5个海盗得到一批宝石共100颗
海盗分珍珠
问:1号该提出怎样的分配方案,才能不被喂鲨鱼,而且得到的珍珠最多?
因此1号应提出方案:97:0:1:2:0或97:0:1:0:2。
步骤四,假如最后剩下2号、3号、4号、5号。根据步骤三,3号肯定不同意2号的任何方案;4号、5号此时如果得到利益的话,绝对不会让3号提出分配方案。因此,2号分别拿出一颗珍珠贿赂4号、5号。2号得九十八颗。
步骤五,1号提出方案。根据步骤四,2号肯定反对1号的任何方案;如果得到的珍珠大于一颗,4号、5号就不会反对1号的分配方案;3号只要有利益,也不会反对1号的分配方案。题是典型的逆向思维运用题。
步骤一,假如最后剩下5号。结果肯定是5号得一百颗珍珠。
步骤二,假如最后剩下4号、5号。根据方案一,5号肯定不同意4号的任何方案,4号必死。
步骤三,假如最后剩下3号、4号、5号。根据步骤二,4号必定同意3号的任何方案。分配方案为3号得一百颗珍珠。
经典智力题:海盗的难题
3. 如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
4. 以次类推
条件: 每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。
问题:第一个海盗提出怎样的分配方案才能够使自己的收益最大化?
这些金块不能再分,也不允许几名海盗共有金块,因为任何海盗都不相信他的同伙会遵守关于共享金块的安排。这是一伙每人都只为自己打算的海盗。
最凶的一名海盗应当提出什么样的分配方案才能使他获得最多的金子呢?
为方便起见,我们按照这些海盗的怯懦程度来给他们编号。最怯懦的海盗为1号海盗,次怯懦的海盗为2号海盗,如此类推。这样最厉害的海盗就应当得到最大的编号,而方案的提出就将倒过来从上至下地进行。
5号海盗的策略稍有不同。他需要收买另两名海盗,因此至少得用2块金子来贿赂,才能使自己的方案得到采纳。他的分配方案应该是:98块金子归自己,1块金子给3号,1块金子给1号。
这一分析过程可以照着上述思路继续进行下去。每个分配方案都是唯一确定的,它可以使提出该方案的海盗获得尽可能多的金子,同时又保证该方案肯定能通过。照这一模式进行下去,10号海盗提出的方案将是96块金子归他所有,其他编号为偶数的海盗各得1块金子,而编号为奇数的海盗则什么也得不到。这就解决了10名海盗的分配难题。
分析所有这类策略游戏的奥妙就在于应当从结尾出发倒推回去。游戏结束时,你容易知道何种决策有利而何种决策不利。确定了这一点后,你就可以把它用到倒数第2次决策上,如此类推。如果从游戏的开头出发进行分析,那是走不了多远的。其原因在于,所有的战略决策都是要确定:“如果我这样做,那么下一个人会怎样做?”因此在你以下海盗所做的决定对你来说是重要的,而在你之前的海盗所做的决定并不重要,因为你反正对这些决定也无能为力了。
世界上最好的智力题
一:海盗分金子5个海盗抢到了100颗宝石,每一颗都一样的大小和价值连城。
他们决定这么分: 1。
抽签决定自己的号码(1,2,3,4,5) 2。
首先,由1号提出分配方案,然后大家5人进行表决,当且仅当半数和超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
3。
如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当且仅当半数和超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
4。
以次类推...... 条件:每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。
问题:第一个海盗提出怎样的分配方案才能够使自己的收益最大化。
二:囚犯抓绿豆5个囚犯,分别按1-5号在装有100颗绿豆的麻袋抓绿豆,规定每人至少抓一颗,而抓得最多和最少的人将被处死,而且,他们之间不能交流,但在抓的时候,可以摸出剩下的豆子数。
问他们中谁的存活几率最大?提示:1,他们都是很聪明的人2,他们的原则是先求保命,再去多杀人3,100颗不必都分完4,若有重复的情况,则也算最大或最小,一并处死三分辨异常球一道真正的智力题,据说是世界上目前最好的智力题目。
好的智力题目的标准是:1.一般人做不出来或者做不下去;2.不需要知识。
看仔细了:有12个乒乓球特征相同,其中只有一个重量异常,现在要求用一部没有砝码的天平称三次,将那个重量异常的球找出来。
评分标准:1.30分钟以内做出来:智力很高很高很高,不知道有多高......2.60分钟以内做出来:智力很高。
3.两小时内做出来:智力相当高。
4.1天或者1周内做出来:智力也很高,而且还是一个有毅力的人。
5.10分钟内做出来:你或者以前做过,或者多半是个马虎的人,蒙对了。
四疯狗问题一个村子里,有50户人家,每家都养了一条狗。
现在,发现村子里面出现了N只疯狗,村里规定,谁要是发现了自己的狗是疯狗,就要将自己的狗枪毙。
但问题是,村子里面的人只能看出别人家的狗是不是疯狗,而不能看出自己的狗是不是疯的,如果看出别人家的狗是疯狗,也不能告诉别人。
海盗分金问题总结
海盗分金题目:5名海盗抢得了窖藏的100块金子,并打算瓜分这些战利品。
这是一些讲民主的海盗(当然是他们自己特有的民主),他们的习惯是按下面的方式进行分配:最厉害的一名海盗提出分配方案,然后所有的海盗(包括提出方案者本人)就此方案进行表决。
如果50%或更多的海盗赞同此方案,此方案就获得通过并据此分配战利品。
否则提出方案的海盗将被扔到海里,然后下一名最厉害的海盗又重复上述过程。
所有的海盗都乐于看到他们的一位同伙被扔进海里,不过,如果让他们选择的话,他们还是宁可得一笔现金。
他们当然也不愿意自己被扔到海里。
所有的海盗都是有理性的,而且知道其他的海盗也是有理性的。
此外,没有两名海盗是同等厉害的——这些海盗按照完全由上到下的等级排好了座次,并且每个人都清楚自己和其他所有人的等级。
