概率论和数理统计__期末考试
概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。
因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。
解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。
概率论与数理统计期末考试试卷答案

数理统计练习 一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。
4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1, 则=λ___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 , 成功次数的方差的值最大,最大值为 25 。
6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。
7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。
8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N(-2, 25) 。
10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
概率论与数理统计期末考试试题(答案)

概率论与数理统计开/闭卷闭卷A/B 卷 A课程编号 2219002801—2219002811课程名称 概率论与数理统计学分 3基本题6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错分)。
事件表达式A B 的意思是 ( ) ) 事件A 与事件B 同时发生 (B ) 事件A 发生但事件B 不发生) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生D ,根据A B 的定义可知。
假设事件A 与事件B 互为对立,则事件A B ( )) 是不可能事件 (B ) 是可能事件 C) 发生的概率为1 (D) 是必然事件 :选A,这是因为对立事件的积事件是不可能事件。
已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) A) 自由度为1的χ2分布 (B ) 自由度为2的χ2分布 ) 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布.已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B ) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D ) +Y ~N (0,3)C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) A) X 1+X 2+X 3是μ的无偏估计(B )1233X X X ++是μ的无偏估计) 22X 是σ2的无偏估计(D ) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
(完整word版)《概率论与数理统计》期末考试试题及答案

)B =________________.3个,恰好抽到),(8ak ==(24)P X -<= 乙企业生产的50件产品中有四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X一、填空题(每小题3分,共30分) 1、ABC 或AB C 2、0.6 3、2156311C C C 或411或0.3636 4、1 5、136、2014131555kX p 7、1 8、(2,1)N -二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ======== .................. 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= ............................................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯=== ................................................................................. 12分三、(本题12分)解 (1)由概率密度的性质知 340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰故16k =. ..................................................................................................................................................... 3分 (2)当0x ≤时,()()0xF x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩.......................................................................................... 9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭....................................................................... 12分四、解 (1)由分布律的性质知 01.0.20.10.10.a +++++= 故0.3a = .................................................................................................................................................... 4分(2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................................................................................ 6分120.40.6Y p .................................................................................................................................. 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠== 所以X 与Y 不相互独立. ............................................................................................................................ 12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ ................................ 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰................................................................... 9分 221()()[()].6D XE X E X =-= ........................................................................................................ 12分一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: 没有任何人的生日在同一个月份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= ,分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , 1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他求边缘密度函数(),()X Y x y ϕϕ;2) 问X 与Y 是否独立?是否相关?计算Z = X + Y 的密度函数()Z z ϕ1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。
概率论和数理统计期末考试题库

数理统计练习一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。
4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1,则=λ___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 ,成功次数的方差的值最大,最大值为 25 。
6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。
7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。
8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N(-2, 25) 。
10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案概率论与数理统计概率论试题一、填空题1.设 A、B、C是三个随机事件。
试用 A、B、C分别表示事件1)A、B、C 至少有一个发生 2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,。
则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A______________7. 已知随机变量X的密度为,且,则________________8. 设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+10有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y x , y 0 和 x 2 所围成,二维随机变量x,y在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x 1 处的值为。
15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为3的泊松分布,记YX1-2X2+3X3,则D(Y)19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或 ~ 。
特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于22.设是来自正态总体的样本,令则当时~。
23.设容量n 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值,样本方差24.设X1,X2,…Xn为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P A+B P A; (B)(C) (D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 (A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。
概率论与数理统计期末考试题及答案

模拟试题填空题(每空3分,共45 分)1、已知P(A) = 0.92, P(B) = 0.93, P(B| A) = 0.85,则P(A| B)=P( A U B)=12、设事件A与B独立,A与B都不发生的概率为—,A发生且B不发生的概率与 B9发生且A不发生的概率相等,则A发生的概率为:_______________________ ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率:;没有任何人的生日在同一个月份的概率I Ae x, X c 04、已知随机变量X的密度函数为:W(x) = {1/ 4, 0 < X V 2,则常数A=0, x>2分布函数F(x)= ,概率P{—0.5<X <1}=5、设随机变量X~ B(2,p)、Y~ B(1,p),若P{X>1} =5/ 9,贝U p =若X与丫独立,则Z=max(X,Y)的分布律:6、设X ~ B(200,0.01), Y - P(4),且X 与丫相互独立,则D(2X-3Y)=COV(2X-3Y , X)=7、设X1,X2,III,X5是总体X ~ N(0,1)的简单随机样本,则当k = 时,丫"⑶;8、设总体X~U(0,巧日:>0为未知参数,X i,X2,lil,X n为其样本, -1nX =—S X i为n i 二样本均值,则日的矩估计量为:9、设样本X i,X2,川,X9来自正态总体N(a,1.44),计算得样本观察值X = 10,求参数a的置信度为95%的置信区间:计算题(35分)1、(12分)设连续型随机变量X的密度函数为:「1求:1) P{|2X —1|<2} ; 2) Y =X 2的密度函数 S(y) ; 3) E(2X-1);2、(12分)设随机变量(X,Y )的密度函数为3、( 11分)设总体X 的概率密度函数为:X 1,X 2,…,X n 是取自总体X 的简单随机样本。
大学概率论与数理统计期末考试试卷

