生活中的优化问题举例

合集下载

1.4生活中的优化问题举例(三).ppt1

1.4生活中的优化问题举例(三).ppt1

半径为 6cm时,利润最大 .
y 换一个角度: 如果 我 们不用导 数工具 ,直接 从函数的图象 (图 r3 2 1.4 4)上观察,你有什么发现? f r 0.8π 3 r 从图象上容 易看出,当 r 3 时,
f 3 0,即瓶子半径是 3cm 时, 饮料的利润与饮料瓶的成本恰
解:⑴P(x) = R(x) – C(x) = – 10x3 + 45x2 + 3240x – 5000 MP (x) = P ( x + 1 ) – P (x) = – 30x2 + 60x +3275 (其中 xN 且 x[1, 20]). ⑵∵ P( x ) = – 30x2 + 90x + 3240 = – 30( x +9 )(x – 12) ∴当 1< x < 12 时, P( x ) > 0, P(x)单调递增, 当 12 <x < 20 时, P( x ) < 0 , P ( x ) 单调递减. ∴ x = 12 时, P(x)取最大值,即年建造 12 艘船时, 公司 造船的年利润最大. ⑶由 MP(x ) = – 30( x – 1) 2 + 3305 (xN 且 x[1, 20]). ∴当 1< x ≤ 20 时,MP (x)单调递减. MP (x)是减函数说明:随着产量的增加,每艘利润与前一 台比较,利润在减少.
4 3 S 3 S S 3 h h 3h 由①得 b= h,代入②,∴l= 3 h 3 h h 3
l′ = 3
S S S S =0, ∴ h = , 当 h < 时, l ′ <0, h > 时,l′>0. 2 4 4 4 h 3 3 3