这些金块不能再分,也不允许几名海盗共有金块,因为任何海盗都不相信他的同伙会遵守关于共享金块的安排。
这是一伙每人都只为自己打算的海盗。
最凶的一名海盗应当提出什么样的分配方案才能使他获得最多的金子呢?一、经济学上的“海盗分金”模型经济学上有个“海盗分金”模型,是说5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。
假定“每人海盗都是绝顶聪明且很理智”,那么“第一个海盗提出怎样的分配方案才能够使自己的收益最大化?”推理过程是这样的:从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。
所以,4号惟有支持3号才能保命。
3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。
不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。
由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。
5海盗分配100宝石详解
5个海盗抢到了100颗宝石,每一颗都一样的大小和价值连城。
他们决定这么分:1。
抽签决定自己的号码(1,2,3,4,5)2。
首先,由1号提出分配方案(你是1号),然后大家5人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
3。
如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
4。
以次类推。
条件:每颗宝石都是一样的价值每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。
问题:第一个海盗提出怎样的分配方案才能够使自己的收益最大化?楼主对这个分配方案一些细节关键的地方说得还不详细,我来做一些补充吧解此题方法只有倒推才能使思路清晰,不受未知因素影响而做出错误判断,这种思维方式是让1号能做出准确判断的唯一出路,如果有人对我的看法有反对意见可以提出探讨。
倒推步骤:1.5号提方案,前面4人再傻也不会让这个5号独吞,其他人都得赔上性命,不会出现这样的结果2.4号提方案,4号提任何方案5号都不会接受,4号必死,人都死了还能得到财吗?4号是绝对不原意让事情发展到轮到自己提方案这一步来,3号任何提议4号将全力支持。
4号提方案也不成立。
3.3号提方案,4号绝对支持,2:1,方案通过,3号争取利益最大化,自己独吞100颗宝石。
4、5一点好处也没有,所以如果3号以前的人2号能给4、5哪怕一颗宝石他们也会赞成,2号为保全自己,不会吝啬到一颗宝石不给4、5,2号会给4、5好处,这样就轮不到3号了,所以3号提方案也不成立。
4.2号提方案,2号不论给3号多少好处,也不会超过3号自己独占的方案,所以3号会绝对的反对2号的方案,2号方案的首要条件是要拉拢4、5号。
3号的方案使4、5没有任何好处,如果能让4、5号获得实实在在的好处,2号的方案就能通过,为能取自己利益最大化,给4、5的好处就不会每人多于1颗宝石。
这里有一个节点,如果不给4、5任何好处,4、5的分配情况就跟3号分配情况是一样的,这里4、5就可以对2号的方案有2种不同处理方式,都是合理的,只要有一人不赞同2的方案,2将被扔进海里,所以为了规避可能存在的风险,2号不得不做出让4、5都有利益的方案,所以2的方案就一定是2号98颗,4、5各1颗。
海盗分金
3、国际交易中的先发优势和后发劣势。1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发优势,结果不但消除了死亡威胁,还收益最大。这不正是全球化过程中先进国家先发优势吗?而5号,看起来最安全,没有死亡的威胁,甚至还能坐收渔人之利。却因不得不看别人脸色行事而只能分得一小杯羹。这难道不是后发劣势的写照?可以预料,如果中国人总是处于5号位置,总是坐等别人制定规则,未来就不见得会比5号好到那里去!
自从几天前将“海盗分金”的问题贴出之后,已受到许多朋友的关注。或许你已经有了正确的答案,或许你还在思考之中。无论如何,在该题目的“假定”之下,答案总是可以得到的,但答案之后的思考,你想到了吗?
标准答案是:1号海盗分给3号1枚金币,4号或5号海盗2枚,独得97枚。分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。
思考:
1、当老大是不容易的,企业家就是要把各方面“摆平”。这里说的企业家包括熊比特说的政治家。
2、任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚 “挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。想一想历朝历代的农民起义,想一想绵延起不断的宫廷斗争,想一想我们这个时代比比皆是的结盟与背叛,想一想企业内部的明争暗斗,想一想办公室脚下使绊的政治,哪一个得胜者不是采用的类似“海盗分金”的办法?
推理过程是这样的:从后向前推,如果1-3号海盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。所以,4号惟有支持3号才能保命。3号知道这一点,就会提(100,0,0)的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票他的方案即可通过。不过,2号推知到3号的方案,就会提出(98,0,1,1)的方案,即放弃3号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。这样,2号将拿走98枚金币。不过, 2号的方案会被1号所洞悉,1号并将提出(97 ,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。这无疑是1号能够获取最大收益的方案了!
