矢量与张量

合集下载

附录矢量与张量运算

附录矢量与张量运算

附录 矢量与张量运算1标量﹑矢量与张量1.1基本概念在本书中所涉及的物理量可分为标量、矢量和张量。

我们非常熟悉标量,它是在空间没有取向的物理量,只有一个数就可以表示其状态。

例如质量、压强、密度、温度等都是标量。

矢量则是在空间有一定取向的物理量,它既有大小、又有方向。

在三维空间中,需要三个数来表示,即矢量有三个分量。

考虑直角坐标右手系,三个坐标轴分别以1、2和3表示,、2和3分别表示1、2和3方向的单位矢量。

如果矢量a 的三个分量分别为a 1、、a 2、a 3,则可以表示为也可以用以下符号表示 a =(a 1,a 2,a 3)矢量a 的大小以a 表示a =(a 12+a 22+a 32)1/2我们还会遇到张量的概念,可将标量看作零阶张量,矢量看作一阶张量,在此将主要讨论二阶张量的定义。

二阶张量w 有9个分量,用w ij 表示。

张量w 可用矩阵的形式来表示:w 其中下标相同的元素称为对角元素,下标不同的元素称为非对角元素。

若w ij =w ji ,则称为对称张量。

如果将行和列互相交换就组成张量w 的转置张量,记作w T ,则w T =显然,若w 是对称张量,则有w =w T 。

另外,如果w T =-w ,w 被称为反对称张量,同时有w ij =-w ji 。

任何一个二阶张量都可以写成两部分之和,一部分为对称张量,另一部分为反对称张量。

w =(w +w T )+ (w -w T )单位张量是对角分量皆为1,非对角分量皆为0的张量是最简单的对称张量。

张量对角分量之和称为张量的迹t r w =张量的迹是标量,如果张量的迹为零,称此张量为无迹张量。

1.2基本运算1.2.1矢量加法与乘法运算在几何上,矢量的加法满足平行四边形法则和三角形法则。

如图附-1所示,减法为加法的逆运算。

1e e e a 332211e e e a a a a ++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211w w w w w w w w w ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡332313322212312111w w w w w w w w w 2121δ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001δδ∑iiiw图附-1 矢量加减法在解析上,矢量加法(减法)为对应分量之和(差)。

张量基础知识

张量基础知识
描述物理量的矢量和张量应与坐标轴的选择无关。就是 说,当坐标轴变换时,矢量和张量的所有分量都随之变换, 但作为描述物理量的矢量和张量本身是不变的。因此,分量 的变换必有一定的规律。接下来我们就来讨论一下坐标变换 时分量变换的规律。
张量基础知识
一、坐标变换 如图所示,设有直角坐标
系OX1X2X3,其三个方向的单
张量基础知识
此处σ不再是一个数,而是9个数构成一个方阵,称为电导率
张量,这是一个二阶张量。于是,各向异性晶体中的欧姆定
律可表示为
JE
11 12 13
21
22
23
31 32 33
张量的定义:一般来说,在物理学中,有一些量需要用9个分 量来描述,这种物理量就是二阶张量。
张量基础知识
2.2 张量的数学定义
张量基础知识
2.3 张量的运算
一、张量的加法
若 Ai,jBi(ji,j1,2,3)皆为二阶张量,则
C i j A i jB ij(i,j 1 ,2 ,3 )也为二阶张量,于是我们定义 Cij
为 Aij, Bij 之和。这就是二阶张量的加法,并表为C=A+B。
以此类推,若A,B为两个同阶张量,则A,B相应分量之和构成 新的同阶张量C,记作C=A+B。
同 样 x x1 2 : 1 2''1 1 1 2''2 2 x x1 2'' i'jT x x1 2''
由( )式得
xx12i'
j1xx12''
比较 : i'jTi'j1
[ i ' j ] 为张量正基础交知识矩阵
引用指标符号:

标量矢量张量

标量矢量张量

标量矢量张量标量、矢量和张量是物理学中常用的概念。

下面将分章节回答这个问题。

一、标量标量是一个只有大小没有方向的物理量。

例如,温度、密度、电荷量等都是标量。

标量通常用一个字母表示,例如温度用T表示,密度用ρ表示。

标量的单位通常是国际单位制中的基本单位,例如温度的单位是开尔文(K),密度的单位是千克每立方米(kg/m³)。

二、矢量矢量是一个既有大小又有方向的物理量。

例如,速度、加速度、力等都是矢量。

矢量通常用一个带箭头的字母表示,例如速度用v表示,加速度用a表示。

矢量的大小用标量表示,通常用绝对值表示,例如速度的大小用|v|表示,加速度的大小用|a|表示。

矢量的方向用角度或者方向余弦表示,例如速度的方向用角度θ表示,加速度的方向用方向余弦cosα、cosβ、cosγ表示。

矢量的单位通常是国际单位制中的基本单位加上方向单位,例如速度的单位是米每秒(m/s),加速度的单位是米每秒平方(m/s²)。

三、张量张量是一个既有大小又有方向,而且还有多个分量的物理量。

例如,应力张量、惯性张量等都是张量。

张量通常用一个带箭头的字母表示,例如应力张量用σ表示。

张量的大小用标量表示,通常用绝对值表示,例如应力张量的大小用|σ|表示。

张量的方向用多个方向余弦表示,例如应力张量的方向用方向余弦cosα、cosβ、cosγ表示。

张量的分量通常用矩阵表示,例如应力张量的分量用一个3×3的矩阵表示。

总之,标量、矢量和张量是物理学中常用的概念,它们分别表示只有大小、既有大小又有方向、既有大小又有方向而且还有多个分量的物理量。

在物理学中,我们需要根据具体问题选择合适的物理量来描述问题,从而得到准确的结果。

矢量张量公式及推导

矢量张量公式及推导

矢量及张量1. 协变基矢量:321g g g a 321a a a ++=,i a 称为逆变基分量,i g 是协变基矢量。

2. 逆变基矢量:321g g g a 321a a a ++=,i a 称为协变基分量,ig 是逆变基矢量。

3. 爱因斯坦求和约定:省略求和符号,ii g g a i i a a == 4. 逆变基于协变基的关系:ji δ=•j i g g5. 标积:i i j i j i b a b a =•=•g g b a6. 坐标转换系数i i 'β:i i i i i ii i i i i xx x x x x g g r r g '''''β=∂∂=∂∂∂∂=∂∂=7. 转换系数的性质:i j k j i k δββ='',因为''''m l m j i l j i i j g g g g •=•=ββδ8. 张量:分量满足坐标转换关系的量,比如矢量''''''i i i i i i k k i i v v v ββ=•=•=g g g v9. 置换张量:ijk k j i ijk e g ==][g g g ε,其中][321g g g =g ,同理有ijkk j i ijk e g1][==g g g ε 由行列式的性质及线性][][]['''''''''n m l nk m j l i n n k m m j l l i k j i g g g g g g g g g ββββββ==,因此ijk ε是张量分量。

定义置换张量:k j i ijk k j i ijk g g g g g g εεε==10. 基的叉积:k l ijl ijk k j i g g g g g •==•⨯εε,所以l ijl j i g g g ε=⨯,l ijlj i g g g ε=⨯11. 叉积:k ijk j i j i j i b a b a g g g b a ε=⨯=⨯,或写成实体形式ε:ab ab :εb a ==⨯,双标量积用前前后后规则完成。

