2019-2020七年级第一学期数学期中试卷含答案答题卡
人教版2019-2020学年七年级上册数学期中测试卷及答案
2019-2020学年人教版初中七年级(上)数学期中模拟试卷一.选择题(共12小题,满分24分,每小题2分)1.(2分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(2分)已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×1063.(2分)在|﹣6|,﹣20%,﹣(﹣5),(﹣1)2,﹣,﹣32,0中,负数有()个.A.1B.2C.3D.44.(2分)下列计算的结果中正确的是()A.3x+y=3xy B.5x2﹣2x2=3C.2y2+3y2=5y4D.2xy3﹣2y3x=05.(2分)已知a、b为有理数,ab≠0,且M=,当a、b取不同的值时,M的值是()A.±2B.±1或±2C.0或±1D.0或±26.(2分)某商品打九折后价格为a元,则原价为()元.A.a B.10%a C.D.7.(2分)下列语句中错误的是()A.数0是单项式B.单项式﹣x的系数是﹣1,次数是1C.3x2y+x﹣1是四次三项式D.2x2y3﹣xy2﹣5 的常数项是﹣58.(2分)当x+y=3时,5﹣x﹣y等于()A.6B.4C.2D.39.(2分)下列等式变形:①如果x=y,那么ax=ay;②如果x=y,那么=;③如果ax=ay,那么x=y;④如果=,那么x=y.其中正确的是()A.①④B.③④C.①②D.②③10.(2分)若x=﹣1是关于x的方程2x﹣m﹣5=0的解,则m的值是()A.7B.﹣7C.﹣1D.111.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0B.2a+2b C.2b﹣2c D.2a+2c12.(2分)一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是()A.0B.2C.1D.﹣1二.填空题(共6小题,满分12分)13.有理数1.7,﹣17,0,,﹣0.001,﹣,2003和﹣1中,非负整数有个,负分数有个.14.(3分)用四舍五入法将2.896精确到0.01,所得到的近似数为.15.(3分)﹣2的倒数是;平方等于36的数和与立方等于﹣64的数的和是.16.由2x﹣16=3x+5得2x﹣3x=5+16,在此变形中,是在原方程的两边同时加上了.17.(3分)在等式5×□+6﹣2×□=15的两个“□”内填入一个相同的数,使这个等式成立,则这个数是.18.(3分)已知数组:,,,…记第一个数为a1,第二个数为a2,第n个数为a n,若a n是方程=1的解,则n等于.三.解答题(共9小题,满分65分)19.(18分)计算:(1)(﹣+﹣)×36(2)(﹣3)2×(﹣)+4+22×20.(4分)(1)指出数轴上A、B、C、D、E各点分别表示什么数;(2)按从小到大顺序排列,将它们用“<”号连接起来;(3)写出离C点3个单位的点表示的数;(4)写出离C点m个单位的点表示的数(m>0).21.(7分)计算:﹣3[b﹣(3a2﹣3ab)]﹣[b+2(4a2﹣4ab)]22.(4分)先化简,再求值:(1)2x3﹣(7x2﹣9x)﹣2(x3﹣3x2+4x),其中x=﹣1.(2)已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y的值.23.(7分)解方程:(1)=2﹣(2)﹣=﹣124.(6分)已知多项式ax5+bx3+cx+3.x=3时,值为48,求x=﹣3时,这个多项式的值.25.(5分)某市居民使用自来水按如下标准收费(水费按月缴纳):户月用水量单价不超过12m3的部分a元∕m3超过12m3但不超过20m3的部分 1.5a元∕m3超过20m3的部分2a元∕m3(1)当a=2时,某用户一个月用了28m3水,求该用户这个月应缴纳的水费.(2)设某户月用水量为n立方米,当n>20时,则该用户应缴纳的水费元(用含a、n的整式表示).(3)当a=2时,甲、乙两用户一个月共用水40m3,已知甲用户缴纳的水费超过了24元,设甲用户这个月用水xm3,试求甲、乙两用户一个月共缴纳的水费(用含x的整式表示).26.(7分)已知(x2﹣x+1)6=a12x12+a11x11+a10x10+…+a2x2+a1x+a0,求a12+a10+a8+…+a2+a0的值.27.(7分)如图,在数轴上A点表示的数是a,B点表示的数是b,且a,b满足|a+8|+(b﹣2)2=0.动线段CD =4(点D在点C的右侧),从点C与点A重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t秒(1)a=,b=,运动过程中,点D表示的数是(用含有t的代数式表示);(2)在B、C、D三个点中,其中一个点是另外两个点为端点的线段的中点,求t的值;(3)当线段CD在线段AB上(不含端点重合)时,如图,图中所有线段的和记作为S,则S的值是否随时间t 的变化而变化?若变化,请说明理由;若不变,请求出S值.参考答案与试题解析一.选择题(共12小题,满分24分,每小题2分)1.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.【解答】解:316 000 000用科学记数法可表示为3.16×108,故选:C.3.【解答】解:∵|﹣6|=6>0,﹣20%=﹣0.2,﹣(﹣5)=5,(﹣1)2=1,﹣,﹣32=﹣9,0,∴在|﹣6|,﹣20%,﹣(﹣5),(﹣1)2,﹣,﹣32,0中,负数有3个,故选:C.4.【解答】解:A、3x+y,无法计算,故此选项错误;B、5x2﹣2x2=3x2,故此选项错误;C、2y2+3y2=5y2,故此选项错误;D、2xy3﹣2y3x=0,正确.故选:D.5.【解答】解:当a>0、b>0时,M=1+1=2;当a>0、b<0时,M=1﹣1=0;当a<0、b>0时,M=﹣1+1=0;当a<0、b<0时,M=﹣1﹣1=﹣2;综上,M的值是0或±2,故选:D.6.【解答】解:a÷0.9=a,故选:C.7.【解答】解:A、数0是单项式,正确,不合题意;B、单项式﹣x的系数是﹣1,次数是1,正确,不合题意;C、3x2y+x﹣1是三次三项式,故此选项错误,符合题意;D、2x2y3﹣xy2﹣5 的常数项是﹣5,正确,不合题意;故选:C.8.【解答】解:当x+y=3时,5﹣x﹣y=5﹣(x+y)=5﹣3=2,故选:C.9.【解答】解:①x=y,等式两边同时乘以a得:ax=ay,即①正确,②x=y,若a=0,则和无意义,即②错误,③ax=ay,若a=0,则x不一定等于y,即③错误,④=,等式两边同时乘以a得:x=y,即④正确,即正确的是①④,故选:A.10.【解答】解:把x=﹣1代入方程得:﹣2﹣m﹣5=0,解得:m=﹣7,故选:B.11.【解答】解:由图可知,c<a<0<b,|c|>|b|>|a|,则|a+b|+|a+c|﹣|b﹣c|=a+b﹣a﹣c﹣b+c=0.故选:A.12.【解答】解:根据题意得:﹣2+7﹣4=1,则此时这个点表示的数是1,故选:C.二.填空题(共6小题,满分12分)13.【解答】解:非负整数为:0,2003,一共2个;负分数有:﹣5,﹣0.001,﹣,共3个.故答案为:2,3.14.【解答】解:2.896精确到0.01,所得到的近似数为2.90.故答案为2.90.15.【解答】解:﹣2的倒数是﹣;平方等于36的数和与立方等于﹣64的数的和是2或﹣10,故答案为:﹣,2或﹣10.16.【解答】解:∵2x﹣16=3x+5,∴2x﹣16+(16﹣3x)=3x+5+(16﹣3x),即2x﹣3x=5+16.故答案为:16﹣3x.17.【解答】解:设“□”内填入数为x,根据题意得:5x+6﹣2x=15,移项合并得:3x=9,解得:x=3,则这个数是3,故答案为:318.【解答】解:=1,两边同乘以6得:3+9x﹣2x+2=6,解得:x=,∴a n=,分析数列如下:(分母为1时,1个数),,(分母为2时,3个数)以此类推,分母为3时,有5个数,分母为4时,有7个数,分母为5时,有9个数,分母为6时,有11个数,前面所有分数个数为1+3+5+7+9+11=36,分母为7时,有13个数,第37个数和49个数都是.故n=37或49.故答案为:37或49.三.解答题(共9小题,满分65分)19.【解答】解:(1)原式=﹣6+27﹣15=6;(2)原式=9××(﹣)+4+4×(﹣)=﹣﹣+4=﹣.20.【解答】解:(1)数轴上A点表示的数是﹣2;数轴上B点表示的数是1;数轴上C点表示的数是3.25;数轴上D点表示的数是﹣4;数轴上E点表示的数是﹣0.5;(2)﹣4<﹣2.7<﹣0.5<1<3.25;(3)离C点3个单位的点表示的数是0.25和6.25;(4)离C点m个单位的点表示的数(m>0)是3.25+m和3.25﹣m.21.【解答】解:原式=﹣3b+9a2﹣9ab﹣b﹣8a2+8ab=a2﹣4b﹣ab.22.【解答】解:(1)原式=2x3﹣7x2+9x﹣2x3+6x2﹣8x=﹣x2+x,当x=﹣1时,原式=﹣1﹣1=﹣2;(2)原式=3x2﹣6xy﹣x2+6xy﹣4y=2x2﹣4y=2(x2﹣2y),由x2﹣2y﹣5=0,得到x2﹣2y=5,则原式=10.23.【解答】解:(1)去分母,得5(y﹣1)=20﹣2(y+2),去括号,得5y﹣5=20﹣2y﹣4,移项,得5y+2y=20﹣4+5,整理,得7y=21,解得,y=3.(2)方程可变形为﹣=﹣1去分母,得2(10x﹣30)﹣3(20x+1)=﹣6,去括号,得20x﹣60﹣60x﹣3=﹣6,移项并整理,得﹣40x=57解得,x=﹣.24.【解答】解:把x=3代入得:243a+27b+3c+3=48,整理得:243a+27b+3c=45,当x=﹣3时,原式=﹣243a﹣27b﹣3c+3=﹣45+3=﹣42.25.【解答】解:(1)2×12+2×1.5×(20﹣12)+2×2×(28﹣20)=24+24+32=80(元)答:该用户这个月应缴纳80元水费.(2)a×12+1.5a×(20﹣12)+2a×(n﹣20)=12a+12a+2na﹣40a=2na﹣16a(元)故答案为:2na﹣16a(3)∵甲用户缴纳的水费超过了24元∴x>12①12<x≤20甲:2×12+3×(x﹣12)=3x﹣12乙:20≤40﹣x<2812×2+8×3+4×(40﹣x﹣20)=128﹣4x共计:3x﹣12+128﹣40x=116﹣x②20≤x≤28甲:2×12+3×8+4(x﹣20)=4x﹣32乙:12≤40﹣x≤202×12+3×(40﹣x﹣12)=108﹣3x共计:4x﹣32+108﹣3x=x+76③28≤x≤40甲:2×12+3×8+4×(x﹣20)=4x﹣32乙:0≤40﹣x≤122×(40﹣x)=80﹣2x共计:4x﹣32+80﹣2x=2x+48答:甲、乙两用户共缴纳的水费:当12<x≤20时,缴水费(116﹣x)元;当20≤x≤28时,缴水费(x+76)元;当28≤x≤40时,缴水费(2x+48)元;26.【解答】令x=1,由已知等式得a12+a11+…+a2+a1+a0=1,①令x=﹣1,得a12﹣a11+…+a2﹣a1+a0=729,②①+②得2(a12+a10+a8+a6+a4+a2+a0)=730.故a12+a10+a8+a6+a4+a2+a0=365.27.【解答】解:(1)∵a,b满足|a+8|+(b﹣2)2=0,∴a+8=0,b﹣2=0,∴a=﹣8,b=2.∵t秒时,点C表示的数为2t﹣8,CD=4,∴点D表示的数为2t﹣4.故答案为:﹣8;2;2t﹣4.(2)①当点D是线段BC的中点时,2﹣(2t﹣4)=4,解得:t=1;②当点B是线段CD的中点时,(2t﹣4)﹣2=2,解得:t=4;③当点C是线段BD的中点时,(2t﹣4)﹣2=8,解得:t=7.综上所述:t的值为1,4,7.(3)不变,理由如下:∵点A表示的数为﹣8,点B表示的数为2,点C表示的数为2t﹣8,点D表示的数为2t﹣4,∴AB=10,AC=2t,AD=2t+4,BC=10﹣2t,BD=6﹣2t,CD=4,∴S=AB+AC+AD+BC+BD+CD=10+2t+2t+4+10﹣2t+6﹣2t+4=34,∴S的值不变.。
2019-2020年初一数学期中考试试题及答案解析.docx
2019-2020 年初一数学期中考试试题及答案解析注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第 I 卷(选择题)评卷人得分一、选择题(每题 3 分,共 30 分)1.多项式 3x2- 2xy 3-1y- 1 是 ().2A.三次四项式B.三次三项式C.四次四项式D.四次三项式2.- 3 的绝对值是A . 3B.- 3C.-D.3.若 |x+2|+|y-3|=0,则 x-y 的值为()A. 5B. -5C.1 或-1D.以上都不对4.1)的相反数是(3A.1B.1C. 3D.﹣3 335. 2014 年 5 月 21 日,中国石油天然气集团公司与俄罗斯天然气工业股份公司在上海签署了《中俄东线供气购销合同》,这份有效期为30 年的合同规定,从2018 年开始供气,每年的天然气供应量为380 亿立方米, 380 亿立方米用科学记数法表示为()A.3.8 ×10103B.38×1093C.380×1083D.3.8 ×10113 m m m m6.计算 (a 2) 3÷ (a 2) 2的结果是 ()A. a B . a2 C . a3 D . a47.下列因式分解中,正确的有()①4a﹣ a3b2=a( 4﹣ a2b2);②x2y﹣ 2xy+xy=xy ( x﹣ 2);③﹣ a+ab﹣ ac=﹣ a( a﹣ b﹣c );④9abc﹣ 6a 2b=3abc ( 3﹣ 2a);⑤ x 2y+ xy 2= xy ( x+y )A.0个B.1个C.2个D.5个8.下列因式分解正确的是()A. x2﹣ xy+x=x ( x﹣ y)3222B. a ﹣ 2a b+ab =a( a﹣ b)22C. x ﹣ 2x+4=( x﹣ 1) +32D. ax ﹣ 9=a(x+3)( x﹣ 3)9.实数 a、 b 在数轴上的位置如图所示,下列式子错误的是()A. a< b C.- a<- b B. |a| > |b| D. b- a> 010.﹣ 的倒数是( )A 、B 、C 、﹣D 、﹣第 II 卷(非选择题)评卷人 得分二、填空题(每题 3 分,共 24 分)12 .用代数式表示“a 的 4 倍与 5 的差”为 .13 .已知2x m 1y 3 和 1 x n y m+n 是同类项,则nm 2012 =▲。
2019-2020年七年级(上)期中数学试卷(解析版)(I)
2019-2020年七年级(上)期中数学试卷(解析版)(I)一、单项选择题(每题2分,共30分)1.如果“+3吨”表示运入3吨大米,那么运出5吨大米应记作为()A.﹣5吨B.+5吨C.﹣3吨D.+3吨2.下列代数式中,是单项式的是()A.x+B.5m﹣2m C.a D.3.下列代数式的书写,正确的是()A.5n B.n5 C.1500÷t D.1x2y4.下列说法正确的是()A.正负号相反的两个数互为相反数B.数轴上原点两侧的两个点所表示的数是互为相反数C.相反数和我们以前学过的倒数是一样的D.只有正负号不同的两个数称互为相反数,零的相反数是零5.﹣2的绝对值是()A.B.﹣C.2 D.﹣26.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣7.下列各数中,最小的数是()A.0 B.3 C.﹣2016 D.﹣0.0018.单项式5xy2的次数是()A.5 B.1 C.2 D.39.下列说法中,错误的是()A.最小的正整数是1 B.绝对值最小的数是0C.最大的负整数是﹣1 D.﹣2的平方等于﹣410.计算:(﹣3)2=()A.6 B.﹣6 C.9 D.﹣911.下列语句不正确的是()A.0是代数式B.a是整式C.x的3倍与y的的差表示为3x﹣yD.s=πr2是代数式12.多项式x3﹣x+1的次数是()A.0 B.﹣1 C.1 D.313.已知|a|=3,|b|=5且a>b,则a+b的值是()A.﹣2或﹣8 B.﹣2或8 C.2或8 D.2或﹣814.下列各组数中,结果相等的数是()A.﹣12与(﹣1)2B.与()2C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣3315.a是一个两位数,b是一个三位数,把a放在b的右边组成一个五位数,用a,b的代数式表示所得的五位数是()A.ba B.10b+a C.10000b+a D.100b+a二、填空题(每小题2分,满分20分)16.在﹣,2,0,0.3,﹣9这五个数中,是负有理数;是整数.(提示:要填完整哈)17.平方后等于的有理数是.18.比较下列各对数的大小(填“>”、“<”或“=”):(1)﹣2016 1(2)0 ﹣8.(3)﹣1 ﹣0.01.19.﹣6的相反数是,+2的相反数是.20.绝对值等于12的有理数有.(提示:要填完整哟)21.﹣1的倒数是.22.“a的4倍与b的平方的差”用代数式表示为.23.将算式(﹣8)﹣(﹣10)+(﹣6)﹣(+4)改写成省略加号和括号的形式是:.24.把多项式﹣x﹣1﹣3x3y2+2x2y3按x的降幂排列是.25.多项式x3﹣2x2y2+3y2是次项式.三、解答题(共70分)(要求写出适当的解题过程)26.把下列各数填入表示它所在的数集的圈里:(提示:共10个数)﹣0.10,,1,﹣789,325,0,﹣20,10.10,1000.1,﹣5%27.画出数轴,在数轴上表示下列各数,并按从小到大的顺序排列,用“<“号把这些数连接起来.2.5,﹣3,5,0,﹣2.28.当x=﹣2,y=﹣4时,求下列各代数式的值(提示:注意书写格式):(1)x2+2xy+y2(2)x2﹣2xy+y2.29.填空(1)(﹣16)+(﹣8)= ;(2)(+15)+(﹣4)= ;(3)(﹣)+(﹣)= ;(4)(﹣3.4)+4.3= ;(5)(﹣3.5)+0= ;(6)(﹣12)+(+12)= ;(7)(﹣32)﹣(+5)= ;(8)7.3﹣(﹣6.8)= ;(9)(﹣3.28)﹣1= ;(10)12﹣21= ;(11)(﹣5)×(﹣3)= ;(12)(﹣)×= ;(13)(﹣10)××0.1×(﹣6)= ;(14)21×(﹣71)×0×43= ;(15)(﹣18)÷6= ;(16)÷(﹣)= ;(17)= ;(18)﹣÷×(﹣)= ;(19)(﹣2)5= ;(20)﹣24= .30.