生物化学 糖代谢

合集下载

生物化学 糖代谢

生物化学 糖代谢

糖代谢一、多糖的代谢1.淀粉凡能催化淀粉分子及片段中α- 葡萄糖苷键水解的酶,统称淀粉酶(amylase)。

主要可以分为α-淀粉酶、β-淀粉酶、γ-淀粉酶、和异淀粉酶4类。

(一)α-淀粉酶又称液化酶、淀粉-1,4-糊精酶1)作用机制内切酶,从淀粉分子内部随机切断α-1,4糖苷键,不能水解α-1,6-糖苷键及与非还原性末端相连的α-1,4-糖苷键。

2)水解产物直链淀粉大部分直链糊精、少量麦芽糖与葡萄糖支链淀粉大部分分支糊精、少量麦芽糖与葡萄糖,底物分子越大,水解效率越高。

(二)β-淀粉酶又叫淀粉-1,4-麦芽糖苷酶。

1)作用机制外切酶,从淀粉分子的非还原性末端,依次切割α-1,4-糖苷键,生成β-型的麦芽糖;作用于支链淀粉时,遇到分支点即停止作用,剩下的大分子糊精称为β-极限糊精。

2)β-淀粉酶水解产物支链淀粉β-麦芽糖和β-极限糊精。

直链淀粉β-麦芽糖。

(三)γ-淀粉酶又称糖化酶、葡萄糖淀粉酶。

1)作用方式它是一种外切酶。

从淀粉分子的非还原性末端,依次切割α-1,4-葡萄糖苷键,产生β-葡萄糖。

遇α-1,6和α-1,3-糖苷键时也可缓慢水解。

2) 产物葡萄糖。

(四)异淀粉酶又叫脱支酶、淀粉-1,6-葡萄糖苷酶。

1)作用方式专一性水解支链淀粉或糖原的α-1,6-糖苷键,异淀粉酶对直链淀粉不作用。

2)产物生成长短不一的直链淀粉(糊精)。

3)现象碘反应蓝色加深2.糖原(一)糖原分解糖原的降解需要三种酶,即糖原脱支酶,磷酸葡糖变位酶和糖原磷酸化酶。

(1)糖原磷酸化酶该酶从糖原的非还原性末端以此切下葡萄糖残基,降解后的产物为1-磷酸葡萄糖。

(2)磷酸葡糖变位酶糖原在糖原磷酸化酶的作用下降解产生1-磷酸葡糖。

1-磷酸葡萄糖必须转化为6-磷酸葡糖后方可进入糖酵解进行分解。

1-磷酸葡糖到6-磷酸葡糖的转化是由磷酸葡糖变位酶催化完成的。

(3)糖原脱支酶该酶水解糖原的α-1,6-糖苷键,切下糖原分支。

糖原脱支酶具有转移酶和葡糖甘酶两种活性。

生物化学 糖代谢

生物化学 糖代谢
2*3
6 ATP
第三阶段:三羧酸循环
2*异柠檬酸→2*α -酮戊二酸 2*α -酮戊二酸 →2*琥珀酰CoA
辅酶
NAD+ NAD+ FAD
ATP
2*3 2*3
2*琥珀酰CoA →2*琥珀酸
2*琥珀酸→2*延胡索酸
2*1
2*2
2*苹果酸→2*草酰乙酸
NAD+
2*3
24ATP
总ATP数: 第一阶段——6或8 第二阶段——6 第三阶段——24 36 或 38ATP
活性受NADP+/NADPH比值的调节,NADPH能强烈
抑制6-磷酸葡萄糖脱氢酶。磷酸戊糖途径的流
量取决于机体对NADPH的需求。
• 概念:有氧,葡萄糖(糖原) → CO2 + H2O • 反应部位:细胞液、线粒体 cytoplasm mitochondria
+ ATP
有氧氧化的概况
有氧氧化的反应过程
• 第一阶段:葡萄糖→ →丙酮酸(胞液) • 第二阶段:丙酮酸→ →乙酰CoA (线粒体) • 第三阶段:乙酰CoA → →CO2 + H2O + ATP (三羧酸循环)(线粒体)

植物和某些藻类能够利用太阳能,将二氧化碳和水合成
糖类化合物,即光合作用。光合作用将太阳能转变成化 学能(主要是糖类化合物),是自然界规模最大的一种 能量转换过程。
一、多糖和低聚糖的酶促降解
1.概述 多糖和低聚糖只有分解成小分子后才 能被吸收利用,生产中常称为糖化。 2. 淀粉
3.淀粉水解 淀粉 糊精
7.无氧发酵 (Fermentation)

