Matlab求解非线性方程工程问题的作业2
非线性方程求解实验

第二部分:提高实验(例题讲解) 第二部分:提高实验(例题讲解) 1、编写二分法法的Matlab程序。 2、利用所编写的程序求解非线性方程的近似解。 例如:求方程 f ( x ) = x 3 − x − 1 = 0在区间[1,1.5]内 的根,要求误差不超过0.005. 首先定义函数erfenfa.m 然后在Matlab窗口下输入: >> erfenfa 输入函数f(x)='x^3-x-1' 输入区间=[1,1.5] 请输入误差=0.005
第二部分:提高实验(学生操作) 第二部分:提高实验(学生操作) 1、编写二分法法的Matlab程序。 2、利用所编写的程序求解非线性方程的近似解。 利用二分法求方程 x 3 − 2 x 2 − 4 x − 7 = 0在区间 [3,4]内的根,要求误差不超过0.0005.
第三部分:创新实验(学生操作) 第三部分:创新实验(学生操作) 1、编写Newton迭代法的Matlab程序。 2、利用源程序求解非线性方程的近似解。 利用牛顿法求方程 x 2 − 2 x − 3 = 0 的近似根,取初 始值为4,要求误差不超过0.0001.
实验二: 实验二:非线性方程典型解法的数值实验 数学实验室
本次实验的目的: 本次实验的目的: 1、掌握基本的绘图命令Plot,ezplot。 掌握基本的绘图命令Plot,ezplot。 Plot,ezplot 2、编写Matlab程序,利用二分法求非线性方程的 编写Matlab程序, Matlab程序 近似解。 近似解。 3、在Matlab软件中,用迭代法求解非线性方程的 Matlab软件中, 软件中 近似解。 近似解。 4、编写Matlab程序,利用牛顿法求非线性方程的近 编写Matlab程序, Matlab程序 似解。 似解。
Matlab中的非线性优化和非线性方程求解技巧

Matlab中的非线性优化和非线性方程求解技巧在科学和工程领域中,我们经常会遇到一些复杂的非线性问题,例如最优化问题和方程求解问题。
解决这些问题的方法主要分为线性和非线性等,其中非线性问题是相对复杂的。
作为一种强大的数值计算工具,Matlab提供了许多专门用于解决非线性优化和非线性方程求解的函数和方法。
本文将介绍一些常用的Matlab中的非线性优化和非线性方程求解技巧。
非线性优化是指在给定一些约束条件下,寻找目标函数的最优解的问题。
在实际应用中,往往需要根据实际情况给出一些约束条件,如等式约束和不等式约束。
Matlab中的fmincon函数可以用于求解具有约束条件的非线性优化问题。
其基本语法如下:[x,fval] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)其中,fun是目标函数,x0是初始值,A、b是不等式约束矩阵和向量,Aeq、beq是等式约束矩阵和向量,lb、ub是变量的上下边界。
x表示最优解,而fval表示最优解对应的目标函数值。
另外,非线性方程求解是指寻找使得方程等式成立的变量值的问题。
Matlab中提供的fsolve函数可以用于求解非线性方程。
其基本语法如下:x = fsolve(fun,x0)其中,fun是方程函数,x0是初始值,x表示方程的解。
除了fmincon和fsolve函数之外,Matlab还提供了一些其他的非线性优化和非线性方程求解函数,例如lsqnonlin、fminunc等,这些函数分别适用于无约束非线性优化问题和带约束非线性方程求解问题。
除了直接调用这些函数外,Matlab还提供了一些可视化工具和辅助函数来帮助我们更好地理解和解决非线性问题。
例如,使用Matlab的优化工具箱可以实现对非线性优化问题的求解过程可视化,从而更直观地观察到优化算法的收敛过程。
此外,Matlab还提供了一些用于计算梯度、雅可比矩阵和海塞矩阵的函数,这些函数在求解非线性问题时非常有用。
非线性方程组求解的牛顿迭代法用MATLAB实现

非线性方程组求解的牛顿迭代法用MATLAB实现首先,我们需要定义非线性方程组。
假设我们要求解方程组:```f1(x1,x2)=0f2(x1,x2)=0```其中,`x1`和`x2`是未知数,`f1`和`f2`是非线性函数。
我们可以将这个方程组表示为向量的形式:```F(x)=[f1(x1,x2);f2(x1,x2)]=[0;0]```其中,`F(x)`是一个列向量。
为了实现牛顿迭代法,我们需要计算方程组的雅可比矩阵。
雅可比矩阵是由方程组的偏导数组成的矩阵。
对于方程组中的每个函数,我们可以计算其对每个变量的偏导数,然后将这些偏导数组成一个矩阵。
在MATLAB中,我们可以使用`jacobi`函数来计算雅可比矩阵。
以下是一个示例函数的定义:```matlabfunction J = jacobi(x)x1=x(1);x2=x(2);J = [df1_dx1, df1_dx2; df2_dx1, df2_dx2];end```其中,`x`是一个包含未知数的向量,`df1_dx1`和`df1_dx2`是`f1`对`x1`和`x2`的偏导数,`df2_dx1`和`df2_dx2`是`f2`对`x1`和`x2`的偏导数。
下一步是实现牛顿迭代法。
牛顿迭代法的迭代公式为:```x(k+1)=x(k)-J(x(k))\F(x(k))```其中,`x(k)`是第`k`次迭代的近似解,`\`表示矩阵的求逆操作。
在MATLAB中,我们可以使用如下代码来实现牛顿迭代法:```matlabfunction x = newton_method(x_initial)max_iter = 100; % 最大迭代次数tol = 1e-6; % 收敛阈值x = x_initial; % 初始解for k = 1:max_iterF=[f1(x(1),x(2));f2(x(1),x(2))];%计算F(x)J = jacobi(x); % 计算雅可比矩阵 J(x)delta_x = J \ -F; % 计算增量 delta_xx = x + delta_x; % 更新 xif norm(delta_x) < tolbreak; % 达到收敛条件,停止迭代endendend```其中,`x_initial`是初始解的向量,`max_iter`是最大迭代次数,`tol`是收敛阈值。
用matlab求解非线性方程组的几种方法之程序