计算:(1)(+14)+(﹣4)+(﹣2)+(+26)+(﹣3)(2)﹣24+3.2﹣16﹣3.5+0.3(3)[1﹣(1﹣0.5×)]×[2﹣(﹣3)2](4)|﹣2|﹣(﹣)+1﹣|1﹣|(5)﹣22×(﹣)+4+(﹣3)3÷2×(﹣)2(6)﹣14﹣(1﹣0.5)÷(﹣)×[4﹣(﹣4)2].31.某检修小组乘一辆汽车沿东西向公路检修线路,约定向东为正,某天从A 地出发到收工时,行走记录为(长度单位:千米):(每小题10分,共30分)+15,﹣2,+5,﹣3,+8,﹣3,﹣1,+11,+4,﹣5,﹣2,+7,﹣3,+5.收工时,检修小组在A地的哪一边?距A地多远?2016-2017学年四川省宜宾市珙县洛表民族中学七年级(上)期中数学试卷参考答案与试题解析一、单项选择题(每题2分,共30分)1.如果“+3吨”表示运入3吨大米,那么运出5吨大米应记作为()A.﹣5吨B.+5吨C.﹣3吨D.+3吨【考点】正数和负数.【分析】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为﹣5吨.故选A2.下列代数式中,是单项式的是()A.x+B.5m﹣2m C.a D.【考点】单项式.【分析】根据单项式的概念对各选项进行逐一分析即可.【解答】解:A、x+是两个单项式的和,是多项式,故本选项错误;B、5m﹣2m是两个单项式的和,是多项式,故本选项错误;C、a是单独的一个字母,是单项式,故本选项正确;D、是分式,故不是单项式,故本选项错误.故选C.3.下列代数式的书写,正确的是()A.5n B.n5 C.1500÷t D.1x2y【考点】代数式.【分析】直接利用代数式书写方法分析得出答案.【解答】解:A、5n,书写正确,符合题意;B、n5,书写错误,不合题意;C、1500÷t,应为,故书写错误,不合题意;D、1x2y=x2y,故书写错误,不合题意;故选:A.4.下列说法正确的是()A.正负号相反的两个数互为相反数B.数轴上原点两侧的两个点所表示的数是互为相反数C.相反数和我们以前学过的倒数是一样的D.只有正负号不同的两个数称互为相反数,零的相反数是零【考点】数轴;相反数;倒数.【分析】根据互为相反数的性质,两数互为相反数,它们的和为0,符号相反的不一定是互为相反数作答.【解答】解:A、2,﹣3是符号相反的两个数,但不是互为相反数,故本选项错误;B、2,﹣3是数轴上原点两侧的两个点所表示的数,但不是互为相反数,故本选项错误;C、相反数和倒数是两个不同的概念,故本选项错误;D、只有正负号不同的两个数称互为相反数,零的相反数是零,故本选项正确.故选D.5.﹣2的绝对值是()A.B.﹣C.2 D.﹣2【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:C.6.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣【考点】绝对值.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.7.下列各数中,最小的数是()A.0 B.3 C.﹣2016 D.﹣0.001【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:∵﹣2016<﹣0.001<0<3,∴四个数中﹣2016最小,故选:C.8.单项式5xy2的次数是()A.5 B.1 C.2 D.3【考点】单项式.【分析】根据单项式的概念及单项式的次数的定义解答.【解答】解:单项式5xy2的次数是1+2=3.故选:D.9.下列说法中,错误的是()A.最小的正整数是1 B.绝对值最小的数是0C.最大的负整数是﹣1 D.﹣2的平方等于﹣4【考点】有理数的乘方;绝对值.【分析】根据有理数的相关概念,有理数的乘方,绝对值的性质对各选项分析判断即可得解.【解答】解:A、最小的正整数是1,说法正确,故本选项错误;B、绝对值最小的数是0,说法正确,故本选项错误;C、最大的负整数是﹣1,说法正确,故本选项错误;D、应为﹣2的平方等于4,所以,本题说法错误,故本选项正确.故选D.10.计算:(﹣3)2=()A.6 B.﹣6 C.9 D.﹣9【考点】有理数的乘方.【分析】根据有理数的乘方运算,(﹣3)2表示2个(﹣3)的乘积.【解答】解:(﹣3)2=9.故选C.11.下列语句不正确的是()A.0是代数式B.a是整式C.x的3倍与y的的差表示为3x﹣yD.s=πr2是代数式【考点】代数式.【分析】根据代数式的定义分别进行分析,即可得出答案.【解答】解:A、0是代数式是正确的,不符合题意;B、a是整式是正确的,不符合题意;C、x的3倍与y的的差表示为3x﹣y是正确的,不符合题意;D、S=πr2不是代数式,原来的说法是错误的,符合题意;故选D.12.多项式x3﹣x+1的次数是()A.0 B.﹣1 C.1 D.3【考点】多项式.【分析】根据多项式的概念及次数的定义解答.【解答】解:多项式x3﹣x+1的次数是3.故选:D.13.已知|a|=3,|b|=5且a>b,则a+b的值是()A.﹣2或﹣8 B.﹣2或8 C.2或8 D.2或﹣8【考点】有理数的加法;绝对值.【分析】求出a,b的值,根据a>b,确定a,b的值,进而求出解.【解答】解:∵|a|=3,∴a=±3.∵|b|=5,∴b=±5,∵a>b,∴a=3,b=﹣5和a=﹣3,b=﹣5.∴a+b=﹣2或a+b=﹣8.故选:A.14.下列各组数中,结果相等的数是()A.﹣12与(﹣1)2B.与()2C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣33【考点】有理数的乘方;绝对值.【分析】利用有理数乘方法则判定即可.【解答】解:A、﹣12=﹣1,(﹣1)2=1,所以选项结果不相等;B、=,()2=,所以选项结果不相等;C、﹣|﹣2|=﹣2,﹣(﹣2)=2,所以选项结果不相等;D、(﹣3)3=﹣27,﹣33=﹣27,所以选项结果相等.故选:D.15.a是一个两位数,b是一个三位数,把a放在b的右边组成一个五位数,用a,b的代数式表示所得的五位数是()A.ba B.10b+a C.10000b+a D.100b+a【考点】列代数式.【分析】b原来的最高位是百位,现在最高位为万位,扩大了100倍,a不变.【解答】解:两位数a放在一个三位数b的右边相当于b扩大了100倍,那么这个五位数为.故选D二、填空题(每小题2分,满分20分)16.在﹣,2,0,0.3,﹣9这五个数中,﹣,﹣9 是负有理数;2,0,﹣9 是整数.(提示:要填完整哈)【考点】有理数.【分析】根据有理数的分类:有理数填写即可.【解答】解:在﹣,2,0,0.3,﹣9这五个数中,﹣,﹣9是负有理数;2,0,﹣9是整数.故答案为:﹣,﹣9;2,0,﹣9.17.平方后等于的有理数是±.【考点】平方根.【分析】根据题意,平方后等于的有理数即为的平方根.【解答】解:∵(±)2=,∴平方后等于的有理数是:±.故答案为±.18.比较下列各对数的大小(填“>”、“<”或“=”):(1)﹣2016 < 1(2)0 >﹣8.(3)﹣1 <﹣0.01.【考点】有理数大小比较.【分析】(1)根据正数大于负数,可得答案;(2)根据零大于负数,可得答案;(3)根据负数比较大小,绝对值大的数反而小,可得答案.【解答】解:(1)﹣2016<1(2)0>﹣8.(3)﹣1<﹣0.01,故答案为:<,>,<.19.﹣6的相反数是 6 ,+2的相反数是﹣2 .【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣6的相反数是 6,+2的相反数是﹣2,故答案为:6,﹣2.20.绝对值等于12的有理数有12或﹣12 .(提示:要填完整哟)【考点】有理数;绝对值.【分析】根据绝对值的意义得到|﹣12|=12,|12|=12.【解答】解:绝对值等于12的有理数有12或﹣12.故答案为:12或﹣12.21.﹣1的倒数是﹣.【考点】倒数.【分析】依据倒数的定义回答即可.【解答】解:﹣1的倒数是﹣.故答案为:﹣.22.“a的4倍与b的平方的差”用代数式表示为4a﹣b2.【考点】列代数式.【分析】明确给出文字语言中的运算关系,先求倍数,然后求差,再求平方.【解答】解:a的4倍为4a,与b的平方差为4a﹣b2,故答案为:4a﹣b2.23.将算式(﹣8)﹣(﹣10)+(﹣6)﹣(+4)改写成省略加号和括号的形式是:﹣8+10﹣6﹣4 .【考点】有理数的加减混合运算.【分析】根据去括号的法则省略括号和加号即可得出答案.【解答】解:(﹣8)﹣(﹣10)+(﹣6)﹣(+4)改写成省略加号和括号的形式是:﹣8+10﹣6﹣4;故答案为:﹣8+10﹣6﹣4.24.把多项式﹣x﹣1﹣3x3y2+2x2y3按x的降幂排列是﹣3x3y2+2x2y3﹣x﹣1 .【考点】多项式.【分析】按x的指数从大到小排列即可,注意:排列时带着项的符号.【解答】解:把多项式﹣x﹣1﹣3x3y2+2x2y3按x的降幂排列是﹣3x3y2+2x2y3﹣x﹣1.故答案为:﹣3x3y2+2x2y3﹣x﹣1.25.多项式x3﹣2x2y2+3y2是四次三项式.【考点】多项式.【分析】根据多项式的定义,若干个单项式的和组成的式子叫做多项式.多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.【解答】解:根据多项式的定义,多项式x3﹣2x2y2+3y2是四次三项式.故答案为:四,三.三、解答题(共70分)(要求写出适当的解题过程)26.把下列各数填入表示它所在的数集的圈里:(提示:共10个数)﹣0.10,,1,﹣789,325,0,﹣20,10.10,1000.1,﹣5%【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解:27.画出数轴,在数轴上表示下列各数,并按从小到大的顺序排列,用“<“号把这些数连接起来.2.5,﹣3,5,0,﹣2.【考点】有理数大小比较;数轴.【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的是右边的总比左边的大,可得答案.【解答】解:如图,用“<“号把这些数连接起来,得﹣3<﹣2<0<2.5<5.28.当x=﹣2,y=﹣4时,求下列各代数式的值(提示:注意书写格式):(1)x2+2xy+y2(2)x2﹣2xy+y2.【考点】完全平方式.【分析】先化成完全平方式,再代入求值比较简单.【解答】解:(1)当x=﹣2,y=﹣4时,x2+2xy+y2=(x+y)2=(﹣2﹣4)2=36,(2)当x=﹣2,y=﹣4时,x2﹣2xy+y2=(x﹣y)2=(﹣2+4)2=4.29.填空(1)(﹣16)+(﹣8)= ﹣24 ;(2)(+15)+(﹣4)= 11 ;(3)(﹣)+(﹣)= ﹣;(4)(﹣3.4)+4.3= 0.9 ;(5)(﹣3.5)+0= ﹣3.5 ;(6)(﹣12)+(+12)= 0 ;(7)(﹣32)﹣(+5)= ﹣37 ;(8)7.3﹣(﹣6.8)= 14.1 ;(9)(﹣3.28)﹣1= ﹣4.28 ;(10)12﹣21= ﹣9 ;(11)(﹣5)×(﹣3)= 15 ;(12)(﹣)×= ﹣;(13)(﹣10)××0.1×(﹣6)= 2 ;(14)21×(﹣71)×0×43= 0 ;(15)(﹣18)÷6= ﹣3 ;(16)÷(﹣)= ﹣;(17)= ;(18)﹣÷×(﹣)= ;(19)(﹣2)5= ﹣32 ;(20)﹣24= ﹣16 .【考点】有理数的混合运算.【分析】根据有理数加减乘除的运算方法,以及有理数的混合运算的运算方法,求出每个算式的值是多少即可.【解答】解:(1)(﹣16)+(﹣8)=﹣24;(2)(+15)+(﹣4)=11;(3)(﹣)+(﹣)=﹣;(4)(﹣3.4)+4.3=0.9;(5)(﹣3.5)+0=﹣3.5;(6)(﹣12)+(+12)=0;(7)(﹣32)﹣(+5)=﹣37;(8)7.3﹣(﹣6.8)=14.1;(9)(﹣3.28)﹣1=﹣4.28;(10)12﹣21=﹣9;(11)(﹣5)×(﹣3)=15;(12)(﹣)×=﹣;(13)(﹣10)××0.1×(﹣6)=2;(14)21×(﹣71)×0×43=0;(15)(﹣18)÷6=﹣3;(16)÷(﹣)=﹣;(17)=;(18)﹣÷×(﹣)=;(19)(﹣2)5=﹣32;(20)﹣24=﹣16.故答案为:﹣24;11;﹣;0.9;﹣3.5;0;﹣37;14.1;﹣4.28;﹣9;15;﹣;2;0;﹣3;﹣;;;﹣32;﹣16.30.计算:(1)(+14)+(﹣4)+(﹣2)+(+26)+(﹣3)(2)﹣24+3.2﹣16﹣3.5+0.3(3)[1﹣(1﹣0.5×)]×[2﹣(﹣3)2](4)|﹣2|﹣(﹣)+1﹣|1﹣|(5)﹣22×(﹣)+4+(﹣3)3÷2×(﹣)2(6)﹣14﹣(1﹣0.5)÷(﹣)×[4﹣(﹣4)2].【考点】有理数的混合运算.【分析】(1)(2)从左向右依次计算,求出算式的值是多少即可.(3)首先计算乘方和括号里面的运算,然后计算乘法即可.(4)应用加法结合律,求出算式的值是多少即可.(5)首先计算乘方、乘法和除法,然后计算加法即可.(6)首先计算乘方和括号里面的运算,然后计算除法、乘法和减法即可.【解答】解:(1)(+14)+(﹣4)+(﹣2)+(+26)+(﹣3)=10﹣2+26﹣3=31(2)﹣24+3.2﹣16﹣3.5+0.3=﹣20.8﹣16﹣3.5+0.3=﹣40(3)[1﹣(1﹣0.5×)]×[2﹣(﹣3)2]=[1﹣(1﹣)]×[2﹣9]=×(﹣7)=﹣(4)|﹣2|﹣(﹣)+1﹣|1﹣|=(2+)+(1﹣)=3+=3(5)﹣22×(﹣)+4+(﹣3)3÷2×(﹣)2 =﹣4×(﹣)+4+(﹣27)÷2×=+4﹣=0(6)﹣14﹣(1﹣0.5)÷(﹣)×[4﹣(﹣4)2] =﹣1﹣÷(﹣)×[4﹣16]=﹣1+×(﹣12)=﹣1﹣8=﹣931.某检修小组乘一辆汽车沿东西向公路检修线路,约定向东为正,某天从A 地出发到收工时,行走记录为(长度单位:千米):(每小题10分,共30分)+15,﹣2,+5,﹣3,+8,﹣3,﹣1,+11,+4,﹣5,﹣2,+7,﹣3,+5.收工时,检修小组在A地的哪一边?距A地多远?【考点】有理数的加法;正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:由题意得:向东路程记为“+”,向西路程记为“﹣”,则检修小组离A点的距离为:(+15)+(﹣2)+(+5)+(﹣3)+(+8)+(﹣3)+(﹣1)+(+11)+(+4)+(﹣5)+(﹣2)+(+7)+(﹣3)+(+5)=36(千米)答:小花猫最后在出发点的东边;离开出发点A相距36千米.2017年5月3日。
2019-2020学年七年级(上)期中数学试卷 解析版
七年级(上)期中数学试卷一、选择题本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的1.下列四个有理数中,最大的是()A.﹣B.﹣C.﹣1 D.﹣22.我市某天早晨气温是﹣3℃,到中午升高了7℃,晚上又降低了3℃,到午夜又降低了6℃,午夜时温度为()A.19℃B.1℃C.﹣5℃D.﹣2℃3.节约是一种美德,据不完全统计,某国每年浪费食物总量折合粮食可养活约3亿6千万人,360000000用科学记数法表示为()A.0.36×109B.3.6×108C.36×107D.360×1064.如果a,b互为相反数,x,y互为倒数,则(a+b)2018+(﹣xy)2019的值是()A.1 B.0 C.﹣1 D.﹣20195.我国为了解决药品价格过高的问题,决定大幅度降低某些药品价格,其中将原价为a元的某种常用药降低60%,则降低后的价格为()A.元B.元C.0.4a元D.0.6a元6.下列各组代数式中,不是同类项的是()A.2与﹣5 B.2xy2与3x2y C.﹣3t与200t D.ab2与b2a7.当代数式x2+3x+5的值为11时,代数式3x2+9x﹣2的值为()A.16 B.12 C.9 D.﹣28.定义一种新运算“※”,观察下列各式1※3=1×5+3=83※(﹣1)=3×5﹣1=145※4=5×5+4=294※(﹣3)=4×5﹣3=17若a※(﹣b)=﹣6,则(a﹣b)※(5a+3b)的值为()A.12 B.6 C.﹣6 D.﹣12二、填空题本大题共8个问题,钊题3分,共24分,答案填在题中横线上9.有理数﹣的倒数是.10.绝对值小于3.5的整数是.11.若|x|=2,|y|=3,则|x+y|的值为.12.已知长方形的周长为4a+2b,其一边长为a﹣b,则另一边长为.13.已知a,b,c三个数在数轴上对应点的位置如图所示①a<c<b,②﹣a<b,③a﹣b>0,④c﹣a<0在上述几个判断中,错误的序号为.14.若规定一种运算法则=ad﹣bc,请运算=.15.下列说法中正确的序号为.①在正有理数中,0是最小的整数②最大的负整数是﹣1③有理数包括正有理数和负有理数④数轴上表示﹣a的点一定在原点的左边⑤在数轴上5与7之间的有理数是6.16.由1开始的连续奇数排成如下图所示,观察规律.则此表中第n行的第一个数是.(用含有n的代数式表示)三、解答题本大题共6个小题,共52分,解答应写出文字说明,证明过程或演算步骤. 17.根据下列要求完成各题(1)计算:(﹣5)﹣(﹣2)+(﹣3)+6(2)计算:(﹣10)÷2﹣(﹣3)×418.计算:(﹣3)2×(﹣2)﹣[(﹣1)5﹣8]÷3+|﹣7|19.已知有理数a、b、c在数轴上的位置如图,化简|a|﹣|a+b|+|c﹣a|+|b+c|.20.先化简,再求值:2(x3﹣32)﹣(5x3+x)﹣3(y2﹣x3),其中x=﹣7,y=﹣21.如图,在长方形ABCD中,放入6个形状和大小都相同的小长方形后,还有一部分空余(阴影部分),已知小长方形的长为a,宽为b,且a>b.(1)用含a、b的代数式表示长方形ABCD的长AD和宽AB.(2)用含a、b的代数式表示阴影部分的面积(列式表示即可,不要求化简).(3)若a=7cm,b=2cm,求阴影部分的面积.22.如图1所示,在一个长方形广场的四角都设计一块半径相同的四分之一圆形的花坛.若广场的长为m米,宽为n米,圆形的半径为r米.(1)列式表示广场空地的面积.