⑴乙醇发酵
COOH C CH3
CO2

生物化学第八章糖代谢

生物化学第八章糖代谢

§2 糖的分解代谢
主要有以下途径: (一)糖的无氧酵解 (二)糖的有氧氧化 (三)乙醛酸循环 (四)戊糖磷酸途径
途径具体过程
提示
反应实质 个酶作用 进程变化 学习途径时要重点注意噢!
温馨提示
加油!!!
• 酵解过程要学好
• 首条途径很重要 • 总结经验找规律 • 后边学习基础牢
• 举一反三相比较 • 触类旁通有参照 • 事半功倍学的巧 • 一路轻松兴趣高
甘油酸-3-磷酸
磷酸甘油8反酸应变图位酶
甘油酸-2-磷酸
9、2-磷酸甘油酸脱水烯醇化
甘油酸-2-磷酸
烯醇化9反酶应图
磷酸烯醇式丙酮酸
9、2-磷酸甘油酸的脱水生成磷酸烯醇式丙 酮酸
烯醇化酶(enolase) 这一步反应也可看作分子内氧化还原反应,分子 内能量重新分布,又一次产生了高能磷酯键。
反应可以被氟离子抑制,取代天然情况下酶分 子上镁离子的位置,使酶失活。
细胞核
内质网 溶酶体
细胞膜
动物细胞
植物细胞
细胞壁 叶绿体
有色体 白色体 液体 晶体
葡萄糖的主要代谢途径
糖异生
葡萄糖
6-磷酸葡萄糖 (有氧或无氧)
(无氧) 丙酮酸
糖酵解
(有氧)
乳酸 乙醇
乙酰 CoA
磷酸戊糖 途径
三羧酸 循环
第八章:糖代谢
§1 多糖和底聚糖的酶促降解 §2 糖的分解代谢 §3 糖的合成代谢
⑹氧化脱氢,产生 NADH+H+ (磷酸化,使用无机磷酸)
甘油醛-3-磷酸
无机磷酸
甘油醛-3-磷酸 脱氢酶
1,3-二磷酸甘油酸
产生 的 NADH+H+ 的氢,条件不同, H的去向不同,走进的途径不同。

生物化学-糖代谢

生物化学-糖代谢

2021/3/29
25
G
G-6-P F-6-P F-1,6-BP 3-磷酸甘油醛
磷酸戊糖途径
NADPH 5-磷酸核糖
丙酮酸
2021/3/29
乙酰CoA
TAC
CO2+H2O+ ATP
26
整个代谢途径在胞液(cytoplasm)中进行。 关键酶是6-磷酸葡萄糖脱氢酶(glucose-6phosphate dehydrogenase)。
内 膜 折 叠 成 嵴
,
有 双 层 膜 结 构
,
2021/3/29
节首
33
章首
线粒体的功能特点
呼吸链(respiratatory chain)由供氢体、传递体、受氢体以 及相应的酶系统所组成的这种代谢途径一般称为生物氧化还原 链。如果受氢体是氧,则称为呼吸链。
外膜对大多数小分子物质和离子可通透,
NADPH在体内可用于: ⑴ 作为供氢体,参与体内的合成代谢:如参与合
成脂肪酸、胆固醇,一些氨基酸。 ⑵ 参与羟化反应:作为加单氧酶的辅酶,参与对
代谢物的羟化。
2021/3/29
29
⑶ 使氧化型谷胱甘肽还原。 ⑷ 维持巯基酶的活性。 ⑸ 维持红细胞膜的完整性:由于6-磷酸葡萄
糖脱氢酶遗传性缺陷可导致蚕豆病,表现为 溶血性贫血。
2021/3/29
30
2. 是体内生成5-磷酸核糖的惟一代谢途径:
体内合成核苷酸和核酸所需的核糖或脱氧核糖均以5-磷酸核糖的 形式提供,这是体内惟一的一条能生成5-磷酸核糖的代谢途径。
磷酸戊糖途径是体内糖代谢与核苷酸及核酸代谢的交汇途径。
2021/3/29
31
能量变化(3)
有氧氧化能量变化:以每分子葡萄糖计

《生物化学》 第8章 糖代谢

《生物化学》 第8章 糖代谢
2020/9/29
⑥ 糖酵解的生理意义
❖酵解途径是单糖分解代谢的一条最重要的
基本途径
❖细胞在缺氧条件下,通过无氧酵解可以获得
有限的能量维持生命活动
❖有氧条件下,酵解是单糖完全氧化分解成
CO2和水的必要准备阶段
2020/9/29
8.2.2 无氧条件下丙酮酸的去路
1.酵母菌的酒精发酵
C O O H C O 丙酮酸脱羧酶
2020/9/29
8.3.2 淀粉的合成
G
G-6-P G-1-P
ATP ADP
(A)UTP
(A)UDPG
焦磷酸化酶 PPi
(A)UDPG n(A)UDPG
转糖苷酶
引物
(G)m m≥2
n(A)UDP
(α-1,4-G)n+mBiblioteka Q酶2020/9/29
(α-1,6)
8.3.3 糖原的合成
非还原端 糖原结构特点
(1)丙酮酸羧化支路
C O O H
OC C O O H
CO+ C O 2+ A T P+ H O 2 丙酮酸羧化酶、生物素,Mg2+ C H 2 C O O H+ A D P+ Pi
C H 3 丙酮酸
草酰乙酸
2020/9/29
⑥ 回补途径
C O O H
C O+ C O 2+ N A D P H+ H +
三羧酸循环
→Acetyl-CoA→→→CO2 + H2O
Lac (——————)
酵解
(—————————————————————)
有氧分解
2020/9/29
① 丙酮酸脱氢酶系

生物化学-第二单元-糖代谢——三羧酸循环.

