射强度最大的瓣称为主瓣,其余的瓣称为副瓣或旁瓣。

参见图1.3.4 a , 在主瓣最大辐射方向两侧,辐射强度降低 3 dB(功率密度降低一半)的两点间的夹角定义为波瓣宽度(又称波束宽度或主瓣宽度或半功率角)。

波瓣宽度越窄,方向性越好,作用距离越远,抗干扰能力越强。

还有一种波瓣宽度,即 10dB波瓣宽度,顾名思义它是方向图中辐射强度降低 10dB (功率密度降至十分之一)的两个点间的夹角,见图1.3.4 b .4、天线的输入阻抗Z in定义:天线输入端信号电压与信号电流之比,称为天线的输入阻抗。

输入阻抗具有电阻分量R in 和电抗分量X in ,即Z in =R in +j X in 。

电抗分量的存在会减少天线从馈线对信号功率的提取,因此,必须使电抗分量尽可能为零,也就是应尽可能使天线的输入阻抗为纯电阻。

天线增益范围

天线增益范围

天线增益范围
天线增益是指天线接收或发射信号时相对于一个参考天线的功率增益。

天线增益范围可以根据天线的类型和设计进行变化。

一般来说,天线增益范围可以从几分贝(dB)到数十分贝不等。

以下是一些常见天线的增益范围:
1. 无线电频率范围天线:通常在0 dB(无增益)到20 dB(有方向性天线)之间。

2. 电视天线:VHF范围(30-300 MHz)的天线增益一般在0 dB到10 dB之间,UHF范围(300-3000 MHz)的天线增益一般在5 dB到15 dB之间。

3. 4G移动通信天线:一般在2 dBi到12 dBi之间,根据天线的类型和设计可能会有所不同。

4. 5G移动通信天线:一般在4 dBi到18 dBi之间,根据天线的类型和设计可能会有所不同。

5. 无线网络天线(WiFi):一般在2 dBi到10 dBi之间,根据天线的类型和设计可能会有所不同。

需要注意的是,天线增益并不是越高越好,高增益的天线通常具有较好的方向性,可以增加天线的覆盖范围和信号质量,但也可能会导致信号的偏移和干扰。

增益范围还受到天线的频率响应、天线设计和材料等因素的影响。

天线系统增益问题概述

天线系统增益问题概述

天线系统增益问题概述1,增益的物理含义为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W 的输入功率,而用增益为G = 13 dB = 20 的某定向天线作为发射天线时,输入功率只需100 / 20 = 5W 。

换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。

2,天线增益在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。

它定量地描述一个天线把输入功率集中辐射的程度。

增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。

天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。

表征天线增益的参数有dBd和dBi。

DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。

相同的条件下,增益越高,电波传播的距离越远。

一般地,GSM定向基站的天线增益为18dBi,全向的为11dBi。

天线如何获得增益?首先,天线是“无源器件”,所以天线本身并不能给AP的信号增加能量。

然而我们一提到天线,最重要的指标就是说天线的“增益”,那么天线是如何获得信号强度的“增益”呢?答案就是,靠控制信号发射的角度。

这个原理有些类似于手电筒,手电筒靠一面凹镜,让光线都集中在某一角度,来让光线照到更远的地方。

手电筒及电池相当于AP设备本身,而手电筒的灯泡和凹镜就相当于我们的天线。

如果摘掉手电筒的凹镜,那么就相当于使用一个增益很小的全向天线,光线照射很分散,覆盖距离很近;有了凹镜,则相当于使用了一个高增益的定向天线,光线集中,覆盖距离很远。

信号总的能量是由AP决定的,天线则决定让这些能量集中在某个角度内,这个角度越小,能量聚集度越高,获得的信号“增益”也就越大,信号覆盖的距离越远;反之,如果覆盖角度越大,能量聚集度越低,信号覆盖的距离越近。

功率及增益定义

功率及增益定义

功率及增益定义功率增益是指输出功率与输入功率之比简单地说,分贝就是放大器增益的单位。

放大器输出与输入的比值为放大倍数,单位是“倍”,如10倍放大器,100倍放大器。

当改用“分贝”做单位时,放大倍数就称之为增益,这是一个概念的两种称呼。

电学中分贝与放大倍数的转换关系为:AV(I)(dB)=20lg[Vo/Vi(Io/Ii)];Ap(dB)=10lg(Po/Pi)分贝定义时电压(电流)增益和功率增益的公式不同,但我们都知道功率与电压、电流的关系是P=V2/R=I2R。