张量分析提纲及部分习题答案

张量分析提纲及部分习题答案

y
对静止的连续介质,有
ζ n fd 0 , ζd fd 0 ,
A
ζ f 0。
(21) 证明应力是一个张量; 记 ij :表示在给定基 g i 下,在面 g j 上,单位面积受力 F j 在 g i 方向上的分量为
对斜圆锥面上任一点 (图中黑点处) , 不难由相似三角形得到,
z z R cos C i R sin j zk ,进而可得, H H r Rz sin zR cos r R cos C R g i j, gz i sin j k , H H z H H r
dx g dx I g dx II 1 4 x I 2 dx I 6 x I x II 2 dx II Pdx I Q dx II 11 12 1 1 I 。 2 4 dxII g 21dx I g 22 dx II 6 x I x II dx I 9 x II dx II P2 dx I Q2 dx II
Pi Qi 时,坐标 xI , xII 才可能存在。即向量场 P, Q 无旋时,其在两点间 x II x I Pi Qi 的路径积分与路径无关,积出的值就是坐标。本例中, II I ,故相应的“协 x x
当 变坐标”不存在。 (正因为如此,坐标也没有逆变、协变之说。 ) (9) 有点类似曲面第一基本型(1.3.12) 。 (10) Lame 常数定义(1.3.13)在非正交系中也成立,但此时(1.3.12a)不成立。
1.9-1.13:略; 1.14: 注意,所谓斜圆锥是指, O 点沿 z 方向在大圆平面上的投影 M 在大圆的直径上。

连续介质力学-例题与习题

连续介质力学-例题与习题

《连续介质力学》例题和习题第一章 矢量和张量分析第一节 矢量与张量代数一、矢量代数令112233A A A =++A e e e ,112233B B B =++B e e e ,则有112233A A A αααα=++A e e e111222333()()()A B A B A B +=+++++A B e e e112233112233112233()()A A A B B B A B A B A B •=++•++=++A B e e e e e e112233112233111112121313212122222323313132323333()() A A A B B B A B A B A B A B A B A B A B A B A B ⨯=++⨯++=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯A B e e e e e e e e e e e e e e e e e e e e e e e e又因为: 11⨯=e e 0;123⨯=e e e ;132⨯=-e e e ;213⨯=-e e e ;22⨯=e e 0;231⨯=e e e ; 312⨯=e e e ;321⨯=-e e e ;33⨯=e e 0则: 233213113212213(_)()()A B A B A B A B A B A B ⨯=+-+-A B e e e 习题:1、证明下列恒等式:1)[]2()()()()⨯•⨯⨯⨯=•⨯A B B C C A A B C2) [][]()()()()⨯•⨯=•⨯-•⨯A B C D A C D B B C D A2、请判断下列矢量是否线性无关?1232=-+A e e e 23=--B e e 12=-+C e e .其中i e 为单位正交基矢量。

3、试判断[]816549782-⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦A 是否有逆矩阵;如有,请求出其逆阵[]1-A 。

二、张量代数例1:令T 是一个张量,其使得矢量a ,b 经其变换后变为2=+Ta a b ,=-Tb a b ,假定一个矢量2=+c a b ,求Tc 。

张量分析-第1讲LJ

张量分析-第1讲LJ

a2 F3 a3 F2 a c b1 a b c1 a3 F1 a1 F3 a c b2 a b c2 a1 F2 a2 F1 a c b3 a b c3
所以有: a b c a c b a b c
g1和g 2
g1和g 2 不是单位矢量,即它们有量纲的, 一般地说,
其长度也不为单位长度。此外它们也并不正交。 矢量F可以在 g1和g 2 上分解:
F F g1 F g 2
1 2
(平行四边形法则)
则有: F g 1 F 1g 1 g 1 F 2 g 2 g 1
F g 1 F 1g 1 g 1 F 2 g 2 g 1
e2 b2 c2
e3
e3 b3 b2 c3 b3 c2 e 1 b3 c1 b1c3 e 2 b1c2 b2 c1 e 3 c3
b3 a 2 F3 a3 F2 e 1 a3 F1 a1 F3 e 2 a1 F2 a 2 F1 e 3 F3
j 1
F2 ' e 2 ' e1 F1 e 2 ' e 2 F2 e 2 ' e 3 F3 2 ' j F j
j 1 3
3
F3' e 3' e1 F1 e 3' e 2 F2 e 3' e 3 F3 3' j F j
j 1
矢量场函数的散度: 矢量场函数的旋度:
i F x Fx j y Fy
Fx Fy Fz F z y x
k Fz Fy Fx Fz Fy Fx i k j y z y z z x x Fz

矢量与张量[整理版]

矢量与张量[整理版]

§1 向量代数1.1向量的定义从几何观点来看,向量定义为有向线段。

在三维欧氏空间中,建立直角坐标系,沿坐标方向的单位向量为,即其标架为。

设从坐标原点至点的向量为,它在所述坐标系中的坐标为,那么可写成(1.1)设在中有另一个坐标系,其标架为,它与之间的关系为(1.2)由于单位向量之间互相正交,之间也互相正交,因此矩阵(1.3)将是正交矩阵,即有,其中上标表示转置。

从(1.2)可反解出(1.4)向量在新坐标系中的分解记为(1.5)将(1.4)代入(1.1),得到(1.6)公式(1.6)是向量的新坐标和旧坐标之间的关系,它是坐标变换系数的一次齐次式。

这个式子应该是有向线段的几何客观性质(如:长度、角度)不随坐标的人为主观选取而变化的一种代数反映。

可以说,公式(1.6)表示了向量在坐标变换下的不变性。

这样,我们就从向量的几何定义,得到了向量的代数定义:一个有序数组,如果在坐标变换下为关于变换系数由(1.6)所示的一次齐次式,则称之为向量。

1.2 Einstein约定求和用求和号,可将(1.1)写成(1.7)所谓Einstein约定求和就是略去求和式中的求和号,例如(1.7)可写成(1.8)在此规则中两个相同指标就表示求和,而不管指标是什么字母,例如(1.8)也可写成(1.9)有时亦称求和的指标为“哑指标”。

本书以后如无相反的说明,相同的英文指标总表示从1 至3 求和。

按约定求和规则,(1.2)、(1.4)可写成(1.10)(1.11)将(1.11)代入(1.8),得(1.12)由此就得到了(1.6)式的约定求和写法,(1.13)今引入Kronecker记号,(1.14)例如。

应用,单位向量之间的内积可写成(1.15)向量和向量之间的内积可写成(1.16)上式中最后一个等号是因为只有时,才不等于零,在这里的作用似乎是将换成了,因而也称为“换标记号”。

