九年级数学上册243 正多边形和圆课件 新版新人教版2

合集下载

人教版数学九年级上册第二十四章《24.3 正多边形和圆》课件(共19张PPT)

人教版数学九年级上册第二十四章《24.3  正多边形和圆》课件(共19张PPT)

对于一些特殊的正多边形,还可以用圆规和直尺来作图. 再如,用直尺和圆规作两条互相垂直的直径,就可以把圆四等分,从而作 出正方形.
用尺规等分圆: 用尺规作图的方法等分圆周,然后依次连接圆上各分点得到正多边形,这 种方法有局限性,不是任意正多边形都能用此法作图,这种方法从理论上 讲是一种准确方法.
2.如图,正五边形ABCDE的对角线AC和BE相交于点M. 求证:(1) AC//ED;(2) ME=AE.
如图,正五边形ABCDE的对角线AC和BE相交于点M. 求证:(1) AC//ED;(2) ME=AE.
归纳新知
正多边形 的画法
用量角器等分圆 用尺规等分圆
此方法可将圆任意n等分,所以用 该方法可作出任意正多边形,但边 数很大时,容易产生较大的误差.
度量法③:
用圆规在⊙O 上顺次截取6条长度等于半径(2 cm)的弦,连接其中的 AB, BC,CA 即可.
B
O
A
C
对于一些特殊的正多边形,还可以用圆规和直尺来作图. 例如,我们也可以这样来作正六边形.由于正六边形的边长等于半径,所以 在半径为R的圆上依次截取等于R的弦,就可以把圆六等分,顺次连接各分 点即可得到半径为R的正六边形.
课堂练习
1.画一个半径为2 cm的正五边形,再作出这个正五边形的各条对角线,画 出一个五角星.
2.面积相等的正三角形与正六边形的边长之比为
.
中考实题
1.已知⊙O如图所示. (1) 求作⊙O的内接正方形(要求尺规作图,保留作图痕迹,不写作法); (2) 若⊙O的半径为4,求它的内接正方形的边长.
此方法是一种比较准确的等分圆的方 法,但有局限性,不能将圆任意等分.
再见
合作探究
已知⊙O 的半径为 2 cm,画圆的内接正三角形. 度量法①: 用量角器或 30°角的三角板度量,使∠BAO=∠CAO=30°.

九年级数学上册24.3正多边形和圆课件(新版)新人教版

九年级数学上册24.3正多边形和圆课件(新版)新人教版
24.3 正多边形和圆(1)
1.创设情境,导入新知
观察这些图片,你能否看到正多边形?
2.小组合作学习
如何画出一个正多边形呢?
2.小组合作学习
你能否借助圆画出圆内接正三角形?
你能否借助圆画出圆内接正方形?
你能否借助圆画出圆内接正五边形?
2.小组合作学习
什么叫正多边形? 各边相等,各角相等的多边形. 什么是正多形的边心距、半径? 正多边形内切圆的半径叫做边心距. 正多边形外接圆的半径叫做正多边形的半径.
有一个亭子,它的地基是半径为 4 m的正六边形, 求地基的周长和面积(结果保留小数点后一位).
3.探究学习
亭子的地基是什么图形?求地基的周长和面积也就 是求什么图形的周长和面积? 正六边形的半径,分别将它分割成多少个什么样子 的三角形? 观察图形中所得的三角形具有什么关系?为什么? 将上图中的结论推而广之,你得出了什么结论?哪 位同学说说自己的想法?
4.强化练习
(1)正 n 边形的半径和边心距把正 n 边形分成___ 个全等的直角三角形; (2)正三角形的半径为 R,则边长为_____,边心 距为______,面积为________.若正三角形边长为 a, 则半径为______; (3)正 n 边形的一个外角为 30°,则它的边数为 ____,它的内角和为______; (4)如果一个正多边形的一个外角等于一个内角 的三分之二,则这个正多边形的边数 n =____;
4.强化练习
(5)正六边形的边长为 1,则它的半径为_____, 面积为________; (6)同圆的内接正三角形、正方形、正六边形的 边长之比为________________; (7)正三角形的高∶半径∶边心距为_________; (8)边长为 1 的正六边形的内切圆的面积是____.5.课堂小结源自(1)正多边形与圆有什么关系?