大学概率论与数理统计期末考试试卷一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A,B,C为随机事件,则事件“A,B,C都不发生”可表示为(A) A. B.BCC.ABC D.2.设随机事件A与B相互独立,且P(A)=,P(B)=,则P(A B)=(B) A. B.C. D.3.设随机变量X~B(3,0.4),则P{X≥1}=(C)A.0.352B.0.432C.0.784D.0.936A.0.2B.0.35C.0.55D.0.85.设随机变量X的概率密度为f(x)=,则E(X),D(X)分别为(B)A.-3,B.-3,2C.3,D.3,26.设二维随机变量(X,Y)的概率密度为f(x,y)=则常数c=(A)A.B.C.2 D.47.设随机变量X~N(-1,22),Y~N(-2,32),且X与Y相互独立,则X-Y~(B )A.N(-3,-5)B.N(-3,13)C.N(1,)D.N(1,13)8.设X,Y 为随机变量,D(X)=4,D(Y)=16,Cov(X,Y)=2,则XY =(D ) A. B. C. D.9.设随机变量X~2(2),Y~2(3),且X 与Y 相互独立,则(C )A.2(5)B.t(5)C.F(2,3) D.F(3,2)10.在假设检验中,H 0为原假设,则显著性水平的意义是(A ) A.P{拒绝H 0|H 0为真}B.P{接受H 0|H 0为真}C.P{接受H 0|H 0不真} D.P{拒绝H 0|H 0不真}二、填空题(本大题共15小题,每小题2分,共30分)11.设A,B 为随机事件,P(A)=0.6,P(B|A)=0.3,则P(AB)=_0.18_____. 12.设随机事件A 与B 互不相容,P()=0.6,P(A B)=0.8,则P(B)=_0.4_____.13.设随机变量X 服从参数为3的泊松分布,则P{X=2}=_____.14.设随机变量X~N(0,42),且P{X>1}=0.4013,(x)为标准正态分布函数,则(0.25)=_0.5987____. 15.设二维随机变量(X,Y)的分布律为392e则P{X=0,Y=1}=_0.1_____.16.设二维随机变量(X,Y)的概率密度为f(x,y)=则P{X+Y>1}=____0.5__.17.设随机变量X 与Y 相互独立,X 在区间[0,3]上服从均匀分布,Y 服从参数为4的指数分布,则D (X+Y )=__13/16____.18.设X 为随机变量,E (X+3)=5,D (2X )=4,则E (X 2)=__5____. 19.设随机变量X 1,X 2,…,X n ,…相互独立同分布,且E (X i )=则___0.5_______. 20.设随机变量X-2(n),(n)是自由度为n 的2分布的分位数,则P{x}=_1-a_____. 21.设总体X~N(),x 1,x 2,…,x 8为来自总体X 的一个样本,为样本均值,则D ()=__8____. 22.设总体X~N(),x 1,x 2,…,x n 为来自总体X 的一个样本,为样本均值,s 2为样本方差,则~__t(n-1)___.23.设总体X 的概率密度为f(x;),其中(X)=,x 1,x 2,…,x n 为来自总体X 的一个样本,为样本均值.若c 为的无偏估计,则常数c=__0.5____. 24.设总体X~N(),已知,x 1,x 2,…,x n 为来自总体X 的一个样本,为样本均值,则参数的置信度为1-的置信区间为__=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-∑=∞→0lim 1σμn n X P n i i n 22(a ax x nn-+____. 25.设总体X~N(,x 1,x 2,…,x 16为来自总体X 的一个样本,为样本均值,则检验假设H 0:时应采用的检验统计量为______.三、计算题(本大题共2小题,每小题8分,共16分)26.盒中有3个新球、1个旧球,第一次使用时从中随机取一个,用后放回,第二次使用时从中随机取两个,事件A 表示“第二次取到的全是新球”,求P(A).解:27.设总体X 的概率密度为,其中未知参数x 1,x 2,…,x n 为来自总体X 的一个样本.求的极大似然估计.解:四、综合题(本大题共2小题,每小题12分,共24分) 28.设随机变量x 的概率密度为求:(1)常数a,b ;(2)X 的分布函数F(x);(3)E(X).(0,1)416x u N =22322244311()444C C p A C C =+=2121111111(,,;)2(2)ln ln 2(21)ln ln 2ln 02ln nnnn iii i nii ni i nii L X X xx L n x Lnx n x θθθθθθθθθθ--========+-∂=+=∂∴=-∏∏∑∑∑解:(1)(2)(3) 29.设二维随机变量(X ,Y)的分布律为求:(1)(X ,Y)分别关于X,Y 的边缘分布律;(2)D(X),D(Y),Cov(X ,Y). 解:(1)2021()1()1ax b dx ax b dx ⎧+=⎪⎨+=⎪⎩⎰⎰121a b ⎧=-⎪⇒⎨⎪=⎩1102()20x x f x ⎧-+<<⎪=⎨⎪⎩其他20212F x x x x x ⎧⎪⎪+≤<⎨⎪≥⎪⎩0x<01()=-4212()(1)23E X x x dx =-+=⎰(2)XY 的分布列为五、应用题(10分)30.某种装置中有两个相互独立工作的电子元件,其中一个电子元件的使用寿命X(单位:小时)服从参数的指数分布,另一个电子元件的使用寿命Y(单位:小时)服从参数的指数分布.试求:(1)(X ,Y)的概率密度;(2)E(X),E(Y);(3)两个电子元件的使用寿命均大于1200小时的概率.解:由于xy 相互独立得:2222()()03.6()()() 3.6(,)()()()E X E Y EX EY D X D Y EX EX Cov x y E XY E X E Y ======-==-()0(,)0E XY Cov x y ==110001200010()1000010()20000x x e x f x e y f y --⎧>⎪=⎨⎪⎩⎧>⎪=⎨⎪⎩x<0y<011100020001191000200051200120010,0(,)()()20000000()1000()200011{1200,1200}10002000x y x y e x y f x y f x f y E x E y p x y e dxe dy e -----+∞+∞⎧>>⎪==⎨⎪⎩==>>==⎰⎰其他。
概率论和数理统计期末考试题库