生物化学-第二单元-糖代谢——三羧酸循环.

异柠檬酸脱氢酶 (氧化脱羧)
草酰琥珀酸
琥珀酸脱氢酶 (氧化) 琥珀酸 GTP
NADH
CO2
α-酮戊二酸
琥珀酰-CoA合成酶 琥珀酰-CoA
α-酮戊二酸脱氢酶系
(底物水平磷酸化)
CO2 (氧化脱羧)
TAC
循 环 总 图
TAC小结
1)循环从C4物与乙酰CoA缩合生成C6物开始 2)每一次循环经历两次脱羧,放出2CO2 3)每一循环经历四次脱氢,其中3次以NAD+为氢受体, 1次以FAD为氢受体; 4)每循环一次,底物水平磷酸化一次生成1GTP(ATP); 5)循环一次结束以C4物(草酰乙酸)重新生成为标 志; 6)总反应:
(1)丙酮酸脱氢复合体 (2)该复合体可分为五步反应 3. 三羧酸循环及氧化磷酸化 (1)三羧酸循环反应过程 (2)三羧酸循环的小结 (3)三羧酸循环的生理意义
丙酮酸脱氢酶复合物催化的整个反应
(1)丙酮酸脱氢复合体
由丙酮酸脱氢酶(E1),二氢硫辛酰胺转 乙酰酶(E2)和二氢硫辛酰胺脱氢酶(E3) 组成。
第二阶段 2×丙酮酸→ 2×乙酰CoA
NAD+ NAD+
-1 -1 6or4
2 ×1
2 ×1
2×3
第三阶段 2×异柠檬酸→ 2× α -酮戊二酸
2× α -酮戊二酸→ 2× 琥珀酰CoA 2× 琥珀酰CoA → 2× 琥珀酸 2× 琥珀酸→ 2× 延胡索酸 2×苹果酸→ 2× 草酰乙酸
3)可逆磷酸化作用的共价调节:ATP存在时,Py 脱氢酶分子上的Ser-OH被磷酸激酶催化磷酸化而 没有活性,一旦磷酸基团被磷酸酯酶催化水解 (去磷酸化)可恢复活性。
柠檬酸(三羧酸)循环
(TAC) / Krebs cycle 乙酰CoA经一系列(8步)的氧化、脱羧,最

生物化学 糖代谢

生物化学 糖代谢

生物化学:糖代谢糖是生物体重要的能量来源之一,也是构成生物体大量重要物质的原始物质。

糖代谢是指生物体对糖类物质进行分解、转化、合成的过程。

糖代谢主要包括两大路径:糖酵解和糖异生。

本篇文档将从分解和合成两个角度,介绍生物体内糖的代谢。

糖的分解糖酵解(糖类物质的分解)糖酵解是指生物体内将葡萄糖和其他糖类物质分解成更小的化合物,同时释放出能量。

糖酵解途径包括糖原泛素、琥珀酸途径、戊糖途径、甲酸途径等。

其中主要以糖原泛素和琥珀酸途径为代表。

糖原泛素途径糖原泛素途径又称为糖酵解途径,是生物体内最常用的糖分解方式。

它可以将葡萄糖分解成丙酮酸或者丁酮酸,同时产生2个ATP和2个NADH。

糖原泛素途径一般分为两个阶段:糖分解阶段和草酸循环。

糖分解阶段在这个阶段,葡萄糖通过酸化和裂解反应,进入三磷酸葡萄糖分子中,并生成一个六碳分子葡萄糖酸,此过程中消耗1个ATP。

接着,葡萄糖酸分子被磷酸化,生成高能量化合物1,3-二磷酸甘油酸,同时产生2个ATP。

随后,1,3-二磷酸甘油酸分子的丙酮酸残基被脱除,生成丙酮酸或者丁酮酸。

草酸循环草酸循环是指将生成的丙酮酸和丁酮酸在线粒体内发生可逆反应,生成柠檬酸,随后通过草酸循环将柠檬酸氧化分解成二氧化碳、水和ATP。

草酸循环中的关键酶有乳酸脱氢酶、肌酸激酶等。

琥珀酸途径琥珀酸途径也被称为三羧酸循环,是生物体内另一种重要的糖分解途径,它可以将葡萄糖分解成二氧化碳和水,同时产生30多个ATP。

琥珀酸途径中,葡萄糖通过磷酸化,生成高能分子葡萄糖6-磷酸,随后被氧化酶和酶羧化酶双重氧化分解成二氧化碳和水。

琥珀酸途径的关键酶有异构酶、羧酸还原酶等。

糖异生(糖合成)糖异生是指非糖类物质(如丙酮酸、乳酸等)通过一系列合成反应,转化成糖类物质的过程。

糖异生是生物体内糖类物质的重要来源之一,对维持生命的各种生理过程具有重要意义。

糖异生途径包括丙酮酸途径、戊糖途径和甘油三磷酸途径等。

丙酮酸途径丙酮酸途径是指通过丙酮酸合成糖的途径,它可以将丙酮酸反应生成物乙酰辅酶A进一步转移,合成3磷酸甘油醛,随后通过糖醛酸-3-磷酸酰基转移酶反应,合成葡萄糖6磷酸。