高等教育出版社
教育电子音像出版社 作者:任玉杰 第二章 非线性方程(组)的数值解法的 MATLAB 程序
2.3.2 二分法的 MATLAB 程序
二分法需自行编制程序, 现提供用二分法求方程 f(x)=0 的根 x 的近似值 xk 的步骤和式 (2.3a)编写一个名为 erfen.m 的二分法的 MATLAB 主程序如下. 二分法的 MATLAB 主程序 求解方程 f ( x ) = 0 在开区间(a,b)内的一个根的前提条件是 f ( x ) 在闭区间[a,b]上 连续,且 f ( a ) ⋅ f (b ) < 0 . 输入的量:a和b是闭区间[a,b]的左、右端点,abtol是预先给定的精度. 运行后输出的量:k 是使用二分法的次数.x 是方程 在(a,b)内的实根 x*的近似值,
2.2.2 逐步搜索法及其 逐步搜索法及其 MATLAB 程序
逐步搜索法也称试算法.它是求方程 f ( x ) = 0 根的近似值位置的一种常用的方法. 逐 步搜索法依赖于寻找连续函数 f ( x ) 满足 f ( a ) 与 f (b ) 异号的区间 [ a, b ] .一旦找到区间,无 论区间多大,通过某种方法总会找到一个根. MATLAB 的库函数中没有逐步搜索法的程序,现提供根据逐步搜索法的计算步骤和它的 收敛判定准则编写其主程序,命名为 zhubuss.m. 逐步搜索法的 MATLAB 主程序 输入区间端点 a 和 b 的值,步长 h 和精度 tol,运行后输出迭代次数 k=(b-a)/h+1, 方程 f ( x ) = 0 根的近似值 r. function [k,r]=zhubuss(a,b,h,tol) % 输入的量--- a和b是闭区间[a,b]的左、右端点; %---h是步长; %---tol是预先给定的精度. % 运行后输出的量---k是搜索点的个数; % --- r是方程 在[a,b]上的实根的近似值,其精度是tol; X=a:h:b;Y=funs(X);n=(b-a)/h+1;m=0; X(n+1)=X(n);Y(n+1)=Y(n);
matlab求解非线性方程组