生活中系统优化原理的例子

生活中系统优化原理的例子

生活中系统优化原理的例子系统优化原理是指通过对系统内部各个组成部分和运行流程进行分析和改进,以提高系统整体性能和效率的一种方法。

生活中有很多例子可以体现系统优化原理的应用,包括:1. 交通流优化:城市交通堵塞是一个普遍存在的问题,通过优化交通流可以提高交通效率。

例如,道路规划不当可能导致交叉口拥堵,可以通过减少交叉口数量、设置红绿灯优化信号灯配时,以及利用流量监测和智能交通系统来改进交通流。

2. 餐厅排队优化:在繁忙的餐厅等候排队是一种常见的情况,通过系统优化原理可以减少顾客等待时间。

例如,通过设置有效的预订和排号系统、提高厨房效率、设置快速结账通道,以及利用智能点餐系统等手段来优化餐厅排队过程。

3. 供应链管理:供应链是一个涉及多个环节和参与方的系统,通过优化供应链能够提高整体效率和降低成本。

例如,通过优化物流和库存管理,减少节点之间的运输和储存时间,以及建立供需预测机制等手段来改进供应链运作。

4. 生产流程优化:在制造业中,通过对生产流程进行优化可以提高生产效率和产品质量。

例如,通过改进工艺和设备、合理安排生产计划和员工工作,以及优化物料供应和排程等手段来提高整个生产流程的效率。

5. 能源消耗优化:为了减少能源消耗和环境负荷,需要对能源消耗进行优化。

例如,通过改进建筑结构和隔热材料、使用高效能源设备和照明系统、引入清洁能源,以及建立能源管理体系等手段来降低能源消耗。

6. 电子设备的运行优化:对于电子设备,通过对软硬件的优化可以提高系统性能和用户体验。

例如,通过优化操作系统和应用程序的代码,减少资源占用和提高响应速度,以及优化电池管理和内存管理等手段来提高电子设备的运行效率。

7. 信息检索和推荐系统优化:在互联网时代,信息的获取和推荐成为了一个重要的问题,通过优化搜索引擎和推荐算法可以提高用户的信息获取和推荐准确度。

例如,通过优化搜索算法和索引结构、个性化推荐算法,以及利用用户反馈和数据分析来优化信息检索和推荐系统。

生活中的优化问题举例

生活中的优化问题举例

生活中的优化问题举例引言生活中,我们经常面临各种各样的问题和挑战。

为了提高效率、提升生活质量,我们需要不断寻找解决问题的方法和策略。

在这篇文章中,我们将探讨生活中的优化问题,并给出一些实际的例子来说明如何应对这些问题。

什么是优化问题?优化问题是指在给定的限制条件下,寻找一个最优解的问题。

通过优化,我们可以最大限度地提高效率、降低成本、提升满意度等。

在生活中,我们可以将优化问题应用于各个领域,如时间管理、健康管理、金融规划等。

生活中的优化问题举例1. 时间管理时间管理是一个常见的生活优化问题。

我们每天都面临着有限的时间资源,如何合理分配时间成为了一个重要的课题。

以下是一些可以帮助我们优化时间管理的方法和技巧:1.制定优先级:将任务按照重要性和紧急性进行排序,优先处理重要且紧急的任务,避免因琐碎的事务耗费过多时间。

2.打破大目标:学会将大目标分解成小目标,逐步推进。

这样可以减少任务的压力,并更好地管理时间。

3.制定时间表:制定一个明确的时间表,为每项任务规定固定的时间段。

这样可以提高效率,并避免时间的浪费。

4.利用时间碎片:充分利用日常生活中的碎片化时间,比如排队等待、交通工具上的时间,可以用来读书、听课等。

2. 健康管理健康是幸福生活的基石,因此健康管理也成为了一个重要的优化问题。

以下是一些可以帮助我们优化健康管理的方法和策略:1.合理饮食:均衡饮食是健康的基础。

合理控制饮食,摄入适量的营养物质,避免过量或偏食,有助于维持身体的健康状态。

2.积极运动:适量的运动可以帮助我们保持身体健康和心理平衡。

根据个人情况选择合适的运动方式和时间,如慢跑、游泳、瑜伽等。

3.规律作息:良好的作息习惯对于身体和心理健康至关重要。

合理安排睡眠时间,确保充足的休息,有助于保持精力充沛和情绪稳定。

4.健康检查:定期进行身体检查,及时发现和处理潜在的健康问题,有助于预防和治疗疾病。

3. 金融规划金融规划是一个经济优化的问题。

生活中的优化问题举例图文

生活中的优化问题举例图文

安排休息时间
总结词
合理安排休息时间是优化健康管理的重要环节,有助于 恢复身体机能和缓解压力。
详细描述
保证充足的睡眠时间,合理安排工作和休息时间,采用 适当的放松方式,如冥想、瑜伽等,有助于恢复身体机 能和缓解压力。
总结词
创造良好的睡眠环境,保持规律的睡眠习惯,有助于提 高睡眠质量。
详细描述
保持安静、黑暗、舒适的睡眠环境,避免睡前过度兴奋 或刺激,保持规律的睡眠习惯,有助于提高睡眠质量。
自身能力范围。
制定工作计划
01
分解任务
将工作目标分解为具体的任务, 明确任务的责任人、完成时间和 所需资源。
安排时间
02
Байду номын сангаас
03
调整计划
根据任务的紧急性和重要性,合 理安排工作时间,确保任务按时 完成。
在执行过程中,根据实际情况及 时调整工作计划,以适应变化和 应对突发情况。
安排工作时间
避免过度劳累
总结词
结合日常生活和工作,灵活安排运动时间和场地,有助于 提高运动计划的可行性和持久性。
详细描述
根据个人生活和工作情况,灵活安排运动时间和场地,将 运动融入日常生活和工作中,有助于提高运动计划的可行 性和持久性。
总结词
注意运动安全,遵循正确的运动姿势和技巧,预防运动损 伤。
详细描述
在运动前进行适当的热身活动,遵循正确的运动姿势和技 巧,避免过度运动和损伤,注意运动安全。
总结词
学会放松自己,缓解压力和焦虑情绪。
详细描述
通过冥想、瑜伽、深呼吸等放松技巧来缓解压力和焦虑 情绪,学会放松自己。
THANKS
感谢观看
生活中的优化问题举例
contents

生活中的优化举例

生活中的优化举例

05
工作办公优化
任务管理优化
总结词
高效、条理、计划
详细描述
通过制定明确的任务目标和计划,将工作任务分解为可执行的小任务,并按 优先级进行排序,可以帮助我们更高效地完成任务,同时避免任务遗漏或任 务完成不及时。
时间
详细描述
合理规划时间,将时间分配到不同的任务和活动中,可以最大限度地减少时间浪 费和提高工作效率。同时,学会合理调整工作节奏和时间安排,能够更好地适应 高强度的工作压力。
01
运用大数据技术,智能调度共享单车,提高单车可用性和效率

共享汽车服务
02
提供便捷的共享汽车服务,满足短途出行需求,减少汽车使用
频率。
电动汽车推广
03
鼓励使用电动汽车等环保出行方式,降低排放,改善空气质量

02
日常生活优化
购物优化
计划性购物:列出需要购买的物 品清单,尽量避免在无计划的情 况下进行购物,减少不必要
比较购物:在购买之前,通过线 上或线下的方式比较不同商家的 价格和质量,以便选择最合适
批量购买:一次性购买大量的日 用品,可以降低单位价格,同时 减少购物次数,提高购物效率。
的支出。
的商品。
饮食优化
均衡饮食:合理搭配 蛋白质、碳水化合物 、脂肪、维生素、矿 物质等营养素,以满 足身体
的基本需求。
简单化烹饪:减少烹 饪的复杂程度,使用 简单的烹饪技巧和食 材,可以降低食物中 脂肪和糖
游戏娱乐优化
流畅体验
通过优化游戏算法、降低游戏内延迟等技术手段,提高游戏的流畅度和稳定 性。
个性化设置
为玩家提供多种个性化设置,如自定义角色、场景等,让玩家更具自由度和 沉浸感。

1.4生活中的优化问题(带答案)

1.4生活中的优化问题(带答案)

1。

4生活中的优化问题举例1.要制做一个圆锥形的漏斗,其母线长为20cm,要使其体积最大,则高为() A。

错误!cm B.错误!cm C.错误!cm D.错误!cm [答案] D2.用总长为6m的钢条制作一个长方体容器的框架,如果所制作容器的底面的相邻两边长之比为3:4,那么容器容积最大时,高为()A.0.5m B.1m C.0。

8m D.1.5m[答案] A[解析]设容器底面相邻两边长分别为3x m、4x m,则高为错误!=错误!(m),容积V=3x·4x·错误!=18x2-84x3错误!,V′=36x-252x2,由V′=0得x=1或x=0(舍去).x∈错误!时,V′〉0,x∈错误!时,V′<0,7所以在x=错误!处,V有最大值,此时高为0。