生物化学第六章 糖类代谢

生物化学第六章 糖类代谢
O
H
OH
HO
H
HO
H
H
OH
OH
CH2OH
HO H OH
H
H
OH H
OH OH
核糖(ribose) ——戊醛糖
O
H
OH
H
OH
H
OH
OH
HOH 2C
O OH
H H
HH
HO
OH
2. 寡糖 能水解生成2-20个分子单糖的糖,各单
糖之间借脱水缩合的糖苷键相连。
常见的几种二糖有
麦芽糖 (maltose) 葡萄糖 — 葡萄糖 还原糖
ATP ADP
G-6-P
F-6-P
ATP ADP
F-1,6-2P
ⅱ放能阶段
⑨2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸
烯醇化酶
磷酸二 3-磷酸 羟丙酮 甘油醛
NAD+
NADH+H+
1,3-二磷酸甘油酸
ADP ATP
3-磷酸甘油酸
2-磷酸甘油酸
磷酸烯醇式丙酮酸
ADP
ATP
丙酮酸
催化此反应的酶是烯醇化酶,它在结合底物前必 须先结合2价阳离子如Mg2+、Mn2+,形成复合物, 才能表现出活性。该酶的相对分子量为85000,氟 化物是该酶强烈的抑制剂,原因是氟与Mg2+和无 机磷酸结合形成一个复合物,取代了酶分子上 Mg2+的位置,从而使酶失活。
Glu
ATP ADP
G-6-P
F-6-P
ATP ADP
F-1,6-2P
ⅱ放能阶段
⑥3-磷酸甘油醛氧化成1,3-二磷酸甘油酸
生成1分子 NADH+H+

动物生物化学 第六章 糖的代谢

动物生物化学  第六章  糖的代谢

2. 糖原的 合成
(UDP-葡萄 糖焦磷酸化 酶、糖原合 成酶、糖原 分支酶)
糖原合成酶催化的反应
糖原的合成与分解总反应示意图
3. 糖原代谢的调节
• 葡萄糖分解代谢总反应式 • C6H6O6 + 6 H2O + 10 NAD+ + 2 FAD + 4 ADP +
4Pi 6 CO2 + 10 NADH + 10 H+ + 2 FADH2 + 4 ATP • 按照一个NADH能够产生3个ATP,1个FADH2能够产 生2个ATP计算,1分子葡萄糖在分解代谢过程中共产 生38个ATP: • 4 ATP +(10 3)ATP + (2 2)ATP = 38 ATP
Байду номын сангаас
CH2OH CO
HO C H
CHO
H C OH + H C OH
H C OH H C OH
CH2O P
转醛酶
CH2O P
7-磷酸景天庚酮糖 3-磷酸甘油醛
CHO
H C OH +
H C OH CH2O P
4-磷酸赤藓糖
CH2OH CO HO C H HO C H H C OH CH2O P
6-磷酸果糖
H
O
H
OH H HO
H OH
H2O
H C OH
HO C H
O 内酯酶
H C OH
H C OH
G-6-P
6-磷酸葡萄 糖酸内酯
CH2O P 6-磷酸葡萄糖酸
COOH H C OH
NADP+
+ NADPH + H

生物化学第2篇 第04章 物质代谢与调节--糖代谢

生物化学第2篇 第04章 物质代谢与调节--糖代谢
第四章 糖 代 谢
食物糖: 淀粉.糖元.双糖.纤维素
(+)
消化.吸收
单糖
(代谢)
第一节
糖的生理功能
供能 供碳原 转化成肌体成分 转化成生物活性物质
概述
糖的消化.吸收
消化:口腔开始.小肠为主.酶促反应 吸收:依赖载体.耗能的主动吸收(主)依赖载体.不耗能的促进吸 收
糖代谢概况
酵解从Gn开始:
Gn
1-P-G
6-P-G
其他己糖也可转变成磷酸己糖而进入酵解途径.
无氧酵解总结
在胞液中进行 原料:G或者Gn. 产物:乳酸. 不可逆.催化不可逆反应的三个酶即为限速酶 (整个途径中速度最慢的酶). 两步耗能反应,两步底物水平磷酸化(代谢物在代谢
过程中,由于脱H或者脱水,分子内部能量重新分布,形成一个高能磷酸 键,此磷酸基可直接转给ADP生成ATP).尽生成ATP
不耗能.
肝、肌Gn分解的不同在于6-P-G的去路不 同.此导致Gn合成、分解的功能不同.
三. Gn合成与分解的调节
肝Gn合成与分解通过调节以保证血[G]的恒 定. 肌Gn合成与分解通过调节以保证肌肉组织 对能量的需求. 所以,调节的条件和因素也不同 Gn合成与分解是由两套酶催化的不同途径, 但受相同体系的调节. Gn合成酶、 Gn磷酸化酶均受共价修饰、 变构的双重调节.
分解:无氧酵解.有氧氧化.戊糖旁路.糖醛酸途径等 糖元合成与分解 糖异生
第二节 糖的分解代谢
一、糖的无氧酵解
定义:在缺氧情况下,葡萄糖生成乳酸的过程. 包括: G
酵解途径
丙酮酸
LDH
乳酸
细胞定位: 胞液
过程