概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6、已知随机变量(X,Y)的分布律为:且X 与Y 相互独立。
则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2( ()X f x , )(y f Y ;)3( X 与Y 是否相互独立? )4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立.(4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。
概率论与数理统计期末考试试卷答案

数理统计练习 一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。
4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1, 则=λ___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 , 成功次数的方差的值最大,最大值为 25 。
6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。
7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。
8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N(-2, 25) 。
10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
(完整版)《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分)1.设事件仅发生一个的概率为0.3,且,则至少有一个不发B A ,5.0)()(=+B P A P B A ,生的概率为__________.答案:0.3解:3.0)(=+A B A P 即)(25.0)()()()()()(3.0AB P AB P B P AB P A P A P B A P -=-+-=+=所以1.0)(=AB P.9.0)(1)((=-==AB P AB P B A P 2.设随机变量服从泊松分布,且,则______.X )2(4)1(==≤X P X P ==)3(X P 答案:161-e 解答:λλλλλ---==+==+==≤e X P e eX P X P X P 2)2(,)1()0()1(2由 知 λλλλλ---=+e e e 22)2(4)1(==≤X P X P即 0122=--λλ 解得,故1=λ161)3(-==e X P 3.设随机变量在区间上服从均匀分布,则随机变量在区间内的概率X )2,0(2X Y =)4,0(密度为_________.=)(y fY答案:04,()()0,.Y Y X y f y F y f <<'===⎩其它 解答:设的分布函数为的分布函数为,密度为则Y (),Y F y X ()F x ()X f x2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为,所以,即~(0,2)XU (0X F =()Y X F y F =故04,()()0,.Y Y Xyf y F y f<<'===⎩其它另解在上函数严格单调,反函数为(0,2)2y x=()h y=所以04,()0,.Y Xyf y f<<==⎩其它4.设随机变量相互独立,且均服从参数为的指数分布,,则YX,λ2)1(-=>eXP=λ_________,=_________.}1),{min(≤YXP答案:,2λ=-4{min(,)1}1eP X Y≤=-解答:,故2(1)1(1)P X P X e eλ-->=-≤==2λ={min(,)1}1{min(,)1}P X Y P X Y≤=->1(1)(1)P X P Y=->>.41e-=-5.设总体的概率密度为X.⎪⎩⎪⎨⎧<<+=其它,0,1,)1()(xxxfθθ1->θ是来自的样本,则未知参数的极大似然估计量为_________.nXXX,,,21Xθ答案:1111lnniixnθ==-∑解答:似然函数为111(,,;)(1)(1)(,,)nnn i niL x x x x xθθθθθ==+=+∏1ln ln(1)lnniiL n xθθ==++∑1lnln01niid L nxdθθ==++∑@解似然方程得的极大似然估计为θ.1111ln ni i x n θ==-∑二、单项选择题(每小题3分,共15分)1.设为三个事件,且相互独立,则以下结论中不正确的是,,A B C ,A B (A )若,则与也独立.()1P C =AC BC (B )若,则与也独立.()1P C =A C B (C )若,则与也独立.()0P C =A C B (D )若,则与也独立.( )C B ⊂A C 答案:(D ). 解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图可见A 与C 不独立.2.设随机变量的分布函数为,则的值为~(0,1),X N X ()x Φ(||2)P X > (A ). (B ).2[1(2)]-Φ2(2)1Φ- (C ). (D ).( )2(2)-Φ12(2)-Φ 答案:(A )解答: 所以~(0,1)X N (||2)1(||2)1(22)P X P X P X >=-≤=--<≤应选(A ).1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ3.设随机变量和不相关,则下列结论中正确的是X Y (A )与独立. (B ).X Y ()D X Y DX DY -=+ (C ).(D ).( )()D X Y DX DY -=-()D XY DXDY =解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ()+2cov x y D X Y DX DY -=+(,)应选(B ).4.