(2)若广场的长为300米,宽为200米,圆形的半径为30米,求广场空地的面积(计算结果保留π).(3)如图2所示,在(2)的条件下,若在广场的中间再建一个半径为R的圆形花坛,使广场的空地面积不少于广场总面积的,求R的最大整数值(π取3.1).参考答案与试题解析一.选择题(共8小题)1.下列四个有理数中,最大的是()A.﹣B.﹣C.﹣1 D.﹣2【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣>﹣>﹣1>﹣2,∴四个有理数中,最大的是﹣.故选:B.2.我市某天早晨气温是﹣3℃,到中午升高了7℃,晚上又降低了3℃,到午夜又降低了6℃,午夜时温度为()A.19℃B.1℃C.﹣5℃D.﹣2℃【分析】根据题意列出算式,利用有理数的加减即可求得结果.【解答】解:根据题意,得﹣3+7﹣3﹣6=﹣5故选:C.3.节约是一种美德,据不完全统计,某国每年浪费食物总量折合粮食可养活约3亿6千万人,360000000用科学记数法表示为()A.0.36×109B.3.6×108C.36×107D.360×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3亿6千万=360000000=3.6×108,故选:B.4.如果a,b互为相反数,x,y互为倒数,则(a+b)2018+(﹣xy)2019的值是()A.1 B.0 C.﹣1 D.﹣2019【分析】利用相反数,倒数的性质求出a+b与xy的值,代入原式计算即可求出值.【解答】解:根据题意得:a+b=0,xy=1,则原式=0﹣1=﹣1,故选:C.5.我国为了解决药品价格过高的问题,决定大幅度降低某些药品价格,其中将原价为a元的某种常用药降低60%,则降低后的价格为()A.元B.元C.0.4a元D.0.6a元【分析】关键描述语是:降价后是在a的基础上减少了60%,价格为:a(1﹣60%)=40%a =0.4a元.【解答】解:依题意得:价格为:a(1﹣60%)=40%a=0.4a元.故选:C.6.下列各组代数式中,不是同类项的是()A.2与﹣5 B.2xy2与3x2y C.﹣3t与200t D.ab2与b2a【分析】同类项定义:单项式所含字母及字母指数相同的是同类项,单个数也是同类项.根据定义即可判断选择项.【解答】解:A是两个常数项,是同类项;B中两项所含字母相同但相同字母的指数不同,不是同类项;C和D所含字母相同且相同字母的指数也相同的项,是同类项.故选:B.7.当代数式x2+3x+5的值为11时,代数式3x2+9x﹣2的值为()A.16 B.12 C.9 D.﹣2【分析】根据题意求出x2+3x=6,变形后整体代入,即可求出答案.【解答】解:根据题意得:x2+3x+5=11,x2+3x=6,所以3x2+9x﹣2=3(x2+3x)﹣2=3×6﹣2=16.故选:A.8.定义一种新运算“※”,观察下列各式1※3=1×5+3=83※(﹣1)=3×5﹣1=145※4=5×5+4=294※(﹣3)=4×5﹣3=17若a※(﹣b)=﹣6,则(a﹣b)※(5a+3b)的值为()A.12 B.6 C.﹣6 D.﹣12【分析】题中等式利用新定义化简,原式化简后代入计算即可求出值.【解答】解:根据题中的新定义得:a※(﹣b)=5a﹣b=﹣6,则原式=5(a﹣b)+5a+3b=10a﹣2b=2(5a﹣b)=﹣12,故选:D.二.填空题(共8小题)9.有理数﹣的倒数是﹣5 .【分析】根据倒数的定义即可求解.【解答】解:有理数﹣的倒数是﹣5.故答案为:﹣5.10.绝对值小于3.5的整数是0,±1,±2,±3 .【分析】根据一个数所表示的点到原点的单位长度叫做这个数的绝对值,从而画图得出答案.【解答】解:如图,绝对值小于3.5的整数是:﹣3;﹣2;﹣1;0;1;2;3.故答案为:0;±1;±2;±3.11.若|x|=2,|y|=3,则|x+y|的值为5或1 .【分析】根据绝对值的意义由|x|=2,|y|=3得到x=±2,y=±3,可计算出x+y=±1或±5,然后再利用绝对值的意义求|x+y|.【解答】解:∵|x|=2,|y|=3,∴x=±2,y=±3,∴x+y=±1或±5,∴|x+y|=5或1.故答案为5或1.12.已知长方形的周长为4a+2b,其一边长为a﹣b,则另一边长为a+2b.【分析】根据长方形的对边相等得出算式(4a+2b)÷2﹣(a﹣b),化简即可.【解答】解:∵长方形的周长为4a+2b,其一边长为a﹣b,∴另一边长为(4a+2b)÷2﹣(a﹣b),即(4a+2b)÷2﹣(a﹣b)=2a+b﹣a+b=a+2b.故答案为:a+2b.13.已知a,b,c三个数在数轴上对应点的位置如图所示①a<c<b,②﹣a<b,③a﹣b>0,④c﹣a<0在上述几个判断中,错误的序号为③.【分析】利用A、B、C在数轴上的位置,确定符号和绝对值,进而对各个选项做出判断.【解答】解:由题意得,a<0,b<0,c>0,且|a|<|b|,|c|<|b|,因此:①a<c<b,不正确,②﹣a<b,不正确,③a﹣b>0,正确,④c﹣a<0不正确,故答案为:③14.若规定一种运算法则=ad﹣bc,请运算=﹣28 .【分析】根据新定义得到:=﹣2×5﹣3×6,再先算乘法运算,然后进行减法运算.【解答】解:=﹣2×5﹣3×6=﹣10﹣18=﹣28.故答案为:﹣28.15.下列说法中正确的序号为②.①在正有理数中,0是最小的整数②最大的负整数是﹣1③有理数包括正有理数和负有理数④数轴上表示﹣a的点一定在原点的左边⑤在数轴上5与7之间的有理数是6.【分析】根据有理数的意义、数轴等知识逐个判断,得出结论即可.【解答】解:①0既不是正数也不是负数,因此①不正确,②负整数中最大的是﹣1,正确,③有理数包括正有理数,0,负有理数,因此③不正确,④﹣a不一定是负数,不一定在原点的左边,因此④不正确,⑤在数轴上5与7之间的有理数有无数个,不仅仅有6,因此⑤不正确,故答案为:②.16.由1开始的连续奇数排成如下图所示,观察规律.则此表中第n行的第一个数是n(n ﹣1)+1 .(用含有n的代数式表示)【分析】根据图中给出的第一个数找出规律,根据规律解答;【解答】解:由题意得,第1行的第一个数是1=1×(1﹣1)+1,第2行的第一个数是3=2×(2﹣1)+1,第3行的第一个数是5=3×(3﹣1)+1,…第n行的第一个数是n(n﹣1)+1,故答案为:n(n﹣1)+1.三.解答题(共6小题)17.根据下列要求完成各题(1)计算:(﹣5)﹣(﹣2)+(﹣3)+6(2)计算:(﹣10)÷2﹣(﹣3)×4【分析】(1)先化简,再计算加减法即可求解;(2)先算乘除法,再算减法.【解答】解:(1)(﹣5)﹣(﹣2)+(﹣3)+6=﹣5+2﹣3+6=﹣8+8=0;(2)(﹣10)÷2﹣(﹣3)×4=﹣5+12=7.18.计算:(﹣3)2×(﹣2)﹣[(﹣1)5﹣8]÷3+|﹣7|【分析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.【解答】解:(﹣3)2×(﹣2)﹣[(﹣1)5﹣8]÷3+|﹣7|=9×(﹣2)﹣(﹣1﹣8)÷3+7=﹣18﹣(﹣9)÷3+7=﹣18+3+7=﹣8.19.已知有理数a、b、c在数轴上的位置如图,化简|a|﹣|a+b|+|c﹣a|+|b+c|.【分析】直接利用数轴结合绝对值的性质化简求出答案.【解答】解:由数轴可得:原式=﹣a﹣[﹣(a+b)]+c﹣a﹣(b+c)=﹣a.20.先化简,再求值:2(x3﹣32)﹣(5x3+x)﹣3(y2﹣x3),其中x=﹣7,y=﹣【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2x3﹣18﹣5x3﹣x﹣3y2+3x3=﹣18﹣x﹣3y2,当x=﹣7,y=﹣时,原式=﹣18+7﹣=﹣11.21.如图,在长方形ABCD中,放入6个形状和大小都相同的小长方形后,还有一部分空余(阴影部分),已知小长方形的长为a,宽为b,且a>b.(1)用含a、b的代数式表示长方形ABCD的长AD和宽AB.(2)用含a、b的代数式表示阴影部分的面积(列式表示即可,不要求化简).(3)若a=7cm,b=2cm,求阴影部分的面积.【分析】(1)如图所示,AD=a+b+b=a+2b,CD=a+b,即为长方形的长与宽;(2)阴影部分的面积=长方形ABCD的面积﹣6个小长方形的面积,利用长方形的面积公式表示出阴影部分的面积即可;(3)代入求值即可.【解答】解:(1)由图形得:AD=a+2b,AB=a+b;(2)S阴影=(a+b)(a+2b)﹣6ab=a2+2ab+ab+2b2﹣6ab=a2﹣3ab+2b2;(3)把a=7cm,b=2cm代入,得S阴影=72﹣3×7×2+2×22=15.22.如图1所示,在一个长方形广场的四角都设计一块半径相同的四分之一圆形的花坛.若广场的长为m米,宽为n米,圆形的半径为r米.(1)列式表示广场空地的面积.(2)若广场的长为300米,宽为200米,圆形的半径为30米,求广场空地的面积(计算结果保留π).(3)如图2所示,在(2)的条件下,若在广场的中间再建一个半径为R的圆形花坛,使广场的空地面积不少于广场总面积的,求R的最大整数值(π取3.1).【分析】(1)长方形的面积减去半径为r的圆的面积即可.(2)把m=300,n=200,r=30代入即可求出空地的面积,(3)根据面积之间的关系列出不等式,求出不等式的整数解即可.【解答】解:(1)由题意得,mn﹣πr2,答:广场空地的面积为(mn﹣πr2)平方米,(2)把m=300,n=200,r=30代入得,原式=300×200﹣π×900=(60000﹣900π)平方米,答:广场空地的面积大约为(60000﹣90π)平方米.(3)由题意得,300×200﹣π×302﹣πR2≥300×200×,解得R≤74.51,R为最大的整数,所以R=74米,答:R的最大整数值为74米.。
2019-2020学年人教版七年级上册数学期中测试卷带答题卡2
数学试题 第1页(共4页) 数学试题 第2页(共4页)绝密★启用前2019-2020学年上学期期中原创卷B 卷七年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版七上第1~2章。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.计算1920-+等于 A .39- B .1- C .1D .392.给出四个数-2,0,1,8,其中最小的是 A .-2 B .0C .1D .8 3.计算a 2+4a 2的结果是 A .4a 2 B .5a 2 C .4a 4D .5a 4 4.在-(-8),|-1|,-|–2|,(-2)3,-24这四个数中,负数共有 A .4个 B .3个 C .2个D .1个5.鄂州顺丰机场是湖北省打造国际货运大通道的重要举措,预计到2025年,年货运吞吐量将达到245万吨,其中“245万”用科学记数法表示为 A .2.45×102B .2.45×107C .2.45×106D .245×1046.计算1((7)7-÷-的结果为 A .1 B .1- C .149 D .149-7.下列各组单项式中,为同类项的是 A .3a 2b 与23a bB .2与bC .3ac 与abcD .2a 2b 与2ab8.化简1(93)2(1)3x x --+的结果是 A .21x - B .1x + C .53x +D .3x -9.已知a 、b 、c 三个数在数轴上对应的点如图所示,下列结论错误的是A .0a c +<B .0b c ->C .c b a <-<-D .b a c -<<-10.在数列3、12、30、60,…中,请你观察数列的排列规律,则第5个数是A .75B .90C .105D .120第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分) 11.若a -3=0,则a 的相反数是__________. 12.化简3a –[–2b +2(a –3b )–4a ]= __________. 13.比较大小:25-__________13-.(用“>”“<”或“=”填空) 14.用四舍五入法对0.2996取近似值精确到百分位为__________.15.已知多项式-πx 2y m +1+xy 2-4x 3-8是五次多项式,单项式3x 2n y 6–m与该多项式的次数相同,则m =__________,n =__________.16.一个多项式A 减去多项式2x 2+5x -3,马虎同学将2x 2+5x -3抄成了2x 2+5x +3,计算结果是-x 2+3x -7,那么这个多项式A 是__________.数学试题 第3页(共4页) 数学试题 第4页(共4页)三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)合并同类项:(1)3m 2-5m 2-m 2;(2)(5p -3q )-3(p 2-2q ).18.(本小题满分8分)计算:(1)10-(-19)+(-5)-167;(2)411(1)()6232--⨯-⨯÷;(3)311183(83)18382427⨯-÷⨯;(4)(-36)×997172. 19.(本小题满分8分)画出数轴,在数轴上表示下列各数:-3,+2,-23,-2.5,0.5,312,并用“<“号把各数连起来.20.(本小题满分8分)已知代数式4x 2+ax -y +5-2bx 2+7x -6y -3的值与x 的取值无关,求代数式17a 3-2b 2+3b 3的值.21.(本小题满分8分)某自行车厂一周计划生产1050辆自行车,平均每天生产150辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正、减产为负):(1)根据记录可知前三天共生产__________辆;(2)产量最多的一天比生产量最少的一天多生产__________辆;(3)该厂实行计划工资制,每辆车50元,超额完成任务每辆奖10元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?22.(本小题满分10分)一位同学做一道题:“已知两个多项式A ,B ,计算2A B +.”他误将“2A B +”看成“2A B +”,求得的结果为2927x x -+.已知232B x x =+-,请求出正确答案. 23.(本小题满分10分)已知:A =2x 2+ax -5y +b ,B =bx 2-32x -52y -3. (1)求3A -(4A -2B )的值;(2)当x 取任意数值,A -2B 的值是一个定值时,求(a +314A )-(2b +37B )的值.24.(本小题满分12分)如图,在数轴上有三个点A 、B 、C ,完成下列问题:(1)将点B 向右移动六个单位长度到点D ,在数轴上表示出点D .(2)在数轴上找到点E ,使点E 为BA 的中点(E 到A 、B 两点的距离相等),井在数轴上标出点E 表示的数,求出CE 的长.(3)O 为原点,取OC 的中点M ,分OC 分为两段,记为第一次操作:取这两段OM 、CM 的中点分别为了N 1、N 2,将OC 分为4段,记为第二次操作,再取这四段的中点将OC 分为8段,记为第三次操作,第六次操作后,OC 之间共有多少个点?求出这些点所表示的数的和.准考证号:。
2019-2020学年度七年级数学上册期中考试卷(有答案)
2019-2020学年度七年级数学上册期中考试卷(有答案)一、选择题(共8题;共16分)1.在0,﹣1,0.5,(﹣1)2四个数中,最小的数是()A. 0B. ﹣1C. 0.5D. (﹣1)22.将下列图形绕直线l旋转一周, 可以得到下图所示的立体图形的是( )A. B. C. D.3.把算式“(﹣2)﹣(﹣5)+(﹣3)﹣(﹣1)”写成省略加号和括号的形式,结果正确的是()A.2﹣5+3﹣1B.2+5﹣3+1C.﹣2﹣5+3﹣1D.﹣2+5﹣3+14.﹣2的相反数是()A. -2B. -C. 2D.5.﹣2的相反数是()A. ﹣B. ﹣2C.D. 26.如图,数轴上表示-2的点A到原点的距离是()A. -2.B. 2.C.D.7.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A. B. C. D.8.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测32017的个位数字是()A. 1B. 3C. 7D. 9二、填空题(共8题;共16分)9.若x3y a与﹣2x b y2的和仍为单项式,则a﹣b的值为________10.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时,•若坐飞机飞行这么远的距离需________小时11.若代数式﹣2a3b m与3a n+1b4是同类项,则mn=________.12.若|x+y﹣7|+(3x+y﹣17)2=0,则x﹣2y=________ .13.将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这堆小方块共有________块.14.若|a|=2,|b|=3,且ab<0,则a﹣b=________.15.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1,根据该材料填空,已知=(4,3),=(8,m),且∥,则m=________.16.甲、乙、丙三位同学进行立定跳远比赛,每人轮流跳一次称为一轮,每轮按名次从高到低分别得3分、2分、1分(没有并列名次).他们一共进行了五轮比赛,结果甲共得14分;乙第一轮得3分,第二轮得1分,且总分最低.那么丙得到的分数是________三、解答题(共7题;共68分)17.如图是由若干个相同的小正方体组成的几何体.(1)请画出这个几何体的主视图、左视图、俯视图(网格中所画的图形要画出各个正方形边框并涂上阴影).(2)如果在这个几何体上,再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体,最多可以拿掉几个?18.计算:(1)(2)19.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)写出用含x、y的代数式表示厨房的面积是________ m2;卧室的面积是________ m2;(2)写出用含x、y的代数式表示这套房的总面积是多少平方米?