生物化学 --糖代谢(共32张PPT)

生物化学 --糖代谢(共32张PPT)
新陈代谢
同小分化子作物用质合成大分子的需能过程
中间代谢
大异分化子分作解用成简单小分子的放能过程
Top
1
2
3
4
糖代谢概述 糖原的代谢
糖酵解
柠檬酸循环
磷酸戊糖通路 糖异生
糖代谢与其 他代谢关系
第一节 糖类的一般概况
1.单糖:不能再水解的糖,葡萄糖,果糖,核糖等。
2.双糖:由两个相同或不同的单糖组成, 乳糖、蔗糖等.
CH3
丙酮酸
COO HC OH + NAD+
CH3 乳酸
甘油醛3-磷酸氧化为 甘油酸1,3-二磷酸
丙酮酸
无有氧条条件件
NADH
丙酮酸进一步被氧化分解
乳酸
NADH经呼吸链生成水
氧化为二氧化碳和水
乳酸
合成肝糖原或葡萄糖
糖异生
乳酸
乙醇
NADH
乳酸发酵
NADH 乙醇脱氢酶
丙酮酸 脱羧酶 乙醛
乙醇发酵
糖酵解途径汇总Βιβλιοθήκη HOCH 2C O P O OH
HC OH HO
H 2C O P O OH
3-磷酸甘油醛
上述的5步反应完成了糖酵解的准备阶段 。酵解的准备阶段包括两个磷酸化步骤由六 碳糖裂解为两分子三碳糖,最后都转变为甘 油醛3-磷酸。
在准备阶段中,并没有从中获得任何能量 ,与此相反,却消耗了两个ATP分子。
以下的5步反应包括氧化—还原反应、磷酸
3113-PPii
3 生成甘油酸2-磷酸
4 生成烯醇式丙酮酸磷酸
ATP
ATP
5 生成烯醇式丙酮酸 6 生成丙酮酸
⑹甘油醛3-磷酸氧化为甘油酸1,3-二磷酸
O

生物化学5第五章 糖代谢

生物化学5第五章  糖代谢

丙酮酸脱氢酶复合体由三种酶单体构成:
丙酮酸脱氢酶(E1), 二氢硫辛酰胺转乙酰酶(E2), 二氢硫辛酰胺脱氢酶(E3)。
该多酶复合体有六种辅助因子: TPP,硫辛酸,NAD+,FAD,HSCoA和Mg2+。
整个反应中,中间产物不离开酶复合体,使反 应迅速完成,且没有游离的中间产物,不 会有副反应发生。
(一)葡萄糖经酵解途径生成丙酮酸:
• 此阶段在细胞胞液(cytoplasm)中进 行 , 一 分 子 葡 萄 糖 (glucose) 分 解 后 净生成2分子丙酮酸(pyruvate),2分 子ATP,和2分子(NADH + H+)。
• 两分子(NADH + H+)在有氧条件下 可 进 入 线 粒 体 (mitochondrion) 产 能 , 共 可 得 到 2×1.5 或 者 2×2.5 分 子 ATP 。 故第一阶段可净生成5或7分子ATP。
*
磷酸果糖激酶-1
(3) ATP ADP
2.裂解(lysis)——磷酸丙糖的生成:
• 一分子F-1,6-BP裂解为两分子可以互 变的磷酸丙糖(triose phosphate), 包括两步反应:
⑷ F-1,6-BP 裂 解 为 3- 磷 酸 甘 油 醛 (glyceraldehyde-3-phosphate) 和 磷 酸 二 羟 丙 酮 (dihydroxyacetone phosphate);
CaM:钙调蛋白
3 己糖激酶或葡萄糖激酶: 己糖激酶是肝脏调节葡萄糖吸收的主要的关键酶。
己糖激酶受产物6-磷酸葡萄糖反馈抑制。葡萄糖激酶 分子中没有6-磷酸葡萄糖变构部位,不受6-磷酸葡 萄糖反馈抑制。
己糖激酶有四种同工酶,肝细胞中是Ⅳ型叫葡萄糖激 酶,对葡萄糖亲和力低。