设离散型随机变量和的联合概率分布为X Y (,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若独立,则的值为,X Y ,αβ (A ). (A ).21,99αβ==12,99αβ== (C ) (D ).( )11,66αβ==51,1818αβ==解答: 若独立则有,X Y(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+, ∴29α=19β=故应选(A ).5.设总体的数学期望为为来自的样本,则下列结论中X 12,,,,n X X X μ X 正确的是(A )是的无偏估计量.(B )是的极大似然估计量.1X μ1X μ (C )是的相合(一致)估计量. (D )不是的估计量. ( )1X μ1X μ 答案:(A ) 解答:,所以是的无偏估计,应选(A ).1EX μ=1X μ三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设‘任取一产品,经检验认为是合格品’A =‘任取一产品确是合格品’B =则(1) ()()(|)()(|)P A P B P A B P B P A B =+ 0.90.950.10.020.857.=⨯+⨯=(2) .()0.90.95(|)0.9977()0.857P AB P B A P A ⨯===四、(12分) 从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设为途中遇到红灯的次数,X求的分布列、分布函数、数学期望和方差.X解:的概率分布为X3323()(()0,1,2,3.55k k kP X k C k -===即01232754368125125125125XP的分布函数为X0,0,27,01,12581(),12,125117,23,1251, 3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩263,55EX =⨯= .231835525DX =⨯⨯=五、(10分)设二维随机变量在区域 上服从(,)X Y {(,)|0,0,1}D x y x y x y =≥≥+≤均匀分布. 求(1)关于的边缘概率密度;(2)的分布函数与概(,)X Y X Z X Y =+率密度.(1)的概率密度为(,)X Y 2,(,)(,)0,.x y Df x y ∈⎧=⎨⎩其它22,01()(,)0,X x x f x f x y dy +∞-∞-≤≤⎧==⎨⎩⎰其它(2)利用公式()(,)Z f z f x z x dx+∞-∞=-⎰其中2,01,01(,)0,x z x x f x z x ≤≤≤-≤-⎧-=⎨⎩其它2,01, 1.0,x x z ≤≤≤≤⎧=⎨⎩其它.当 或时0z <1z >()0Z f z =时 01z ≤≤00()222zzZ f z dx x z===⎰故的概率密度为Z 2,01,()0,Z z z f z ⎧≤≤⎪=⎨⎪⎩其它.的分布函数为Z200,00,0,()()2,01,01,1, 1.1,1z z Z Z z z f z f y dy ydy z z z z z -∞<⎧<⎧⎪⎪⎪==≤≤=≤≤⎨⎨⎪⎪>⎩>⎪⎩⎰⎰ 或利用分布函数法10,0,()()()2,01,1, 1.Z D z F z P Z z P X Y z dxdy z z ⎧<⎪⎪=≤=+≤=≤≤⎨⎪⎪>⎩⎰⎰20,0,,01,1, 1.z z z z <⎧⎪=≤≤⎨⎪>⎩2,01,()()0,Z Z z z f z F z ≤≤⎧'==⎨⎩其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标相X Y 互独立,且均服从分布. 求(1)命中环形区域2(0,2)N 22{(,)|12}D x y x y =≤+≤的概率;(2)命中点到目标中心距离的数学期望.Z =1){,)}(,)DP X Y D f x y dxdy∈=⎰⎰22222880111248x y r De dxdy erdrd πθππ+--==⋅⎰⎰⎰⎰;2221122888211()8r r red ee e ------=-=-⎰ (2)22818x y EZ E edxdyπ+-+∞-∞-∞==⎰⎰22228801184r r rerdrd e r drπθπ--+∞+∞==⎰⎰⎰222888r r r reedr dr +∞---+∞+∞-∞=-+==⎰七、(11分)设某机器生产的零件长度(单位:cm ),今抽取容量为16的2~(,)X N μσ样本,测得样本均值,样本方差. (1)求的置信度为0.95的置信10x =20.16s =μ区间;(2)检验假设(显著性水平为0.05).20:0.1H σ≤ (附注)0.050.050.025(16) 1.746,(15) 1.753,(15) 2.132,t t t ===2220.050.050.025(16)26.296,(15)24.996,(15)27.488.χχχ===解:(1)的置信度为下的置信区间为μ1α- /2/2(((X t n X t n αα--+-0.02510,0.4,16,0.05,(15) 2.132X s n t α=====所以的置信度为0.95的置信区间为(9.7868,10.2132)μ (2)的拒绝域为.20:0.1H σ≤22(1)n αχχ≥- ,221515 1.6240.1S χ==⨯=20.05(15)24.996χ= 因为 ,所以接受.220.052424.996(15)χχ=<=0H 《概率论与数理统计》期末考试试题(A )专业、班级:姓名:学号:一、单项选择题(每题3分 共18分)1.D 2.A 3.B 4.A 5.A 6.B 题 号一二三四五六七八九十十一十二总成绩得 分一、单项选择题(每题3分 共18分)(1).0)(,0)(;;0)(0)();(( ).,0)(=>===A B P A P (D)B A (C)B P A P (B)B A (A)AB P B A 则同时出现是不可能事件与或互不相容互斥与则以下说法正确的是适合、若事件(2)设随机变量X 其概率分布为 X -1 0 1 2P 0.2 0.3 0.1 0.4则( )。
概率论与数理统计期末试卷