再引入Levi-Civita记号,(1.17)其中分别取1,2,3中的某一个值。

标量、矢量(向量)、张量(tensors)的理解

标量、矢量(向量)、张量(tensors)的理解

标量、⽮量(向量)、张量(tensors)的理解
标量
⽤通俗的说法,标量是只有⼤⼩,没有⽅向的量。

如质量、密度、温度、功、能量、路程、速率、体积、时间、热量、电阻、功率、势能、引⼒势能、电势能等物理量。

⽆论选取什么坐标系,标量的数值恒保持不变。

⽮量(向量)
指具有⼤⼩(magnitude)和⽅向的量。

如,⼀个物体的位移
张量(tensors)
张量概念是⽮量概念的推⼴,⽮量是⼀阶张量。

张量是⼀个可⽤来表⽰在⼀些⽮量、标量和其他张量之间的线性关系的多线性函数。

张量,可理解为⼀个 n 维数值阵列
每个张量的维度单位⽤阶来描述,零阶张量是⼀个标量,⼀阶张量是⼀个向量,⼆阶张量是⼀个矩阵
所以标量、向量(⽮量)和矩阵等都是特殊类型的张量。

矢量和张量

矢量和张量
在物理学中,矢量如速度、动量等,具有大小和方向,而张量如剪切应ቤተ መጻሕፍቲ ባይዱ等则更为复杂。矢量和张量可通过特定的符号进行区分,并采用不同的乘法运算,包括单点积、双点积和叉积。这些运算的结果可以是标量、矢量或张量,具体取决于运算的类型和参与运算的量的阶数。矢量的大小通过其模来表示,而矢量的方向则通过其与坐标轴的夹角来确定。矢量的加法和减法遵循平行四边形法则,而矢量与标量的乘法则会改变矢量的大小但不改变其方向。此外,矢量的标量积(或点积)结果为一标量,等于两矢量模的乘积与它们间夹角的余弦的乘积。矢量的矢量积(或叉积)结果为一矢量,其大小等于两矢量组成的平行四边形面积,方向垂直于这两矢量构成的平面。在解析表示中,矢量可通过其在坐标轴上的投影来描述,并可通过克罗内克符号和交错单位张量来简化矢量运算的表达式。

矢量和张量

矢量和张量

并矢量
二个矢量v和w的并矢积是二阶张量的一个 特殊形式,它的分量是该二矢量的分量之 积;于是并矢积vw是
单位张量
是对角分量皆为1,非对角分员皆为零的一 个张量:
单位张量的分量是δij,即克罗内克符号。还应注 意,单位张量的每一行(或列)分别是三个单位矢量 δ1,δ2,δ3的各个分量。
现在引入一组单位并矢量,总共有九个单位并矢量: 于是
一些矢量恒等式
矢量微分运算
• 矢量微分算符▽又称“nabla”或“del,”或哈密尔
顿算符(Hamiltonian operator) ,在直角座标系
下定义为:
1
x1
2
x2
3
x3
式中δi是单位矢 量i,ixi是xi 与座标轴1,2,3相关的变量
(xi是位置座标,通常记为x,y,z)。符号▽是一矢性算符; 它与矢量一样,具有三个分量,但不能单独存在,必
▽可得出一个标量积:
上式给出了以矢量v的分量的导数的一个集合,称为v 的散度(又常简写为divv)。散度运算有下面一些性质需 加注意:
矢量场的旋度
由此构成的矢量称为v的旋度。[▽ x v]的另一符号 记作curlv或rotv。德国文献中常采用后一种符号。 与散度一样,旋度运算满足分配律,但不满足交换 律和分配律。
一张量与一矢量的矢量积(或点积)
当一张量与一矢量作点积,得一矢量:
由上面这些结果,可容易地证得下 列恒等式,
含有张量和并矢量的微分运算
在并矢量中有一个重要的成员▽v,它在传 递过程中有着重要的用途,在直角坐标系 中▽v的表达为
用同样的方法可得
用上面的方法可以很方便地证明张量恒等式
一个张量微分恒等式的证明h2h3 h1Fra biblioteks q1

张量的基本概念(我觉得说的比较好,关键是通俗)

张量的基本概念(我觉得说的比较好,关键是通俗)

简单的说:张量概念是矢量概念和矩阵概念的推广,标量是零阶张量,矢量是一阶张量,矩阵(方阵)是二阶张量,而三阶张量则好比立体矩阵,更高阶的张量用图形无法表达。

向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。

而一个线性空间有一个伴随的对偶空间.张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变换几个,此时,张量的分量也跟着变换。

我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。

张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。

在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样.而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。

要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的.进而发展了张量分析.现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。

比如泛函分析、纤维从理论等.代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。

其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念.而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等。

线性代数的精髓概念根本涉及不到。

这也就造成了很多同学理解现代数学中很多概念的困难.现代数学的一个非常重要的方法论就是公理化的方法。

这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价。

公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。

武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。

应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何比拟其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。

矢量和张量

矢量和张量

在柱坐标系中,对应(r,θ,z)的拉梅系数h为(1,
r,1)故有
在球坐标系中,对应(r,θ,φ)的拉梅系数h为(1,
r,rsin θ)故有
称它为拉普拉斯算符(有些作者以符号△表示,特 别在早期德国文献中)。与梯度、散度和旋度一样, 拉普拉斯算符只具有分配律性质。
矢量场的拉普拉斯算符
虽然上式在直角座标系下成立,但不能应用于曲线 座标系,所以把矢量场的拉普拉斯算符定义为:
就可用于曲线座标系。
二阶张量
本节将给出一些与张量和并矢量相关的一些 运算方法。这些运算在传递现象的理论中 会遇到,特别是动量传递中。
两个矢量的加法可以用熟知的平行四边形 法则进行运算;矢量减法运算如下:改变 一个矢量的符号,然后与另一失量相加。
矢量和标量的乘法
用一标量乘一矢量,仍为一矢量,它的大 小改变,但方向不变。下述定律适用;
二矢量的标量积(或点积)
二矢量v和w的标量积为一标量,定义如下:
v w vwcosvw
a31 a32 a33
矢量及其大小的定义:单位矢量
一矢量v可以完全地用其在 座标抽I,2,3上的投影 v1,v2,v3来描述(见左图)。因 此一矢量可以解析地表示为:
3
v 1v1 2v2 3v3 ivi i 1
一矢量的大小如下式所给:
上面介绍过的单位矢量具有了下述几个性质 它们可归纳如下; 式中δij和εijk分别是前边介绍过的克罗内克符号和交错 单位张量。
v v 0
矢量运算的解析表示
克罗内克符号(Kronecker delta)δij和交错单位张量εijk, 可把许多公式表达得更为简单。它们的定义如下:
ij 1 若i j

《物理场论》标量矢量和张量

《物理场论》标量矢量和张量

一个数量场可以用一个数性函数 u 来表示。通 常假定数性函数 u是单值、连续且有一阶连续的
偏导数。
数量场的等值面
等值面:数性函数 u 取相同值的点连接起来构
成的一个曲面,定义为:
u(x, y, z) C ( C 为常数)
比如温度场的等温面,电位场的等电位面等。
由隐函数存在定理可知,在函数 u 为单值,且
证明:将
C
D
看作一个矢量,由矢量混合积
的旋转法则可以得到:
( A B) (C D) A [B (C D]
A [C(B D) D(B C)]
( A C)(B D) ( A D)(B C)
P(x, y, z) r
o
xex
yey
y
x
矢量的点积
矢量点积的物理背景:广泛的应用。
W