生物化学糖代谢

生物化学糖代谢

生物化学糖代谢糖是生物体内最主要的能量来源之一,同时也具有许多重要的生物学功能。

糖代谢是生物体利用糖类化合物进行能量产生和物质合成的过程。

它包括糖的降解和合成两个主要过程。

本文将详细介绍糖的降解和合成途径,以及糖代谢在生物体内的作用。

一、糖的降解糖类化合物在细胞内经过一系列酶催化反应被降解成低分子产物,以产生能量和提供原料。

主要的糖降解途径包括糖酵解和糖解作用。

1. 糖酵解糖酵解是指葡萄糖通过一系列酶催化反应逐步分解成丙酮酸,产生ATP的过程。

糖酵解分为两个阶段,第一阶段是糖类分子的分解,产生丙酮酸与ATP和NADH,第二阶段是丙酮酸的氧化,进一步产生ATP和NADH。

这两个阶段共同完成了葡萄糖的降解,并释放出大量的能量。

2. 糖解作用糖解作用是指多糖类化合物通过酶的催化作用分解成低聚糖或单糖分子的过程。

常见的糖解作用包括淀粉的淀解、麦芽糖的水解和蔗糖的水解等。

这些糖解作用在生物体内起到提供能量和原料的作用。

二、糖的合成除了糖的降解,生物体还可以通过一系列酶催化反应将简单的碳水化合物转化为复杂的多糖类化合物的合成过程。

主要的糖合成途径包括糖异生和糖原合成。

1. 糖异生糖异生是指通过非糖原料合成糖类化合物的过程。

典型的糖异生途径是葡萄糖异生途径,其中胰岛素通过调节多种酶的活性,使非糖类物质如乳酸、甘油和氨基酸转化为葡萄糖,以满足生物体对葡萄糖的需求。

2. 糖原合成糖原是动物体内的一种能量储备物质,主要储存在肝脏和肌肉中。

糖原合成是指通过多糖短链的催化作用,将葡萄糖合成为糖原的过程。

这种储能的形式在机体需要时可以分解为葡萄糖,以满足能量需求。

三、糖代谢的生物学功能糖代谢在生物体内具有多种重要生物学功能,包括能量产生、物质合成和信号传递等。

1. 能量产生糖代谢是生物体产生能量的重要途径之一。

通过糖酵解和线粒体呼吸链的反应,糖类化合物可以被氧化分解,产生大量的ATP。

这种能量产生的过程对于细胞的正常代谢和生命活动至关重要。

生物化学糖代谢

生物化学糖代谢

引言:糖代谢是生物体内的一项基本代谢过程,糖类分子参与着能量产生和储存的过程。

生物化学糖代谢(二)是糖类分子在生物体内进一步被代谢的过程。

本文将从五个方面对生物化学糖代谢(二)进行详细阐述。

概述:生物化学糖代谢(二)是指糖类分子在生物体内进一步被代谢的过程,包括糖酵解、糖异生、糖原代谢、糖醇代谢和戊糖醇代谢等。

糖代谢的正常进行对维持生物体的能量平衡和新陈代谢功能至关重要。

正文内容:一、糖酵解1.糖酵解是糖类分子分解为能量的过程,主要包括糖酵解途径和糖酵解产物。

2.糖酵解途径主要有糖解酵解、无氧酵解和有氧酵解三种。

3.糖酵解产物主要是ATP、乳酸和丙酮酸等,通过这些产物产生能量。

二、糖异生1.糖异生是生物体内通过非糖物质合成糖类分子的过程。

2.糖异生途径主要包括糖异生途径和糖异生产物。

3.糖异生对维持血糖平衡和供应能量起着至关重要的作用。

三、糖原代谢1.糖原是一种能够储存糖类的多聚体,主要储存在肝脏和肌肉细胞中。

2.糖原代谢包括糖原合成和糖原分解两个过程。

3.糖原合成主要通过糖原合成酶的催化作用完成,糖原分解则通过糖原分解酶的催化作用完成。

四、糖醇代谢1.糖醇是指一类由糖类分子还原的醇类化合物。

2.糖醇代谢涉及有糖醇的和消耗两个过程。

3.糖醇代谢在维持细胞渗透平衡和保护细胞免受氧化应激损伤方面具有重要作用。

五、戊糖醇代谢1.戊糖醇是一种重要的糖醇分子,在生物体内广泛存在。

2.戊糖醇代谢主要包括戊糖醇的合成和降解两个过程。

3.戊糖醇代谢与糖尿病和其他代谢性疾病的发生发展密切相关。

总结:生物化学糖代谢(二)是研究糖类分子在生物体内进一步被代谢的过程,其中包括糖酵解、糖异生、糖原代谢、糖醇代谢和戊糖醇代谢等。

这些过程对维持生物体的能量平衡和新陈代谢功能起着至关重要的作用。

深入理解生物化学糖代谢(二)对于揭示生物体内糖代谢的调控机制和疾病发生机制具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