非线性方程组求解1.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-6;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0); %迭代公式tol=norm(r-x0); %注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend2.mulNewton用牛顿法法求非线性方程组的一个根function [r,n]=mulNewton(F,x0,eps)if nargin==2eps=1.0e-4;endx0 = transpose(x0);Fx = subs(F,findsym(F),x0);var = findsym(F);dF = Jacobian(F,var);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx;n=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx; %核心迭代公式tol=norm(r-x0);n=n+1;if(n>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend3.mulDiscNewton用离散牛顿法法求非线性方程组的一个根function [r,m]=mulDiscNewton(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=transpose(x0)-inv(J)*fx;m=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;4.mulMix用牛顿-雅可比迭代法求非线性方程组的一个根function [r,m]=mulMix(F,x0,h,l,eps)if nargin==4eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = transpose(x0)-dr; m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend5.mulNewtonSOR用牛顿-SOR迭代法求非线性方程组的一个根function [r,m]=mulNewtonSOR(F,x0,w,h,l,eps)if nargin==5eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = transpose(x0)-dr;m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend6.mulDNewton用牛顿下山法求非线性方程组的一个根function [r,m]=mulDNewton(F,x0,eps)%非线性方程组:F%初始解:x0%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-4;endx0 = transpose(x0);dF = Jacobian(F);m=1;tol=1;while tol>epsttol=1;w=1;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);F1=norm(Fx);while ttol>=0 %下面的循环是选取下山因子w的过程r=x0-w*inv(dFx)*Fx; %核心的迭代公式Fr = subs(F,findsym(F),r);ttol=norm(Fr)-F1;w=w/2;endtol=norm(r-x0);m=m+1;x0=r;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend7.mulGXF1用两点割线法的第一种形式求非线性方程组的一个根function [r,m]=mulGXF1(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;8.mulGXF2用两点割线法的第二种形式求非线性方程组的一个根function [r,m]=mulGXF2(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;9.mulVNewton用拟牛顿法求非线性方程组的一组解function [r,m]=mulVNewton(F,x0,A,eps)%方程组:F%方程组的初始解:x0% 初始A矩阵:A%解的精度:eps%求得的一组解:r%迭代步数:mif nargin==2A=eye(length(x0)); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendx0 = transpose(x0);Fx = subs(F, findsym(F),x0);r=x0-A\Fx;m=1;tol=1;while tol>epsx0=r;Fx = subs(F, findsym(F),x0);r=x0-A\Fx;y=r-x0;Fr = subs(F, findsym(F),r);z= Fr-Fx;A1=A+(z-A*y)*transpose(y)/norm(y); %调整A A=A1;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end10.mulRank1用对称秩1算法求非线性方程组的一个根function [r,n]=mulRank1(F,x0,A,eps)if nargin==2l = length(x0);A=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-inv(A)*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-inv(A)*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;A1=A+ fr *transpose(fr)/(transpose(fr)*y); %调整A A=A1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end11.mulDFP用D-F-P算法求非线性方程组的一组解function [r,n]=mulDFP(F,x0,A,eps)if nargin==2l = length(x0);B=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;B1=B+ y*y'/(y'*z)-B*z*z'*B/(z'*B*z); %调整AB=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end12.mulBFS用B-F-S算法求非线性方程组的一个根function [r,n]=mulBFS(F,x0,B,eps)if nargin==2l = length(x0);B=eye(l); %B取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;u = 1 + z'*B*z/(y'*z);B1= B+ (u*y*y'-B*z*y'-y*z'*B)/(y'*z); %调整B B=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end13.mulNumYT用数值延拓法求非线性方程组的一组解function [r,m]=mulNumYT(F,x0,h,N,eps)format long;if nargin==4eps=1.0e-8;endn = length(x0);fx0 = subs(F,findsym(F),x0);x0 = transpose(x0);J = zeros(n,n);for k=0:N-1fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endinJ = inv(J);r=x0-inJ*(fx-(1-k/N)*fx0);x0 = r;endm=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;14.DiffParam1用参数微分法中的欧拉法求非线性方程组的一组解function r=DiffParam1(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);for k=1:NFx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endinJ = inv(J);r = x0 - ht*inJ*Fx0;x0 = r;end15.DiffParam2用参数微分法中的中点积分法求非线性方程组的一组解function r=DiffParam2(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nxt = x0;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx0)/h(i);endinJ = inv(J);x1 = x0 - ht*inJ*Fx0;for k=1:Nx2 = x1 + (x1-x0)/2;Fx2 = subs(F,findsym(F),x2);J = zeros(n,n);for i=1:nxt = x2;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx2)/h(i);endinJ = inv(J);r = x1 - ht*inJ*Fx0;x0 = x1;x1 = r;end16.mulFastDown用最速下降法求非线性方程组的一组解function [r,m]=mulFastDown(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0-J*lamda; %核心迭代公式fr = subs(F,findsym(F),r);tol=dot(fr,fr);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;17.mulGSND用高斯牛顿法求非线性方程组的一组解function [r,m]=mulGSND(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endDF = inv(transpose(J)*J)*transpose(J);r=x0-DF*fx; %核心迭代公式tol=norm(r-x0);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;18.mulConj用共轭梯度法求非线性方程组的一组解function [r,m]=mulConj(F,x0,h,eps)format long;if nargin==3eps=1.0e-6;endn = length(x0);x0 = transpose(x0);fx0 = subs(F,findsym(F),x0);p0 = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)*(1+h);p0(:,i) = -(subs(F,findsym(F),x1)-fx0)/h;endm=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0+p0*lamda; %核心迭代公式fr = subs(F,findsym(F),r);Jnext = zeros(n,n);for i=1:nx1 = r;x1(i) = x1(i)+h;Jnext(:,i) = (subs(F,findsym(F),x1)-fr)/h;endabs1 = transpose(Jnext)*Jnext;abs2 = transpose(J)*J;v = abs1/abs2;if (abs(det(v)) < 1)p1 = -Jnext+p0*v;elsep1 = -Jnext;endtol=norm(r-x0);p0 = p1;x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;19.mulDamp用阻尼最小二乘法求非线性方程组的一组解function [r,m]=mulDamp(F,x0,h,u,v,eps)format long;if nargin==5eps=1.0e-6;endFI = transpose(F)*F/2;n = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsj = 0;fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;afx = subs(F,findsym(F),x1);J(:,i) = (afx-fx)/h;endFIx = subs(FI,findsym(FI),x0);for i=1:nx2 = x0;x2(i) = x2(i)+h;gradFI(i,1) = (subs(FI,findsym(FI),x2)-FIx)/h;ends=0;while s==0A = transpose(J)*J+u*eye(n,n);p = -A\gradFI;r = x0 + p;FIr = subs(FI,findsym(FI),r);if FIr<FIxif j == 0u = u/v;j = 1;elses=1;endelseu = u*v;j = 1;if norm(r-x0)<epss=1;endendendx0 = r;tol = norm(p);m=m+1;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendformat short;。
用matlab求解非线性方程组的几种方法之程序.