F
s
常力
F
W


F

ds
O 变力
s
矢量的点积
矢量点积的矩阵表示:矢量可以用列矩阵表示。




A Axex Ayey Azez
Ax
A

P(x, y, z)
yj
y
矢量均可以表示为基的线性组合
r xi yj zk
r xex yey zez
矢量的概念
z
矢量的模:矢量的长度
r

r

x2 y2 z2
zez
r
o
xex
单位矢量:一个矢量与其模相除。 x
r

电动力学——矢量和张量课件

电动力学——矢量和张量课件

矢量和张量vectors and tensors中山大学理工学院黄迺本教授(2005级,2007年3月)如果不理解它的语言,没有人能够读懂宇宙这本书,它的语言就是数学.——Galileo经典电动力学的研究对象——电磁相互作用的经典场论——狭义相对论——电动力学的相对论协变性主要数学工具微积分、线性代数、矢量与张量分析、数学物理方程、级数等.教材和参考书教材:郭硕鸿《电动力学》(第二版)高等教育出版社,1997参考书:[1]黄迺本,方奕忠《电动力学(第二版)学习辅导书》,高等教育出版社,2004[2]J.D.杰克孙《经典电动力学》人民教育出版社,1978[3]费恩曼物理学讲义,第2卷,上海科技出版社,2005[4]朗道等《场论》人民教育出版社,1959[5]蔡圣善等《电动力学》(第二版),高等教育出版社,2003[6]尹真《电动力学》(第二版),科学出版社,2005[7]Daniel R Frankl,ELECTROMAGNETIC THEORY,Prentice-Hall,Inc.,1986矢量和张量目录(contens)1.矢量和张量代数(the algebra of vectors and tensors)2.矢量和张量分析(the analysis of vectors and tensors)3.δ函数(δ function)4.球坐标系和柱坐标系1 矢量和张量代数在三维欧几里德空间中,按物理量在坐标系转动下的变换性质,可分为标量(零阶张量),矢量(一阶张量),二阶张量,及高阶张量.(见郭硕鸿,电动力学,P258)分为:0 阶张量,即标量(scalar),在3维空间中,只有30 = 1个分量.标量是空间转动下的不变量.例如,空间中任意两点之间的距离r ,就是坐标系转动下的不变量.温度、任一时刻质点的能量、带电粒子的电荷、电场中的电势,等等,都是标量.1阶张量,即矢量(vector),在3维空间中,由31 = 3个分量构成有序集合.例如,空间中任意一点的位置矢量r ,质点的速度v 和加速度a ,作用力F 和力矩M ,质点的动量p 和角动量L 、电流密度J ,电偶极矩p ,磁偶极矩m ,电场强度E ,磁感应强度B ,磁场矢势A ,等等都是矢量.2阶张量(tow order tensor ),在3维空间中,由32 = 9个分量构成有序集合.例如,刚体的转动惯量→→I ,电四极矩→→D ,等.3阶张量,在3维空间中,由33 = 27个分量构成有序集合.矢量表示印刷——用黑体字母,如 r , A 书写——在字母上方加一箭头,如 A r ,正交坐标系的基矢量正交坐标系(如直角坐标系,球坐标系,柱坐标系)基矢量321,e e e ,的正交性可表示为⎩⎨⎧≠===⋅ji j i ij 01δj i e e (1.1) 一般矢量A 有三个独立分量A 1,A 2,A 3,故可写成∑==++=31332211i i i A A A A ee e e A (1.2)矢量的乘积两个矢量的标积与矢积,三个矢量的混合积与矢积分别满足A B B A ⋅=⋅ (1.3)A B B A ⨯-=⨯ (1.4))()()(B A C A C B C B A ⨯⋅=⨯⋅=⨯⋅ (1.5))()()(B A C A C B C B A ⋅⋅=⨯⨯- (1.6)并矢量与二阶张量两个矢量A 和B 并置构成并矢量j i e e e e e e e e AB j j i i B A B B B A A A ∑==++++=31,332211332211))(( (1.7)它有9个分量j i B A 和9个基j i e e ,一般地BA AB ≠.三维空间二阶张量也有9个分量ij T ,它的并矢量形式与矩阵形式分别为j i e e ∑=→→=31,j i ij T T (1.8)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211T T T T T T T T T T (1.9) 张量的迹是其主对角线全部元素(分量)之和:332211tr T T T T ++= (1.10)单位张量的并矢量形式与矩阵形式分别是332211e e e e e e ++=→→I (1.11)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001I (1.12)因此(Ⅰ.1)式中的符号ij δ实际上是单位张量的分量.对称张量与反对称张量 若ij ji T T =,称之为对称张量,它有6个独立分量,若对称张量的迹为零,则它只有5个独立分量.单位张量是一个特殊的对称张量. 若ij ji T T -=,称之为反对称张量,由于0332211===T T T ,反对称张量只有3个独立分量.任何张量ij T 均可写成一个对称张量ij S 与一个反对称张量ij A 之和,即ij ij ij A S T +=,只需使)/2(ji ij ij T T S +=,)/2(ji ij ij T T A -=.二阶张量与矢量点乘,结果为矢量.由(Ⅰ.1)式,有∑∑∑∑==⋅=⋅→→ij j ij i j ki ij ji k k k ij ij k k T A e T A T A T e e e e A ji δ,, (1.13) ∑∑∑∑==⋅=⋅→→ij i ij j i ij k j i k k k k ij ij T A e T A A T T e e e e A jk j i δ,, (1.14)一般地A A ⋅≠⋅→→→→T T . 但单位张量与任何矢量点乘,均给出原矢量:A A A =⋅=⋅→→→→I I (1.15) 并矢量与并矢量、或二阶张量与二阶张量双点乘,结果为标量.运算规则是先将靠近的两个矢量点乘,再将另两个矢量点乘:))(()()(D A C B CD AB ⋅⋅=: (1.16)2 矢量和张量分析(1)算符∇和2∇物理量在空间中的分布构成“场”(field).表示“场”的物理量一般地是空间坐标的连续函数,也可能有间断点,甚至会有奇点.例如:温度T 、静电势ϕ的分布都构成标量场;电流密度J 、电场强度E 、磁感应强度B 、磁场矢势A 的分布都构成矢量场.∇是对场量作空间一阶偏导数运算的矢量算符,2∇=∇⋅∇是二阶齐次偏导数运算的标量算符,即拉普拉斯算符.在直角坐标系中z y x z y x ∂∂+∂∂+∂∂=∇e e e ,2222222zy x ∂∂+∂∂+∂∂=∇ (2.1) 三个基矢量z y x e ,e ,e 均是常矢量.(2)标量场的梯度(gradient of a scalar field)标量场ϕ在某点的梯度zy x z y x ∂∂+∂∂+∂∂=∇ϕϕϕϕe e e (2.2)是一个矢量,它在数值上等于ϕ沿其等值面的法向导数,方向沿ϕ增加的方向,即n dnd ϕϕ=∇ (2.3) 例如静电势ϕ的分布是一个标量场,E =-∇ϕ即变成矢量场——静电场.(3)矢量场的散度(divergence of a vector field)矢量场A 通过某曲面S 通量(flux)定义为⎰⋅=ΦSd S A (2.4) 其中n S dS d =是曲面S 某点附近的面积元矢量,方向沿曲面的法向n .