5m。

3.内接于半径为R的球且体积最大的圆锥的高为()A.R B.2R C.错误!R D.错误!R[答案] C[解析]设圆锥高为h,底面半径为r,则R2=(h-R)2+r2,∴r2=2Rh-h2, ∴V=错误!πr2h=错误!h(2Rh-h2)=错误!πRh2-错误!h3,V′=错误!πRh-πh2。

令V′=0得h=错误!R.当0<h〈错误!R时,V′〉0;当错误!<h〈2R时,V′〈0。

因此当h=错误!R时,圆锥体积最大.4.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时时,原油温度(单位:℃)为f(x)=错误!x3-x2+8(0≤x≤5),那么,原油温度的瞬时变化率的最小值是()A.8 B.错误!C.-1 D.-8[答案] C[解析]瞬时变化率即为f′(x)=x2-2x为二次函数,且f′(x)=(x-1)2-1,又x∈[0,5],故x=1时,f′(x)min=-1.5.某厂生产某种产品x件的总成本:C(x)=1 200+错误!x3,又产品单价的平方与产品件数x成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为__________件.[答案]25[解析]设产品单价为a元,又产品单价的平方与产品件数x成反比,即a2x=k,由题知a=错误!。

生活中的优化问题举例

生活中的优化问题举例

生活中的优化问题举例
以下是一些生活中常见的优化问题举例:
1. 路线规划:对于一次旅行或者日常通勤,如何选择最短或最快的路线,以节省时间和资源。

2. 日程安排:如何合理分配时间,使得工作效率最大化,同时留出时间进行休息和娱乐。

3. 购物决策:在购买商品时,如何选择最佳的品牌、型号或价格,以满足需求并节约开支。

4. 饮食计划:如何合理安排饮食,以保证营养均衡,同时避免浪费和过量摄入。

5. 能源使用:如何优化能源的使用,例如合理设置空调温度、减少电器待机时间等,以节约能源成本并保护环境。

6. 个人理财:如何合理规划个人财务,包括投资、储蓄和债务,以实现财务增长并达到目标。

7. 旅游安排:在进行旅游计划时,如何选择最佳的目的地、交通方式、住宿和活动,以满足旅行的需求。

8. 学习方法:如何优化学习方法,例如选择适合个人的学习时间、学习环境和学习资源,以提高学习效率。

9. 生活习惯:如何培养健康的生活习惯,例如规律作息、科学饮食和适度运动,以改善身体健康。

10. 时间管理:如何合理分配时间,设置优先级和避免拖延,以提高工作和生活的效率。

生活中的优化问题举例课件

生活中的优化问题举例课件

跨部门协作
加强部门间的沟通和协作 ,打破信息孤岛,提高整 体工作效率。
合理分配工作任务
任务分配原则
根据员工的能力、经验和专长, 合理分配工作任务,确保工作量
均衡和高效。
优先级排序
根据任务的重要性和紧急性,指导 员工对工作任务进行优先级排序, 确保高优先级任务得到优先处理。
激励与考核机制
建立有效的激励和考核机制,鼓励 员工积极承担工作任务,提高工作 积极性和满意度。
在此添加您的文本16字
优先处理重要和紧急的任务,避免拖延和浪费时间。
在此添加您的文本16字
学习一些时间管理技巧,如番茄工作法等。
在此添加您的文本16字
避免多任务处理,尽量专注于单一任务,以提高工作效率 。
04
工作中的优化问题
பைடு நூலகம்
提高工作效率
制定合理的工作计划
减少干扰因素
根据工作优先级和任务量,制定每日 、每周和每月的工作计划,确保工作 有序进行。
生活中的优化问题举例课件
• 购物中的优化问题 • 旅行中的优化问题 • 日常生活中的优化问题 • 工作中的优化问题 • 学习中的优化问题
01
购物中的优化问题
寻找最优惠的价格
01
在购物时,消费者通常会寻找最 优惠的价格,以节省开支。
02
比较不同商家的价格,考虑商品 的质量、品牌、售后服务等因素 ,权衡性价比,选择最优惠的价 格。
02
旅行中的优化问题
选择最佳的旅行路线
总结词
选择最佳的旅行路线是旅行中的重要优化问题,可以减少时间和金钱的浪费。
详细描述
在旅行前,我们需要根据目的地、交通工具、时间等因素,选择一条最佳的旅行 路线。这需要考虑路线的长度、所需时间、交通工具的舒适度、费用等因素,以 便在有限的时间内尽可能多地游览景点,并减少不必要的花费。