概率论与数理统计 试题 出卷人:国贸111本 顾函小 18号一、单项选择题(本大题共5小题)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ,B 为两个互不相容事件,则下列各式中错误的是( ) A .P (AB )=0B .P (A B )=P (A )+P (B )C .P (AB )=P (A )P (B )D .P (B-A )=P (B )2.设随机变量X 在[-1,2]上服从均匀分布,则随机变量X 的概率密度f(x)为( )A .⎪⎪⎩⎪⎪⎨⎧≤≤-=.,0;21,31)(其他x x f B .⎪⎩⎪⎨⎧≤≤-=.,0;21,3)(其他x x f C .⎪⎩⎪⎨⎧≤≤-=.,0;21,1)(其他x x f D .⎪⎪⎩⎪⎪⎨⎧≤≤--=.,0;21,31)(其他x x f 3、),(Y X 是二维随机向量,与0),(=Y X Cov 不等价的是( D )A. )()()(Y E X E XY E =B. )()()(Y D X D Y X D +=+C. )()()(Y D X D Y X D +=-D. X 和Y 相互独立 4.设二维随机变量(X ,Y )的分布律为则(X ,Y )的协方差Cov(X,Y)=( )A .-91B .0C .91 D .315、连续型随机变量X 的密度函数f (x)必满足条件( C )。
A. 0() 1B.C. () 1D. lim ()1x f x f x dx f x +∞-∞→+∞≤≤==⎰在定义域内单调不减二、填空题(本大题共5小题)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设A 、B 为两随机事件,且A 与B 互不相容,P (A )=0.3,P (B )=0.4,则P(B A )=_________.7.若随机变量X 在区间[),1+∞-内取值的概率等于随机变量Y=X-3在区间[),+∞a 内取值的概率,则a=________.8.设二维随机变量(X ,Y )的概率密度为⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤-=,,0;11,11,41),(其他y x y x f则P{X+Y ≤2}=______.9.设离散型随机变量分布律为,则常数10.已知E (X )=2,E (=4,则X ,Y 的协方差Cov(X,Y)=________.三、判断题(本大题共5小题)11. 如果二事件A 与B 独立,则事件A 与事件B 不一定独立。
《概率论与数理统计》期末复习题