对于闭合曲面(closed surface),规定S d 的方向沿曲面的外法向.对于矢量场A 中包含任一点)(z y x ,,的小体积V ∆,其闭合曲面为S ,定义极限A S A ⋅∇=∆⋅⎰→∆Vd SV 0lim (2.5) 为矢量场A 在该点的散度,它是标量.在直角坐标系中zA y A x A z y x ∂∂+∂∂+∂∂=⋅∇A (2.6) 若0≠⋅=Φ⎰S d S A , 则该点散度0≠⋅∇A ,该点就是矢量场A 的一个源点; 若0=⋅=Φ⎰Sd S A ,则该点散度0=⋅∇A ,该点不是矢量场A 的源点. 若处处均有0=⋅∇A ,A 就称为无散场(或无源场),它的场线必定是连续而闭合的曲线.磁场B 就是无散场(solenoidal field ).高斯定理(Gaussl theorem ) 对任意闭合曲面S 及其包围的体积V ,下述积分变换定理成立⎰⎰⋅∇=⋅S V A S A dV d (2.7) 由此推知,若A 是无散场,即处处有0=⋅∇A ,则A 场通过任何闭合曲面的净通量均为零.(4)矢量场的旋度(curl of a vector field)矢量场A 沿闭合路径(closed contour)L 的积分⎰⋅Ld l A 称为A 沿L 的环量(circulateon),其中l d 是路径L 的线元矢量.若对任意闭合路径L ,均有0=⋅⎰Ld l A (2.8) 则称A 为保守场(conservative field ).当闭合路径L 所围成的面积元S ∆是某点P 的无限小邻域,我们约定:路径积分的绕行方向即d l 的方向,与其所围成的面积元S ∆的法向n 成右手螺旋关系,并定义极限n LS S d )()(lim 0A n A l A ⨯∇=⋅⨯∇=∆⋅⎰→∆ (2.9)为矢量场A 在该点的旋度A ⨯∇在n 方向的分量.在直角坐标系中z x y y z x x y z yA x A x A z A z A y A e e e A )()()(∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=⨯∇ (2.10) 它是矢量.按上述约定若()0>⨯∇n A ,则A 线在该点周围形成右手涡旋;若()0<⨯∇n A ,则A 线在该点周围形成左手涡旋;若()0=⨯∇n A ,A 线在该点不形成涡旋.如果所有点上均有0=⨯∇A ,A 就称为无旋场.例如静电场E 就是无旋场(irrotational field).斯托克斯定理(stokes theorem) 对任意的闭合路径L 所围的曲面S ,下述积分变换成立()S A l A Sd d L ⋅⨯∇=⋅⎰⎰ (2.11) (5) 矢量场的几个定理标量场的梯度必为无旋场:0=∇⨯∇ϕ (2.12)【证】对任意标量场ϕ的梯度zy x z y x ∂∂+∂∂+∂∂=∇ϕϕϕϕe e e 取旋度,可得[]0)()(=∂∂∂∂-∂∂∂∂=∇⨯∇yx x y x ϕϕϕ, []0=∇⨯∇y ϕ,[]0=∇⨯∇z ϕ 逆定理:无旋场必可表示成某一标量场的梯度,即若0=⨯∇A ,必可令ϕ∇=A例如对于静电场强度E ,就可用标势ϕ的负梯度描写: ϕ-∇=E .矢量场的旋度必为无散场:0=⨯∇⋅∇A (2.13)【证】0)()()(=∂∂-∂∂∂∂+∂∂-∂∂∂∂+∂∂-∂∂∂∂=⨯∇⋅∇y A x A z x A z A y z A y A x x y z x y z A 逆定理:无散场必可表成另一矢量场的旋度,即若0=⋅∇B , 必可令A B ⨯∇=例如对于磁感应强度B ,就可用矢势A 的旋度描写.(6)算符运算标量函数ϕ的梯度ϕ∇是矢量,矢量函数f 的散度f ⋅∇是标量,旋度f ⨯∇是矢量,而f ∇是二阶张量:∑∑∑===∂∂=∂∂=∇31,3131j i i j j j i i x f f x j i j i e e e e f (2.14)若ϕ和φ是标量函数,f 和g 是矢量函数,有ϕφφϕϕφ)()()(∇+∇=∇ (2.15) ϕϕϕ)()()(f f f ⋅∇+⋅∇=⋅∇ (2.16) ϕϕϕ)()()(f f f ⨯∇+⨯∇=⨯∇ (2..17) f g g f g f ⋅⨯∇⋅⨯∇=⨯⋅∇)()()(- (2.18) f g g f g f f g g f )()()()()(⋅∇+∇⋅⋅∇-∇⋅=⨯⨯∇- (2.19) g f g f f g f g g f )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇ (2.20) g f g f fg )()()(∇⋅+⋅∇=⋅∇ (2.21) f f f 2)()(∇⋅∇∇=⨯∇⨯∇- (2.22)上述运算不必采用化成分量的方法进行,只要抓住算符∇的微分作用及其矢量性质,便可快捷准确地写出结果.当∇作用于两个函数的乘积(或两个函数之和)时,表示它对每一个函数都要作微分运算,可以先考虑∇对第一个量的作用,并将这个量记为∇的下标,以示算符只对此量执行微分运算,第二个量则视为常数,再考虑∇对第二个量的作用,此时亦将第二个量记为∇的下标,第一个量则视为常数;必须注意的是,算符不能与其微分运算对象掉换次序.例如(2.16)式,)(f ϕ⋅∇是对矢量f ϕ求散度,故运算结果的每一项都必须是标量,我们有ϕϕϕϕϕϕ)()()()()(f f f f f ⋅∇+⋅∇=⋅∇+⋅∇=⋅∇f又如(2.20)式,)(g f ⋅∇是对标量g f ⋅求梯度,结果的每一项都必须是矢量,先把它写成)()()(g f g f g f ⋅∇+⋅∇=⋅∇g f再根据三矢量的矢积公式(1.6)式,但结果中必须体现f ∇对f 的微分作用,以及g ∇对g 的微分作用,故有f g f g g f )()()(∇⋅+⨯∇⨯=⋅∇fg f g f g f )()()(∇⋅+∇⨯⨯=⋅∇gg f g f f g f g g f )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇右方所得结果中第二项实际上是f g ∇⋅,第四项是g f ∇⋅.(7)积分变换⎰⎰⋅=⋅∇SV d dV S A A )( (高斯定理) (2.23.) →→→→⋅=⋅∇⎰⎰T d dV T SV S )( (2.24) ⎰⎰⋅=⋅⨯∇LS d d l A S A )( (斯托克斯定理) (2.25) ⎰⎰⋅∇=∇+∇SV d dV S )()(22φϕϕφφϕ(格林公式) (2.26) ⎰⎰⋅∇-∇=∇-∇SV d dV S )()(22ϕφφϕϕφφϕ(格林公式) (2.27) 3 δ函数一维δ函数定义为 ⎩⎨⎧'≠'=∞='-x x x x x x 0)(δ (3.1) 1)(='-⎰b adx x x δ ,当b x a <'< (3.2) 主要性质为:)(x x '-δ为偶函数,其导数是奇函数;又若函数)(x f 在x x '=附近连续,有)()()(x f dx x x x f ba '='-⎰δ,当b x a <'< (3.3) 这一性质由中值定理可以证明.三维δ函数定义为⎩⎨⎧'≠'=∞='-x x x x x x 0)(δ (3.4) 1)(='-⎰VdV x x δ,当x '在V 内 (3.5) 因此,位于x '的单位点电荷的密度可表示为)()(x x x '-=δρ. (4.3)式可推广到三维情形,若函数)(x f 在x x '=附近连续,便有)()()(x x x x '='-⎰f dV f V δ,当x '在V 内 (3.6)4.