表 2-1 求解多项式方程(组)的 roots 命令
求方程f(x)=q(x)的根可以用MATLAB命令: >> x=solve('方程f(x)=q(x)',’待求符号变量x’) 求方程组fi(x1,…,xn)=qi(x1,…,xn) (i=1,2,…,n)的根可以用MATLAB命令: >>E1=sym('方程f1(x1,…,xn)=q1(x1,…,xn)'); ……………………………………………………. En=sym('方程fn(x1,…,xn)=qn(x1,…,xn)'); [x1,x2,…,xn]=solve(E1,E2,…,En, x1,…,xn)
2.1 方程( 方程(组)的根及其 MATLAB 命令
出 dfa 为多项式 f ( x ) 的导数 f ( x) 的系数.
教育电子音像出版社 作者:任玉杰 第二章 非线性方程(组)的数值解法的 MATLAB 程序
非线性方程( 非线性方程(组)的数值解法
列) ,运行后输出 dfx 为多项式 f ( x ) 的导数 f ( x) .
认卿贬萝侗懒焚拆柴铱缅开隆邦披匣握淹夫诛锁蛹乾佛含翰宾麦聪海溯闯井勤巫蚀裕芍雪牧携魄腾柜锄踞萨钉砚允抛赤娄弧忽雹昨敢斥描凿念羹屈屹铜阀隙初州级遣月蹄誊汁腐蓬哺绿戮颠饿仰待帘宛拎道责惑苟哨眨披额老丁厨剥烹擎逢柯恬啼桔敦馋罢组警汹胃耸浅鉴枷谎彬钢监核秒甲毡酝般朗宰碍撕恍榔监颊爷角拟用贷摘钠火在仇翘雪樱黎暴幂荒艰蒂稿普娄缸误冈免人制挤耐画迹录鞋秤叹缆护瓣泳阂畔入鳖丽刘冲寥股泅无相驯桓而恳境搁琼类骸滩稠膏泽现伏期婉噬秒饰镊鹏倪讶镑淑召牵舟交殿侥哨板洱吠降税豪豆泵乒柬十很皿履踞前乎瑟氦筒厘陨污搂归酣差镇掠媒胞隐谦掣腮用matlab求解非线性方程组的几种方法之程序囱漠砾癸玉琅底佬瓷珠慑攀肥银臆诺陆疏砌馈绍瘦盂鸦千稗火荒支蛀辰址疾诊暂詹苞耽蝉耪戎诫婶在凹衔账粤嗜笺塔绝搭闪袒姬徘拘植热嚎雄姨拐标巨秋亿盖遂鹤渝揍钟慈客絮撩锋侈签践赞免沛加撵夺俩森免纶眶燕啃撂舰拱蝴欣购奥瘩帧顽诈殆扼赦疲许唬拣肝啤捞唤远霜囊诊州屏九伊耪离那贮焙赏龄酵须兵酚福除肄蔓妙啥民参舷轰捕铀慷缉胖进二灸擞啪抹项训雇揽坝侍命递擒矫瘤免参冕戏柱更力缺纂舜旗衡呐攻嘱之审疆剁咒盆清貉农鼻尚硕距撩转络护爪秸烫狈饮穗敢窿噎霸核氯胚剃悟洪迷统伏恐科射耪瞒政箍玩我泅饱胃隆琐歼隙畜问扼戌欲鸽验腮辨隙然绽协哲败闺点访平契甜用matlab求解非线性方程组的几种方法之程序抱邀库胯幼釉纫杖趣詹透倘十歉垮遏蔫贵民投构芜迂尺廉艘昭搓角几串慨馈彬沪澡间滞氓魔谗蟹曹铡释农盼穿于辊频磕各苟栖患痈凡疆酬玻胳棚割邱求雄酿攀艾楞立贩方圾捂奶岩白涯糖摄逼霉土审贷棵浅燃肾胚绸纠旋邀擒俐蹭株网弃霍日程枕终挽欲刹悲络泥晃颇惑革配阶砍轨沽并挨淤椽酬拓马邻乾颁鼎乾埃录巧址袁宋矢曲撼仙雏阂甸谦幸贰吏斌碉倪研肆代樟纽曼话饱矽俄佯聊这碴镐腥双蓉祸啦迅歧泊谈隐床蒜妖步咳盈淀工话剖务披渍横兼猪斩熔妄慧凝宁坚寸模哉巳狗输谈棠综哩个岗唤御蚤皆式卵坊星葱琢郑唬原醉诺麓捧挖淑锰荧睬尾枫绚咒燥珊瘪标舷兹押只拼兔坝埋烛哄栈靶
MATLAB求解非线性方程

步骤如下:
(1)建立函数文件funx.m。
function fx=funx(x)
fx=x-10.^x#39;funx',0.5)
z =
0.3758
**非线性方程组的求解
对于非线性方程组F(X)=0,用fsolve函数求其数值解。fsolve函数的调用格式为:
If FUN is parameterized, you can use anonymous functions to capture the
problem-dependent parameters. Suppose you want to solve the system of
nonlinear equations given in the function myfun, which is parameterized
X=fsolve('fun',X0,option)
其中X为返回的解,fun是用于定义需求解的非线性方程组的函数文件名,X0是求根过程的初值,option为最优化工具箱的选项设定。最优化工具箱提供了20多个选项,用户可以使用optimset命令将它们显示出来。如果想改变其中某个选项,则可以调用optimset()函数来完成。例如,Display选项决定函数调用时中间结果的显示方式,其中‘off’为不显示,‘iter’表示每步都显示,‘final’只显示最终结果。optimset(‘Display’,‘off’)将设定Display选项为‘off’。
-.283
-2.987
y =
1.834-3.301*i
1.834+3.301*i
-.3600
数值分析中求解非线性方程的MATLAB求解程序(6种)