海盗分宝石问题
5海盗分宝石问题5个海盗抢到了100颗宝石,每一颗都一样的大小和价值。
他们决定这么分:1。
抽签决定自己的号码(1,2,3,4,5)2。
首先,由1号提出分配方案,然后大家5人进行表决,当且仅当半数和超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
3。
如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当且仅当半数和超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
4。
以次类推......条件:每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。
问题:第一个海盗提出怎样的分配方案才能够使自己的收益最大化标准答案:1号海盗分给3号1颗宝石,4号或5号海盗2颗,独得97颗。
分配方案为:97,0,1,2,0或97,0,1,0,2。
推理过程:从后向前推,如果1—3号海盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部宝石。
所以,4号唯有支持3号才能保命。
3号知道这一点,就会提出(100,0,0)的分配方案,对4号、5号一毛不拔而将全部宝石占为己有。
因为他知道4号一无所有但还是会投赞成票,再加上自己一票他的方案即可通过。
不过,2号推知到3号的方案,就会提出(98,0,1,1)的方案,即放弃3号,而给予4号和5号各一颗宝石。
由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他不希望他出局而由3号来分配。
这样,2号将拿走98颗宝石。
不过,2号的方案会被1号所洞悉,1号将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一颗宝石,同时给4号(或5号)2颗宝石。
由于1号的解决方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案通过,97颗宝石可以轻松落入囊中。
这无疑是1号能够获取最大收益的方案了。
在"海盗分赃"模型中,任何"分配者"想让自己的方案获得通过的关键是,事先考虑清楚"挑战者"的分配方案是什么,并用最小的代价获取最大收益,拉拢"挑战者"分配方案中最不得意的人们。
经典逻辑推理题集锦
海盗分金币5个海盗抢到了100颗宝石,每一颗都一样的大小和价值连城。
他们决定这么分:第一步,抽签决定自己的号码(1、2、3、4、5);第二步,首先,由1号提出分配方案,然后5个人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则他将被扔入大海喂鲨鱼;第三步,1号死后,再由2号提出分配方案,然后4人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则他将被扔入大海喂鲨鱼;第四步,以此类推。
条件:每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。
问题:最后的分配结果如何?提示:海盗的判断原则:1.保命;2.尽量多得宝石;3.尽量多杀人。
参考答案:推理的关键是找对思路。
其实任何推理的源泉都在于简化。
所以推理过程是这样的:从后向前推,如果1-3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。
所以,4号惟有支持3号才能保命。
3号知道这一点,就会提(100,0,0)的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。
不过,2号推知到3号的方案,就会提出(98,0,1,1)的方案,即放弃3号,而给予4号和5号各一枚金币。
由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。
这样,2号将拿走98枚金币。
不过,2号的方案会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。
由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。
这无疑是1号能够获取最大收益的方案了!可以看出,这个推理过程就先考虑简化的极端情况,从而顺藤摸瓜,得出最后的结果。
小学数学海盗分宝石智力题-文档资料
小学数学海盗分宝石智力题
【】如何让小学生学会用数学的思维方式去观察和分析生活,如何帮助他们更好地学好数学这门学科呢?查字典数学网小学频道精心准备了海盗分宝石智力题,希望对大家有所帮助!
在美国,据说20分钟内能回答出这道题的人,平均年薪在8万美金以上。
5个海盗抢得100枚宝石,每枚宝石都价值连城,他们讨论如何进行分配。
他们商定的分配原则是:
(1)抽签确定各人的分配顺序号码(1,2,3,4,5);
(2)由抽到1号签的海盗提出分配方案,然后5人进行表决,如果方案得到超过半数的人同意,就按照他的方案进行分配,否则就将1号扔进大海喂鲨鱼;
(3)如果1号被扔进大海,则由2号提出分配方案,然后由剩余的4人进行表决,当且仅当超过半数的人同意时,才会按照他的提案进行分配,否则也将被扔入大海;
(4)依此类推理.
这里假设每一个海盗都是绝顶聪明而理性,他们都能够进行严密的逻辑推理,并能很理智的判断自身的得失,即能够在保住性命的前提下得到最多的宝石。
同时还假设每一轮表决后的结果都能顺利得到执行,那么抽到1号的海盗应该提出怎样的分配方案才能使自己既不被扔进海里,又可以得到更
多的宝石呢?
更多海盗分宝石智力题和其他相关复习资料,尽在查字典数学网!请大家及时关注!。
从海盗的题目悟出的人生哲理
•