(3)当x=3,y=2时,求小王这套房的总面积是多少平方米?(4)若在(3)中,小王到某商店挑选了80cm×80cm的地砖来镶客厅和卧室,他应买多少块才够用?(结果保留整数)20.如图在数轴上A点表示数,B点表示数,且、满足,(1)点A表示的数为________;点B表示的数为________;(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=3BC,则C点表示的数________;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),请分别表示出甲、乙两小球到原点的距离(用含t的代数式表示)21.如图,将一张长方形大铁皮切割成九块,切痕如图虚线所示,其中有两块是边长都为xdm的大正方形,两块是边长都为ydm的小正方形,五块是长宽分别是xdm、ydm的全等小长方形,且x>y.(1)用含x、y的代数式表示长方形大铁皮的周长为________ dm;(2)若每块小长方形的面积10dm2,四个正方形的面积为58dm2,试求该切痕的总长.22.出租车司机小李某天上午从家出发,营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-1,+6,-2,+2,-7,-4.(1)将最后一位乘客送到目的地时,小李在出发地的哪一边?距离出发地多少km?(2)若汽车每千米耗油量为0.2升,这天上午小李接送乘客,出租车共耗油多少升?23.观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:;…请解答下列问题:(1)按以上规律列出第5个等式:a5=________.(2)用含有n的代数式表示第n个等式:a n=________(n为正整数)(3)求a1+a2+a3+a4+…+a100的值.(4)探究计算:答案一、选择题1.B2.C3.D4. C5. D6. B7. C8. B二、填空题9.-1 10.4.8×10211.8 12.1 13.4或5 14.±5 15. 6 16.9分三、解答题17. (1)解:三视图如图所示:(2)解:保持这个几何体的俯视图和左视图不变,最多添加3个小正方体,最多可以拿掉1个小正方体18.(1)解:原式(2)解:原式=19.(1)2xy;4xy+2y(2)解:y(x+1)+x•2y+(2x+1)•2y+(2x+1)•4y =xy+y+2xy+4xy+2y+8xy+4y=15xy+7y(3)解:当x=3,y=2时,原式=15×3×2+7×2=90+14=104(平方米),即小王这套房的总面积是104平方米(4)解:(2x+1)•2y+(2x+1)•4y =4xy+2y+8xy+4y=12xy+6y当x=3,y=2时,原式=12×3×2+6×2=72+12=84(平方米),所以他应买地砖:84÷(0.8×0.8)=84÷0.64≈132(块),即他应买132块才够用20. (1)-5;7(2)4或13(3)解:甲:∵小球甲从点A处以1个单位/秒的速度向左运动,∴甲到原点的距离为|−5−t|=5+t,∵小球乙从点B处以2个单位/秒的速度也向左运动,∴乙到达原点的时间为7÷2=3.5,∴当0⩽t⩽3.5时,小球到原点的距离为7−2t,当t>3.5时小球到原点的距离为2t−7.21.(1)(6x+6y)(2)解:由题意可知:xy=10,2x2+2y2=58,即:x2+y2=29,∵(x+y)2=x2+2xy+y2=29+20=49∴x+y=7,∴切痕总长为6×7=42dm22.(1)解:(﹣1)+6+(﹣2)+2+(﹣7)+(﹣4)=﹣6,答:将最后一位乘客送到目的地时,小李在出发地的西边,距离出发地6km处(2)解:(|﹣1|+6+|﹣2|+2+|﹣7|+|﹣4|)×0.2=22×0.2=4.4(升),答:这天上午小李接送乘客,出租车共耗油4.4升23.(1)(2)(3)解:a1+a2+a3+a4+…+a100=×(1﹣)+×(﹣)+×(﹣)+…+×(﹣)=×(1﹣+﹣+﹣+…+﹣)=×(1﹣)=×=;(4)解:=×(1﹣)+×(﹣)+×(﹣)+…+×(﹣)=×(1﹣+﹣+﹣+…+﹣)=×(1﹣)=×=.。
2019-2020学年第一学期期中质量检测七年级数学试卷 含答案
2019-2020学年第一学期期中质量检测七年级数学一、选择题(每小题3分,共30分)1.温度上升5摄氏度后,又下降了2摄氏度,实际上温度( ) A . 上升7摄氏度 B . 下降7摄氏度 C . 上升3摄氏度 D . 下降3摄氏度2. -114的倒数是( )A .―54B .54C .―45D .45 3.下列各组数中,互为相反数的有( ) ①―(―2)和―|―2| ②(―1)2和 ―12③ 23和 32④ (―2)3和 ―23A .④B .①②C .①②③D .①②④ 4.数轴上的点M 对应的数是-2,那么将点M 向右移动4个单位长度,此时点M 表示的数是( )A . -6B . 2C . -6或2D .都不正确 5.若x 的相反数是3,5y ,则x +y 的值为( ). A .-8 B . 2 C . 8或-2 D .-8或2 6.马虎同学做了以下4道计算题:① 0―(―1)=1;② 12÷(―12)=―1; ③ ―12+13=―16; ④ (―1)2005=―2005. 请你帮他检查一下,他一共做对了( )A . 1道题B . 2道题C . 3道题D . 4道题7.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .ab >0B .a +b <0C .a -b <0D .1<ba 8.下列关于单项式―3xy 25的说法中,正确的是( ) A .系数是―35,次数是2; B .系数是 35,次数是2; C .系数是―3,次数是3; D .系数是―35,次数是3. 9.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( ) A .2.1×109 B .0.21×109 C .2.1×108 D .21×107 10.用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子( )A .4n 枚B .(4n ―4) 枚C .(4n +4) 枚D .n 2枚二、填空题(每题3分,共15分) 11.比较大小:56-______45-(填“>”、“<”或“=”).12.按四舍五入法取近似值:40.649≈______ . (精确到十分位))13.根据如图所示的程序运算,若输入的x 值为1,则输出y 的值为 .14.将多项式:y y x x xy 65323322-+-按y 的升幂排列: . 15.找规律并填空:―13、29、―327、481、 . 三、解答题(共75分)16.计算(共20分,每小题5分)(1))13()18()14(20---++-- (2))12()216141(-⨯-+(3)()312612014-⨯-÷-- (4)[]3)1(7)325.01(2-+⨯⎥⎦⎤⎢⎣⎡⨯--17.(7分)在数轴上把下列各数表示出来,并用“<”连接各数.32,1--,211,0,()5.3--18.(8分)已知:有理数m 所表示的点到表示3的点距离4个单位,a 、b 互为相反数,且都不为零,c 、d 互为倒数. (1)求m 的值,(2)求:m cd b ab a --++)3(22的值.19.(8分)“※”是规定的一种新运算法则:a ※b =22b a -, 求5※[(-1)※2]的值.20.(10分)现代营养学家用身体质量指数来判断人体的健康状况.这个指数等于人体体重(千克)除以人体身高(米)的平方所得的商.一个健康人的身体质量指数在20~25之间;身体质量指数低于18,属于不健康的瘦;身体质量指数高于30,属于不健康的胖.(1)若一个人的体重为w(千克),身高为h(米),请求他的身体质量指数p(即用含w、h的代数式表示p);(2)小张的身高是1.75米,体重68千克,请你判断小张的身体是否健康.21.(10分)某个体儿童服装店老板以每件32元的价格购进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以50元为标准价,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表所示:该服装店在售完这30件连衣裙后,赚了多少钱?22.(12分)(1)当a=―2,b=1时,求两个代数式(a+b)2与a2+2ab+b2的值;(2)当a=―2,b=―3时,再求以上两个代数式的值;(3)你能从上面的计算结果中,发现上面有什么结论?结论是:;(4)利用你发现的结论,求:22+⨯+的值.196519657035七年级数学答案(仅供参考)一、选择题(每小题3分,共30分)CCBBC CDDCA二、填空题(每小题3分,共15分)11. < 12. 40.6 13. 4 14. -3x²-6y+2xy²+5x³y³15. ―5243三、解答题(共75分)16.(共20分,每小题5分)(1) -39 (2) 1 (3) 0 (4) 817.(7分)解:……5分 -|-1|< 0<32<121<-(-3.5) ……7分18.(8分)(1)解:∵有理数m 所表示的点到点3距离4个单位,∴m-3=4或3-m=4 ∴m=7或-1 ……3分 (2)由题可得:a+b=0, cd=1, ……5分 所以原式=2(a+b)+(-1-3)-m=-4-m ……6分 当m=7时,原式=-4-7=-11 当m=-1时,原式=-4-(-1)=-3所以2a+2b+(ba -3cd)-m 的值为-11或-3. ……8分 19.(8分)解:由题可得(-1)※2=(-1)²-2²=1-4=-3 ……4分则5※[(-1)※2]=5※(-3)=5²-(-3)²=16 ……8分 20.(10分)解:(1)p=w h 2 ……3分(2)当w=68,h=1.7时p=w h 2=681.75²≈22.2 ……8分∵20<22.2<25 ∴小明的身体健康. ……10分 21.(10分)解:[(50+3)×7+(50+2)×6+(50+1)×3+50×5+(50-1)×4+(50-2)×5]-32×30 ……5分 =(371+312+153+250+196+240)-960x--3.5()112--1–11234O=1522-960=562(元)……9分答:该服装店在售完这30件连衣裙后,赚了562元. (10)分22.(12分)解:(1)当a=-2 b=1时,(a+b)²=(-2+1)²=1 ……1分a²+2ab+b²=(-2)²+2×(-2)×1+1²=1 ……2分(2)当a=-2 b=-3时,(a+b)²=(-2-3)²=25 ……4分a²+2ab+b²=(-2)²+2×(-2)×(-3)+(-3)²=25 (6)分(3)(a+b)²=a²+2ab+b²……9分(4)原式=(1965+35)²=2000²=4000000 ……12分。
2019-2020人教版七年级数学上册期中考试数学试卷含答案
人教版七年级数学上册期中考试数学试卷温馨提示:1.请在答题卡上作答,在本试卷上作答无效..........考试结束时,将答题卡交回. 2.答题前,请认真阅读答题卡上的注意事项. 3.不能使用计算器.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,请用2B 铅笔把答题卡...上对应题目的答案标号涂黑.) 1. 如果向北走5米记作“5+米”,那么向南走8米记作 A . 8+米B .8-米C . 13+米D . 3-米2.数5800用科学记数法表示是A .25.810⨯B .35.810⨯C .45.810⨯D .25810⨯ 3.多项式233731x y x x +--的次数和常数项分别是 A .3,1 B .6,1- C . 5,1 D . 5,1- 4. 下列算式中,结果为正数的是A .2(1)-B .112-C .0(3)⨯-D .(2017)2018-⨯5. 化简:a a a a a ⨯⨯⨯⨯等于 A .5a B .5a + C .5a D .4a6.今年1月8日南宁市,桂林市,玉林市,柳州市的气温如下表所示,则这天温差最大的城市是A .南宁市B .桂林市C .柳州市D .玉林市7.已知250a b --=,则23a b --的值是A .2B .8C .8-D .2-8. 正确的关系式是 A .132<-B .1132-<-C .1132->-D .203< 9. 已知2x =时,多项式2x k +的值是5,则k 的值是A .1B .4C .9D .1-10.一个长方形的长是2a ,宽是1a +,则这个长方形的周长等于 A .61a +B .222a a + C .6aD .62a +11.已知一列数1,1,2-,2-,3,3,4-4-,5,5,6-,6-,……,则前20个数的和等于 A .20B .20-C .18-D .10-12.在数轴上表示有理数a ,b ,c ,d 如图所示,则正确的结论是 A . a b c d +>+B . ab cd <C . (3)(1)0a b ++>D . ()()0a d c b -->二、填空题(共6小题,每小题3分,共18分.请将答案直接填在答题卡...上.) 13.9-的相反数是 ▲ .14.式子:235x y ,421a +,16-,12v -中,单项式是 ▲ .15.计算:()()a b a b ++-= ▲ . 16.已知||2x =,则x = ▲ .17.数轴上介于32-与52之间的所有整数是 ▲ .18.运用公式“22()()a b a b a b -=+-”计算:29991-= ▲ ,29998= ▲ .三、解答题(本大题共8题,共66分.请将答案写在答题卡...上,解答应写出文字说明、证明 过程或演算步骤。
2019-2020年七年级(上)期中数学试卷(解析)
2019-2020年七年级(上)期中数学试卷(解析)一、细心选一选,慧眼识金!(四个选项中只有一个答案是正确.每小题2分,共20分)1.3的相反数是()A.3 B.﹣3 C. D.﹣2.若规定收入为“+”,那么﹣50元表示()A.收入了50元B.支出了50元C.没有收入也没有支出D.收入了100元3.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个B.2个C.3个D.4个4.下列变形正确的是()A.2÷8×=2÷(8×)B.6÷(+)=6÷+6÷C.(﹣8)×(﹣5)×0=40 D.(﹣2)××(﹣5)=55.绝对值不大于3的整数的个数是()A.4 B.5 C.6 D.76.我校七年级有学生x人,其中女生占45%,男生人数是()A.45%x B. C.(1﹣45%)x D.7.如果﹣22a2bc n是7次单项式,则n的值是()A.4 B.3 C.2 D.58.近似数2.60所表示的精确值x的取值范围()A.2.600<x≤2.605 B.2.595<x≤2.605C.2.595≤x<2.605 D.2.50≤x<2.709.若代数式2a2﹣a+3的值为5,则代数式4a2﹣2a+6的值为()A.﹣22 B.10 C.﹣10 D.2210.小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是()A. B. C. D.二、耐心填一填,你一定能行.11.化简或计算:﹣[﹣(﹣5)]=,(﹣1)99=,(﹣2)+3=.12.平方等于16的数是,立方等于﹣27的数是.13.绝对值等于本身的有理数是;倒数等于本身的数是;绝对值最小的有理数是.14.在“百度”搜索引擎中输入“嫦娥三号”,能搜索到与之相关的网页约13 100 000个,将13 100 000用科学记数法表示为.15.将算式(﹣5)﹣(﹣10)+(﹣9)﹣(+2)改写成省略加号的和的形式,应该是.16.某班有女生a人,男生比女生的2倍少5人,则男生有人.17.单项式﹣的系数是,次数是;多项式a3﹣3a2b2+ab4﹣1是次项式.18.把代数式2x2﹣8xy3+x4y﹣y2+9x3y4按下列要求填空:(1)按字母x的升幂排列(2)按字母y的降幂排列.19.已知|x+2|+(y﹣5)2=0,则x=,y=.20.用四舍五入法,将下列各数按括号中的要求取近似数.(1)67.31 (精确到个位)≈;(2)479550 (精确到千位)≈.21.规定一种新的运算:A*B=A×B﹣A,如4*2=4×2﹣4=4,运算6*(﹣3)=.22.观察一列单项式:a,﹣2a2,4a3,﹣8a4…根据你发现的规律,第7个单项式为;第n个单项式为.三、认真做一做,你一定是生活的强者23.把下列各数填入相应的大括号里:﹣4,xx,﹣0.5,﹣,8.7,0,﹣95%.整数集:{…};负分数集:{…}.24.计算(1)(﹣6)+(+8)﹣(+4)﹣(﹣2)(2)(﹣7)×(﹣5)﹣90÷(﹣15)(3)(﹣+)×(﹣36)(4)2÷(﹣)×÷(﹣)(5)﹣24+(4﹣9)2﹣5×(﹣1)6(6)用简便方法计算:(﹣370)×(﹣)+0.25×24.5﹣5×(﹣25%)25.求值(1)已知:a=﹣5,b=2时,求代数式a2﹣3b的值.(2)当a=﹣1,b=﹣3时,求代数式a2+2ab+b2的值(3)已知:有理数m在原点右侧并且和原点距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.求:2(a+b)﹣(﹣3cd)﹣m的值.26.小虫从某点O出发在一天直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬过的各段路程(单位:厘米)依次为:+4,﹣3,+10,﹣8,﹣7,+12,﹣10①通过计算说明小虫最后是否回到起点.②如果小虫爬行的速度为每秒0.5厘米,小虫共爬行了多长时间?27.某市出租车的收费标准如下:起步价5元,即3千米以内(含3千米)收费5元,超过3千米的部分,每千米收费1.3元.(不足1千米按1千米计算)(1)假如你乘出租车行驶7千米应付多少钱?(2)若小红付出租车费16.7元,则小红最多乘坐多少千米?28.已知多项式(m2﹣49)x3﹣(m﹣7)x2+3x+4是关于x的二次三项式,求(m+3)(m ﹣3)的值.四、解答题(共3小题,满分20分)29.数轴三要素:,,.30.