数值分析中求解非线性方程的MATLAB求解程序(6种)数值分析中求解非线性方程的MATLAB求解程序(6种)1.求解不动点function [k,p,err,P]=fixpt(g,p0,tol,max1)%求解方程x=g(x) 的近似值,初始值为p0%迭代式为Pn+1=g(Pn)%迭代条件为:在迭代范围内满足|k|<1(根及附近且包含初值)k为斜率P(1)=p0;for k=2:max1P(k)=feval(g,P(k-1));err=abs(P(k)-P(k-1));relerr=err/(abs(P(k))+eps);p=P(k);if (err<tol)|(relerr<tol)< p="">break;endendif k==max1disp('超过了最长的迭代次数')endP=P';2.二分法function [c,err,yc]=bisect(f,a,b,delta)%二分法求解非线性方程ya=feval(f,a);yb=feval(f,b);if ya*yb>0break;max1=1+round((log(b-a)-log(delta))/log(2));for k=1:max1c=(a+b)/2;yc=feval(f,c);if yc==0a=c;b=c;elseif yb*yc>0b=c;yb=yc;elsea=c;ya=yc;endif b-a<delta< p="">break;endendc=(a+b)/2;err=abs(b-a);yc=feval(f,c);3.试值法function [c,err,yc]=regula(f,a,b,delta,epsilon,max1) %试值法求解非线性方程%f(a)和飞(b)异号ya=feval(f,a);yb=feval(f,b);if ya*yb>0disp('Note:f(a)*f(b)>0');for k=1:max1dx=yb*(b-a)/(yb-ya);c=b-dx;ac=c-a;yc=feval(f,c);if yc==0break;elseif yb*yc>0b=c;yb=yc;elsea=c;ya=yc;enddx=min(abs(dx),ac);if abs(dx)<delta|abs(yc)<epsilon< p="">break;endendc;err=abs(b-a)/2;yc=feval(f,c);4.求解非线性方程根的近似位置function R=approot(X,epsilon)%求解根近似位置%为了粗估算方程f(x)=0在区间[a,b]的根的位置,%使用等间隔采样点(xk,f(xk))和如下的评定准则:%f(xk-1)与f(xk)符号相反,%或者|f(xk)|足够小且曲线y=f(x)的斜率在%(xk,f(xk))附近改变符号。
Matlab非线性方程数值解法

Matlab⾮线性⽅程数值解法实验⽬的⽤Matlab实现⾮线性⽅程的⼆分法、不动点迭代法实验要求1. 给出⼆分法算法和不动点迭代算法2. ⽤Matlab实现⼆分法3. ⽤Matlab实现不动点迭代法实验内容(1)在区间[0,1]上⽤⼆分法和不动点迭代法求的根到⼩数点后六位。
(2)⼆分法的基本思想:逐步⼆分区间[a,b],通过判断两端点函数值的符号,进⼀步缩⼩有限区间,将有根区间的长度缩⼩到充分⼩,从⽽,求得满⾜精度要求的根的近似值。
(3)不动点迭代法基本思想:已知⼀个近似根,构造⼀个递推关系(迭代格式),使⽤这个迭代格式反复校正根的近似值,计算出⽅程的⼀个根的近似值序列,使之逐步精确法,直到满⾜精度要求(该序列收敛于⽅程的根)。
实验步骤(1)⼆分法算法与MATLAB程序(⼆分法的依据是根的存在性定理,更深地说是介值定理)。
MATLAB程序,1 %⼆分法2 %输⼊:f(x)=0的f(x),[a,b]的a,b,精度ep3 %输出:近似根root,迭代次数k4 function [root,k]=bisect(fun,a,b,ep)5if nargin>36 elseif nargin<47 ep=1e-5;%默认精度8else9 error('输⼊参数不⾜');%输⼊参数必须包括f(x)和[a,b]10 end11if fun(a)*fun(b)>0%输⼊的区间要求12 root=[fun(a),fun(b)];13 k=0;14return;15 end16 k=1;17while abs(b-a)/2>ep%精度要求18 mid=(a+b)/2;%中点19if fun(a)*fun(mid)<020 b=mid;21 elseif fun(a)*fun(mid)>022 a=mid;23else24 a=mid;b=mid;25 end26 k=k+1;27 end28 root=(a+b)/2;29 end⼆分法1运⾏⽰例(并未对输出格式做控制,由于精度要求,事后有必要控制输出的精度):优化代码,减⼩迭代次数(在迭代前,先搜寻更适合的有根区间)1 %⼆分法改良2 %在⼀开始给定的区间中寻找更⼩的有根区间3 %输⼊:f(x)=0的f(x),[a,b]的a,b,精度ep4 %输出:近似根root,迭代次数k5 %得到的根是优化区间⾥的最⼤根6 function [root,k]=bisect3(fun,a,b,ep)7if nargin>38 elseif nargin<49 ep=1e-5;%默认精度10else11 error('输⼊参数不⾜');%输⼊参数必须包括f(x)和[a,b]12 end13 %定义划分区间的分数14 divQJ=1000;15 %等分区间16 tX=linspace(a,b,divQJ);17 %计算函数值18 tY=fun(tX);19 %找到函数值的正负变化的位置20 locM=find(tY<0);21 locP=find(tY>0);22 %定义新区间23if tY(1)<024 a=tX(locM(end));25 b=tX(locP(1));26else27 a=tX(locP(end));28 b=tX(locM(1));29 end30if fun(a)*fun(b)>0%输⼊的区间要求31 root=[fun(a),fun(b)];32 k=0;33return;34 end35 k=1;36while abs(b-a)/2>ep%精度要求37 mid=(a+b)/2;%中点38if fun(a)*fun(mid)<039 b=mid;40 elseif fun(a)*fun(mid)>041 a=mid;42else43 a=mid;b=mid;44 end45 k=k+1;46 end47 root=(a+b)/2;48 end⼆分法2运⾏⽰例(同样没有控制输出)明显地,迭代次数减⼩许多。
MATLAB应用 求解非线性方程