39
40
4. 2分子丙酮酸还原为2分子乳酸 (无氧)
(LDH)
a.
NADH + H+由3磷酸甘油醛脱氢提供 (有氧时, NADH参与能量释放)
(图6-4)
b.
LDH1(心肌中)对乳酸亲和力大 LDH5(骨骼肌)对丙酮酸亲和力大
41
乳酸脱氢酶 (含5种同工酶):
(无氧)
(有氧)
* 骨骼肌富含LDH5
* 葡萄糖转运体
(各组织细胞膜上)
12
正常血糖时:
各组织细胞摄取Glc作为能源
血糖过高时: * 肝细胞快速摄取过多的Glc
(合成肝糖原,降低血糖)
* 胰岛素分泌↑→肌肉和脂肪细胞 摄取Glc↑
(合成肌糖原/脂肪)
(各组织细胞对G的摄取均通过Glc转运体)
血糖偏低时: 肝脏分解糖原 及糖异生↑
血糖浓度↑
2,6-二磷酸果糖酶2
PFK-2
F-2,6-BP
(F-6-P) (PFK-1) (F-1,6-BP)
PFK-1
(F-2,6-BP)
糖酵解
58
血糖
己糖激酶
6-磷酸果糖 激酶-1
(PFK-2)
(F-6-P) (F-2,6-BP)
(直链)
(PFK-1)
(F-6-P) 丙 酮 酸 激 酶 (F-1,6-BP)
(F-2,6-BP)
4
59
血糖
(PFK-2)
胰高血糖素
cAMP PFK-2双功能酶磷酸化
(F-6-P)
(F-2,6-BP)
2,6-二磷酸果糖酶2
PFK-2
F-2,6-BP
(F-6-P) (F-1,6-BP)
PFK-1
(F-2,6-BP)
糖酵解
60
3. PK活性的调节 ① 结构 — 别构酶 ② 调节 别构抑制剂:ATP、乙酰辅酶A, 长链脂肪酸(肝) 别构激活剂: F-1,6-BP
① PFK-1 — 别构酶(亚基×4)
(PFK-1)
54
② 调节
抑制剂:ATP、柠檬酸 激活剂:AMP,ADP, F-2,6-BP
(作用最强)
(PFK-1)
(F-6-P)
(F-1,6-BP)
(F-2,6-BP)
55
F-2,6-BP的生成与作用 * 生成:
(PFK-2)
(F-6-P)
(F-2,6-BP)
对丙酮酸亲和力大, 可使丙酮酸迅速转变成乳酸, 以保证剧烈运动氧供应不足时G/Gn仍能经酵解供能 * 心肌富含LDH1 对乳酸亲和力大, 可使乳酸在心肌中不断氧化供能
42
图6-3
糖代谢三条途径间的关系
43
①无氧酵解 ②磷酸戊糖途径 ③有氧氧化
己糖激酶
6-磷酸果糖 激酶-1
(直链)
丙 酮 酸 激 酶
脑组织 — Glc供能) 保证血糖浓度相对恒定
机体存在调节血糖平衡的机制 — a. 神经系统:
下丘脑和自主神经
调节
激素分泌
b. 激素:
(表6-1)
c. 组织器官:
肝脏最主要
10
激素对血糖浓度的调节
相互协同/拮抗
维持血糖浓度恒定
11
组织器官水平上调节血糖浓度
* 肝脏 — 最主要的器官
* 血糖浓度
主要的影响因素
丙酮酸
IV. 丙酮酸
还原
乳酸(无氧)
(×2)
38
第三阶段反应的特点: 产能
磷酸丙糖
(3-磷酸甘油醛)
氧化
丙酮酸
(5步)
* 1次脱氢 (生成NADH + H+)
(3-磷酸甘油醛
1,3-二磷酸甘油酸)
* 2次底物水平磷酸化 (生成ATP,×4) 1,3-二磷酸甘油酸 3-磷酸甘油酸
磷酸烯醇式丙酮酸
丙酮酸
糖蛋白、蛋白聚糖 — 结缔组织、软骨
(脱氧)核糖 — DNA、RNA 糖蛋白 — IgG、激素
3

消化、吸收 血运输
细胞 (中间代谢) 生物(大)分子
中间代谢 糖 类型: 中间代谢途径:
合成 分解
小分子 + 能量
无氧酵解,有氧氧化, 磷酸戊糖途径, 糖原合成(分解), 糖异生等
4
第二节 一、消化
2. 方式:主动运输(逆浓度差,耗能,载体)
图6-1
6
顺浓度
逆浓度
顺浓度
图 6-1
葡萄糖在小肠上皮细胞的转运
7
第三节 血 一、定义及正常值:

血糖 (blood sugar) — 血液中的葡萄糖
正常值 — 3.9-6.1mM
(葡萄糖氧化酶法)
高血糖 — 空腹血糖 7.0mM 低血糖 — 空腹血糖 3.9mM
第六章
第一节 1. 主要糖类: 概