如果3号提方案,5号和3号就会成为天然的敌人,所以在这里5号和2号成了 天然的朋友,这种朋友的忠诚度比较高。于是4号和5号只要能得到一颗(一 颗也是价值连城的)就会支持2号,尽管他们心里还有可能幻想从3号那里得 到好处。所以2号的方案可能是2号98颗,3号一颗也得不到,4号和5号各1颗。 4号如果不够聪明也许会相信3号的美好承诺,和3号一起把2号喂了鲨鱼,但 结果必然是4号发现自己上了当,为了活命1颗宝石也没得到。在我的第四步, 如果1号提方案,敌我关系又一次发生了变化。1号死了,2号是最大的受益者。 而当2号提方案的时候,3号是2号的天然敌人,所以在这里3号是1号的天然 朋友。在2号提方案的时候,4号虽然是2号的朋友,但是并没有很高的忠诚度, 而5号对2号却有很高的忠诚度;但是在这里4号知道自己在2号那里必然能得 到好处,必然期望从1号这里得到更多的好处,所以4号对1号即不敌对也不忠 诚是一种中立关系;5号知道如果2号提方案自己从2号那里得到的好处很有限, 所以与2号相比5号和1号更容易平等对话,5号和1号是一种忠诚度更低的朋 友关系。1号只要给3号1颗就好了,因为如果2号分配,3号将什么都得不到; 在4号和5号之间,1号拉拢一个就够了;4号有太多的幻想,所以很难拉拢; 5号从2号那里只能得到1颗宝石,只要1号给5号2颗宝石,5号就会投靠1号。 于是,1号的分配方案是:1号97颗,2号1颗宝石也得不到,3号1颗,4号1颗 宝石也得不到,5号2颗。
• 第三, 相信能够得到的,不相信可能得到的,否则你可 能会连现在拥有的都会失去。在你每次做出选择之前你必 须弄清楚哪些是你肯定能得到的。比如对于那道题目中的 4号。当3号提出方案一颗都不给他的时候,他没弄清楚情 况,而相信了5号的承诺(5号肯定会跟他说他俩一起把3 号扔到海里然后平分所有宝石),最后的结果必然是3号 被4号和5号扔到海里以后,4号提出的方案被5号否决,5 号把4号扔进了海里自己独吞了所有的宝石。4号不但一颗 宝石也没得到,连自己的生命都丢掉了。4号能得到什么 呢?就是在2号提方案的时候支持2号,这样还可以从2号 哪里得到一颗宝石。
类似于海盗分金的题目
类似于海盗分金的题目海盗分金是一种经典的逻辑推理问题,也被称为“海盗分宝石”或“海盗的难题”。
以下是一道类似于海盗分金的题目:有五个海盗抢到了 100 颗宝石,他们决定按以下方式分配:- 由第一个海盗提出分配方案;- 所有海盗(包括第一个海盗)对方案进行表决,如果超过半数的海盗同意,则按此方案分配宝石;- 如果没有超过半数的海盗同意,则第一个海盗将被扔进海里喂鲨鱼,然后由第二个海盗提出分配方案;- 以此类推,直到有一个方案被超过半数的海盗同意为止。
假设五个海盗都足够聪明,而且都希望自己能得到尽可能多的宝石,请问第一个海盗应该提出怎样的分配方案才能使自己得到最多的宝石?这道题目需要运用逻辑推理和博弈论的知识来解决。
答案是第一个海盗应该提出自己得到 97 颗宝石,第二个海盗得到 1 颗宝石,第三个海盗得到 2 颗宝石,第四个海盗和第五个海盗都得不到宝石。
这个方案可以通过以下推理得出:- 如果只有第一个海盗和第二个海盗,那么第一个海盗提出自己得到 99 颗宝石,第二个海盗得到 1 颗宝石,这样就可以通过。
- 如果只有第一个海盗、第二个海盗和第三个海盗,那么第一个海盗提出自己得到 98 颗宝石,第二个海盗和第三个海盗各得到 1 颗宝石,这样也可以通过。
- 如果只有第一个海盗、第二个海盗、第三个海盗和第四个海盗,那么第一个海盗提出自己得到 97 颗宝石,第二个海盗得到 1 颗宝石,第三个海盗得到 2 颗宝石,第四个海盗得不到宝石,这样可以通过。
- 如果五个海盗都在,那么第一个海盗提出自己得到97 颗宝石,第二个海盗得到 1 颗宝石,第三个海盗得到 2 颗宝石,第四个海盗和第五个海盗都得不到宝石,这样也可以通过。
因此,第一个海盗提出的分配方案是自己得到 97 颗宝石,第二个海盗得到 1 颗宝石,第三个海盗得到 2 颗宝石,第四个海盗和第五个海盗都得不到宝石,这样可以使自己得到最多的宝石。
5个海盗分100颗宝石
5个海盗抢到了100颗宝石,该如何分配5个海盗抢到了100颗宝石,每一颗都一样的大小和价值连城1.抽签决定自己的号码(1,2,3,4,5)2.首先,由1号提出分配方案,然后大家5人进行表决,当且仅当半数和超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
3.如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当且仅当半数和超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
4.以次类推......条件:每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。
1,保命 2,拿尽量多的宝石 3,多杀人问题:第一个海盗提出怎样的分配方案才能够使自己的收益最大化?当留下最后两人时,5号是反对的;而4号提出的方案是不会获得通过的(因为5号不会同意);所以4号肯定只能通过1,2,3号的方案获得东西,所以3号提出的方案4号是一定会同意的。
所以当3号获得提方案的权力时,他提得任何方案都会获得通过,所以他提得方案完全可以把所有的钻石都给自己。
当是2号提方案时他可以给4,5号每人一颗钻石,这样两人就会同意,因为如果不同意,3号提的方案是不会给他们钻石的。
所以当2号提方案时,3号不能获得钻石,而4,5号每人可以获得一颗钻石。
2号自己可以获得98颗钻石。
所以当一号提方案时就可以给3号一颗钻石,给4号或者5号两颗钻石,这样其中的两人就会被拉拢过来,那样就可以获得三人的同意(自己一人),一号自己可以获得97颗钻石。