3-4 生活中的优化问题举例

3-4 生活中的优化问题举例

1.做一个圆柱形锅炉,容积为V ,两个底面的材料每单位面积的价格为a 元,侧面的材料每单位面积的价格为b 元,当造价最低时,锅炉的底面直径与高的比为( )A.ab B.a 2b C.b a D.b 2a[答案] C [解析]如图,设圆柱的底面半径为R ,高为h ,则V =πR 2h .设造价为y ,则y =2πR 2a +2πRhb =2πaR 2+2πRb ·V πR2=2πaR 2+2bV R ,∴y ′=4πaR -2bVR 2.令y ′=0并将V =πR 2h 代入解得,2R h =ba .2.以长为10的线段AB 为直径画半圆,则它的内接矩形面积的最大值为( )A .10B .15C .25D .50[答案] C[解析] 如图,设∠NOB =θ,则矩形面积S =5sin θ·2·5cos θ=50sin θ·cos θ=25sin2θ,故S max =25.3.某商品一件的成本为30元,在某段时间内若以每件x 元出售,可卖出(200-x )件,要使利润最大每件定价为________元.[答案] 85[解析] 设每件商品定价x 元,依题意可得利润为L =x (200-x )-30x =-x 2+170x (0<x <200). L ′=-2x +170,令-2x +170=0,解得x =1702=85.因为在(0,200)内L 只有一个极值,所以以每件85元出售时利润最大.4.已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为p =25-18q ,求产量q 为何值时,利润L 最大?[分析] 利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格,由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.[解析] 收入R =q ·p =q (25-18q )=25q -18q 2.利润L =R -C =(25q -18q 2)-(100+4q )=-18q 2+21q -100(0<q <200),所以L ′=-14q +21.令L ′=0, 即-14q +21=0,解得q =84. 因为当0<q <84时,L ′>0; 当84<q <200时,L ′<0,所以当q =84时,L 取得最大值,最大值为782. 答:当产量为84时,利润取得最大值782.5.某厂生产某种产品的固定成本(固定投入)为2 500元,已知每生产x 件这样的产品需要再增加可变成本C (x )=200x +136x 3(元),若生产出的产品都能以每件500元售出,要使利润最大,该厂应生产多少件这种产品?最大利润是多少?[解析] 设该厂生产x 件这种产品利润为L (x ) 则L (x )=500x -2 500-C (x ) =500x -2 500-⎝⎛⎭⎪⎫200x +136x 3=300x -136x 3-2 500(x ∈N )令L ′(x )=300-112x 2=0,得x =60(件) 又当0≤x <60时,L ′(x )>0 x >60时,L ′(x )<0所以x =60是L (x )的极大值点,也是最大值点. 所以当x =60时,L (x )=9 500元.答:要使利润最大,该厂应生产60件这种产品,最大利润为9 500元.。