比较大小:﹣70,1001.31.小明同学平时爱好数学,他探索发现了:从2开始,连续的几个偶数相加,它们和的情况变化规律,如表所示:请你根据表中提供的规律解答下列问题:(1)如果n=8时,那么S的值为;(2)根据表中的规律猜想:用n的代数式表示S,则S=2+4+6+8+…+2n=;(3)利用上题的猜想结果,计算300+302+304+…+xx+xx的值(要有计算过程).xx学年福建省泉州市晋江一中、华侨中学七年级(上)期中数学试卷参考答案与试题解析一、细心选一选,慧眼识金!(四个选项中只有一个答案是正确.每小题2分,共20分)1.3的相反数是()A.3 B.﹣3 C. D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的意义,3的相反数即是在3的前面加负号.【解答】解:根据相反数的概念及意义可知:3的相反数是﹣3.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.若规定收入为“+”,那么﹣50元表示()A.收入了50元B.支出了50元C.没有收入也没有支出D.收入了100元【考点】正数和负数.【分析】若规定收入为“+”,则“﹣”表示与之相反的意义,即支出.【解答】解:∵收入用“+”表示,∴﹣50元表示支出50元,故选B.【点评】本题考查了“+”与“﹣”所表示的意义.3.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个B.2个C.3个D.4个【考点】有理数的乘方;正数和负数.【专题】计算题.【分析】先对每个数进行化简,然后再确定负数的个数.【解答】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选:B.【点评】本题考查了去绝对值,有理数的乘方、正数和负数的意义,关键准确掌握.4.下列变形正确的是()A.2÷8×=2÷(8×)B.6÷(+)=6÷+6÷C.(﹣8)×(﹣5)×0=40 D.(﹣2)××(﹣5)=5【考点】有理数的乘法;有理数的混合运算.【分析】A、乘除是同级运算,应按从左往右的顺序进行,而不能先算乘法,再算除法;B、除法不满足分配律,对于混合运算,有括号应该先算括号里面的;C、根据有理数的乘法法则,几个数相乘,有一个因数为0,积就为0,可知(﹣8)×(﹣5)×0=0≠40;D、根据有理数的乘法法则计算等号的左边,再与等号的右边比较.【解答】解:A、2÷8×=2×=,2÷(8×)=2÷1=2,故错误;B、6÷(+)=6÷=,6÷+6÷=12+18=30,故错误;C、0乘以任何数都得0,(﹣8)×(﹣5)×0=0,故错误;D、(﹣2)××(﹣5)=5,故正确.故选D.【点评】本题考查了有理数的运算.需牢固掌握运算顺序与运算法则.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号里面的.对于同级运算,需按从左往右的顺序进行.5.绝对值不大于3的整数的个数是()A.4 B.5 C.6 D.7【考点】绝对值.【分析】绝对值不大于3的整数即为绝对值分别等于3、2、1、0的整数.【解答】解:不大于3的整数绝对值有0,1,2,3.因为互为相反数的两个数的绝对值相等,所以绝对值不大于3的整数是0,±1,±2,±3;故选:D.【点评】考查了绝对值的定义和性质,注意掌握互为相反数的两个数的绝对值相等.6.我校七年级有学生x人,其中女生占45%,男生人数是()A.45%x B. C.(1﹣45%)x D.【考点】列代数式.【分析】男生人数=总人数×男生所占的百分比.【解答】解:男生人数为:(1﹣45%)x.故选C.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.7.如果﹣22a2bc n是7次单项式,则n的值是()A.4 B.3 C.2 D.5【考点】单项式.【分析】直接利用单项式次数的确定方法得出n的值.【解答】解:∵﹣22a2bc n是7次单项式,∴2+1+n=7,∴n=4,故选A.【点评】题主要考查了单项式的次数,正确把握单项式次数的定义是解题关键.8.近似数2.60所表示的精确值x的取值范围()A.2.600<x≤2.605 B.2.595<x≤2.605C.2.595≤x<2.605 D.2.50≤x<2.70【考点】近似数和有效数字.【分析】利用近似数的精确度可确定x的范围.【解答】解:近似数2.60所表示的精确值x的取值范围为2.595≤x<2.605.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.9.若代数式2a2﹣a+3的值为5,则代数式4a2﹣2a+6的值为()A.﹣22 B.10 C.﹣10 D.22【考点】代数式求值.【分析】根据题意可得2a2﹣a的值,再整体代入即可.【解答】解:∵代数式2a2﹣a+3的值为5,∴2a2﹣a+3=5,∴2a2﹣a=2,∴4a2﹣2a+6=2(2a2﹣a)+6=2×2+6=10,故选B.【点评】本题考查了代数式的求值,整体思想的运用是解题的关键.10.小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是()A. B. C. D.【考点】函数值.【专题】规律型.【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【解答】解:输出数据的规律为,当输入数据为8时,输出的数据为=,故选:C.【点评】此题主要考查数字的规律性问题,根据已有输入输出数据找出它们的规律,进而求解.二、耐心填一填,你一定能行.11.化简或计算:﹣[﹣(﹣5)]=﹣1,(﹣1)99=﹣1,(﹣2)+3=1.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式去括号即可得到结果;原式利用乘方的意义计算即可得到结果;原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=﹣1;原式=﹣1;原式=1,故答案为:﹣1;﹣1;1【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.平方等于16的数是±4,立方等于﹣27的数是﹣3.【考点】有理数的乘方.【专题】存在型.【分析】根据有理数的乘方的概念进行解答即可.【解答】解:∵(±4)2=16,∴平方等于16的数是±4;∵(﹣3)3=﹣27,∴立方等于﹣27的数是﹣3.故答案为:±4;﹣3.【点评】本题考查的是有理数的乘方,即正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.13.绝对值等于本身的有理数是非负数;倒数等于本身的数是±1;绝对值最小的有理数是0.【考点】绝对值;倒数.【分析】根据绝对值的定义及性质和倒数的定义来解答.【解答】解:绝对值等于本身的有理数是非负数,倒数等于本身的±1,绝对值最小的有理数是0,故答案为:非负数,±1,0.【点评】本题考查了绝对值的定义和倒数的定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,±1的倒数是它本身.14.在“百度”搜索引擎中输入“嫦娥三号”,能搜索到与之相关的网页约13 100 000个,将13 100 000用科学记数法表示为 1.31×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于13 100 000有8位,所以可以确定n=8﹣1=7.【解答】解:13 100 000=1.31×107.故答案为:1.31×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.将算式(﹣5)﹣(﹣10)+(﹣9)﹣(+2)改写成省略加号的和的形式,应该是﹣5+10﹣9﹣2.【考点】有理数的加减混合运算.【专题】推理填空题.【分析】根据有理数加法和减法的法则即可解答本题.【解答】解:因为(﹣5)﹣(﹣10)+(﹣9)﹣(+2)=﹣5+10﹣9﹣2,故答案为:﹣5+10﹣9﹣2.【点评】本题考查有理数的加减混合运算,解题的关键是明确在运算中正数的正号可以省略,减去一个负数相当于加上这个负数的相反数.16.某班有女生a人,男生比女生的2倍少5人,则男生有(2a﹣5)人.【考点】列代数式.【分析】男生人数=女生人数×2倍﹣5.【解答】解:依题意得:(2a﹣5).【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.17.单项式﹣的系数是﹣,次数是2;多项式a3﹣3a2b2+ab4﹣1是4次4项式.【考点】多项式;单项式.【分析】根据单项式系数和次数的定义,根据多项式次数和项数的定义求解即可.【解答】解:单项式﹣的系数是﹣,次数是2;多项式a3﹣3a2b2+ab4﹣1是4次4项式,故答案为:﹣,2,4,4.【点评】本题考查了单项式,此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.解答本题的关键各定义,属于基础题.18.把代数式2x2﹣8xy3+x4y﹣y2+9x3y4按下列要求填空:(1)按字母x的升幂排列﹣y2﹣8xy3+2x2+9x3y4(2)按字母y的降幂排列9x3y4+2x2﹣8xy3﹣y2.【考点】多项式.【专题】计算题;整式.【分析】(1)把原式按照x升幂排列即可;(2)把原式按照y的降幂排列即可.【解答】解:(1)按字母x的升幂排列为﹣y2﹣8xy3+2x2+9x3y4;(2)按字母y的降幂排列为9x3y4+2x2﹣8xy3﹣y2.故答案为:(1)﹣y2﹣8xy3+2x2+9x3y4;(2)9x3y4+2x2﹣8xy3﹣y2.【点评】此题考查了多项式,熟练掌握多项式次数的定义是解本题的关键.19.已知|x+2|+(y﹣5)2=0,则x=﹣2,y=5.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值即可.【解答】解:根据题意得,x+2,y﹣5=0,解得x=﹣2,y=5.故答案为:﹣2;5.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.用四舍五入法,将下列各数按括号中的要求取近似数.(1)67.31 (精确到个位)≈67;(2)479550 (精确到千位)≈ 4.80×105.【考点】近似数和有效数字.【分析】(1)把十分位上的数字3进行四舍五入即可;(2)先用科学记数法表示,然后把百位上的数字5进行四舍五入即可.【解答】解:(1)67.31 (精确到个位)≈67;(2)479550 (精确到千位)≈4.80×105.故答案为67,4.80×105.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.21.规定一种新的运算:A*B=A×B﹣A,如4*2=4×2﹣4=4,运算6*(﹣3)=﹣24.【考点】有理数的混合运算.【专题】新定义.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:6*(﹣3)=﹣18﹣6=﹣24,故答案为:﹣24【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.观察一列单项式:a,﹣2a2,4a3,﹣8a4…根据你发现的规律,第7个单项式为64a7;第n个单项式为(﹣2)n﹣1a n..【考点】单项式.【专题】压轴题;规律型.【分析】本题须先通过观察已知条件,找出这列单项式的规律即可求出结果.【解答】解:根据观察可得第7个单项式为64a7第n个单项式为(﹣2)n﹣1a n.故答案为:64a7,(﹣2)n﹣1a n.【点评】本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.三、认真做一做,你一定是生活的强者23.把下列各数填入相应的大括号里:﹣4,xx,﹣0.5,﹣,8.7,0,﹣95%.整数集:{﹣4,xx,0…};负分数集:{﹣0.5,,﹣95%…}.【考点】有理数.【分析】分别根据整数的意义:正整数、负整数、0统称整数;负分数定义得出即可.【解答】解:整数集:{﹣4,xx,0 …};负分数集:{﹣0.5,,﹣95% …}.故答案为:﹣4,xx,0;﹣0.5,,﹣95%.【点评】此题主要考查了有理数的有关定义,熟练掌握相关的定义是解题关键.24.计算(1)(﹣6)+(+8)﹣(+4)﹣(﹣2)(2)(﹣7)×(﹣5)﹣90÷(﹣15)(3)(﹣+)×(﹣36)(4)2÷(﹣)×÷(﹣)(5)﹣24+(4﹣9)2﹣5×(﹣1)6(6)用简便方法计算:(﹣370)×(﹣)+0.25×24.5﹣5×(﹣25%)【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式从左到右依次计算即可得到结果;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(6)原式变形后,逆用乘法分配律计算即可得到结果.【解答】解:(1)原式=﹣6+8﹣4+2=﹣10+10=0;(2)原式=25+6=31;(3)原式=﹣18+20﹣21=﹣19;(4)原式=2×××=1;(5)原式=﹣16+25﹣5=4;(6)原式=0.25×(370+24.5+5.5)=0.25×400=100.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.求值(1)已知:a=﹣5,b=2时,求代数式a2﹣3b的值.(2)当a=﹣1,b=﹣3时,求代数式a2+2ab+b2的值(3)已知:有理数m在原点右侧并且和原点距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.求:2(a+b)﹣(﹣3cd)﹣m的值.【考点】代数式求值.【分析】(1)将a、b的值代入代数式进行计算即可;(2)利用完全平方公式因式分解,再代入即可;(3)首先得出m的值,再利用相反数和倒数的定义得出a+b和cd的值,代入即可.【解答】解:(1)把a=﹣5,b=2代入得,a2﹣3b=(﹣5)2﹣3×2=25﹣6=19;(2)∵a=﹣1,b=﹣3,∴a2+2ab+b2=(a+b)2=(﹣1﹣3)2=16;(3)∵m在原点右侧并且和原点距离4个单位,∴m=4,∵a,b互为相反数,且都不为零,c,d互为倒数,∴=﹣1,a+b=0,cd=1,∴2(a+b)﹣(﹣3cd)﹣m=2×0﹣(﹣1﹣3)﹣4=0.【点评】本题主要考查了代数式求值,倒数的定义和相反数的定义,利用代入法式是解答此题的关键.26.小虫从某点O出发在一天直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬过的各段路程(单位:厘米)依次为:+4,﹣3,+10,﹣8,﹣7,+12,﹣10①通过计算说明小虫最后是否回到起点.②如果小虫爬行的速度为每秒0.5厘米,小虫共爬行了多长时间?【考点】正数和负数.【分析】①将+4,﹣3,+10,﹣8,﹣7,+12,﹣10这几个数进行相加,得到的结果若是0就说明最后回到了起点,若结果不是0那么就没有回到起点;②将4,3,10,8,7,12,10进行相加的到54就是小虫爬行的总路程,然后根据速度可以求的小虫爬行的时间.【解答】解:①(+4)+(﹣3)+(+10)+(﹣8)+(﹣7)+(+12)+(﹣10)=﹣2,所以小虫最后没有回到起点;②因为小虫爬行的总路程是:4+|﹣3|+10+|﹣8|+|﹣7|+12+|﹣10|=54(厘米),所以小虫爬行的时间为:54÷0.5=108(秒),故小虫爬行了108秒.【点评】本题主要考查了正数和负数的概念和意义:1、在以前学过的0以外的数叫做正数,在正数前面加负号“﹣”,叫做负数,一个数前面的“+”“﹣”号叫做它的符号;2、0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数;3、用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.解答本题的关键就是读懂题意然后仔细计算就好.27.某市出租车的收费标准如下:起步价5元,即3千米以内(含3千米)收费5元,超过3千米的部分,每千米收费1.3元.(不足1千米按1千米计算)(1)假如你乘出租车行驶7千米应付多少钱?(2)若小红付出租车费16.7元,则小红最多乘坐多少千米?【考点】一元一次方程的应用.【分析】(1)起步价+超过3千米的部分×每千米收费,列式计算即可求解;(2)利用起步价+超过3千米的部分×每千米收费=出租车费16.7元列方程解答即可.【解答】解:(1)5+1.3×(7﹣3)=5+1.3×4=5+5.2=10.2(元)答:出租车行驶7千米应付10.2元;(2)设小红最多乘坐x千米,由题意得5+1.3(x﹣3)=16.7解得:x=12答:小红最多乘坐12千米.【点评】此题考查一元一次方程的实际运用,找出乘车费用的计算方法是解决问题的关键.28.已知多项式(m2﹣49)x3﹣(m﹣7)x2+3x+4是关于x的二次三项式,求(m+3)(m ﹣3)的值.【考点】多项式;代数式求值.【分析】根据题意可得当m2﹣49=0时,多项式(m2﹣49)x3﹣(m﹣7)x2+3x+4是关于x 的二次三项式,再解即可.【解答】解:由题意得:m2﹣49=0,且m﹣7≠0,解得:m=﹣7,则(m+3)(m﹣3)=40.【点评】此题主要考查了多项式,关键是掌握多项式中次数最高的项的次数叫做多项式的次数.四、解答题(共3小题,满分20分)29.数轴三要素:原点,正方向,单位长度.【考点】数轴.【分析】根据数轴的三要素:原点、正方向、单位长度,即可解答.【解答】解:数轴的三要素:原点、正方向、单位长度,故答案为:原点、正方向、单位长度.【点评】本题考查了数轴,解决本题的关键是熟记数轴的三要素:原点、正方向、单位长度.30.比较大小:﹣7<0,100>1.【考点】有理数大小比较.【分析】根据正数大于负数和0,0大于负数,即可解答.【解答】解:﹣7<0,100>1,故答案为:<,>.【点评】本题考查了有理数的大小比较,解决本题的关键是熟记正数大于负数和0,0大于负数.31.小明同学平时爱好数学,他探索发现了:从2开始,连续的几个偶数相加,它们和的情况变化规律,如表所示:请你根据表中提供的规律解答下列问题:(1)如果n=8时,那么S的值为72;(2)根据表中的规律猜想:用n的代数式表示S,则S=2+4+6+8+…+2n=n(n+1);(3)利用上题的猜想结果,计算300+302+304+…+xx+xx的值(要有计算过程).【考点】规律型:数字的变化类.【分析】(1)当n=8时,表示出S,计算得到S的值;(2)根据表格得到从2开始的偶数之和为偶数个数乘以个数加1,用n表示出即可;(3)将所求式子表示为(2+4+6+…+298+300+302+304+…+xx+xx)﹣(2+4+6+…+298),用上述规律计算,即可得到结果.【解答】解:(1)当n=8时,那么S=2+4+6+8+10+12+14+16=8×9=72;(2)∵2=1×2,2+4=6=2×3,2+4+6=12=3×4,2+4+6+8=20=4×5,2+4+6+8+10=30=5×6,∴S=2+4+6+8+…+2n=2(1+2+3+…+n)=n(n+1);(3)300+302+304+…+xx+xx=(2+4+6+...+298+300+302+304+...+xx+xx)﹣(2+4+6+ (298)=1006×1007﹣149×150=1013042﹣22350=990692.故答案为:(1)72;(2)n(n+1).【点评】此题考查了规律型:数字的变化类,本题的规律为:从2开始的连续偶数之和为偶数个数乘以偶数个数加1.。