球坐标系和圆柱坐标系直角坐标系当坐标),,(z y x 变化时,三个基矢z y x e ,e ,e 的方向保持不变.常用的微 分运算表达式为z y x zy x e e e ∂∂+∂∂+∂∂=∇ϕϕϕϕ (4.1) zA y A x A z y x ∂∂+∂∂+∂∂=⋅∇A (4.2) z x y y z x x y z y A x A x A z A z A y A e e e A )()()(∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=⨯∇ (4.3) 2222222z y x ∂∂+∂∂+∂∂=∇ϕϕϕϕ (4.4)曲线正交坐标系任一点的坐标也可用曲线正交坐标系描述,沿三个坐标),,(321u u u 增加方向的基矢量321e ,e ,e 互相正交,随着坐标变化,一般地三个基矢量的取向将会改变.无限小线元矢量l d 、坐标i u 的标度系数i h ,以及微分算符分别为333222111332211e e e e e e l du h du h du h dl dl dl d ++=++= (4.5)21222])()()[(ii i i u z u y u x h ∂∂+∂∂+∂∂= (4.6) 333222111111u h u h u h ∂∂+∂∂+∂∂=∇e e e (4.7) )]()()([13321322132113213212u h h h u u h h h u u h h h u h h h ∂∂∂∂+∂∂∂∂+∂∂∂∂=∇ (4.8) 球坐标系r u =1,θ=2u ,φ=3u ;11=h ,r h =2,θsin 3r h =.三个基矢r e e =1,θe e =2,φe e =3的方向均与坐标θ和φ有关,而与r 无关.与直角坐标系基矢的变换为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z y x e e e e e e r 0cos sin sin sin cos cos cos cos sin sin cos sin φφθφθφθθφθφθφθ (4.9) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡φθθθφφθφθφφθφθe e e e e e r 0sin cos cos sin cos sin sin sin cos cos cos sin z y x (4.10)坐标变换为φθcos sin r x =,φθsin sin r y =,θcos r z = (4.11)常用的微分运算表达式为φϕθθϕϕϕφθ∂∂+∂∂+∂∂=∇sin 11r r r re e e (4.12) φθθθθφθ∂∂+∂∂+∂∂=⋅∇A r A r A r rr r sin 1)sin (sin 1)(122A (4.13) φθθφθφθφθφθθθe e e A ⎥⎦⎤⎢⎣⎡∂∂∂∂+⎥⎦⎤⎢⎣⎡∂∂-∂∂+⎥⎦⎤⎢⎣⎡∂∂∂∂=⨯∇r r r A A r r r A r r A r A A rsin -))-(1(sin 11)sin (1 (4.14) 2222222sin 1)sin (sin 1)(1φϕθθϕθθθϕϕ∂∂+∂∂∂∂+∂∂∂∂=∇r r r r r r (4.15) 立体角元、球面积元与体积元分别为φθθd d d sin =Ω (4.16) Ω===d r d d r dl dl dS r 2232sin φθθ (4.17) φθθd drd r dl dl dl dV sin 2321== (4.18)柱坐标系r u =1,φ=2u ,z u =3; 11=h ,r h =2,13=h .三个基矢量r e e =1,φe e =2 ,z e e =3中,r e 和φe 的方向均与坐标φ有关,z e 则为常矢量.与直角坐标系基矢的变换为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z y x z e e e e e e r 1000cos sin 0sin cos φφφφφ (4.19) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z z y x e e e e e e r φφφφφ1000cos sin 0sin cos (4.20)坐标变换为φcos r x =,φsin r y =,z z = (4.21)常用的微分运算表达式为z r zr r e e e ∂∂+∂∂+∂∂=∇ϕφϕϕϕφ1 (4.22) z A A r A r r r z r ∂∂+∂∂+∂∂=⋅∇φφ1)(1A (4.23)z r z r r z A A r r r rA z A z A A r e e e A ]([1()1(φφφφφ∂∂-∂∂+∂∂∂∂+∂∂∂∂=⨯∇))-- (4.24)2222221)(1z r r r r r ∂∂+∂∂+∂∂∂∂=∇ϕφϕϕϕ (4.25) 体积元为dz rdrd dl dl dl dV φ==321 (4.26)例1.设u 是空间坐标z y x ,,的函数,证明:u dudfu f ∇=∇)( (1) dud u u AA ⋅∇=⋅∇)( (2) dud u u AA ⨯∇=⨯∇)( (3) 【证】对于)(u f ∇,注意到du df u f =∂∂,有u drdf z u y u x u du df zf y f x f u f z y x z y x∇=∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=∇)()(e e e e e e在直角坐标系中将矢量A 写成分量形式,便可证明(2)式和(3)式.例2.从源点(即电荷电流分布点)x '到场点x 的距离r 和矢径r 分别为222)()()(z z y x y x x r '-+'-+'-= z y x z z y -y x -x e e e r )-()('+'+'=)(对源变数x '和场变数x 求微商的算符分别为z y x z y x'∂∂+'∂∂+'∂∂=∇'e e e ,zy x zy x ∂∂+∂∂+∂∂=∇e e e 证明下列结果,并体会算符∇'与∇的关系:rr r r=∇'-=∇ (单位矢量) (1) 3=⋅∇'-=⋅∇r r (2) 0=⨯∇'-=⨯∇r r (3)→→=∇'-=∇I r r (单位张量) (4) 311rr r r-=∇'-=∇(5)033=⋅∇'-=⋅∇rrr r ,(0≠r ) (6) 033=⨯∇'-=⨯∇r r r r (7)【证】 将算符∇与∇'分别作用于r 和矢径r 的表达式,可得到(1)至(4)式的结果.利用前面1.2题的第一式和本题(1)至(4)式的结果,得3211)(1rr r r dr r d r rr -=-=∇=∇- 0)(333=⋅∇+⋅∇=⋅∇-r r r -r r r ,(当0≠r ) 0)(333=⨯∇+⨯∇=⨯∇-r r r -r r r同理可证31r r r =∇';03=⋅∇'rr ,当0≠r ;03=⨯∇'r r.事实上,对任意的标量函数)(r f 和矢量函数r )(r f ,不难证明)()(r f r f ∇'-=∇;])([])([r r r f r f ⋅∇'-=⋅∇ ])([])([r r r f r f ⨯∇'-=⨯∇;])([])([r r r f r f ∇'-=∇即算符∇与∇'存在代换关系∇'-→∇.这种代换将会经常用到.。