生活中最优化问题案例

生活中最优化问题案例

生活中最优化问题案例在我们的日常生活中,最优化问题无处不在。

从如何规划购物以节省开支,到安排工作任务以提高效率,再到选择出行方式以节省时间和费用,这些都是最优化问题的体现。

下面,让我们通过一些具体的案例来深入了解生活中的最优化问题。

案例一:购物省钱策略假设你要为家庭购买一周的生活用品,附近有两家超市 A 和 B。

超市 A 正在进行满 100 减 20 的活动,而超市 B 则对部分商品进行打折销售。

为了实现购物最优化,即花费最少的钱买到所需的商品,你需要对两家超市的商品价格和优惠政策进行详细比较。

首先,列出家庭一周所需的生活用品清单,包括食品、清洁用品等。

然后,分别到两家超市查看这些商品的价格。

对于超市 A,计算在满足满减条件后的实际支付金额。

对于超市 B,计算打折商品的折后价格。

在比较价格时,还需要考虑商品的质量、保质期等因素。

如果某些商品在两家超市的价格差异不大,但超市 A 的商品质量更好或保质期更长,那么即使在价格上稍微高一些,也可能是更优的选择。

此外,还需要考虑购物的便利性,比如超市的距离、交通状况等。

如果为了去一家稍微便宜但距离较远的超市而花费过多的时间和交通费用,可能并不划算。

通过综合考虑价格、质量、便利性等因素,最终做出最优化的购物决策,以达到省钱的目的。

案例二:工作任务安排假设你是一个项目负责人,手头上有多个任务需要在规定的时间内完成,并且每个任务都有不同的优先级和所需时间。

为了确保项目按时完成并提高工作效率,需要对任务进行合理的安排。

首先,对所有任务进行优先级排序。

将那些紧急且重要的任务排在前面,优先处理。

然后,根据每个任务所需的时间和团队成员的能力,合理分配任务。

在分配任务时,要考虑团队成员的专长和工作负荷。

避免将过多的任务分配给某一个成员,导致其压力过大而影响工作质量和效率。

同时,也要给一些相对复杂的任务预留足够的时间,以保证能够高质量地完成。

此外,要合理安排任务的执行顺序。

生活中最优化问题案例

生活中最优化问题案例

生活中最优化问题案例最优化问题是在生活中非常常见的一种问题类型。

它涉及了我们如何在给定的条件下,找到最佳的解决方案,以最大化或最小化某个目标函数。

在本文中,我将介绍一些生活中的最优化问题案例,并探讨它们的解决方法和应用。

1. 旅行路径规划:在我们的日常生活中,我们经常需要规划旅行路径,以使我们能够在最短的时间内到达目的地。

这是一个典型的最优化问题。

通过考虑交通状况、路况、距离和其他因素,我们可以使用最优化算法,如迪杰斯特拉算法或A*搜索算法来找到最佳路径。

这样,我们可以避免交通拥堵和浪费时间。

2. 资源分配问题:在许多组织和企业中,资源分配是一个重要的问题。

如何有效地分配有限的资源以达到最佳效果,是一个最优化问题。

一个公司可能需要决定如何分配有限的预算、人力和设备资源,以最大化利润或满足特定的目标要求。

通过使用线性规划等最优化方法,可以找到最佳的资源分配方案。

3. 股票组合优化:对于投资者来说,构建一个良好的股票组合是非常重要的。

在股票组合优化中,我们需要考虑投资目标、风险承受能力、预期收益率和相关性等因素,以找到一个最佳的投资组合。

通过使用现代投资组合理论和数学优化方法,如马科维茨均值-方差模型,可以帮助投资者构建一个高效的股票组合,以最大化收益并控制风险。

4. 生产计划优化:在制造业中,如何优化生产计划以最大化生产效率是一个关键问题。

通过考虑生产设备的利用率、库存管理、生产工序和交货期等因素,可以使用线性规划、模拟和其他最优化技术来制定最佳的生产计划。

这将帮助制造商提高生产效率,降低成本,并实现更好的交货能力。

5. 能源系统优化:在能源领域,如何优化能源系统以实现可持续发展是一个重要的问题。

通过综合考虑能源供应、需求、成本、环境影响和可再生能源利用等因素,可以使用最优化技术来设计和优化能源系统。

使用混合整数线性规划、动态规划和优化算法,可以找到最佳的电力系统规划,以最大限度地提高能源利用效率和减少碳排放。

课时训练6生活中的优化问题举例

课时训练6生活中的优化问题举例

课时训练6 生活中的优化问题举例1.某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总收益R与年产量x个单位产品的关系是R(x)=则总利润最大时,每年生产的单位产品数是() A.100 B.150 C.200 D.300解析:依题意可得:总利润为P=P'=令P'=0,当0≤x≤400时,得x=300时总利润最大为25 000元;当x>400时,P'<0恒成立,易知当x=300时,总利润最大.答案:D2.做一个容积为256 cm3的方底无盖水箱,要使用料最省,水箱的底面边长为()A.5 cmB.6 cmC.7 cmD.8 cm解析:设水箱的底面边长为x cm,容积为256 cm3,所以水箱的高为cm,于是水箱表面积f(x)=x2+4x·,即f(x)=x2+,f'(x)=2x-,令f'(x)=0得x=8,所以当底面边长为8 cm时用料最省.答案:D3.在内接于半径为R的半圆的矩形中,周长最大的矩形的边长为()A.RB.R和RC.R和RD.以上都不对解析:设矩形一边的长为x,则另一边长为2,则l=2x+4(0<x<R),l'=2-,令l'=0,解得x1=R,x2=-R(舍去).