答案:99,0,1,0,0反推过来想吧5号:不同意,或者有条件同意轮到5号时,形成的状态是:1得到0个宝石,死2得到0个宝石,死3得到0个宝石,死4得到0个宝石,死5得到100个宝石,活,同意此海盗是最后一个轮到,不存在生命危险,所以也没必要"同意"!除非有得到一定的好处但是他想捞到好处是很有难度的,因为其他海盗也很聪明!其实他当然也会意识到这点所以此海盗不会同意别人的方案,除非他获得一定的利益4号:同意轮到4号时,形成的状态是:1得到0个宝石,死2得到0个宝石,死3得到0个宝石,死4得到0个宝石,可以保不死(但也说不定),同意5得到100个宝石,活,同意(或不同意)此海盗最担心的是轮到他头上(祈祷中...),即使全部100个宝石奉送给5号,他才有可能保不死(仍然有风险),否则就死定了!(注意是超过半数同意才行,也就是说刚好达到半数还不够,否则就可以独吞了)所以此海盗不管如何都会同意别人的方案,否则对他来讲没有任何好处,反而增加步步逼近的危险!3号:不同意,或者有条件同意轮到3号时,形成的状态是:1得到0个宝石,死2得到0个宝石,死3得到100个宝石,活,同意4得到0个宝石,活,同意5得到0个宝石,活,不同意轮到3号时,他是绝不会巴结5号的,因为不知道他需要多少"度"才会同意,要巴结的话只要给4号1个宝石就够了,但事实上一个都不用巴结,因为5号也会认识到这点,所以5号是绝对"不同意"的,介于5号"不同意",4号也会猜想到这点,所以4号就不能再"不同意",否则4号是自找死路,所以就固然有大于半数的支持者了但是能否轮到他呢?问题是这海盗太聪明了,事实上他进一步想,突然觉得不对,因为将不可能轮到他的,前面2号的海盗没那么傻,说不定他等下一个也得不到,所以在1号的方案时,他的要求变的很低了,"求求1号给我1颗宝石吧,我会同意的"....(哈哈:),早拿早好嘛,有一个算一个!所以此海盗肯定不同意别人的分配方案,除非有得到一点好处2号:不同意轮到2号时,形成的状态是:1得到0个宝石,死2得到99个宝石,活,同意3得到0个宝石,活,不同意4得到0个宝石,活,同意5得到1个宝石,活,同意要是轮到此海盗他必会拿走99颗宝石,然后给1颗5号即可!原因:3号不同意的,因为他想要得到100个宝石的机会(如果给1个以上,或许会同意)4号同意,否则只有坏处多多,有风险存在5号给他1个宝石就OK了,否则到了下一轮,将一颗也得不到,不拿白不拿!所以此海盗不会同意1号的分配方案,除非给他100颗宝石其实不然,这都是错误的想法,怪就怪他们太聪明了!因为他知道1号很聪明的,他早已算出1号将会以99,0,1,0,0的分法搞定,所以轮不到他,想得到99颗的想法才是妄想,而且1号也不可能给他1-2颗宝石的,他知道1号要是这样做是在冒风险,所以他只有"不同意"一博1号:此海盗当然也聪明了,他早已知道后面的海盗心里想什么,首先4号是一定同意了(因为不管哪一轮他都没有宝石,如果不早点同意的话说不定局势改变了,有风险啊),那么只要再找一个海盗同意即可安全了,左思右想,巴结谁呢?还用想...汗!2号肯定不给的,给了说不定也是白给3号给1颗就能搞定,否则到了下一轮他一个也得不到5号给1颗不一定够呀(除非给2颗,因为到了下一轮(2号决定时)他仍然有机会得到1颗宝石,所以5号干嘛急着同意呢,不急不急)最终结局的状态是:1得到99个宝石,活,同意2得到0个宝石,活,不同意3得到1个宝石,活,同意4得到0个宝石,活,同意5得到0个宝石,活,不同意即:99,0,1,0,0 (1号利益最大化)如果每个人都把活命放在第一,那么推理如下:首先如果前四个人的方案不能让5号满意,5号很定不会赞同任何人的方案,因为他不会死。
奥数题
一、下面是一个常见的版本:有这样一道关于5个海盗如何分赃的问题,说是5个海盗抢到了100颗宝石,每一颗都有一样的大小和一样贵重的价值,经过商议,他们决定将宝石这样分配:a、抽签决定自己的号码1,2,3,4,5。
b、首先,由1号提出分配方案,然后5人进行表决,当达到半数或者半数以上的人同意时(题目在这里有变种版本,有的版本要求必須过半数)号的提案进行分配,否则,他将被扔入大海喂鲨鱼。
c、如果1号死后,再由2号提出分配方案,然后大家4人进行表决,当达到半数或者半数以上的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
4、以次类推。
假设每个海盗都是很聪明的人,都能很理智地判断得失,从而做出选择。
问题不仅要分到宝石,而且要利益最大化.为了保证自己的利益最大化,那么就要了解其他人的利益底线,通过测量别人的利益底线来进行分配是解决问题的原则,由于其他人也都是绝对聪明和理智的,所以使得这种利益底线的测量变得可能题目思路是倒推。
我们可以假设,如果前面的四个人都死了,无疑五号就能全部占有100个宝石了.但五号能不能让四号死掉呢?不能.因为当前面三个人都死掉的时候,那么这个时候四号的方案是一定被通过的,只要他自己同意就有一半的票数了.而此时四号的分配方案一定是选择自己独吞100个宝石。
因为剩下两个人了,只要四号自己同意那么方案就一定能被通过.这个时候五号是什么也得不到的.所以这种情况下,五号的利益底线是只要给自己1个宝石的方案,他都必须同意,否则最终他一个宝石都拿不到。
考虑到上面那些的话,那么三号的分配方案就出来了,只要他给五号一个宝石,五号就能同意他的方案,三号拿九十九个,四号一个都没有(给他也没用,他肯定不同意,因为只要否掉3号方案,4号可以得到100个宝石,因此3号无法行贿4号).基于以上事实,那么二号只要给四号一个宝石,自己得到99个宝石,就能赢得半数的通过票数,如果四号不同意的话,最四号自己什么也得不到.因为一旦2号方案不通过,3,5号会联手的。
五个海盗100颗宝石详解
五个海盗抢到了100颗宝石,每一颗都一样大小和价值连城,他们决定这么分:抽签决定自己的号码(1、2、3、4、5)首先由1号提出分配方案,然后大家决定,当且仅当超过半数的人同意时,按照他的方案按进行分配。
否则将被仍进大海里喂鲨鱼。
如果1号死后再由2号提出分配方案,然后剩下的4人进行表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则将被仍入大海喂鲨鱼。
依此类推;条件:每个海盗都是很聪明的都能很理智地做出判断,从而做出选择。
问题:海盗提出怎样的分配方案才能使自己的收益最大?要回答这个问题,一般人肯定会想到,1号必须先让另外两个人同意,所以,他可以自己得到32颗,而给2号3号各34颗。