人教版2019-2020学年度七年级数学上册期中测试题(含答案)
2019—2020学年度第一学期期中考试七年级数学试卷一、选择题:(本大题共10小题,每小题3分,共30分)1. -23的相反数是() A .32 B .-32 C .23 D .-232.某物体的三视图是如图所示的三个图形,那么该物体是( )A.长方体B.圆锥体C.立方体D.圆柱体3.如图是正方体的表面展开图,则与“前”字相对的字是()A .认B .真C .复D .习4.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列.行程最长,途经城市和国家最多的一趟专列全程长13000km ,将13000用科学记数法表示应为( )A .0.13×105B .1.3×104C .1.3×105D .13×1035. 下列各组数中的互为相反数的是( )A.2与12B.(-1)2与1C.-1与(-1)2D.2与2- 6、在数轴上表示到原点的距离为3个单位的点是( )A .3B .—3C .+3D .3或—37.已知3x 2n -1y m 与-5x m y 3是同类项,则m 和n 的值分别是()A.3 和 2B.-3 和 2C.3 和-2D.-3 和-28. 已知a ,b 两数在数轴上对应的点如下图所示,下列结论正确的是()A .b -a >0B .ab <0C .a >bD .a +b >09. 如图,一个窗户的上部是由4个扇形组成的半圆,下部是由4个边长相同的小正方形组成的长方形,则这个窗户的外框总长为()A.6a+πaB.12aC.15a+πaD.6a10.已知当x=1时,代数式2ax3 +3bx+ 4值为6,那么当x=-1时,代数式2ax3+3bx+4值为( )A. 2B. 3C. -4D.-5二. 填空题(本大题6小题,每小题4分,共24分)11.-16的相反数是,倒数是,绝对值是.12.如果|y-3|+(2x-4)2=0那么2x-y 等于.13.多项式3-2xy2+4x2yz的次数是,项数是。
人教版2019-2020学年度七年级数学第一学期期中测试卷(含答案)
2019—2020学年度第一学期期中考试七年级数学试卷一、选择题:(本大题共10小题,每小题3分,共30分)1. -23的相反数是()A.32B.-32C.23D.-232.某物体的三视图是如图所示的三个图形,那么该物体是( )A.长方体B.圆锥体C.立方体D.圆柱体3.如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习4.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列.行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为( )A.0.13×105 B.1.3×104 C.1.3×105 D.13×103 5. 下列各组数中的互为相反数的是()A.2与12B.(-1)2与1C.-1与(-1)2D.2与2-6、在数轴上表示到原点的距离为3个单位的点是()A.3 B.—3 C.+3 D.3或—37.已知3x2n-1y m与-5x m y3是同类项,则m和n的值分别是()A.3 和 2B.-3 和 2C.3 和-2D.-3 和-28. 已知a,b两数在数轴上对应的点如下图所示,下列结论正确的是()A.b-a>0B.ab<0C.a>b D.a+b>09. 如图,一个窗户的上部是由4个扇形组成的半圆,下部是由4个边长相同的小正方形组成的长方形,则这个窗户的外框总长为()A.6a+πaB.12aC.15a+πaD.6a10.已知当x=1时,代数式2ax3 +3bx+ 4值为6,那么当x=-1时,代数式2ax3+3bx+4值为( )A. 2B. 3C. -4D.-5二. 填空题(本大题6小题,每小题4分,共24分)11.-16的相反数是,倒数是,绝对值是.12.如果|y-3|+(2x-4)2=0那么2x-y 等于.13.多项式3-2xy2+4x2yz的次数是,项数是。
2019-2020年七年级(上)期中数学试卷(解析版)(VIII)
2019-2020年七年级(上)期中数学试卷(解析版)(VIII)一、选择题(本大题共8小题,每小题3分,共24分,每小题所给的选项中只有一项符合题目要求,请把答案直接写在答题纸相应的位置上.)1.﹣2的倒数是()A.﹣B. C.﹣2 D.22.下列说法中,正确的是()A.0是最小的整数B.最大的负整数是﹣1C.任何有理数的绝对值都是正数D.一个有理数的平方总是正数3.下列关于单项式一的说法中,正确的是()A.系数是﹣,次数是4 B.系数是﹣,次数是3C.系数是﹣5,次数是4 D.系数是﹣5,次数是34.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×104吨B.6.75×103吨C.0.675×105吨D.67.5×103吨5.下列各式计算正确的是()A.6a+a=6a2B.2a+b=2abC.3ab2﹣5b2a=﹣2ab2 D.4m2n﹣2mn2=2mn6.如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为()A.1 B.﹣5 C.﹣1 D.57.若x表示一个两位数,y也表示一个两位数,小明想用x,y来组成一个四位数,且把x 放在y的右边,你认为下列表达式中正确的是()A.yx B.x+y C.100x+y D.100y+x8.如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.N或P B.M或R C.M或N D.P或R二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题纸相应的位置上.)9.|﹣xx|=.10.有两种练习本,一种单价是0.3元,另一种单价是0.5元,买这两种练习本的本数分别是a和b,共需元.11.关于x的方程ax﹣6=2的解为x=2,则a=.12.若3p m q4与5pq n是同类项,则m+n=.13.已知a,b互为相反数,c、d互为倒数,则代数式2(a+b)﹣3cd的值为.14.已知a﹣b=1,则代数式2b﹣(2a+6)的值是.15.在数轴上,与表示﹣3的点相距6个单位长度的点所表示的数是.16.写出一个同时满足下列条件的一元一次方程:①某个未知数的系数是2;②方程的解为3,则这样的方程可写为:.17.某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.则原有树苗棵.18.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是449,则m的值是.三、解答题(本大题共有8题,共66分.请在答题纸指定区域内作答,解题时写出必要的文字说明,推理步骤或演算步骤.)19.将﹣|﹣2.5|,3,0,(﹣1)100,﹣(﹣2)各数在数轴上表示出来,并按从小到大的顺序用“<”号连接起来.20.计算:(1)﹣9+12﹣(﹣3)(2)﹣22÷4×[5﹣(﹣3)2](3)2a﹣5b﹣3a+b(4)4(m2+n)+2(n﹣2m2)21.解方程:(1)2x+3=5x﹣18(2).22.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=1,b=﹣2.23.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)(1)求收工时,检修小组在A地的哪个方向?距离A地多远?(2)在第几次纪录时距A地最远?(3)若汽车行驶每千米耗油0.2升,问从A地出发,检修结束后再回到A地共耗油多少升?24.生态公园计划在园内的坡地上种植一片有A、B两种树的混合林,需要购买这两种树苗共100棵.假设这批树苗种植后成活95棵,种植A、B两种树苗的相关信息如下表:(1)求购买这两种树苗各多少棵?(2)求种植这片混合林的总费用需多少元?(总费用=购买树苗费用+栽树劳务费)25.将长为1,宽为a的长方形纸片(<a<1)如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后剩下的矩形为正方形,则操作终止.(1)第一次操作后,剩下的矩形两边长分别为;(用含a的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则a=;(3)若第三次操作后,剩下的长方形恰好是正方形,试求a的值.26.定义:如果10b=n,那么称b为n的劳格数,记为b=d(n).(1)根据劳格数的定义,可知:d(10)=1,d(102)=2,那么:d(103)=.(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n);d()=d(m)﹣d(n).根据运算性质,填空:=,若d(3)=0.477,则d(9)=,d(0.3)=.(3)下表中与x数对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数并改正.xx学年江苏省盐城市毓龙路实验中学七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分,每小题所给的选项中只有一项符合题目要求,请把答案直接写在答题纸相应的位置上.)1.﹣2的倒数是()A.﹣B. C.﹣2 D.2【考点】倒数.【专题】常规题型.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列说法中,正确的是()A.0是最小的整数B.最大的负整数是﹣1C.任何有理数的绝对值都是正数D.一个有理数的平方总是正数【考点】有理数.【分析】根据整数的意义,小于零的整数是负整数,绝对值的性质,平方的意义,可得答案.【解答】解:A、没有最小的整数,故A错误;B、最大的负整数是﹣1,故B正确;C、0的绝对值是0,胡C错误;D、0的平方式0,故D错误;故选:B.【点评】本题考查了有理数,任何有理数的绝对值都是非负数,任何有理数的平方都是非负数,注意没有最小的整数,没有最大的整数.3.下列关于单项式一的说法中,正确的是()A.系数是﹣,次数是4 B.系数是﹣,次数是3C.系数是﹣5,次数是4 D.系数是﹣5,次数是3【考点】单项式.【专题】推理填空题.【分析】根据单项式系数及次数的定义进行解答即可.【解答】解:∵单项式﹣中的数字因数是﹣,所以其系数是﹣;∵未知数x、y的系数分别是1,3,所以其次数是1+3=4.故选A.【点评】本题考查的是单项式系数及次数的定义,即单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.4.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×104吨B.6.75×103吨C.0.675×105吨D.67.5×103吨【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.【解答】解:67 500=6.75×104.故选A.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.下列各式计算正确的是()A.6a+a=6a2B.2a+b=2abC.3ab2﹣5b2a=﹣2ab2 D.4m2n﹣2mn2=2mn【考点】合并同类项.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,结合选项选出正确答案即可.【解答】解:A、6a+a=7a,原式计算错误,故本选项错误;B、2a和b不是同类项,不能合并,故本选项错误;C、3ab2﹣5b2a=﹣2ab2,计算正确,故本选项正确;D、4m2n和2mn2不是同类项,不能合并,故本选项错误.故选C.【点评】本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.6.如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为()A.1 B.﹣5 C.﹣1 D.5【考点】有理数的混合运算.【专题】图表型.【分析】根据题意得到运算程序为﹣3x2+2,然后把x=﹣1代入计算即可.【解答】解:由题意可知其运算式为:﹣3x2+2,当x=﹣1时,原式=﹣3×(﹣1)2+2=﹣3+2=﹣1.故选:C.【点评】本题主要考查有理数的混合运算,由条件得出关于x的算式是解题的关键.7.若x表示一个两位数,y也表示一个两位数,小明想用x,y来组成一个四位数,且把x 放在y的右边,你认为下列表达式中正确的是()A.yx B.x+y C.100x+y D.100y+x【考点】列代数式.【分析】y原来的最高位是十位,现在的最高位是千位,相当于扩大了100倍,x不变.【解答】解:根据数的数位的意义知:x表示一个两位数,y也表示一个两位数,把x放在y的右边,则y扩大了100倍,x不变.即表示为100y+x.故选D.【点评】需注意掌握用字母表示数的方法.8.如图,M、N、P、R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.N或P B.M或R C.M或N D.P或R【考点】数轴.【分析】根据数轴判断出a、b之间的距离小于3,然后根据绝对值的性质解答即可.【解答】解:∵MN=NP=PR=1,∴a、b之间的距离小于3,∵|a|+|b|=3,∴原点不在a、b之间,∴原点是M或R.故选B.【点评】本题考查了数轴,准确识图,判断出a、b之间的距离小于3是解题的关键.二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题纸相应的位置上.)9.|﹣xx|=xx.【考点】绝对值.【分析】根据负数的绝对值是它的相反数,可得负数的绝对值表示的数,【解答】解:|﹣xx|=xx.故答案为:xx.【点评】本题考查了绝对值,解题时注意符号.10.有两种练习本,一种单价是0.3元,另一种单价是0.5元,买这两种练习本的本数分别是a和b,共需(0.3a+0.5b)元.【考点】列代数式.【分析】根据已知练习本的单价结合买这两种练习本的本数直接得出总费用.【解答】解:由题意可得:0.3a+0.5b.故答案为:(0.3a+0.5b).【点评】此题主要考查了列代数式,正确表示出每种练习本的费用是解题关键.11.关于x的方程ax﹣6=2的解为x=2,则a=4.【考点】一元一次方程的解.【分析】根据一元一次方程的解的定义,把x=2代入方程中,解关于a的方程即可.【解答】解:把x=2代入方程得:2a﹣6=2解得:a=4.故答案为:4.【点评】主要考查了一元一次方程的解的定义.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.12.若3p m q4与5pq n是同类项,则m+n=5.【考点】同类项.【分析】根据同类项的定义求得m、n的值,然后利用有理数的加法法则计算即可.【解答】解:由同类项的定义可知;m=1,n=4,m+n=1+4=5.故答案为:5.【点评】本题主要考查的是同类项的定义,掌握同类项的定义是解题的关键.13.已知a,b互为相反数,c、d互为倒数,则代数式2(a+b)﹣3cd的值为﹣3.【考点】代数式求值;相反数;倒数.【分析】根据互为相反数的两个数的和等于0可得a+b=0,乘积是1的两个数叫做互为倒数可得cd=1,然后代入代数式进行计算即可得解.【解答】解:∵a与b互为相反数,∴a+b=0,∵c与d互为倒数,∴cd=1,∴2(a+b)﹣3cd=2×0﹣3×1=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,主要利用了相反数的定义,倒数的定义,熟记概念是解题的关键.14.已知a﹣b=1,则代数式2b﹣(2a+6)的值是﹣8.【考点】代数式求值.【分析】去括号后转化成﹣2(a﹣b)﹣6,再代入求出即可.【解答】解:∵a﹣b=1,∴2b﹣(2a+6)=2b﹣2a﹣6=﹣2(a﹣b)﹣6=﹣2×1﹣6=﹣8,故答案为:﹣8.【点评】本题考查了求代数式的值的应用,用了整体代入思想,即把a﹣b当作一个整体来代入.15.在数轴上,与表示﹣3的点相距6个单位长度的点所表示的数是﹣9或3.【考点】数轴.【分析】根据题意得出两种情况:当点在表示﹣3的点的左边时,当点在表示﹣3的点的右边时,列出算式求出即可.【解答】解:分为两种情况:①当点在表示﹣3的点的左边时,数为﹣3﹣6=﹣9;②当点在表示﹣3的点的右边时,数为﹣3+6=3.故答案为:﹣9或3.【点评】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.16.写出一个同时满足下列条件的一元一次方程:①某个未知数的系数是2;②方程的解为3,则这样的方程可写为:2x﹣6=0.