(参考资料)矢量与张量常用公式的证明

(参考资料)矢量与张量常用公式的证明

矢量与张量常用公式的证明并矢的常用公式有(1)()()()AB A B A B ∇⋅=∇⋅+⋅∇K K K K K K(2)()()()AB A B A B ∇×=∇×−×∇K K K K K K设S 为区域Ω的边界曲面,n K为S 的法向单位矢量(由内指向外),有 (3)d ()d ()S S AB V AB Ω⋅=∇⋅∫∫K K K K Kv(4)d d S S A V A Ω×=∇×∫∫K K Kv(5)d d S S u V u Ω=∇∫∫Kv(6)d ()d ()S S AB V AB Ω×=∇×∫∫K K K K Kv(7)d d SS A V A Ω=∇∫∫K K Kv设L 为曲面S 的边界,L 的方向与S 的法线方向成右手螺旋关系,有(8)d d LSl u S u =×∇∫∫K Kv说明:以下的证明都是在直角坐标系下进行的,在直角坐标系下,kk e x ∂∇=∂K ,k e K为常矢量,可放在k x ∂∂前或后。

常把k x ∂∂记为k ∇,所以k k e ∇=∇K。

在证明过程中注意d d i i S S e =K K,d d i i l l e =K K ,时刻不忘爱因斯坦求和约定。

并且在证明过程中,经常利用公式i j i j k k e e e ε×=K K K ,ijk i j k A B A B e ε×=K K K ,ijk i j k A A e ε∇×=∇K K,()A B C ×⋅K K Kijk i j k A B C ε=等。

下面是证明过程:(1)()()()()k k i i j j k i j k i j AB e Ae B e A B e e e ∇⋅=∇⋅=∇⋅K K K K K K K K()()k i j ki j k k j j A B e A B e δ=∇=∇K Kj k kk k j j j j k k k k j j B A A B e B e A A B e ⎡⎤⎡⎤=∇+∇=∇+∇⎣⎦⎣⎦K K K ()()()()()()j j k k k k j j B e A A B e B A A B =∇+∇=∇⋅+⋅∇K K K K K K()()A B A B =∇⋅+⋅∇K K K K(2)()()()()k k i i j j k i j k i j AB e Ae B e A B e e e ∇×=∇×=∇×K K K K K K K K()i k j j k i kip p j A B B A e e ε=∇+∇K K(k i kip p e e e ε×=K K K ) kip i k j p j j kip k i p j A B e e B Ae e εε=∇+∇K K K K()()()()ikp i k p j j kip k i p j j A e B e Ae B e εε=−∇+∇K K K K (ijk i j k A B A B e ε×=K K K ,ijk i j k A A e ε∇×=∇K K )()()()()A B A B A B A B =−×∇+∇×=∇×−×∇K K K K K K K K在后面的几个公式的中,要利用Gauss 公式d d S A S A V Ω⋅=∇⋅∫∫K K Kv ,Gauss 公式也可以写成d d SS A V A Ω⋅=∇⋅∫∫K K Kv ,或者d d i i i i SS A V A Ω=∇∫∫v 。

矢量张量公式及推导

矢量张量公式及推导

矢量张量公式及推导矢量及张量1. 协变基矢量:321g g g a 321a a a ++=,i a 称为逆变基分量,i g 是协变基矢量。

2. 逆变基矢量:321g g g a 321a a a ++=,i a 称为协变基分量,ig 是逆变基矢量。

3. 爱因斯坦求和约定:省略求和符号,ii g g a i i a a == 4. 逆变基于协变基的关系:ji δ=?j i g g5. 标积:i i j i j i b a b a =?=?g g b a6. 坐标转换系数i i 'β:i i i i i ii i i i i xx x x x x g g r r g '''''β=??==??=7. 转换系数的性质:i j k j i k δββ='',因为''''m l m j i l j i i j g g g g ?=?=ββδ8. 张量:分量满足坐标转换关系的量,比如矢量''''''i i i i i i k k i i v v v ββ=?=?=g g g v9. 置换张量:ijk k j i ijk e g ==][g g g ε,其中][321g g g =g ,同理有ijkk j i ijk e g1][==g g g ε 由行列式的性质及线性][][]['''''''''n m l nk m j l i n n k m m j l l i k j i g g g g g g g g g ββββββ==,因此ijk ε是张量分量。

定义置换张量:k j i ijk k j i ijk g g g g g g εεε==10. 基的叉积:k l ijl ijk k j i g g g g g ?==??εε,所以l ijl j i g gg ε=?,l ijlj i g g g ε=?11. 叉积:k ijk j i j i j i b a b a g g g b a ε=?=?,或写成实体形式ε:ab ab :εb a ==?,双标量积用前前后后规则完成。

张量与并矢(即向量的直积)

张量与并矢(即向量的直积)

理论也要用到并矢张量。
需要注意:并矢积是不可交换的,也就是说,除非两个矢量
线性相关,否则一定有

在物理学中,并矢张量最重要的应用之一就是它和向量的缩并。对于并矢积 和向量 的缩并,规定

如果要求这种规定也适用于量子力学中的态矢量,在这种情况下就要特别注意每个式子右端各个向量的先后顺序:用狄拉克符
号来写,则
表示
, 的复共轭(如果
)。
(7) 对于任意的
以及
,总有

(8) 对于任意的
以及
,总有

(9) 对任意的
,总有

范例
旋转
设定 为一个并矢张量:
。 是一个二维空间的 90° 旋转算子 (rotation operator) 。它可以从左边点积一个向量来产生一个旋转:
; 或以矩阵表达,

一个一般的二维旋转并矢张量,会产生 角度反时针方向的旋转,表达为
,规则 (6) 和 (8) 表明,给定任意一个并矢张量 之后,从矢量 到
(或者
)的映射是线性映射,所以,欧几里得空间上的并矢张量总是对应着它自身上的线性变换。下面要证明,从
/wiki/%E4%B8%A6%E7%9F%A2%E5%BC%B5%E9%87%8F 2013/5/5
并矢张量与向量的缩并
既然上述定义等价,我们就把 上所有的并矢张量所构成线性空间记为
。在此基础上,如果 是一个内积空间并

的内积记为
(当
时,约定
对 是共轭线性的),则定义并矢张量 和矢量
的缩并

都是 中的向量,满足下述运算律:
(6) 对于任意的 从而可以把上述两个结果分别记为

电动力学数学基础

电动力学数学基础

• A=0 表示沿任意封闭曲线的 环流量为0,即液体流动时不形成 漩涡,称矢量场A为无旋场
• A0 表示存在漩涡,|rot A|越 大,旋转越快
斯托克斯公式:矢量场A沿封闭曲线L的环流量,等于在以L为边
界的曲面S内每一点的旋度在S上的面积分——
Ñ r v
rv
A dl ( A )dS
线(积分)化面(积分)
v j
v k
意义的矢量,须对一个函
x y z
数实施作用才有意义。
在其它形式的坐标系,如柱坐标、球坐标,梯度的表达式不同。 2)梯度运算公式:类似求导规则
F(u)F(u)u ()
u1 vv2(vuuv)
3)梯度的几何意义:在P点处的梯度方向与通过P点的等量面
(量值相等的点构成的面)在P点的法线n的方向相同,且指向
i j
l
i j l
i j
fvTt fiTijevj 张量和矢量点乘:结果仍为矢量
ij
单位张量:
Ie 1 e 1 e 2 e 2 e 3 e 3
a vI t= I ta va v;
tttt t tttt
A I= IA A; A:I= I:A T rA
一般情况下可通过并矢来定义张量,但并非所有张量均 可用并矢来表示。
并矢与张量的区别:给定一并矢必有一张量与之对应,即并矢是 张量的一种特殊情形;而任一张量则需视其诸分量构成的特点, 或等于一个并矢,或等于两个并矢之和,或等于3个并矢之和。
"张量"一词最初由哈密尔顿在1846年引入,一些物理量如弹性 体的应力、应变以及运动物体的能量动量等都需用张量来表示。 爱因斯坦在其广义相对论中广泛地利用了张量。 1)应力是某点A的坐标的函数,即受力 体内不同点的应力不同。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1 向量代数
1.1向量的定义
从几何观点来看,向量定义为有向线段。