二、解答题
1.将两信息分别编码为A和B传送出去,接收站收到时, A被误收作B的概率为 0.02,而 B被误收作 A的概率为 0.01.信息 A与信息 B传送的频率程度为2:1。 (1)若接受站收到一信息,是 A的概率是多少? (2)若接受站收到的信息是 A,问原发信息是 A的概率是多少? 解:设
A,A2 分别表示发出A,B. 1
4. 设 X ~ N 1,3 则X的函数Y=
X 1 3
~ N(0,1)
。
5.设二维随机变量(X,Y)的联合分布律为
PX xi , Y y j
1 i 1,2,3; j 1,2,3,4 则 PX x1 __1/3__ 12
2 D 6.已知 EX 1.5 EX 6 ,则 E2 X __ 3 _____( X ) __ 3.75 _____ D2 X _ 15 __
解
因P(X=2)=a+b-(2/3-a)=1/2
于是a=1/6,b=5/6
,a+b=1
X的分布律为
X p
-1 1/6
1 1/3
2 1/2
8. 设连续型随机变量X的分布函数为 A Be x , x 0 求(1)常数A,B的值; F ( x) ( 0) 0, x 0 (2)P(-1<X<1); (3)求X的密度函数。
x0 0 x 1 1 x 2 2 x3 x3
7. 离散型随机变量X的分布函数为 0, x 1 a,1 x 1 F ( x) 且P(X 2) 1 / 2 2 / 3 a,1 x 2 a b, x 2 求a,b及X的分布律,E(X),D(X)。
7. 在假设检验中若原假设H0实际为真时却拒绝H0 ,称这类错误为 弃真(第一类)错误 8.设随机变量 X
《概率论与数理统计》期末考试答案

1单选(2分)同时掷2颗均匀骰子,X表示点数大于4出现的个数,则以下结果正确的是得分/总分∙A.P(X<2)=5/9∙B.P(X=0)=P(X=1)∙C.P(X=2)=4/9∙D.P(X>0)=1正确答案:B你没选择任何选项2单选(2分)设随机变量(X,Y)的联合概率密度为则以下结果正确的是得分/总分∙A.∙B.P(X<0.5)=0.5∙C.E(Y)=E(X)∙D.正确答案:D你没选择任何选项3单选(2分)设总体,是来自X的简单随机样本,表示中出现的个数。
以下结果正确的是得分/总分∙A.,其中“”表示近似服从。
∙B.∙C.∙D.正确答案:C你没选择任何选项4单选(2分)研究某企业生产某种产品的产量和单位成本,数据资料如下:用Excel计算得下面两张表:设一元线性回归模型为,则以下结果不正确的是得分/总分∙A.∙B.在显著水平为0.05下回归方程的检验是不显著的∙C.的置信水平为95%的置信区间为(-4.83596,-3.07806)∙D.在显著水平为0.05下回归方程的检验是显著的正确答案:B你没选择任何选项5单选(2分)设总体具有概率密度是待估未知参数。
设是简单随机样本,是样本均值,以下说法正确的是得分/总分∙A.的极大似然估计量是∙B.的矩估计量是∙C.似然函数∙D.的极大似然估计量是正确答案:B你没选择任何选项6单选(2分)有两个独立正态总体均未知,从总体X与Y中分别取得容量均为8的独立样本,计算得样本均值分别为和,样本方差分别为和,记,取显著水平为0.05,对于假设,以下哪个结果是正确的?(备用数据:.)得分/总分∙A.p_值=0.009∙B.拒绝域为T≥1.7531∙C.拒绝域为|T|≥2.1448∙D.拒绝域为T≥1.7613正确答案:C你没选择任何选项7单选(2分)设随机变量X服从参数为2的泊松分布,则以下结果正确的是得分/总分∙A.P(X≤1)=P(X=2)∙B.P(X≥2︱X≥1)=P(X≥1)∙C.E(X)=D(X)∙D.E(X)>D(X)正确答案:C你没选择任何选项8单选(2分)在区间(0,2)中随机取一数X,X的分布函数记为F(x),数学期望为E(X),方差为D(X),则以下结果正确的是得分/总分∙A.∙B.F(0.5)=0.5∙C.D(X)=1/3∙D.F(2.2)=0正确答案:C你没选择任何选项9单选(2分)设总体X的分布律为,其中0<θ<1为待估未知参数。
概率论和数理统计期末考试题及答案

概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。
则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。
概率论与数理统计期末考试试卷答案

数理统计练习 一、填空题1、设A 、B 为随机事件,且P (A )=0.5,P (B)=0.6,P (B |A )=0.8,则P (A+B )=__ 0。
7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 .4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1, 则=λ___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 , 成功次数的方差的值最大,最大值为 25 。
6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN .7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34.8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N (-2, 25) 。
10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
1、设A 、B 为随机事件,且P (A )=0。
4, P (B )=0。
3, P (A ∪B )=0。
6,则P (B A )=_0.3__。
2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719.3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
概率论与数理统计期末考试题及答案

模拟试题一一、 填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。
P( A ∪B) = 。
2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ;4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ; 5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ; 6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , COV(2X-3Y , X)= ;7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,则当k = 时,~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本,11ni i X X n ==∑为样本均值,则θ的矩估计量为: 。
9、设样本129,,,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ;二、 计算题(35分)1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ;2) 问X 与Y 是否独立?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ϕ;3、(11分)设总体X 的概率密度函数为:1,0(),000xe x x x θϕθθ-⎧≥⎪=>⎨⎪<⎩X 1,X 2,…,X n 是取自总体X 的简单随机样本。
概率论和数理统计期末考试题库完整