但只要仔细想想,就会发现不可能,2号和3号有积极性让1号死,以便自己得到更多。
所以,1号无奈之下,可能只有自己得0,而给2和3各50颗。
但事实证明,这种做法依然不可行。
为什么呢?因为我们要先看4号和5号的反应才行。
很显然,如果最后只剩下4和5,这无论4提出怎样的方案,5号都会坚决反对。
即使4号提出自己要0,而把100颗钻石都给5,5也不会答应D―因为5号愿意看到4号死掉。
这样,5号最后顺利得到100颗钻石——因此,4的方案绝对无法获得半数以上通过,如果轮到4号分配,4号只有死,只有死!由此可见,4号绝对不会允许自己来分。
他注定是一个弱者中的弱者,他必须同意3号的任何方案!或者1号2号的合理方案。
可见,如果1号2号死掉了,轮到3号分,3号可以说:我自己100颗,4号5号0颗,同意的请举手!这时候,4号为了不死,只好举手,而5号暴跳如雷地反对,但是没有用。
五个海盗的故事分配方案
五个海盗的故事分配方案说有五个海盗,得到了100个钻石。
他们都足够的聪明。
现在要开始分钻石,每个人提出来的方案都要得到一半及以上的人的同意,要是不同意,那么那个提方案的人就要被沉入海底淹死。
请问第几个提方案的人最好,怎样分钻石才能使自己的利益最大。
首先从5号海盗开始,因为他是最安全的,没有被扔下大海的风险,因此他的策略也最为简单,即最好前面的人全都死光光,那么他就可以独得这100枚金币了。
接下来看4号,他的生存机会完全取决于前面还有人存活着,因为如果1号到3号的海盗全都喂了鲨鱼,那么在只剩4号与5号的情况下,不管4号提出怎样的分配方案,5号一定都会投反对票来让4号去喂鲨鱼,以独吞全部的金币。
哪怕4号为了保命而讨好5号,提出(0,100)这样的方案让5号独占金币,但是5号还有可能觉得留着4号有危险,而投票反对以让其喂鲨鱼。
因此理性的4号是不应该冒这样的风险,把存活的希望寄托在5号的随机选择上的,他惟有支持3号才能绝对保证自身的性命。
再来看3号,他经过上述的逻辑推理之后,就会提出(100,0,0)这样的分配方案,因为他知道4号哪怕一无所获,也还是会无条件的支持他而投赞成票的,那么再加上自己的1票就可以使他稳获这100金币了。
但是,2号也经过推理得知了3号的分配方案,那么他就会提出(98,0,1,1)的方案。
因为这个方案相对于3号的分配方案,4号和5号至少可以获得1枚金币,理性的4号和5号自然会觉得此方案对他们来说更有利而支持2号,不希望2号出局而由3号来进行分配。
这样,2号就可以屁颠屁颠的拿走98枚金币了。
不幸的是,1号海盗更不是省油的灯,经过一番推理之后也洞悉了2号的分配方案。
他将采取的策略是放弃2号,而给3号1枚金币,同时给4号或5号2枚金币,即提出(97,0,1,2,0)或(97,0,1,0,2)的分配方案。
由于1号的分配方案对于3号与4号或5号来说,相比2号的方案可以获得更多的利益,那么他们将会投票支持1号,再加上1号自身的1票,97枚金币就可轻松落入1号的腰包了。
国际智力测试题及答案
国际智力测试题及答案一、逻辑推理题1. 题目:有5个海盗,他们抢到了100颗宝石,决定按照以下规则分配:最年长的海盗提出分配方案,如果超过半数的海盗同意,则按照该方案分配;如果没有超过半数同意,则最年长的海盗被扔进海里,然后由下一个年长的海盗提出分配方案。
假设每个海盗都是理性且贪婪的,他们只关心自己能拿到多少宝石,那么最年长的海盗应该提出怎样的分配方案?答案:最年长的海盗应该提出自己得到99颗宝石,剩下的1颗给最年轻的海盗,其他两个海盗得不到任何宝石。
这样,最年长的海盗和最年轻的海盗会同意这个方案,因为他们都能得到宝石,而其他两个海盗因为得不到宝石,所以不会反对。
2. 题目:一个农场主有17只羊,他想要将它们分成三份,第一份是总数的1/2,第二份是总数的1/3,第三份是总数的1/9,且每份羊的数量必须是整数。
请问他应该如何分配这些羊?答案:农场主可以将17只羊分成9只、6只和2只三份。
9只羊是总数的1/2,6只羊是总数的1/3,2只羊是总数的1/9,且每份羊的数量都是整数。
二、数学计算题1. 题目:一个数字去掉最后一位后,剩下的数字是原数字的1/10,如果去掉的是0,那么原数字是多少?答案:原数字是100。
因为去掉最后一位0后,剩下的数字是10,而10是100的1/10。
2. 题目:一个数字乘以3后再加上6,等于原数字乘以2后再加上6,这个数字是多少?答案:这个数字是6。
因为3x + 6 = 2x + 6,解这个方程得到x = 6。
三、图形推理题1. 题目:观察以下图形序列,找出下一个图形。
图形序列:△○□☆△○□☆△○□答案:下一个图形是☆。
因为图形序列是按照△○□☆的顺序循环出现的。
2. 题目:观察以下图形序列,找出下一个图形。
图形序列:○○○△○○○□○○○☆○○○答案:下一个图形是△。
因为图形序列是按照○○○△○○○□○○○☆○○○的顺序循环出现的。
四、语言理解题1. 题目:一个句子中,如果“如果”后面跟着的是假设条件,那么“那么”后面跟着的是什么?答案:“那么”后面跟着的是假设条件下的结果。
五个海盗分金币的故事
五个海盗分金币的故事个海盗分金币的故事,告诉了人们做事要善于思考,懂得变换思维为自己取得最大利益。
故事:五个海盗抢到了 100 个金币,每一颗都一样的大小和价值连城。
他们决定这么分:1(抽签决定自己的号码 ------ [1、2、3、4、5]2(首先,由 1 号提出分配方案,然后大家 5 人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
3(如果 1 号死后,再由 2 号提出分配方案,然后大家 4 人进行表决,当且仅当超过半数的人同意时,按照他的提案进行分配,否则将被扔入大海喂鲨鱼。
4(以次类推条件:每个海盗都是很聪明的人,都能很理智的判断得失,从而做出选择。