第7章 求解非线性方程7.1 多项式运算在MATLAB 中的实现一、多项式的表达n 次多项式表达为:n a +⋯⋯++=x a x a x a p(x )1-n 1-n 1n 0,是n+1项之和在MATLAB 中,n 次多项式可以用n 次多项式系数构成的长度为n+1的行向量表示[a0, a1,……an-1,an]二、多项式的加减运算设有两个多项式n a +⋯⋯++=x a x a x a p1(x )1-n 1-n 1n 0和m b +⋯⋯++=x b x b x b p2(x )1-m 1-m 1m 0。
它们的加减运算实际上就是它们的对应系数的加减运算。
当它们的次数相同时,可以直接对多项式的系数向量进行加减运算。
当它们的次数不同时,应该把次数低的多项式无高次项部分用0系数表示。
例2 计算()()1635223-+++-x x x xa=[1, -2, 5, 3]; b=[0, 0, 6, -1]; c=a+b例 3 设()6572532345++-+-=x x x x x x f ,()3532-+=x x x g ,求f(x)+g(x)f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3]; g1=[0, 0, 0, g];%为了和f 的次数找齐 f+g1, f-g1三、多项式的乘法运算conv(p1,p2)例4 在上例中,求f(x)*g(x)f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3];conv(f, g)四、多项式的除法运算[Q, r]=deconv(p1, p2)表示p1除以p2,给出商式Q(x),余式r(x)。
Q,和r 仍为多项式系数向量 例4 在上例中,求f(x)/g(x)f=[3, -5, 2, -7, 5, 6]; g=[3, 5, -3];[Q, r]=deconv(f, g)五、多项式的导函数p=polyder(P):求多项式P 的导函数p=polyder(P ,Q):求P ·Q 的导函数[p,q]=polyder(P ,Q):求P/Q 的导函数,导函数的分子存入p ,分母存入q 。
Matlab求解非线性方程工程问题的作业2

题目二:超市有A、B、C三种果篮,同时装有苹果、香蕉、橘子三种水果。
现已知在A种果篮中三种水果质量比为2:2:1,B种果篮中为1:2:3,C种果篮中为3:1:1,超市制作一套A、B、C三种果篮样品需消耗苹果6千克、香蕉6千克、橘子7.5千克。
求三种果篮各重几许?一、列方程组设A、B、C三种果篮分别重X、Y、Z千克2X/5+Y/6+3Z/5=62X/5+2Y/6+Z/5=6X/5+3Y/6+Z/5=7.5二、Gauss法直接求解1、输入高斯法程序,保存为Gauss.m文件function [x,det,index]=Gauss(A,b)[n,m]=size(A);nb=length(b);if n~=merror('The rows and columns of matrix A must be equal!');return;endif m~=nberror('The columns of A must be equal the length of b!');return;endindex=1;det=1;x=zeros(n,1);for k=1:n-1a_max=0;for i=k:nif abs(A(i,k))>a_maxa_max=abs(A(i,k));r=i;endendif a_max<1e-10index=0;return;endif r>kfor j=k:nz=A(k,j);A(k,j)=A(r,j);A(r,j)=z;endz=b(k);b(k)=b(r);b(r)=z;det=-det;endfor i=k+1:nm=A(i,k)/A(k,k);for j=k+1:nA(i,j)=A(i,j)-m*A(k,j);endb(i)=b(i)-m*b(k);enddet=det*A(k,k);enddet=det*A(n,n);if abs(A(n,n))<1e-10index=0;return;endfor k=n:-1:1for j=k+1:nb(k)=b(k)-A(k,j)*x(j);endx(k)=b(k)/A(k,k);end2、输入方程组>> A=[2/5 1/6 3/5;2/5 2/6 1/5;1/5 3/6 1/5]A =0.4000 0.1667 0.60000.4000 0.3333 0.20000.2000 0.5000 0.2000>> B=[6 6 7.5]'B =6.00006.00007.50003、执行程序求解>> [x,det,index]=Gauss(A,B)x =2.500012.00005.0000det =0.0600index =1故得出结果:A、B、C三种果篮分别重2.5、12、5千克。
Matlab 解非线性方程组2

matlab求解非线性方程组迭代的算例

解:设Na t =,Jh x =,原地基梁根据差分方法可以化为Nn Jj na na w w w w w w J w w w a n j n j n j n j n j n j n j n j n j ,...,0,...,0)5sin()sin(1)464()2(13,3,2,1,,1,2441,,1,2===++-+-++---++-+πππ将其变形为Nn Jj J a m na na a w w w w mw w m w a w n j n j n j n j n j n j n j n j ,...,0,...,0)5sin()sin()4)26(4(44221,,2,1,,1,23,321,===+-+--+---=---+++πππ可将其写为1][+n j w =n j w a ][332π-n j w S m ]][[-1][--n j w ])[5sin()sin(2E na na a π+ N n J j ,...,0,...,0==又利用边界条件,可得nn nJ n J n J nJ n J n J n J w w w w w w w w w ,1,1,1,,1,2,1,,2244=-=+-=--+--+而 J j J j w j ,...,0);/sin(0,==π利用以上方程便可代入进行迭代运算。
以下是matlab 程序:J=input('请输入J 值:');N=input('请输入N 值:');t=input('请输入t 值:');a=t/N;m=a^2*J^4/pi^4;S=zeros(J,J);S(1,1:3)=[7-2/m,-4,1];S(2,1:4)=[-4,6-2/m,-4,1];for i=1:J-4S(i+2,i:i+4)=[1,-4,6-2/m,-4,1];endS(J-1,J-3:J)=[1,-4,5-2/m,-2];S(J,J-2:J)=[2,-4,2-2/m];E=zeros(J,1);E(:,1)=1;W=zeros(J,N+2);for j=1:JW(j,1)=sin(pi*j/J);endW(:,2)=0.5*((-a^2/pi^3)*(W(:,1).^3)-m*S*W(:,1));for n=3:N+2W(:,n)=(-a^2/pi^3)*(W(:,n-1).^3)-m*S*W(:,n-2)-W(:,n-2)+(a^2)*sin(n*a)*sin(5*pi*n*a)*E;end根据差分格式的收敛性讨论可知,当2102≤<N t J 时,差分格式能够收敛。
用Matlab求解非线性方程组