当0<x<R时,l'>0;当R<x<R时,l'<0.所以当x=R时,l取最大值,即周长最大的矩形的边长为R,R.答案:B4.要做一个圆锥形的漏斗,其母线长为20 cm,要使其体积为最大,则高为()A. cmB. cmC. cmD. cm解析:设圆锥的高为x cm,则底面半径为cm,其体积V=πx(202-x2)(0<x<20),V'=π(400-3x2).令V'=0,解得x1=,x2=-(舍去).当0<x<时,V'>0;当<x<20时,V'<0,所以当x=时,V取最大值. 答案:D5.某银行准备新设一种定期存款业务,经预测,存款额度与存款利率成正比,比例系数为k(k>0),贷款的利率为4.8%,假设银行吸收的存款能全部放贷出去.若存款利率为x〔x∈(0,0.048)〕,则存款利率为时,银行可获得最大收益.()A.0.012B.0.024C.0.032D.0.036解析:由题意,存款量g(x)=kx(k>0),银行应支付的利息h(x)=xg(x)=kx2,x∈(0,0.048).设银行可获得的收益为y,则y=0.048kx-kx2.于是y'=0.048k-2kx,令y'=0,解得x=0.024,依题意知y在x=0.024处取得最大值.故当存款利率为0.024时,银行可获得最大收益.答案:B6.设底面为正三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为()A. B. C. D.2解析:设底面边长为x,则底面面积为x2,设高为h,则x2h=V,于是h=·,这时直棱柱的表面积S(x)=x2×2+3xh=x2+.S'(x)=x-,令S'(x)=0得x=,故当x=时表面积最小.答案:C7.周长为20 cm的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值是.解析:设矩形的一边长为x cm,则另一边长为(10-x) cm,则V=πx2(10-x)(0<x<10),V'=π×(20x-3x2)=0,解得x=0(舍去),或x=.当x∈时,V'(x)>0,V(x)单调递增;当x∈时,V'(x)<0,V(x)单调递减.∴当x=时,V为极大值即最大值.此时V=π×(cm3).答案: cm38.已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y=4-x2在x轴上方的曲线上,则这个矩形面积最大时的边长分别为.解析:设矩形边长AD=2x(0<x<2),则AB=y=4-x2(y>0),则矩形的面积S=2x(4-x2)(0<x<2), 即S=8x-2x3,S'=8-6x2.令S'=0,解得x1=,x2=-(舍),当0<x<时,S'>0;当<x<2时,S'<0,∴当x=时,S取得最大值,此时S max=,即矩形边长为时,矩形面积最大.答案:9.某集团为了获得更大的收益,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t(百万元),可增加销售额约为-t2+5t(百万元)(0≤t≤5),现该公司准备共投入300万元,分别用于广告促销和技术改造.经预测,每投入技术改造费x(百万元),可增加的销售额约为-x3+x2+3x(百万元).为使该公司由此获得的收益最大,求x的值.解:设用于技术改造的资金为x(百万元),则用于广告促销的资金为(3-x)(百万元),又设由此获得的收益是g(x),则有g(x)=+[-(3-x)2+5(3-x)]-3(0≤x≤3),即g(x)=-x3+4x+3(0≤x≤3),∴g'(x)=-x2+4.令g'(x)=0,得x=-2(舍去),或x=2.又当0≤x<2时,g'(x)>0;当2<x≤3时,g'(x)<0,∴g(x)在[0,2]上是增函数,在(2,3]上是减函数,∴当x=2时,g(x)取最大值,即将2百万元用于技术改造,该公司收益最大.10.两县城A和B相距20 km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为对城A与对城B的影响度之和.记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y.统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k.当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)将y表示成x的函数;(2)讨论(1)中函数的单调性,并判断上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.解:(1)根据题意∠ACB=90°,AC=x km,BC= km,且建在C处的垃圾处理厂对城A的影响度为,对城B的影响度为,因此,总影响度y=(0<x<20).又因为垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065,则有=0.065,解得k=9,所以y=(0<x<20).(2)因为y'=-,由y'=0解得x=4,或x=-4(舍去),易知4∈(0,20).y,y'随x的变化情况如下表:x(0,4) 4 (4,20)y'-0 +y单调递减↘单调递增↗由表可知,函数在(0,4)内单调递减,在(4,20)内单调递增,y最小值=.此时x=4,故在上存在C点,使得建在此处的垃圾处理厂对城A和城B的总影响度最小,该点与城A的距离x=4 km.。