问题:第一个海盗提出怎样的分配方案才能够使自己免于下海以及自己获得最多的金币呢,-------------------------------------------------------------------------------此题公认的标准答案是:1 号海盗分给 3 号 1 枚金币, 4号或 5 号2 枚金币,自己则独得 97 枚金币,即分配方案为(97,0,1,2,0)或(97,0,1,0,2)。
现来看如下各人的理性分析: 首先从 5 号海盗开始,因为他是最安全的,没有被扔下大海的风险,因此他的策略也最为简单,即最好前面的人全都死光光,那么他就可以独得这100 枚金币了。
接下来看 4 号,他的生存机会完全取决于前面还有人存活着,因为如果 1 号到 3 号的海盗全都喂了鲨鱼,那么在只剩 4 号与 5 号的情况下,不管 4 号提出怎样的分配方案,号一定都会投反对票来让 4 号去喂鲨鱼, 5 以独吞全部的金币。
哪怕 4 号为了保命而讨好 5 号,提出(0,100)这样的方案让 5 号独占金币,但是 5 号还有可能觉得留着 4 号有危险,而投票反对以让其喂鲨鱼。
因此理性的 4 号是不应该冒这样的风险,把存活的希望寄托在 5 号的随机选择上的,他惟有支持 3 号才能绝对保证自身的性命。
海盗分宝石
海盗分宝石海盗分宝石|海盗分财宝 2021-12-05 02:245个海盗分100颗宝石每个人提出一种意见如果意见有半数或以上通过就算通过并实施否则把提出意见得丢海里干掉如果第一个人意见没通过就杀掉并由第二个人提出建议还剩4个人再没通过再杀还剩3人以此类推请问:第一人该如何保证自己不被杀而且使自己利益最大化解题相对简单 1,2,3,4,5 反推:1.当剩下4,5时候4无论怎么分 5都没办法反抗因为4具备50%的表决权 4 5 100 0结论:5不会让4有分配的机会只要3给他哪怕一个宝石他就会全力支持3 2.当剩下3,4,5时候3要成功分配就必须拉拢1个人支持自己首先排除4(4巴不得3去死自己就可以全占分4多少宝石他都不爽)只剩下5的话考虑到5的心思所以只给他1个宝石就OK 3 4 5 990 1结论:4不爽自己什么都没有所以他不会让3有分配的机会只要2给他哪怕一个宝石他就全力支持2 3.当剩下2,3,4,5时候2要成功分配就必须拉拢1个人支持自己首先排除3(理由同上) 剩下4,54号只需要给他1个宝石安慰奖就会支持2号所以我们选择给4号一个宝石以赢得计划成功5号需要给他2个宝石才可以确保他支持2号如果只给1个的话他会觉得支持2号和3号都可以可能选择杀2 2 3 4 5 99 0 1 0 4.当剩下1,2,3,4,5时候1要成功就必须拉拢2个人以达到3/5 超过50% 首先排除2 剩下3,4,53号在2号的计划中没得到一点好处所以我们给他1个宝石他就会听话 4号在2号的计划中得到1个宝石我们要赢得他100%的支持就必须给2个确保他不会反对5号在2号的计划中也一样不爽我们给1个宝石他也听话 1 2 3 4 5 98 0 1 0 1抽象:偶数会一直为0 除分配者作为1号以外的奇数都可以拿到1个宝石所以奇数为1(1号位置除外)设海盗=N,宝石=L,第M个人想的分配计划: N%2!=0结果是 K=L-((N-1)>>2)1 2 3 ****** N k 0 1 ****** 1 N%2=0结果是 K=L-(N>>2)1 2 3 ****** Nk 0 1 ****** 05个海盗分100颗宝石每个人提出一种意见如果意见有半数以上通过就算通过并实施否则把提出意见得丢海里干掉如果第一个人意见没通过就杀掉并由第二个人提出建议还剩4个人再没通过再杀还剩3人以此类推请问:第一人该如何保证自己不被杀而且使自己利益最大化解题: 1,2,3,4,5 反推:1.当剩下4,5时候4无论怎么分 5都可以否定让4去死无法超过50% 所以4只能自保避免自己死去4 5 0 100结论:4不会让前3个人都死掉也就是说他不会让自己有分配财宝的机会只要前3个人能给他好处他就同意啦 2.当剩下3,4,5时候3拉拢一个人就可以超过50%会考虑2个情况: A拉拢5 3 4 5 99 0 1这里会出现问题 5号不会同意因为他觉得他弄死3号的话自己就分得所有财宝何必只拿一个宝石 B拉拢4 3 4 599 1 0分给4号一个宝石让他吃点甜头总比3号死掉 4号自己要么也死要么什么都得不到要强很多结论:3号可以获得99个宝石如果它给4号甜头的话 5号呢绝对会反对3号的计划3.当剩下2,3,4,5时候2号必须拉拢2个人才可以超过50% 所有他会考虑4和5的利益.排除3是因为3号很希望2号死掉他就可以施展自己的计划2号成功拉拢4号的条件是给他2个宝石以超过3号只给他1个宝石的承诺然后对于5号来说 2号丢一个宝石给他做安慰奖因为如果2号死掉 3号根本不考虑5号的利益2 3 4 5 97 0 2 1结论:2号获得97个宝石,4,5号因为获得相对3号更多的利益所以会选择同意 4.当剩下1,2,3,4,5时候1号必须拉拢2个人以超过50% 所以他会首先排除2号,剩下3,4,5中选择2个做利益伙伴成功拉拢3号的条件是给他1个宝石(2号的计划中一个都不给他)成功拉拢4号的条件是给他3个宝石(2号承诺给他 2个宝石同级下4号无所谓可能会选择杀死1号为确保故必须给3)成功拉拢5号的条件是给他2个宝石(2号承诺给他 1个宝石同级下4号无所谓会选择杀死1号)综合来看只需要选择 3,5就可以了 1 2 3 4 5 97 0 1 0 2以上为逻辑推理抽象数学模型还得有番研究 over感谢您的阅读,祝您生活愉快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5个海盗得到一批宝石共100颗,每颗都一样,价值连城,打算分配。
分配规则:
抽签决定先后顺序,抽到第一的海盗先提出自己的分配方案,若通过,即执行,否则该海盗即被扔进大海,接着下面的第二、三、四、五个海盗来分这100颗宝石,由第二个海盗先提出自己的分配方案,若不通过同样即被扔入大海,依次……直到有人提出的方案通过为止,分配成功。
通过标准:即要有超过总人数一半的人同意,才能通过。
(5个人必须有3个,4个人必须有3个,3个人必须有2个……) 条件:每个海盗都是很聪明的,能够权衡自己的性命和利益。
问题:最后的分配结果是什么?