概率论和数理统计期末考试题库完整数理统计练习⼀、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。
2、某射⼿对⽬标独⽴射击四次,⾄少命中⼀次的概率为8180,则此射⼿的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。
4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1,则=λ___1____。
5、⼀次试验的成功率为p ,进⾏100次独⽴重复试验,当=p 1/2_____时,成功次数的⽅差的值最⼤,最⼤值为 25 。
6、(X ,Y )服从⼆维正态分布),,,,(222121ρσσµµN ,则X 的边缘分布为 ),(211σµN 。
7、已知随机向量(X ,Y )的联合密度函数≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。
8、随机变量X 的数学期望µ=EX ,⽅差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b µ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独⽴。
设Z =2X -Y +5,则Z ~ N(-2, 25) 。
10、θθθ是常数21? ,?的两个⽆偏估计量,若)?()?(21θθD D <,则称1?θ⽐2?θ有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理统计练习一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。
4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1,则=λ___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 ,成功次数的方差的值最大,最大值为 25 。
7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。
8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N(-2, 25) 。
10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
5、设随机变量X 的概率密度是:⎩⎨⎧<<=其他103)(2x x x f ,且{}784.0=≥αX P ,则α=0.6 。
6、利用正态分布的结论,有⎰∞+∞---=+-dx e x x x 2)2(22)44(21π1 。
8、设(X ,Y )为二维随机向量,D (X )、D (Y )均不为零。
若有常数a >0与b 使{}1=+-=b aX Y P ,则X 与Y 的相关系数=XY ρ-1 。
9、若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。
设Z =X -Y +3,则Z ~ N (2, 13) 。
10、设随机变量X ~N (1/2,2),以Y 表示对X 的三次独立重复观察中“2/1≤X ”出现的次数,则}2{=Y P = 3/8 。
1、设A ,B 为随机事件,且P (A)=0.6, P (AB)= P (B A ), 则P (B )= 0.4 。
2、设随机变量X 与Y 相互独立,且5.05.011P X-,5.05.011P Y -,则P (X =Y )=_ 0.5_。
3、设随机变量X 服从以n , p 为参数的二项分布,且EX =15,DX =10,则n = 45 。
4、设随机变量),(~2σμN X ,其密度函数644261)(+--=x x ex f π,则μ= 2 。
5、设随机变量X 的数学期望EX 和方差DX >0都存在,令DXEX X Y/)(-=,则D Y= 1 。
6、设随机变量X 服从区间[0,5]上的均匀分布,Y 服从5=λ的指数分布,且X ,Y 相互独立,则(X , Y )的联合密度函数f (x , y )= ⎩⎨⎧≥≤≤-其它,505y x e y 。
7、随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 44。
8、设n X X X ,,,21 是来自总体X ~ N (0, 1)的简单随机样本,则∑=-ni iX X12)(服从的分布为)1(2-n x 。
9、三个人独立地向某一目标进行射击,已知各人能击中的概率分别为31,41,51,则目标能被击中的概率是3/5 。
10、已知随机向量(X , Y )的联合概率密度⎩⎨⎧>≤≤=-其它0,10,4),(2y x xe y x f y ,则E Y = 1/2 。
1、设A,B 为两个随机事件,且P(A)=0.7, P(A-B)=0.3,则P(AB )=__0.6 __。
3、设随机变量X ~N (2,2σ),且P {2 < X <4}=0.3,则P {X < 0}=0.2 。
4、设随机变量X 服从2=λ泊松分布,则{}1≥X P =21--e 。
5、已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为)2(21y f X -。
6、设X 是10次独立重复试验成功的次数,若每次试验成功的概率为0.4,则=)(X D 2.4 。
7、X 1,X 2,…,X n 是取自总体()2,σμN 的样本,则212)(σ∑=-ni iX X~)1(2-n x 。