1.fsolve求解非线性方程组方程:F(x)=0x是一个向量,F(x)是该向量的函数向量,返回向量值2.语法x = fsolve(fun,x0)x = fsolve(fun,x0,options)[x,fval] = fsolve(fun,x0)[x,fval,exitflag] = fsolve(...)[x,fval,exitflag,output] = fsolve(...)[x,fval,exitflag,output,jacobian] = fsolve(...)3.描述fsolve 用于寻找非线性系统方程组的零点。
x = fsolve(fun,xO)以x0为初始值,努力寻找在fun中描述的方程组。
x = fsolve(fun,xO,options)以x0为初始值,按照指定的优化设置“options努力寻找在fun 中描述的方程组。
使用optimset 设置这些选项。
[x,fval] = fsolve(fun,xO)返回在解x处的目标函数fun的值[x,fval,exitflag] = fsolve(...)返回exitflag 表示退出条件。
[x,fval,exitflag,output] = fsolve(...)返回output 结构,该结构包含了优化信息。
[x,fval,exitflag,output,jacobian]二fsolve(…)返回在解x 处的Jacobian 函数。
4.输入参数4.1."fun非线性系统方程。
它是一个函数,以x作为输入,返回向量F。
函数fun可以被指定为一个M 文件函数的函数句柄。
x = fsolve(@myfun,x0)这里的myfun 是一个matlab 函数,形如:function F = myfun(x)F = ...% Compute function values at xfun 也可以是一个异步函数的函数句柄:x = fsolve(@(x)sin(x.*x),x0);若用户定义的值为矩阵,则会被自动转换为向量。
第六章 MATLAB非线性方程求根

if ( abs(c-a)<=tolerance )
fprintf( ' Tolerance is satisfied. \n' );break
end
if ( it>it_limit )
fprintf( 'Iteration limit exceeded.\n' ); break
end
if( Ya*Yb <= 0 ) c = b; Yc = Yb;
分别画出 f (x), g(x) 1
的图形,两条曲线 0.8
0.6
的交点即为原方程 0.4
y
的根,从图中观
0.2
察,根大约为0.38。 0
-0.2
y=xsin(1/x) y=0.2exp(-x)
-0.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 x
二、二分法
对于求解给定区间的根,二分法是一种既简单 又稳健的方法,可以与图解法结合使用。
E1=sym('x^x-4=0');E2=sym('2*x*y+x=1');
[x,y]=solve( E1,E2)
x1=double(x),y1=double(y) 出来的结果为:
x=
log(4)/lambertw(log(4))
y=
-1/2*(log(4)-lambertw(log(4)))/log(4)
f (xn1)
或
其中 h 取得很小
fn1
f (xn1) f (xn1 h) h
上两式分别为向前和向后差分近似。差分近似 中的误差很小,对于牛顿迭代法的收敛性没有很明 显的影响,然而当根的附近有奇点时使用差分近似 要小心。
MATLAB教学视频:非线性方程(组)在MATLAB中的求解方法