【考点】一元一次方程的解.【专题】开放型.【分析】根据方程的解的定义,把x=3代入方程,方程左右两边一定相等即可求解.【解答】解:这样的方程可写为:2x﹣6=0.(答案不唯一).故答案是:2x﹣6=0.【点评】本题考查了方程的解的定义,理解定义是关键.17.某市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.则原有树苗106棵.【考点】一元一次方程的应用.【分析】设原有树苗x棵,由栽树问题栽树的棵数=分得的段数+1,可以表示出路的长度,由路的长度相等建立方程求出其解即可.【解答】解:设原有树苗x棵,则路的长度为5(x+21﹣1)米,由题意,得5(x+21﹣1)=6(x﹣1),解得:x=106.故答案为:106.【点评】本题考查了栽树问题的运用,栽树的棵数=分得的段数+1的运用,列一元一次方程解实际问题的运用,解答时由路的长度不变建立方程是关键.18.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是449,则m的值是21.【考点】有理数的乘方.【专题】计算题;规律型.【分析】观察规律,分裂成的数都是奇数,且第一个数是底数乘以与底数相邻的前一个数的积再加上1,奇数的个数等于底数,然后找出449所在的奇数的范围,即可得解.【解答】解:∵23=3+5,33=7+9+11,43=13+15+17+19,∴m3分裂后的第一个数是m(m﹣1)+1,共有m个奇数,∵21×(21﹣1)+1=421,22×(22﹣1)+1=463,∴奇数449是底数为21的数的立方分裂后的一个奇数,∴m=21.故答案为:21.【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.三、解答题(本大题共有8题,共66分.请在答题纸指定区域内作答,解题时写出必要的文字说明,推理步骤或演算步骤.)19.将﹣|﹣2.5|,3,0,(﹣1)100,﹣(﹣2)各数在数轴上表示出来,并按从小到大的顺序用“<”号连接起来.【考点】数轴;有理数大小比较.【分析】先分别计算出各式的结果,根据结果在数轴上表示,根据左小右大的原则比较大小即可.【解答】解:﹣|﹣2.5|=﹣2.5,(﹣1)100,=1,﹣(﹣2)=2,各数在数轴上表示出来为:按从小到大的顺序用“<”号连接起来为:﹣|﹣2.5|<0<(﹣1)100<﹣(﹣2)<3.【点评】主要考查了有理数的运算以及数轴上点的表示方法,会利用数轴比较有理数的大小.20.计算:(1)﹣9+12﹣(﹣3)(2)﹣22÷4×[5﹣(﹣3)2](3)2a﹣5b﹣3a+b(4)4(m2+n)+2(n﹣2m2)【考点】有理数的混合运算;整式的加减.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式合并同类项即可得到结果;(4)原式去括号合并即可得到结果.【解答】解:(1)原式=﹣9+12+3=﹣9+15=6;(2)原式=﹣4÷4×(﹣4)=4;(3)原式=﹣a﹣4b;(4)原式=4m2+4n+2n﹣4m2=6n.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.解方程:(1)2x+3=5x﹣18(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:3x=21,解得:x=7;(2)去分母得:3x+9﹣13+3x=6,移项合并得:6x=10,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=1,b=﹣2.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=1,b=﹣2时,原式=﹣6﹣4=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下.(单位:km)(1)求收工时,检修小组在A地的哪个方向?距离A地多远?(2)在第几次纪录时距A地最远?(3)若汽车行驶每千米耗油0.2升,问从A地出发,检修结束后再回到A地共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次的记录,根据有理数的大小比较,可得答案;(3)根据单位耗油量乘以行驶路程,可得答案.【解答】解:(1)﹣4+7+(﹣9)+8+6+(﹣5)+(﹣4)=﹣1,答:检修小组在A地的西方,距离A地1千米;(2)第一次句A地|﹣4|=4,第二次距A地﹣4+7=3,第三次距A第3+(﹣9)=﹣5,第四次距A地﹣5+8=3,第五次距A地3+6=9,第六次距A地9﹣5=4,第七次距A地4﹣4=0,答:第五次纪录时距A地最远;(3)0.2×(|﹣4|+7+|﹣9|+8+6+|﹣5|+|﹣4|)=0.2×43=8.6升,答:检修结束后再回到A地共耗油8.6升.【点评】本题考查了正数和负数,利用有理数的加法是解题关键,注意单位耗油量乘以行驶路程等于总耗油量.24.生态公园计划在园内的坡地上种植一片有A、B两种树的混合林,需要购买这两种树苗共100棵.假设这批树苗种植后成活95棵,种植A、B两种树苗的相关信息如下表:(1)求购买这两种树苗各多少棵?(2)求种植这片混合林的总费用需多少元?(总费用=购买树苗费用+栽树劳务费)【考点】一元一次方程的应用.【专题】工程问题.【分析】(1)设购买A种树苗x棵,则购买B种树苗(100﹣x)棵,然后根据表格中的各自成活率及种植后成活95棵可以列出关于x的方程,然后解方程即可求出两种树苗的棵数;(2)根据(1)中两种树苗的棵数和表格中A、B两种栽树劳务费就可以求出混合林的总费用.【解答】解:(1)设购买A种树苗x棵,则购买B种树苗(100﹣x))棵,根据题意得:96%x+92%(100﹣x)=95,解得x=75.答:购买A种树苗75棵,购买B种树苗25棵;(2)(15+3)×75+(20+4)×25=1950.答:种植这片混合林总费用1950元.【点评】解题关键是要读懂题目表格数据的意思,根据表格中给出的数据,找出合适的等量关系列出方程,再求解.25.将长为1,宽为a的长方形纸片(<a<1)如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后剩下的矩形为正方形,则操作终止.(1)第一次操作后,剩下的矩形两边长分别为a与1﹣a;(用含a的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则a=;(3)若第三次操作后,剩下的长方形恰好是正方形,试求a的值.【考点】一元一次方程的应用;列代数式;整式的加减.【分析】(1)根据所给的图形可以看出每一次操作时所得正方形的边长都等于原矩形的宽,再根据长为1,宽为a的长方形即可得出剩下的长方形的长和宽;(2)再根据(1)所得出的原理,得出第二次操作时正方形的边长为1﹣a,即可求出第二次操作以后剩下的矩形的两边的长分别是1﹣a和2a﹣1,并且剩下的长方形恰好是正方形,即可求出a的值;(3)根据(2)所得出的长方形两边长分别是1﹣a和2a﹣1,分两种情况进行讨论:①当1﹣a>2a﹣1时,第三次操作后,剩下的长方形两边长分别是(1﹣a)﹣(2a﹣1)和2a﹣1;②当1﹣a<2a﹣1时,第三次操作后,剩下的长方形两边长分别是(2a﹣1)﹣(1﹣a)和1﹣a,并且剩下的长方形恰好是正方形,即可求出a的值.【解答】解:(1)∵长为1,宽为a的长方形纸片(<a<1),∴第一次操作后剩下的矩形的长为a,宽为1﹣a;(2)∵第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1,此时矩形恰好是正方形,∴1﹣a=2a﹣1,解得a=;(3)第二次操作后,剩下矩形的两边长分别为:1﹣a与2a﹣1.①当1﹣a>2a﹣1时,由题意得:(1﹣a)﹣(2a﹣1)=2a﹣1,解得:.当时,1﹣a>2a﹣1.所以,是所求的一个值;②当1﹣a<2a﹣1时,由题意得:(2a﹣1)﹣(1﹣a)=1﹣a,解得:.当时,1﹣a<2a﹣1.所以,是所求的一个值;所以,所求a的值为或;故答案为(1)a与1﹣a;(2).【点评】本题考查了一元一次方程的应用,解题的关键是分别求出每次操作后剩下的矩形的两边的长度,有一定难度.26.定义:如果10b=n,那么称b为n的劳格数,记为b=d(n).(1)根据劳格数的定义,可知:d(10)=1,d(102)=2,那么:d(103)=3.(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n);d()=d(m)﹣d(n).根据运算性质,填空:=5,若d(3)=0.477,则d(9)=0.954,d(0.3)=﹣0.523.(3)下表中与x数对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数并改正.【考点】有理数的混合运算.【专题】新定义.【分析】(1)根据新定义可以得到本问的答案;(2)根据若m、n为正数,则d(mn)=d(m)+d(n);d()=d(m)﹣d(n),可以解答本题;(3)根据第二问的运算性质可以解答本题,关键是灵活变活,运用反证法说明哪些数据是正确的,从而可以得到哪两个数据是错误的,然后进行纠正即可.【解答】解:(1)根据题意可得,d(103)可表示为:10b=103,得b=3.故答案为:3.(2)∵若m、n为正数,则d(mn)=d(m)+d(n),d(3)=0.477∴=,d(9)=d(3×3)=d(3)+d(3)=0.477+0.477=0.954,d(0.3)=d()=d(3)﹣d(10)=0.477﹣1=﹣0.523故答案为:5,0.954,﹣0.523(3)若d(3)≠2a﹣b,则d(9)=2d(3)≠4a﹣2b,d(27)=3d(3)≠6a﹣3b,从而表中有三个劳格数是错误的,与题设矛盾,∴d(3)=2a﹣b,d(9)=4a﹣2b,d(27)=6a﹣3b都是正确的;若d(5)≠a+c,则d(2)=d(10)﹣d(5)=1﹣d(5)≠1﹣a﹣c,∴d(8)=3d(2)≠3﹣3a﹣3c,d(6)=d(3)+d(2)≠1+a﹣b﹣c,表中也有三个劳格数是错误的,与题设矛盾,∴d(5)=a+c,d(6)=1+a﹣b﹣c,d(8)=3﹣3a﹣3c都是正确的;∴表中只有d(1.5)和d(12)的值是错误的,应纠正为:d(1.5)=d(3)+d(5)﹣d(10)=3a﹣b+c﹣1,d(12)=d(3)+2d(2)=2﹣b﹣2c.【点评】本题考查有理数的混合运算,解题的关键是明确新定义和运算性质.。
2019-2020学年新人教版七年级上学期期中考试数学试卷(解析版)
2019-2020学年新人教版七年级上学期期中考试数学试卷一、选择题:(每小题3分,共36分)1.0.2的相反数是()A.B.C.﹣5D.52.下列计算正确的是()A.23=6B.﹣42=﹣16C.﹣8﹣8=0D.﹣5﹣2=﹣33.在有理数(﹣1)2、、﹣|﹣2|、(﹣2)3中负数有()个.A.4B.3C.2D.14.下列说法中正确的是()A.没有最小的有理数B.0既是正数也是负数C.整数只包括正整数和负整数D.﹣1是最大的负有理数5.2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学记数法表示为()元.A.4.5×1010B.4.5×109C.4.5×108D.0.45×1096.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.的系数是D.﹣22xab2的次数是67.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水()A.3瓶B.4瓶C.5瓶D.6瓶8.如图所示是5个城市的国际标准时间(单位:时)那么北京时间2007年11月9日上午9时应是()A.伦敦时间2007年11月9日凌晨1时B.纽约时间2007年11月9日晚上22时C.多伦多时间2007年11月8日晚上20时D.汉城时间2007年11月9日上午8时9.如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为()A.1B.﹣5C.﹣1D.510.下列各式中,是二次三项式的是()A.B.32+3+1C.32+a+ab D.x2+y2+x﹣y11.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.﹣a<﹣b<a<b C.﹣b<a<﹣a<b D.﹣b<b<﹣a<a12.已知a、b为有理数,下列式子,其中一定能够表示a、b异号的有()个①|ab|>ab②<0③||=﹣④a3+b3=0A.1B.2C.3D.4二、填空题:(每题3分,共18分)13.若a与b互为相反数,c与d互为倒数,则(a+b)3﹣4(cd)5=.14.已知|a|=3,|b|=2,且ab<0,则a﹣b=.15.一只猫头鹰一年能吃300只田鼠,一只田鼠一年大约要糟蹋2千克粮食,现有m只猫头鹰,一年可以减少损失粮食千克.16.若规定a*b=5a+2b﹣1,则(﹣4)*6的值为.17.已知a=25,b=﹣3,则a99+b100的末位数字是.18.观察一列数:,,,,,…根据规律,请你写出第10个数是.三、解答题:(共66分)19.(5分)画一根数轴,用数轴上的点把如下的有理数﹣2,﹣0.3,0,2.5,表示出来,并用“<”把它们连接起来.20.(24分)计算(1)(2)(﹣﹣+﹣+)×(﹣60)(3)﹣×[(﹣)÷(0.75﹣1)+(﹣2)5](4)﹣23+[(﹣4)2﹣(1﹣32)×3](5)(6)﹣13×﹣0.34×+×(﹣13)﹣×0.3421.(16分)化简(1)a2﹣ab+a2+ab﹣b2(2)(7m2n﹣5mn)﹣(4m2n﹣5mn)(3)(4)﹣2y3+(3xy2﹣x2y)﹣2(xy2﹣y3)22.(5分)先化简,再求值:5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=﹣,b=.23.(5分)一位同学做一道题,已知两个多项式A,B,计算A+B,他误将A+B看作A﹣B,求得9x2﹣2x+7,若B=x2+3x﹣2,你能否帮助他求得正确答案?24.(5分)如果有理数a,b满足|ab﹣2|+(1﹣a)2=0,试求的值.25.(6分)已知有理数a、b、c在数轴上的位置如图所示,且|a|=|b|,化简|a|﹣|a+b|﹣|c﹣a|+|c﹣b|+|ac|﹣|﹣2b|参考答案与试题解析一、选择题:(每小题3分,共36分)1.【分析】根据相反数的意义在0.2前面加上负号即可得出答案.【解答】解:由相反数的意义得:0.2的相反数是:﹣0.2=﹣,故选:B.【点评】此题主要考查的知识点是相反数的定义,关键是在其前面加“﹣”得出这个数的相反数.2.【分析】根据有理数的加法、减法、乘方法则分别计算出结果,再进行比较.【解答】解:A、23=8≠6,错误;B、﹣42=﹣16,正确;C、﹣8﹣8=﹣16≠0,错误;D、﹣5﹣2=﹣7≠﹣3,错误;故选:B.【点评】本题主要考查学生的运算能力,掌握运算法则是关键.3.【分析】根据小于0的数是负数,对各项计算后得出负数的个数.【解答】解:(﹣1)2=1是正数,﹣(﹣)=是正数,﹣|﹣2|=﹣2是负数,(﹣2)3=﹣8是负数,所以负数有﹣|﹣2|,(﹣2)32个,故选:C.【点评】本题主要利用小于0的数是负数的概念,是基础题,比较简单.4.【分析】按照有理数的分类作出选择:有理数.【解答】解:A、没有最大的有理数,也没有最小的有理数;故本选项正确;B、0既不是正数,也不是负数,而是整数;故本选项错误;C、整数包括正整数、负整数和零;故本选项错误;D、比﹣1大的负有理数可以是﹣;故本选项错误;故选:A.【点评】认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将450亿用科学记数法表示为:4.5×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.【分析】根据单项式和多项式的概念及性质判断各个选项即可.【解答】解:A、2x2﹣3xy﹣1是二次三项式,故本选项不符合题意;B、﹣x+1不是单项式,故本选项不符合题意;C、的系数是,故本选项不符合题意;D、﹣22xab2的次数是4,故本选项符合题意.故选:D.【点评】本题考查单项式及多项式的知识,注意对这两个基本概念的熟练掌握,属于基础题,比较容易解答.7.【分析】4个矿泉水空瓶可以换矿泉水一瓶,16个矿泉水空瓶可换4瓶矿泉水,喝完后又得4个空矿泉水瓶,又可换一瓶,喝完后得一空瓶.所以最多可以喝矿泉水5瓶.【解答】解:16个空瓶可换16÷4=4瓶矿泉水;4瓶矿泉水喝完后又可得到4个空瓶子,可换4÷4=1瓶矿泉水;因此最多可以喝矿泉水4+1=5瓶,故选:C.【点评】本题需注意喝完4瓶矿泉水后,又可得到4个空瓶即1瓶矿泉水.8.【分析】根据数轴所显示的差值进行计算即可.【解答】解:若北京是2007年11月9日上午9时,则汉城是11月9日上午10时,纽约是11月8日晚上20时,多伦多是11月8日晚上21时,伦敦是11月9日凌晨1时.故选:A.【点评】本题考查了有理数的加减法.注意会根据数轴知道﹣4、﹣5表达的时间的意思.9.【分析】根据运算程序可得若输入的是x,则输出的是﹣3x﹣2,把x的值代入即可求值.【解答】解:根据运算程序可知,若输入的是x,则输出的是﹣3x﹣2,∴当x=﹣1时,原式=﹣3×(﹣1)﹣2=1.故选:A.【点评】此题考查了代数式求值问题.解题的关键是理解题意,能根据题意列得代数式.10.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选:C.【点评】此题主要考查了如何确定多项式的项数和次数,难点是通过计算确定多项式的次数.11.【分析】利用有理数大小的比较方法可得﹣a<b,﹣b<a,b>0>a进而求解.【解答】解:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和﹣a两个正数中,﹣a<b;在a和﹣b两个负数中,绝对值大的反而小,则﹣b<a.因此,﹣b<a<﹣a<b.故选:C.【点评】有理数大小的比较方法:正数大于0;负数小于0;正数大于一切负数;两个负数,绝对值大的反而小.12.