生活中的优化问题举例

生活中的优化问题举例

学案60答案 生活中的优化问题举例例1. 用长为90 cm ,宽为48 cm 的长方形铁皮做一个无盖的容器,先在四个角分别截去一个小正方形,然后把四边翻转90°,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?解:设容器的高为x ,容器的容积为V ,则V =(90-2x )(48-2x )x (0<x <24),即V =4x 3-276x 2+4 320x .因为V ′=12x 2-552x +4 320,由V ′=12x 2-552x +4 320=0,得x 1=10,x 2=36. 因为0<x <10时,V ′>0,10<x <36时,V ′<0,x >36时,V ′>0,所以当x =10时,V 有极大值V (10)=19 600.又因为0<x <24,所以V (10)也是最大值.所以当x =10时,V 有最大值V (10)=19 600.故当容器的高为10 cm 时,容器的容积最大,最大容积是19 600 cm 3.例2.一艘轮船在航行中每小时的燃料费和它的速度的立方成正比.已知速度为每小时10海里时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1海里所需的费用总和最小?解:设速度为每小时v 海里的燃料费是每小时p 元,那么由题设的比例关系得p =k ·v 3,其中k 为比例系数,它可以由v =10,p =6求得,即k =6103=0.006,则p =0.006v 3.又设当船的速度为每小时v 海里时,行1海里所需的总费用为q 元,那么每小时所需的总费用是0.006v 3+96(元),而行1海里所需时间为1v小时,所以行1海里的总费用为q =1v (0.006v 3+96)=0.006v 2+96v .q ′=0.012v -96v 2=0.012v 2(v 3-8 000), 令q ′=0,解得v =20.因为当v <20时,q ′<0;当v >20时,q ′>0,所以当v =20时q 取得最小值,即速度为20海里/小时时,航行1海里所需费用总和最小.例3.某食品厂进行蘑菇的深加工,每公斤蘑菇的成本为20元,并且每公斤蘑菇的加工费为t 元(t 为常数,且2≤t ≤5),设该食品厂每公斤蘑菇的出厂价为x 元(25≤x≤40),根据市场调查,日销售量q 与e x 成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(1)求该工厂的每日利润y 元与每公斤蘑菇的出厂价x 元的函数关系式;(2)若t =5,当每公斤蘑菇的出厂价为多少元时,该工厂的每日利润最大?并求最大值.解: (1)设日销量q =k e x ,则k e 30=100,所以k =100e 30, 所以日销量q =100e 30e x ,所以y =100e 30(x -20-t )e x (25≤x ≤40).(2)当t =5时,y =100e 30(x -25)e x ,所以y ′=100e 30(26-x )e x . 由y ′>0,得x <26,由y ′<0,得x >26,所以y 在[25,26)上单调递增,在[26,40]上单调递减,所以当x =26时,y max =100e 4.故当每公斤蘑菇的出厂价为26元时,该工厂的每日利润最大,最大值为100e 4元.四、反馈训练1.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x -234,则使该生产厂家获取最大年利润的年产量为( ) A .13万件 B .11万件 C .9万件 D .7万件1.解析:选C.因为x >0,y ′=-x 2+81=(9-x )(9+x ),令y ′=0,解得x =9或x =-9(舍去),当x ∈(0,9)时,y ′>0,当x ∈(9,+∞)时,y ′<0,所以y 先增后减.所以当x =9时函数取得最大值.选C.2.用长为24 m 的钢筋做成一个长方体框架,若这个长方体框架的底面为正方形,则这个长方体体积的最大值为________.2.解析:设长方体的底面边长为x m ,则高为(6-2x )m ,所以x ∈(0,3),则V =x 2(6-2x )=6x 2-2x 3,V ′=12x -6x 2,令V ′=0得x =2或x =0(舍),所以当x ∈(0,2)时,V ′>0,V 是增函数,当x ∈[2,3)时,V ′<0,V 是减函数,所以当x =2时,V max =22×2=8(m 3).3.某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a 件,通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价格提高的百分率为x (0<x <1),那么月平均销售量减少的百分率为x 2.记改进工艺后,旅游部门销售该纪念品的月平均利润是y (元).(1)写出y 关于x 的函数关系式;(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.解:(1)改进工艺后,每件产品的销售价为20(1+x ),月平均销售量为a (1-x 2)件,则月平均利润y =a (1-x 2)·[20(1+x )-15](元),所以y 关于x 的函数关系式为y =5a (1+4x -x 2-4x 3)(0<x <1).(2)由y ′=5a (4-2x -12x 2)=0,得x 1=12,x 2=-23(舍去),当12<x <1时,y ′<0,当0<x <12时,y ′>0; 所以函数y =5a (1+4x -x 2-4x 3)(0<x <1)在x =12处取得极大值,即最大值. 故改进工艺后,产品的销售价为20⎝ ⎛⎭⎪⎫1+12=30元时,旅游部门销售该纪念品的月平均利润最大.五、课时作业.1.已知某商品的进货单价为1元/件,商户甲往年以单价2元/件销售该商品时,年销量为1万件,今年拟下调销售单价以提高销量,增加收益.据测算,若今年的实际销售单价为x 元/件(1≤x ≤2),今年新增的年销量(单位:万件)与(x -2)2成正比,比例系数为4.(1)写出今年商户甲的收益y (单位:万元)与今年的实际销售单价x 间的函数关系式;(2)商户甲今年采取降低单价,提高销量的营销策略是否能获得比往年更大的收益(即比往年收益更多)?说明理由.解:(1)由题意知,今年的销售量为[1+4(x -2)2](万件).因为每销售一件,商户甲可获利(x -1)元,所以今年商户甲的收益y =[1+4(x -2)2]·(x -1)=4x 3-20x 2+33x -17(1≤x ≤2).(2)由(1)知y =f (x )=4x 3-20x 2+33x -17,1≤x ≤2,从而y ′=f ′(x )=12x 2-40x +33=(2x -3)(6x -11).令y ′=0,解得x =32或x =116.又f ⎝ ⎛⎭⎪⎫32=1,f (2)=1, 所以f (x )在区间[1,2]上的最大值为1(万元).而往年的收益为(2-1)×1=1(万元),所以,商户甲采取降低单价,提高销量的营销策略不能获得比往年更大的收益.2.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r m ,高为h m ,体积为V m 3.假设建造成本仅与表面积有关,侧面的建造成本为100元/m 2,底面的建造成本为160元/m 2,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大. 解:(1)∵蓄水池侧面的总成本为100×2πrh =200πrh (元),底面的总成本为160πr 2元,∴蓄水池的总成本为(200πrh +160πr 2)元.根据题意,得200πrh +160πr 2=12 000π,所以h =15r(300-4r 2), 从而V (r )=πr 2h =π5(300r -4r 3). 由h >0且r >0,可得0<r <53,故函数V (r )的定义域为(0,53).(2)由(1)知V (r )=π5(300r -4r 3), 故V ′(r )=π5(300-12r 2). 令V ′(r )=0,解得r 1=5,r 2=-5(舍去).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数;当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数.由此,可知V (r )在r =5处取得最大值,此时h =8,即当r =5,h =8时,该蓄水池的体积最大.3.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =a x -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解:(1)因为x =5时,y =11,所以a 2+10=11,解得a =2. (2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2(3<x <6). f ′(x )=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6),解30(x -4)(x -6)=0,得x 1=4,x 2=6(舍去).当x所以,当x =4时,函数f (x )取得最大值,最大值为42.故当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大4.已知某公司生产某种产品的年固定成本为10万元,每生产1千件该产品需要另投入1.9万元.设R (x )(单位:万元)为销售收入,根据市场调查知R (x )=⎩⎪⎨⎪⎧10x -130x 3,0≤x ≤10,2003,x >10.其中x 是年产量(单位:千件). (1)写出年利润W 关于年产量x 的函数解析式;(2)求年产量为多少时,该公司可从这一产品生产中获得最大利润?解:(1)设年产量为x 千件,年利润为W 万元,依题意有W =⎩⎪⎨⎪⎧10x -130x 3-10-1.9x ,0≤x ≤10,2003-10-1.9x ,x >10.(2)设f (x )=-130x 3+8.1x -10,0≤x ≤10. f ′(x )=-110x 2+8.1,令f ′(x )=0得x 1=9,x 2=-9(舍去).当0<x <9时,f ′(x )>0;当9<x <10时,f ′(x )<0,故当x =9时,f (x )取得最大值38.6.当x >10时,f (x )=1703-1.9x <1133<38.6. 即当年产量为9千件时,该公司所获年利润最大.5.如图是某市在城市改造中的沿市内主干道城站路修建的圆形休闲广场,圆心为O ,半径为100 m ,其与城站路一边所在直线l 相切于点M ,MO 的延长线交圆O 于点N ,A 为上半圆弧上一点,过点A 作l 的垂线,垂足为点B .市园林局计划在△ABM 内进行绿化,设△ABM 的面积为S (单位:m 2).(1)以∠AON =θ(rad)为自变量,将S 表示成θ的函数;(2)求使绿化面积最大时点A 的位置及最大绿化面积.解:(1)由题意知,BM =100sin θ,AB =100+100cos θ,故S =5 000sin θ(1+cos θ)(0<θ<π).(2)因为S =5 000sin θ(1+cos θ)(0<θ<π),所以S ′=5 000(cos θ+cos2θ-sin 2θ)=5 000(2cos 2θ+cos θ-1)=5 000(cos θ+1)(2cos θ-1).令S ′=0,得cos θ=12或cos θ=-1(舍去),又θ∈(0,π),故θ=π3. 当0<θ<π3时,12<cos θ<1,S ′>0; 当π3<θ<π时,-1<cos θ<12,S ′<0. 故当θ=π3时,S 取得极大值,也是最大值,最大值为3 7503,此时AB =150. 即当点A 距路边的距离为150 m 时,绿化面积最大,最大面积为3 750 3 m 2.。