在三维欧氏空间中,建立直角坐标系
,沿坐标方向的单位向量为,即其标架为。

设从坐标原点至点的向量为,它在所述坐标系中的坐标为,那么可写成
(1.1)
设在中有另一个坐标系,其标架为,它与之间的关系为
(1.2)
由于单位向量之间互相正交,之间也互相正交,因此矩阵
(1.3)
将是正交矩阵,即有,其中上标表示转置。

从(1.2)可反解出
(1.4)向量在新坐标系中的分解记为
(1.5)
将(1.4)代入(1.1),得到
(1.6)
公式(1.6)是向量的新坐标和旧坐标之间的关系,它是坐标变换系数的一次齐次式。

这个式子应该是有向线段的几何客观性质(如:长度、
角度)不随坐标的人为主观选取而变化的一种代数反映。

可以说,公式(1.6)表示了向量在坐标变换下的不变性。

这样,我们就从向量的几何定义,得到了向量的代数定义:一个有序数组,
如果在坐标变换下为关于变换系数由(1.6)所示的一次齐次式,则称之为向量。

1.2 Einstein约定求和
用求和号,可将(1.1)写成
(1.7)
所谓Einstein约定求和就是略去求和式中的求和号,例如(1.7)可写成
(1.8)
在此规则中两个相同指标就表示求和,而不管指标是什么字母,例如(1.8)也可写成
(1.9)
有时亦称求和的指标为“哑指标”。

本书以后如无相反的说明,相同的英文指标总表示从1 至3 求和。

按约定求和规则,(1.2)、(1.4)可写成
(1.10)
(1.11)
将(1.11)代入(1.8),得
(1.12)
由此就得到了(1.6)式的约定求和写法,
(1.13)
今引入Kronecker记号,
(1.14)
例如。

应用,单位向量之间的内积可写成
(1.15)
向量和向量之间的内积可写成
(1.16)
上式中最后一个等号是因为只有时,才不等于零,在这里的作用似乎是将换成了,因而也称为“换标记号”。

再引入Levi-Civita记号,
(1.17)
其中分别取1,2,3中的某一个值。

例如

,,…。

利用
,向量之间的外积可写为
(1.18)
(1.19)
1.3
与之间的关系
Kronecker记号与Levi-Civita记号之间有如下关系
(1.20)
证明1 穷举法,先列出所有可能的81种取值情况,
情形
1
2
3

1 1 1 1
1 1 1 2
1 1 1 3
┆ ┆ ┆ ┆
然后逐个情形证明,例如,情形1,,故此情形(1.20)成立,…。

证明2 我们有双重外积公式
(1.21)
将代入(1.21)
左右两边,得到
将上述两式代入(1.21)两边,移项,得
(1.22)
由于的任意性,从(1.22)即得欲证之(1.20)式。

证明3 利用Lagrange公式
(1.23)
按证明2 类似的步骤,从(1.23)可导出(1.20)。

证明4 从(1.18)和向量混合乘积的行列式表示,有
(1.24)
其中分别为向量在中的坐标。

按行列式的乘积法则,有
(1.25)
其中第二个等式应用了等关系。

将(1.25)最后一个行列式展开,得
(1.26)
注意到,以及换标记号和的意义,从(1.26)即得(1.20)。

证毕。

§2 张量代数
2.1张量的定义

(2.1)
其中称为并矢基,它们共有9个,
(2.2)
在坐标变换(1.11)之下,(2.1)成为
(2.3)
于是
(2.4)
从(2.4)可引出张量的定义:一个二阶有序数组,在坐标变换下,关于变换系数为二次齐次式,则称为张量,也记作。

为其指标记号,
为其整体记号。

张量在并矢基下的9个分量,有一个矩阵与之对应,记作
(2.5)
同一个张量在另一组并矢基下所对应的矩阵为,
(2.6)
按(2.4)可知,张量在不同坐标系下所对应的矩阵服从矩阵的合同变换,
(2.7)
其中为坐标变换矩阵(1.3)。

附注:上述张量的定义可以推广:一个阶有序数组 ,在坐标变换(1.10)下,若服从的次齐次式,
(2.8)
则称之为阶张量。

按照这种定义,标量可认为是零阶张量,向量可认为是一阶张量,(2.1)所述的张
量为二阶张量,也可证明Levi-Civita记号为三阶张量。

(2.8)式中的下标和
取值范围也可不必限于从1到3,也可从1到,那么(2.8)式所定义的张量称为维空间中的阶张量。

本书所述张量,以后如不作说明均为三维二阶张量。

2.2张量的运算
张量与张量的和与差记为,
(2.9)
张量的转置记为,
(2.10)
不难验证,和也是张量。

例如,
(2.11)
一个张量称为对称张量,如果
(2.12)
与对称张量所对应的矩阵为对称矩阵。

一个张量称为反对称张量,如果
(2.13)
与反对称张量所对应的矩阵为反对称矩阵,我们将反对称矩阵记成
(2.14)
从(2.14)可以得出,
(2.15)
(2.16)
不难验证,由(2.16)所定义的为向量,它称为相应于反对称张量的轴向量。

由于
所以
(2.17)
为一张量,称之为单位张量。

张量的迹定义为
(2.18)
2.3 张量与向量之间的运算
张量与向量有左右两种内积,
(2.19)
(2.20)从(2.19) (2.19),可得左右两种内积之间有关系式
(2.21)
如果为反对称张量,由(2.19) (2.15),得
(2.22)
张量与向量有左右两种外积,
(2.23)
(2.24)
张量与两个向量和之间有四种运算,
2.4 张量与张量之间的运算
两个张量与之间的内积和外积如下
两个张量与之间有四种双重运算
对于双重运算,先将外层的两个基和按下面的符号进行运算,再将内层的两个基
和按上面的符号进行运算。

从双重运算可得两个有用的公式,
(2.25)
(2.26)
此外,尚有关系式
(2.27)
(2.28)
利用(2.25)(2.26),能得到两个有用的定理
定理2.1 对称
证明从(2.25)立即得到所需的结论。

定理2.2
证明首先,如果,那么,从(2.26)得到。

其次,如果,(2.26)给出
(2.29)
对(2.29)取迹,得
(2.30)
将(2.30)代回(2.29),即得。

证毕。

相关文档
最新文档