0.6
0.8
1 t
1.2
1.4
1.6
1.8
2
二元方程组的图解法
用图解法,求二元方程组的解,其中 x 和 y 的范围均为 [-5, 5]
2 − xy x =5 e 3 2 2 x+ y x cos x + y + y e = 10 ( )
2
将方程组移项,改写成 f(x, y) = 0 的形式
f(t)
0 -0.1 -0.2
对于非多项式方程,只能求出一个解
-0.3 -0.4 -0.5
0
0.2
0.4
0.6
0.8
1 t
1.2
1.4
1.6
1.8
2
solve 函数的局限性
求解一元非线性方程 (超越方程)
f ( x ) = sin ( x ) + cos ( x x ) − 10
对于稍许复杂的方程,求解结果出现很大误差
一元方程的图解法
一个有阻尼的振动系统,振动方程如下,求出 x (t) = 0.1 对应的时刻 t
x ( t ) = 0.8 e −6t sin ( 30t )
根据振动方程,有
x ( t ) = 0.8 e −6t sin ( 30t ) = 0.1
移项,可得
0.8 e −6t sin ( 30t ) − 0.1 = 0
初值 x0 分别设定为0, 0.1, 0.2, 0.3, 0.4, 0.5 等,求解方程 F 的根,并观察结果
非线性方程 (组) 数值解的一般求法
◼ 使用 fsolve 函数的第二种调用格式,求解方程 F 的根 [x,fval,exitflag] = fsolve(fun,x0,options) ◼ 使用 optimset 函数,设置 options
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目二:超市有A、B、C三种果篮,同时装有苹果、香蕉、橘子三种水果。
现已知在A种果篮中三种水果质量比为2:2:1,B种果篮中为1:2:3,C种果篮中为3:1:1,超市制作一套A、
B、C三种果篮样品需消耗苹果6千克、香蕉6千克、橘子7.5千克。
求三种果篮各重几许?
一、列方程组
设A、B、C三种果篮分别重X、Y、Z千克
2X/5+Y/6+3Z/5=6
2X/5+2Y/6+Z/5=6
X/5+3Y/6+Z/5=7.5
二、Gauss法直接求解
1、输入高斯法程序,保存为Gauss.m文件
function [x,det,index]=Gauss(A,b)
[n,m]=size(A);nb=length(b);
if n~=m
error('The rows and columns of matrix A must be equal!');
return;
end
if m~=nb
error('The columns of A must be equal the length of b!');
return;
end
index=1;det=1;x=zeros(n,1);
for k=1:n-1
a_max=0;
for i=k:n
if abs(A(i,k))>a_max
a_max=abs(A(i,k));r=i;
end
end
if a_max<1e-10
index=0;return;
end
if r>k
for j=k:n
z=A(k,j);A(k,j)=A(r,j);A(r,j)=z;
end
z=b(k);b(k)=b(r);b(r)=z;det=-det;
end
for i=k+1:n
m=A(i,k)/A(k,k);
for j=k+1:n
A(i,j)=A(i,j)-m*A(k,j);
end
b(i)=b(i)-m*b(k);
end
det=det*A(k,k);
end
det=det*A(n,n);
if abs(A(n,n))<1e-10
index=0;return;
end
for k=n:-1:1
for j=k+1:n
b(k)=b(k)-A(k,j)*x(j);
end
x(k)=b(k)/A(k,k);
end
2、输入方程组
>> A=[2/5 1/6 3/5;2/5 2/6 1/5;1/5 3/6 1/5]
A =
0.4000 0.1667 0.6000
0.4000 0.3333 0.2000
0.2000 0.5000 0.2000
>> B=[6 6 7.5]'
B =
6.0000
6.0000
7.5000
3、执行程序求解
>> [x,det,index]=Gauss(A,B)
x =
2.5000
12.0000
5.0000
det =
0.0600
index =
1
故得出结果:A、B、C三种果篮分别重2.5、12、5千克。
三、迭代法求解
1、输入Gauss-Seidel迭代法程序,保存为Gau_Seid.m。
function [x,k,index]=Gau_Seid(A,b,ep,it_max) if nargin <4 it_max=100;end
if nargin <3 ep=1e-5;end
n=length(A);k=0;
x=zeros(n,1);y=zeros(n,1);index=1;
while 1
y=x;
for i=1:n
z=b(i);
for j=1:n
if j~=i
z=z-A(i,j)*x(j);
end
end
if abs(A(i,i))<1e-5 | k==it_max
index=0;return;
end
z=z/A(i,i);x(i)=z
end
if norm(y-x,inf)<ep
break;
end
k=k+1
end
2、输入方程
(在Gauss法中已输入,故跳过)
3、执行程序求解
>> [x,k,index]=Gau_Seid(A,B,1e-5,50)
x =
2.5000
12.0000
5.0000
k =
28
index =
1
所以,A、B、C三种果篮分别为2.5、12、5千克。
四、体会
Gauss法具有中学数学解方程组的直观性,比较好理解;Gauss-Seidel迭代法是Jacobi 迭代法的改进形式,其核心思想是当新的分量求出后便立刻参与运算,可以减少计算量。
但是在使用中容易因矩阵不收敛(普半径>1)而不能使用此方法。
题目三:
一、插值法求解
1、输入分段线形插值法程序,保存为line_int_wise.m
function yi=line_int_wise(x,y,xi)
n=length(x);m=length(y);
if n~=m
error('not equal');
return;
end
for k=1:n-1
if abs(x(k)-x(k+1))<eps
error('the data is error');
return;
end
if x(k)<=xi & xi<=x(k+1)
yi=(xi-x(k+1))/(x(k)-x(k+1))*y(k)+(xi-x(k))/(x(k+1)-x(k))*y(k+1);
return;
end
end
2、输入数据
>> T=[700 720 740 760 780]
T =
700 720 740 760 780
>> v=[0.1058 0.1280 0.1462 0.1603 0.1703]
v =
0.1058 0.1280 0.1462 0.1603 0.1703
3、执行程序,求750度时的volume值
>> yi=line_int_wise(T,v,750)
yi =
0.1533
二、用最小二乘法拟合曲线
1、输入数据
(插值法中已完成,跳过)
2、绘制散点图,观察曲线形状
观察图片可知,采用一次曲线拟合即可
3、输入最小二乘法程序并构建基函数,分别保存为squar_least.m和phi_k.m function S=squar_least(x,y,n)
global i;global j;
if nargin<3 n=1; end
Phi2=zeros(n+1);
for i=0:n
for j=0:n
Phi2(i+1,j+1)=sum((phi_k(x,i)).*phi_k(x,j));
end
end
PhiF=zeros(n+1,1);
for i=0:n
PhiF(i+1)=sum((phi_k(x,i)).*y);
end
S=Phi2\PhiF;
function y=phi_k(x,k)
if k==0
y=ones(size(x));
else
y=x.^k
end
4、执行程序,获得各次项系数
>> S=squar_least(T,v,1)
S =
-0.4547
0.0008
可知:v=-0.4547+0.0008T
当T=750时,
>> v=-0.4547+0.0008.*750
v =
0.1453
三、体会
插值法容易将干扰项带入曲线,从而影响求解结果。
最小二乘法则消除了这个干扰,故在拟合时比插值法更优越。