生活中的优化问题举例(含过程)

生活中的优化问题举例(含过程)
(1)求 k 的值及 f(x)的表达式; (2)隔热层修建多厚时,总费用 f(x)达到最小,并求最小值.
▪ [思路分析] 代入数据求k的值,建造费用加上20年能源消耗综合得出总费用f(x),利用导数求 最值.
[解析] (1)设隔热层厚度 xcm,由题意建筑物每年的能源消耗费用为 C(x)= 3x+k 5(0≤x≤10),再由 C(0)=8 得 k=40,
上述解决优化问题的过程是一个典型的 数学建模 过程.
体积面积最值问题
例1 请你设计一个包装盒,如图所示, ABCD是边长为60 cm的正方形硬纸片, 切去阴影部分所示的四个全等的等腰 直角三角形,再沿虚线折起,使得A, B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒. 点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB=x(cm). 某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒 的高与底面边长的比值.
自主练习巩固2
某工厂生产某种产品,已知该产品的月产量 x(吨)与每吨产品的价格 P(元/吨) 之间的关系为 P=24200-15x2,且生产 x 吨的成本为 R=50000+200x 元.问 每月生产多少吨该产品才能使利润达到最大?最大利润是多少?(利润=收 入-成本).
[思路分析] 根据题意,月收入=月产量×单价=Px,月利润=月收入-成本 =Px-(50000+200x)(x≥0),列出函数关系式建立数学模型后再利用导数求最大值.
自主练习巩固1
▪ 有一块边长为a的正方形铁板,现从铁板的四个角各截去一个相同 的小正方形,做成一个长方体形的无盖容器.为使其容积最大,截 下的小正方形边长应为多少?
▪ [思路分析] 设截下的小正方形边长为x,用x表示出长方体的边长, 根据题意列出关系式,然后利用导数求最值.

了解生活中的优化问题及解决方案

了解生活中的优化问题及解决方案

详细描述
线性规划模型的核心是确定一个 最优解,该解满足给定的线性约 束条件并最大化或最小化一个线 性目标函数。线性规划在各种领 域都有广泛应用,如资源分配、 生产计划、物流管理等。
应用场景
例如,在物流管理中,线性规划 可以用于确定最佳的车辆路径或 货物配载方案,以实现运输成本 最低、时间最短等目标。
应用场景
动态规划广泛应用于各种优化问题,如背包问题、旅行商 问题、排序问题等。例如,在背包问题中,动态规划可以 用于标。
遗传算法
总结词
遗传算法是一种模拟生物进化过程的优化算法,用于解决一些难以用传统数学方法解决的优化问题。
详细描述
遗传算法通过模拟生物进化过程中的基因选择、交叉和变异等过程,来寻找最优解。它采用随机搜索的方法,不断迭 代搜索空间,直到找到满足要求的解或达到预设的终止条件。
应用场景
模拟退火算法广泛应用于各种优化问 题,如函数优化、组合优化、机器学 习等。例如,在组合优化中,模拟退 火算法可以用于解决旅行商问题、背 包问题等难解的问题。
03
解决方案:人工智能技术
机器学习
总结词
机器学习是一种人工智能技术,通过算 法使计算机系统具备学习和改进的能力 ,从而完成特定的任务。
详细描述
专家系统通常用于高度专业化的领域 ,如医学、法律、金融等,它们可以 通过推理和解析来提供准确的决策支 持,帮助用户解决问题和做出决策。
04
解决方案:优化软件工具
MATLAB
要点一
总结词
MATLAB是一种高效的数值计算软件,广泛应用于算法开 发、数据分析、数据可视化以及数值计算等。
要点二
详细描述
MATLAB提供了友好的用户界面和丰富的功能,使得用户 可以轻松地进行矩阵运算、绘制图形、实现算法等。此外 ,MATLAB还提供了丰富的工具箱,包括统计、优化、机 器学习等,可以满足不同领域的需求。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学◆选修2-2◆导学案编写:刘方贵张晓丽审核:仇国宗陈兆平袁全升2011-03-21
1 建立数学模型§1.4生活中的优化问题举例
教学目标:
1.使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作

2.提高将实际问题转化为数学问题的能力
教学重点:利用导数解决生活中的一些优化问题.
教学难点:利用导数解决生活中的一些优化问题.
一.创设情景
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为
优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,
我们利用导数,解决一些生活中的优化问题.
二.新课讲授
导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有
以下几个方面:
1、与几何有关的最值问题;
2、与物理学有关的最值问题;
3、与利润及其成本有关的最值问题;
4、效率最值问题。

解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函
数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是
建立适当的函数关系。

再通过研究相应函数的性质,提出优化方案,使问题得以解决,
在这个过程中,导数是一个有力的工具.
利用导数解决优化问题的基本思路:
三.典例分析
例1.海报版面尺寸的设计学校或班级举行活动,通常需要张贴海报进行宣传。

现让你设计一张如图
1.4-1所示的竖向张贴的海报,要求版心面积为128dm 2,上、下两边各空2dm,左、右两边各空1dm 。

如何设计海报的尺寸,才能使四周空心面积最小?
本节课精华记录预习心得:解决数学模型
作答用函数表示的数学问题
优化问题用导数解决数学问题
优化问题的答案。

相关文档
最新文档