1、有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?
2、一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。
请问三个女儿的年龄分别是多少?为什么?
3、有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29。
可是当初他们三个人一共付出$30那么还有$1呢?
4、有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着。
两位盲人不小心将八对袜了混在一起。
他们每人怎样才能取回黑袜和白袜各两对呢?
5、有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。
如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?
6、你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?
7、你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?
8、你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛,抓取两个同种颜色的果冻。
抓取多少个就可以确定你肯定有两个同一颜色的果冻?
9、想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?
11、一群人开舞会,每人头上都戴着一顶帽子。
帽子只有黑白两种,黑的至少有一顶。
每个人都能看到其它人帽子的颜色,却看不到自己的。
主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。
第一次关灯,没有声音。
于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。
一直到第三次关灯,才有劈劈啪啪的打耳光的声音响起。
问有多少人带着黑帽子?
1、有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?
-----------------一只两头点燃,另一只一头点燃,当第一只烧完后,第二只丙再头点燃,就可以得到15`
2、一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。
请问三个女儿的年龄分别是多少?为什么?
--------------------2. 229,因为只有36 = 6*6*1 36 = 9 * 2 * 2
3、有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞了不$2,总共是$29。
可是当初他们三个人一共付出$30那么还有$1呢?------------------------怎么会是每人第天九元呢,每人每天(25/3) + 1,那一元差在25 - 24 = 1
4、有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着。
两位盲人不小心将八对袜了混在一起。
他们每人怎样才能取回黑袜和白袜各两对呢?
--------------------每人取每双中的一只就可以了
5、有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。
如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?
--------------------------飞了正好两地间的距离,(D / 15+20) * 30 = 6/7D
6、你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?----------------------1/2
7、你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?--------------一个中取一个编号,然后称一下就知道
8、你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛,抓取两个同种颜色的果冻。
抓取多少个就可以确定你肯定有两个同一颜色的果冻?-------------------------4个
9、想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?
--------------------因为照镜子时,镜子是与你垂直平行的,但在水平方向刚好转了180度。
11、一群人开舞会,每人头上都戴着一顶帽子。
帽子只有黑白两种,黑的至少有一顶。
每个人都能看到其它人帽子的颜色,却看不到自己的。
主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。
第一次关灯,没有声音。
于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。
一直到第三次关灯,才有劈劈啪啪的打耳光的声音响起。
问有多少人带着黑帽子?
--------------应该是三个人:
1,若是两个人,设A、B是黑帽子,第二次关灯就会有人打耳光。
原因是A看到B第一次没打耳光,就知道B也一定看到了有带黑帽子的人,可A除了知道B带黑帽子外,其他人都是白帽子,就可推出他自己是带黑帽子的人!同理B也是这么想的,这样第二次熄灯会有两个耳光的声音。
2,如果是三个人,A,B,C. A第一次没打耳光,因为他看到B,C都是带黑帽子的;而且假设自己带的是白帽子,这样只有BC戴的是黑帽子;按照只有两个人带黑帽子的推论,第二次应该有人打耳光;可第二次却没有。
于是他知道B和C一定看到了除BC 之外的其他人带了黑帽子,于是他知道BC看到的那个人一定是他,所以第三次有三个人打了自己一个耳光!
1. 什么情况一山可容二虎?
2. 纸上写着某一份命令。
但是,看懂此文字的人,却绝对不能宣读命令。
那么,纸上写的是什么呢?
3. 地上有100元钱和一块肉骨头,可是阿明却拣了肉骨头,请问为什么?
4. 一只瞎了左眼的山羊,在它左边有一块牛肉,在它右边有一块猪肉,请问它吃哪一块?
5. 为什么上帝在星期六的时候创造了夏娃?
6. 什么东西请人吃没人吃,自己吃又咽不下去?
7. 有一种东西,上升的时候会下降,下降的时候会上升,请问,是什么呢?
8. 小郭很爱唱歌,就连用牙刷、牙膏刷牙时,他也与众不同,竟还在放声大唱,结果还可以把牙刷的很干净,你说为什么?
9. 人死了为什么都闭眼睛?
10. 任何人必须去的地方是哪里?
11. 医治晕车的最好办法是什么
12. 世界拳击冠军却很容易被什么击倒?
13. 阿研的口袋里共有10个硬币,漏掉了10个硬币,口袋里还有什么?
14. 冬天里,不通过加热,如何才能把冰立刻变成水?
15. 男人在一起喝酒,为什么非划拳不可?
16. 铁锤锤鸡蛋为什么锤不破?
17. 黑鸡厉害还是白鸡厉害?为什么?
18. 爸爸买了一支笔,却不能写字,为什么?
19. 黑头发有什么好处?
20. 四年级三班是怎样上珠算的?。