9、称统计量θθ为参数ˆ的 无偏 估计量,如果)(θ E =θ。
10、概率很小的事件在一次试验中几乎是不可能发生的,这个原理称为 小概率事件原理。
1、设A 、B 为两个随机事件,若P (A)=0.4,P (B)=0.3,6.0)(=⋃B A P ,则=)(B A P 0.3 。
2、设X 是10次独立重复试验成功的次数,若每次试验成功的概率为0.4,则=)(2X E 18.4 。
3、设随机变量X ~N (1/4,9),以Y 表示对X 的5次独立重复观察中“4/1≤X ”出现的次数,则}2{=Y P = 5/16 。
4、已知随机变量X 服从参数为λ的泊松分布,且P(X =2)=P(X =4),则λ=32。
5、称统计量θθ为参数ˆ的无偏估计量,如果)(θE =θ 。
6、设)(~),1,0(~2n x Y N X ,且X ,Y 相互独立,则~n YXt(n) 。
7、若随机变量X ~N (3,9),Y ~N (-1,5),且X 与Y 相互独立。
设Z =X -2Y +2,则Z ~ N (7,29) 。
8、已知随机向量(X , Y )的联合概率密度⎩⎨⎧>≤≤=-其它00,10,6),(3y x xe y x f y ,则E Y = 1/3 。
9、已知总体n X X X N X ,,,),,(~212 σμ是来自总体X 的样本,要检验202σσ=:o H ,则采用的统计量是202)1(σS n -。
10、设随机变量T 服从自由度为n 的t 分布,若{}αλ=>T P ,则{}=<λT P 21a-。
1、设A 、B 为两个随机事件,P (A)=0.4, P (B)=0.5,7.0)(=B A P ,则=)(B A P 0.55 。
2、设随机变量X ~ B (5, 0.1),则D (1-2X )= 1.8 。
3、在三次独立重复射击中,若至少有一次击中目标的概率为6437,则每次射击击中目标的概率为 1/4 。
4、设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望E X = 2.3。
5、将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于-1。
7、设随机变量X 服从[1,5]上的均匀分布,则{}=≤≤42X P 1/2 。
8、三个人独立地破译一份密码,已知各人能译出的概率分别为31,41,51,则密码能被译出的概率是3/5 。
9、若n X X X N X ,,,),,(~2121 σμ是来自总体X 的样本,2,S X 分别为样本均值和样本方差,则SnX )(μ-~ t (n-1) 。
10、θθθ是常数21ˆ,ˆ的两个无偏估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ 有效 。
1、已知P (A)=0.8,P (A -B)=0.5,且A 与B 独立,则P (B) = 3/8 。
2、设随机变量X ~N (1,4),且P{ X ≥ a }= P{ X ≤ a },则a = 1 。
3、随机变量X 与Y 相互独立且同分布,21)1()1(=-==-=Y P X P ,21)1()1(====Y P X P ,则()0.5P X Y ==。
4、已知随机向量(X , Y )的联合分布密度⎩⎨⎧≤≤≤≤=其它010,104),(y x xy y x f ,则EY = 2/3 。
5、设随机变量X ~N (1,4),则{}2>X P = 0.3753 。
(已知Φ(0.5)=0.6915,Φ(1.5)=0.9332) 6、若随机变量X ~N (0,4),Y ~N (-1,5),且X 与Y 相互独立。
设Z =X +Y -3,则Z ~ N (-4,9) 。
7、设总体X ~N (1,9),n X X X , , ,21 是来自总体X 的简单随机样本,2,S X 分别为样本均值与样本方差,则∑=-n i i X X 12~)(912(8)χ;;∑=-ni i X 12~)1(9129χ()。
8、设随机变量X 服从参数为λ的泊松分布,且{}{}423===X P X P ,则λ= 6 。
9、袋中有大小相同的红球4只,黑球3只,从中随机一次抽取2只,则此两球颜色不同的概率为 4/7 。
10、在假设检验中,把符合H 0的总体判为不合格H 0加以拒绝,这类错误称为 一错误;把不符合H 0的总体当作符合H 0而接受。
这类错误称为2错误。
1、设A 、B 为两个随机事件,P (A)=0.8,P (AB)=0.4,则P (A -B)= 0.4 。
2、设X 是10次独立重复试验成功的次数,若每次试验成功的概率为0.4,则=)(X D 2.4 。
3、设随机变量X 的概率分布为则{}12≥X P = 0.7 。
4、设随机变量X 的概率密度函数1221)(-+-=x xe xf π,则)(X D =21 。
5、袋中有大小相同的黑球7只,白球3只,每次从中任取一只,有放回抽取,记首次抽到黑球时抽取的次数为X ,则P {X =10}= 0.39*0.7 。
6、某人投篮,每次命中率为0.7,现独立投篮5次,恰好命中4次的概率是14453.07.0⨯⨯C 。
7、设随机变量X 的密度函数2)2(221)(+-=x e x f π,且{}{}c X P c X P ≤=≥,则c = -2 。
8、已知随机变量U = 4-9X ,V = 8+3Y ,且X 与Y 的相关系数XY ρ=1,则U 与V 的相关系数UV ρ=-1。
9、设)(~),1,0(~2n x Y N X ,且X ,Y 相互独立,则~n YX t (n)10、概率很小的事件在一次试验中几乎是不可能发生的,这个原理称为 小概率事件原理 。