葡萄糖(Glucose,Glc) — 运输形式
糖元(Glycogen,Gn)— 储存形式(肝,肌肉)
(α-1,4、α-1,6糖苷键)
1
2
2
2. 生理功能:
(1)氧化供能 — 提供生命活动所需能量(占70%) (2)细胞结构组分及重要生理活性物质(复合物形式) 糖蛋白、糖脂 — 生物膜
丙酮酸脱氢酶系
(多酶复合体)
乙酰辅酶A + CO2 + NADH + H+ * 属不可逆反应过程
70
* 丙酮酸脱氢酶系—多酶复合体 3种酶,5种辅酶(内含5种维生素)
71
乙酰二氢硫辛酸
丙酮酸


二氢 硫辛酸
羟乙基-TPP
(B2)

乙酰辅酶A
(PP)
(丙酮酸脱羧)
丙酮酸
乙酰辅酶A + CO2 + NADH + H+
O2
丙酮酸
缺氧
乙酰 CoA
TCA 循环
CO2 H 2O
(能量)
乳酸
无氧酵解
65
一、部位:胞质、线粒体 二、过程(三个阶段): 葡萄糖
(图6-3)
丙酮酸 (与糖酵解相同)
丙酮酸 乙酰辅酶A
乙酰辅酶A TCA循环
66
图6-3
糖代谢三条途径间的关系
67
①无氧酵解 ②磷酸戊糖途径 ③有氧氧化
(一) 葡萄糖
糖的消化吸收
1. 食物糖类 — 淀粉,双糖,单糖 (可吸收) 2. 参与消化的酶类 α-淀粉酶(唾液,胰腺) 产物: 麦芽糖,糊精,Glc
α-糊精酶(小肠)
产物: Glc 麦芽糖酶,蔗糖酶,乳糖酶(小肠)
5
3. 主要消化部位: 小肠
4. 主要消化产物: Glc,半乳糖,果糖 二、吸收 1. 部位:小肠上段

d. 中间产物 — 含磷酸基团(-)
24
2
25
26
(2) G-6-P生成F-6-P
27
(3) F-6-P生成F-1,6-BP
(PFK 1)
6-磷酸果糖激酶I:
限速酶, 主要调节点 第二次磷酸化,不可逆
28
第一阶段反应(己糖磷酸化)的特点: * 葡萄糖磷酸化 (Glc/Gn中) * 能量消耗 (G开始 — 2ATP, Gn开始 — 1ATP) * 2个不可逆反应 * 关键酶:
47
三、小结 1. 胞质中进行 2. 反应分4个阶段
3. 关键酶:HK、PFK-1、PK 限速酶:PFK-1、PK 4. 终产物 — 乳酸 5. 能量变化:葡萄糖 (生成2ATP) 糖原 6. 特点: 无氧参与
48
图6-4
(生成3ATP)
己糖激酶
6-磷酸果糖 激酶-1
(直链)
丙 酮 酸 激 酶
葡萄糖开始 (己糖激酶和6-磷酸果糖激酶1)
糖原开始 (磷酸化酶和6-磷酸果糖激酶1)
29
30
无氧酵解的反应过程: 四个阶段:
(×1)
I.己糖磷酸化(Glc
F-1,6P)
II. 磷酸己糖
裂解
(×2)
磷酸丙糖
(×2)
III. 磷酸丙糖
氧化
(×2)
(×2)
丙酮酸
IV. 丙酮酸
还原
乳酸(无氧)
(×2)
Km: 10-20mM (Glc)
22
()
GK: 10-20mM Km (Glc) 大量吸收Glc
(食后)
合成肝糖原
23
b. 糖原降解: 磷酸化酶(水解α-1,4糖苷键)
(Gn → G-1-P)
c. G-6-P:
重要的中间产物, 许多糖代谢途径的连接点
(酵解、有氧氧化、戊糖途径、糖原合成/分解)
* 胞质内进行
丙酮酸
* 过程同糖酵解, 消耗2ATP * 生成4ATP * 生成2对NADH + H+
(3-磷酸甘油醛 (×2) 1,3-二磷酸甘油酸)
68
己糖激酶
6-磷酸果糖 激酶-1
(直链)
丙 酮 酸 激 酶
4
69
(二)丙酮酸氧化脱羧生成乙酰辅酶A(线粒体) 丙酮酸 + HS-CoA + NAD+
* 作用:促进F-1,6-BP生成
图6-5
(F-6-P)
(PFK-1)
(F-1,6-BP)
56

具有
PFK-2是一双功能酶:
PFK-2活性(使F-2,6-BP↑)
2,6-二磷酸果糖酶2活性(使F-2,6-BP↓)
(PFK-2)
(F-6-P)
(F-2,6-BP)
57
(PFK-2)
血糖
(F-6-P) (F-2,6-BP)
相关文档
最新文档