【分析】利用有理数的乘除法则,以及绝对值的代数意义计算即可求出值.【解答】解:①|ab|>ab,得到a、b异号,符合题意;②<0,得到a、b异号,符合题意;③||=﹣,a、b异号或a=0,不符合题意;④a3+b3=0,得到a、b互相相反数,不符合题意,故选:B.【点评】此题考查了有理数的乘除法,以及绝对值,熟练掌握运算法则是解本题的关键.二、填空题:(每题3分,共18分)13.【分析】根据a与b互为相反数,c与d互为倒数,可以得到:a+b=0,cd=1.代入求值即可求解.【解答】解:∵a与b互为相反数,c与d互为倒数,∴a+b=0,cd=1.∴(a+b)3﹣4(cd)5=0﹣4×1=﹣4.故答案是:﹣4.【点评】本题考查了相反数,倒数的定义,正确理解定义是关键.14.【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a ﹣b中求值即可.【解答】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.【点评】解答此题时,要注意ab<0的真正含义,并充分利用题目中的条件,是正确解答题目的关键.15.【分析】一年减少损失的粮食情况数为:2×田鼠只数.【解答】解:∵一只猫头鹰一年能吃300只田鼠,∴m只猫头鹰一年能吃300m只田鼠,∵一只田鼠一年大约要糟蹋2千克粮食,∴m只猫头鹰,一年可以减少损失粮食300m×2=600m(千克).故答案为600m.【点评】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.16.【分析】根据a*b=5a+2b﹣1,可以求得题目中所求式子的值,本题得以解决.【解答】解:∵a*b=5a+2b﹣1,∴(﹣4)*6=5×(﹣4)+2×6﹣1=(﹣20)+12﹣1=﹣9,故答案为:﹣9.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.【分析】先把各数的值代入代数式,再找出规律求解即可.【解答】解:∵a=25,b=﹣3,∴2599+(﹣3)100=2599+(﹣3)25×4=2599+[(﹣3)4]25=2599+8125,∵5的任何次幂末位数均为5,1的任何次幂末位数均为1,∴2599+8125的末位数是5+1=6.【点评】此题比较简单,把(﹣3)100化为8125是解答此题的关键.18.【分析】仔细观察给出的一列数字,从而可发现,分子等于其项数,分母为其所处的项数的平方加1,根据规律解题即可.【解答】解:,,,,,…根据规律可得第n个数是,∴第10个数是,故答案为;.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题:(共66分)19.【分析】先在数轴上表示各个数,再比较大小即可.【解答】解:如图所示:用“<”把它们连接起来为:﹣2<﹣<﹣0.3<0<2.5.【点评】本题考查了数轴,有理数的大小比较的应用,能正确比较两个数的大小是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.20.【分析】(1)先算小括号里面的减法,再将除法变为乘法,再约分计算即可求解;(2)(6)根据乘法分配律简便计算;(3)(4)(5)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)=(﹣)×(﹣)××(﹣2)=﹣;(2)(﹣﹣+﹣+)×(﹣60)=﹣×(﹣60)﹣×(﹣60)+×(﹣60)﹣×(﹣60)+×(﹣60)=20+15﹣12+28﹣25=26;(3)﹣×[(﹣)÷(0.75﹣1)+(﹣2)5]=﹣×[(﹣)÷(﹣)+(﹣32)]=﹣×[2+(﹣32)]=﹣×(﹣30)=24;(4)﹣23+[(﹣4)2﹣(1﹣32)×3]=﹣8+[16﹣(1﹣9)×3]=﹣8+[16﹣(﹣8)×3]=﹣8+(16+24)=﹣8+40=32;(5)=﹣1﹣(﹣)÷×(﹣2+27)﹣|﹣|=﹣1﹣(﹣)÷×25﹣=﹣1+12﹣=11;(6)﹣13×﹣0.34×+×(﹣13)﹣×0.34=﹣13×(+)﹣0.34×(+) =﹣13×1﹣0.34×1 =﹣13﹣0.34 =﹣13.34.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 21.【分析】(1)直接合并同类项即可; (2)(4)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,然后合并同类项即可.【解答】解:(1)a 2﹣ab +a 2+ab ﹣b 2=a 2+ab ﹣b 2;(2)(7m 2n ﹣5mn )﹣(4m 2n ﹣5mn ) =7m 2n ﹣5mn ﹣4m 2n +5mn =3m 2n ;(3)=4x 2﹣[x ﹣x +3+3x 2]=4x 2﹣x +x ﹣3﹣3x 2 =x 2﹣x ﹣3;(4)﹣2y3+(3xy2﹣x2y)﹣2(xy2﹣y3)=﹣2y3+3xy2﹣x2y﹣2xy2+2y3=xy2﹣x2y.【点评】本题考查了整式的加减,整式加减的实质就是去括号、合并同类项.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.22.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2﹣5﹣ab2﹣3a2b+5=12a2b﹣6ab2,当a=﹣,b=时,原式=1﹣=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:9x2﹣2x+7+2(x2+3x﹣2)=9x2﹣2x+7+2x2+6x﹣4=11x2+4x+3.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.24.【分析】根据|ab﹣2|+(1﹣a)2=0,可以求得a、b的值,从而可以求得所求式子的值.【解答】解:∵|ab﹣2|+(1﹣a)2=0,∴ab﹣2=0,1﹣a=0,解得,a=1,b=2,∴==1﹣=1﹣=.【点评】本题考查数字的变化类、非负数的性质,解答本题的关键是明确题意,求出a、b的值.25.【分析】根据有理数a、b、c在数轴上的位置,可知c<b<0<a,且|a|=|b|,继而对②中的式子去绝对值,也即可得出答案.【解答】解:根据有理数a、b、c在数轴上的位置,可知c<b<0<a,且|a|=|b|,则a+b=0,所以|a|﹣|a+b|﹣|c﹣a|+|c﹣b|+|ac|﹣|﹣2b|,=a﹣0﹣(a﹣c)+(b﹣c)﹣ac+2b,=3b﹣ac.【点评】本题考查了数轴,绝对值,注意要会根据数在数轴上的位置判断其符号以及组成的一些代数式的符号.同时注意把一个代数式看作一个整体.。
吉安市2019-2020学年(上)七年级数学期中考试卷答题卡
15.
16.. 已知 2a 1 2 b2 c 1 0,求(b3 4a2) 3abc
17.
四.(本大题共 3 小题,每小题 8 分,共 24 分) 18. (1) (2) (3)
请在各题目的答题区作答,超出黑色矩形边框限定区域的答案无效
吉安市 2019-2020 学年(上)七年级数学期中考试卷答题卡 第 1 页 (共 4 页)
三.解答题(本大题共 5 小题,每小题 6 分,共 30 分)
13.(1) 12 2 6 1 8 ( 2)2 2
(2) 2(2xy 3y2 ) 3(x2 3xy 4 y2 )
14. 2(mn 3m2 ) [m2 5(mn m2 ) 2mn], 其中m 1, n 2
吉安市 2019-2020 学年度(上)七年级数学期中试卷 答题卡
学号:
班级: 姓名:
贴条形码区
注:答题前务必用Βιβλιοθήκη 色字迹的钢笔或铅笔填写班级、姓名、学号、座位号;选择题对应选项涂黑;保持卡
面清洁,不折叠。
一.选择题(本大题共 6 小题,每小题 3 分,共 18 分) 1 A B C D 2 A B C D 3A B C D
请在各题目的答题区作答,超出黑色矩形边框限定区域的答案无效
吉安市 2019-2020 学年(上)七年级数学期中考试卷答题卡第 3 页 (共 4 页)
请在各题目的答题区作答,超出黑色矩形边框限定区域的答案无效
吉安市 2019-2020 学年(上)七年级数学期中考试卷答题卡第 4 页 (共 4 页)
4 A B C D 5 A B C D 6A B C D
二.填空题(本大题共 6 小题,每小题 3 分,共 18 分) 7___________________ 8___________________ 9___________________
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年第一学期期中考试七年级数学试卷(满分100分,考试时间100分钟)亲爱的同学:请你放松心情,仔细阅读,认真思考,规范书写,收获一份成功! 一、精心选一选(每题3分,共30分)1.-3的相反数为 ……………………………………………………………( )A .-13B .13 C .3 D .-3 2、在数: π,227 , 7.56,1.010010001…(每两个1之间依次多一个0)中,无理数的 个数有 ( )A .1个B .2个C .3个D .4个 3.下列各式中,结果为正数的是………………………… ( )A .|2|--B .−(−2)C .−22D .(−2)×2 4.下列计算正确的是…………………………………… ( )A .2a −a = 2B .2a + b = 2abC .3x 2 + 2x 2 = 5x 4D .mn − 2mn = −mn5.单项式23yx -的系数是…………………………………… ( )A .21-B .21 C .−1 D .16.在式子1 x ,x + y ,0,−a ,−3x 2y ,x + 13 中,整式的个数……… ( ) A 、5个 B 、4个 C 、3个 D 、2个7.如图,数轴上A B 、两点分别对应实数a b 、,则下列结论中正确的是 ( ) A .0a b +> B .0ab >C .0a b ->D .||||0a b ->8.一个多项式与221x x -+的和是32x -,则这个多项式是 ( ) A .253x x -+ B .21x x -+- C .253x x -+- D .2513x x --9.下列说法中,正确的个数有 ( ) ① 有理数包括整数和分数; ② 一个代数式不是单项式就是多项式;③ 几个有理数相乘,负因数的个数是偶数,则积为正数;④ 倒数等于本身的数有1,-l ; A .1 B .2 C .3 D .410.火车站和机场都为旅客提供打包服务,如果长、宽、高分别是x,y,z 的箱子,按图方式打包,那么打包带的长至少为 ( ) A .4710x y z ++ B .23x y z ++ C .246x y z ++ D .686x y z ++二、细心填一填:(每空2分,共20分)11.-5的绝对值是__________;-13 的倒数是__________. 12. 相反数等于本身的数是______.13.“十一”黄金周期间无锡地铁总客流量达1 740 000人次, 这个数据用科学记数法表示应为____________________人次. 14.已知2x-3y-3=0,则代数式6x -9y +5的值为__________.15.如图是一个数值转换机的示意图,当输入-3时,输出的结果是__________. 16.()()2008200722-+-=________.17.一个盖着瓶盖的瓶子里面装着一些水(如下右图所示)现在将它倒置(如下左图所示),请你根据图中标明的数据,计算瓶子的容积是____________cm 3.18.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,第四个图形中有黑色瓷砖____________块;第n 个图形中有黑色瓷砖____________块。
三、认真答一答:(本大题共8小题,共50分.) 19.计算:(本题满分12分,每小题3分)(1)68612+-+-; (2) ()()()5362-⨯+-÷-;(3))12()654332(-⨯-+; (4)20.化简:(本题满分6分,每小题3分)第1个图形 第2个图形 第3个图形……()()100211336⎡⎤--⨯--⎣⎦(1)ab b a ab b a 4143222+--; (2))32(3)32(a b b a ---.21.先化简再求值:(本题满分4分)()()2225235b ab a ab a ab a -+--++, 其中a 、b 满足02112=⎪⎭⎫ ⎝⎛-++b a22.(本题满分5分)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用 “< 、 >”填空:b -c ______0,a +b ______0,c -a ______0.(2)化简:| b -c |+|a +b |-|c -a |23.(本题满分5分)李师傅在某加工厂工作,厂里规定每个工人平均每天生产零件40个,一周7天生产280个,但由于种种原因,实际每天生产个数与计划相比有出入.下表是李师傅某周的生产情况(超产记为正、减产记为负):(1)根据记录的数据可知李师傅星期四生产零件__________个; (2)根据记录的数据可知李师傅本周实际生产零件__________个; (3)该厂实行“每周计件工资制”。
每生产一个零件可得工资10元,若超额完成任务,则超过部分每个另奖5元;少生产一个则倒扣3元,那么李师傅这一周的工资总额是多少元? 24.(本题满分7分)某学生用品商店中,书袋每只定价20元,圆珠笔每支定价5元.现推出两种优惠方法:①按定价购1只书袋,赠送1支圆珠笔;②购书袋、圆珠笔一律按9折优惠.小丽和同学需买4只书袋,圆珠笔x 支(不低于4支).(1)若小丽和同学按方案①购买,需付款 元:(含x 的代数式表示并化简)若小丽和同学按方案②购买,需付款 元.(含x 的代数式表示并化简) (2)若x =10,小丽和同学按方案①购买,需付款 元; 小丽和同学按方案②购买,需付款 元.(3)现小丽和同学需买这种书袋4只和圆珠笔12支,请你设计一种最合算的购买方案,并直接写出最合算的购买费用.25.(本题满分5分)如图所示,用三种大小不同的六个正方形和一个缺角的长方形拼成大长方形ABCD ,其中 GH =1, GK =1, 设BF =a.(1)用含a 的代数式表示CM = cm , DM = cm . (2)用含a 的代数式表示大长方形ABCD 的周长.26.(本题满分6分)已知数轴上有A 、B 、C 三点,分别表示有理数﹣26,﹣10,10,动点P 从A 出发,以每秒1个单位的速度向右移动,当P 点运动到C 点时运动停止,设点.P .移动时间为.....t .秒.。
(1)用含t 的代数式表示P 到点A 和点C 的距离:PA=________,PC=_________. (2)当点P 运动到B 点时,点Q 从A 出发,以每秒3个单位的速度向右运动,求t 等于多少秒时P 、Q 两点相遇? t 等于多少秒时P 、Q 两点相距4个单位长度?2019~2020学年第一学期七年级数学2019.11期中考试答卷亲爱的同学:请你放松心情,仔细阅读,认真思考,规范书写,定会收获成功!11. ; 12. 13. 14.15. 16. 17. 18. ; 三、耐心做一做(本大题共8小题,满分50分.)学校____________ 班级 姓名 考试………………………………………………………装……………订……………线…………………………………………………………2)用含数学期中试卷答案一、精心选一选(每题3分,共24分) 1.C 2. B 3.B 4.D 5.A 6. A 7.C 8.C 9.B 10.C二、细心填一填(每空2分,共20分)11.5 , -3 12.0 13. 61074.1⨯ 14 .1415.28 16.22007 17.70 18. 13, 3n+1三.解答题 19.计算(1).=12668-++- ------------ 1分 =80- -------------------------- 2分=-8 -------------------------- 3分(2).=-15+ 3 --------- 2分 =-12 ------------- 3分 (3).=8910--+ -------- 2分 = -7 -------- 3分 (4)=1+1 --------- 2分 =2 -------- 3分 20.化简:(1)ab b a ab b a 4143222+--; (2))32(3)32(a b b a ---. = 2a 2b-14a 2b-3ab+4ab …2分 = 2369a b b a --+ …2分 =212a b ab -+ …3分 = 119a b - ……3分 21.先化简再求值: 21,1=-=b a --------------------2分 化简得:22a b + --------------------------------3分当21,1=-=b a 时,22a b + = 74- ------------------------------4分 22.解:<,<,<; ----- 3分原式=(c-b)+(-a-b)-(c-a)------ 1分=c-b-a-b-c+a=-2b ------ 1分23.(1)48 个1分(2)287 个1分(3)解:287×10+7×5=2905(元)2分24.(1)5x+60, 72+4.5x --------- 2分(2)110, 117 --------- 2分(3)用方案1购买4只书包,免费获得4支圆珠笔,剩下的8只笔使用方案2购买. ------- 2分费用为116元.------ 1分25.(1) a+1, 2a+1 ----- 2分(2) 长BC=5a+2 宽CD=3a+2 ---- 2分周长=16a+8 ----- 1分26.(1) t, 36-t ----- 2分(2) (3-1)(t-16)=16t =24所以t =24秒时,P、Q两点相遇----- 2分(3-1)(t-16)=16+4 (3-1)(t-16)=16-4t =26 t =22所以t等于22秒或26秒时P、Q两点相距4个单位长度. ----- 2分。