采用这套公式后,两者的增益数值就一样了:10lg[Po/Pi]=10lg(V2o/R)/(V2i/R)=20lg(Vo/Vi)。

使用分贝做单位主要有三大好处。

(1)数值变小,读写方便。

电子系统的总放大倍数常常是几千、几万甚至几十万,一架收音机从天线收到的信号至送入喇叭放音输出,一共要放大2万倍左右。

用分贝表示先取个对数,数值就小得多。

附表为放大倍数与增益的对应关系。

(2)运算方便。

放大器级联时,总的放大倍数是各级相乘。

用分贝做单位时,总增益就是相加。

若某功放前级是100倍(20dB),后级是20倍(13dB),那么总功率放大倍数是100×20=2000倍,总增益为20dB+13dB=33dB。

(3)符合听感,估算方便。

人听到声音的响度是与功率的相对增长呈正相关的。

例如,当电功率从0.1瓦增长到1.1瓦时,听到的声音就响了很多;而从1瓦增强到2瓦时,响度就差不太多;再从10瓦增强到11瓦时,没有人能听出响度的差别来。

如果用功率的绝对值表示都是1瓦,而用增益表示分别为10.4dB,3dB和0.4dB,这就能比较一致地反映出人耳听到的响度差别了。

您若注意一下就会发现,Hi-Fi功放上的音量旋钮刻度都是标的分贝,使您改变音量时直观些。

分贝数值中,-3dB和0dB两个点是必须了解的。

-3dB也叫半功率点或截止频率点。

这时功率是正常时的一半,电压或电流是正常时的1/2。

天线增益简介

天线增益简介

天线增益简介天线增益简单的说就是天线集中信号的能⼒(天线不会放⼤信号),定向天线增益⼀般⼤于全向,天线的半功率⾓越⼩天线增益越⾼,就像⼀个和⼿电筒聚光能⼒⼀样,把光线聚到⼀条线就是说增益⾼,如果不光能⼒不好则光线是⼀⼤⽚就是说增益低,当然聚集信号的能⼒要有⼀个对⽐的参照物了,如果⽤dBd表⽰则表⽰天线与振⼦相⽐较,如果⽤dBi表⽰与电源相对⽐。

不要想得太复杂了。

感性的理解⼀下就好了。

答:1、增益是⽤来表⽰天线集中辐射的程度。

其在某⼀⽅向的定义是指在输⼊功率相等的条件下,实际天线与理想的辐射单元在空间同⼀点处所产⽣的场强的平⽅之⽐,即功率之⽐。

增益⼀般与天线⽅向图有关,⽅向图主瓣越窄,后瓣、副瓣越⼩,增益越⾼。

增益的单位⽤“dBi”或“dBd”表⽰。

2、天线增益是⽤来衡量天线朝⼀个特定⽅向收发信号的能⼒,它是选择基站天线最重要的参数之⼀。

⼀般来说,增益的提⾼主要是依靠减少垂直⾯向辐射的波束宽度,⽽在⽔平⾯上保持全向的辐射特性。

天线增益对移动通信系统运⾏极为重要,因为它决定蜂窝边缘的信号电平。

增加增益就可以在⼀确定⽅向上增⼤⽹络的覆盖范围,或者在确定范围内增⼤增益余量。

可以这样来理解增益的物理含义 ------ 为在⼀定的距离上的某点处产⽣⼀定⼤⼩的信号,如果⽤理想的⽆⽅向性点源作为发射天线,需要100W 的输⼊功率,⽽⽤增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输⼊功率只需 100 / 20 = 5W 。

换⾔之,某天线的增益,就其最⼤辐射⽅向上的辐射效果来说,与⽆⽅向性的理想点源相⽐,把输⼊功率放⼤的倍数。

半波对称振⼦的增益为 G=2.15dBi。

4 个半波对称振⼦沿垂线上下排列,构成⼀个垂直四元阵,其增益约为 G=8.15dBi( dBi 这个单位表⽰⽐较对象是各向均匀辐射的理想点源 )。

如果以半波对称振⼦作⽐较对象,其增益的单位是 dBd 。

半波对称振⼦的增益为 G=0dBd (因为是⾃⼰跟⾃⼰⽐,⽐值为 1 ,取对数得零值。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天线是将传输线中的电磁能量有效地转化成自由空间的电磁波能量或将空间电磁波有效地转化成传输线中的电磁能的设备。

天线是无源器件,所以仅仅起到能量转化作用而不能放大信号,那么我们所说的某天线的增益是18dBi,是指什么呢?
天线增益:是指天线将发射功率往某一指定方向集中辐射的能力。

一般把天线在最大辐射方向上的场强E与理想各向同性天线(理想点源)均匀辐射场强E0相比,以功率密度增强的倍数定义为增益。

即:D=E2/E02
半波振子:两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

半波对称振子的增益为G=2.15dBi,它是构成高增益天线的基本辐射单元。

增益的单位:dBd、dBi.
一般认为dBi和dBd表示同一个增益,用dBi表示的值比用dBd表示的要大2.15 dBi。

dBi的参考基准为全方向性天线,dBi是天线方向性的一个指标;dBi是指天线相对于无方向天线的功率能量密度之比;i—isotropic[,aɪsə'trɑpɪk]
dBd的参考基准为偶极子,dB是指相对于半波振子的功率能量密度之比,半波振子的增益为2.15dBi,因此0dBd=2.15dBi;d—Dipole['daipəul]
双极化振子,它包括两对相互垂直的偶极子+金属安装板+两个馈电金属钩
天线中心方向信号辐射最强,往两边信号逐渐减小。

半功率角:
所谓半功率角就是主瓣上,功率下降到最强方向(主瓣方向)一半(3dB)的夹角,比方说90度,就是说从主方向往左右各45度,功率就下降一半。

半功率角反映了天线能量的集中程度。

有水平半功率角和垂直半功率角之分,常见的90/65都是水平半功率角。

波瓣宽度:
主瓣两半功率点间的夹角定义为天线方向图的波瓣宽度,称为半功率(角)瓣宽。

主瓣瓣宽越窄,则方向性越好,抗干扰能力越强。

水平波瓣宽度是指在水平面的半功率波瓣宽度。

天线水平波瓣宽度决定了水平方向覆盖范围;垂直波瓣宽度是指在垂直面的半功率波瓣宽度。

天线垂直波瓣宽度决定了高度方向及纵向覆盖。

相关文档
最新文档