九年级数学上册 24.3 正多边形和圆课件 (新版)新人教

九年级数学上册 24.3 正多边形和圆课件 (新版)新人教
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二
◆要点导航 ◆典例全解
▲题型一 ▲题型二
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二
◆要点导航 ◆典例全解
▲题型一 ▲题型二
◆反馈演练
§基础夯实 §能力跃升 §思维拓展
◆要点导航 ◆典例全解
▲题型一 ▲题型二

人教版九年级数学上册《正多边形和圆形》圆PPT精品课件

人教版九年级数学上册《正多边形和圆形》圆PPT精品课件
第二十四章 圆
正多边形和圆
学习目标
1.理解并掌握正多边形的半径和边长、边心距、中心角
之间的关系.
(重点)
2.会进行特殊的与正多边形有关的计算,会画
某些正多边形.
(难点)
新课导入
知识回顾
圆内接四边形的性质:
1.对角互补; 2.四个内角的和是360°; 3.任一外角与其相邻的内角的对角相等(即外角等于内对角).
新课讲解
证明:如图,把⊙O分成相等的5段弧,依次连接各分点 得到五边形ABCDE. ∵A⌒B=B⌒C=C⌒D=D⌒E=E⌒A,
知识点
∴AB=BC=CD=DE=EA, BC⌒E=3A⌒B=C⌒DA.
∴∠A=∠B. 同理∠B=∠C=∠D=∠E. 又五边形ABCDE的顶点都在⊙O上, ∴五边形ABCDE是⊙O的内接正五边形, ⊙O是正五边形ABCDE的外接圆.
作OP⊥BC,垂足为P.
在Rt△OPC中,OC=4 m,
PC= BC 4 =2(m),利用勾股定理,
22
可得边心距r= 42 22 2 3(m).
亭子地基的面积S=
1 lr 1 24 2 3 41.6(m2 ). 22
新课讲解
正n边形的一个内角的度数是多少?中
心角呢?正多边形的中心角与外角的大小有 什么关系?
新课导入
课时导入
下面这些美丽的图案,都是在日常生活中我们经常能看到的.你 能从这些图案中找出类似的图形吗?
新课讲解
知识点1 圆内接正多边形
正三 角形
三条边相等,三个角 相等(60度).
正方形
四条边相等,四个角 相等(900).
新课讲解
什么叫做正多边形? 各边相等、各角也相等的多边形叫做正多边形.

人教版九年级数学上册24.3正多边形和圆 (2)课件 (共14页)

人教版九年级数学上册24.3正多边形和圆 (2)课件 (共14页)

3R
R 2
3 3R 3 3 R2
4
2R
R
2 R 2 3 R 2
4 2R
2R2
3 3 2 R 2
6R
课本P109第6题
C x x A 4 B
2x
2x
x
当堂测试 《基础小练习》P
布置作业
《作业手册》P75-76
3.(09汕头)(1)如图1,圆内接△ABC 中,AB=BC=CA OD、OE为⊙O半径,OD⊥BC于点F,OE⊥AC 于点E, 1 求证:阴影部分四边形OFCG 的面积是△ABC面积的 3 角度不变, 求证:当 (2)如图2,若∠DOE保持120° ∠DOE绕着点O旋转时,由两条半径和△ABC的两条边围 1 成的图形(图中阴影部分)面积始终是△ABC的面积的 3 A A E G E O B F D 图1 C B D 图2 O C
正多边形 内 中心 角 角 边数 3 60° 120 90 90 4 120 60 6
半 径
边 边心 周 面 长 距 长 积
2 2 3 2 2 2 2
1
1
3
6 33 3
8 4 12 6 3
随堂训练
正多边形
1.课本P109第8题
半径 边长 边心距 周长 面积
正三角形
正四边形 正六边形
R
R R
1、什么是正多边形?
2、什么是正多边形的中心、半径、中心角、边心距? 3、正n边形的中心角、外角、内角各为多少度? 周长、面积时应建立什么样的模型来实现?其间体现了
4、通过研习例题,你认为计算正多边形的有关线段长、
什么数学思想方法? 5、完成【练习】第1、2题
时间:6分钟后检测自学效果.
自学效果检测

人教版九年级上册数学24.3《正多边形和圆》(第1课时)课件

人教版九年级上册数学24.3《正多边形和圆》(第1课时)课件
(7)正三角形的高∶半径∶边心距为__积是____.
5.课堂小结
(1)正多边形与圆有什么关系? (2)本节课学习了哪些与正多边形有关的概念? 在解决有关的计算问题时,关键是什么?
6.布置作业
教科书习题 24.3 第 1,6 题.
• 不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面 上的话,另一眼睛看到纸的背面。2022年4月12日星期二上午9时26分50秒09:26:5022.4.12
有一个亭子,它的地基是半径为 4 m的正六边形, 求地基的周长和面积(结果保留小数点后一位).
3.探究学习
亭子的地基是什么图形?求地基的周长和面积也就 是求什么图形的周长和面积?
正六边形的半径,分别将它分割成多少个什么样子 的三角形?
观察图形中所得的三角形具有什么关系?为什么? 将上图中的结论推而广之,你得出了什么结论?哪 位同学说说自己的想法?
3.探究学习
正 n 边形的 n 条半径、n 条边心距将正 n 边形分割 成全等直角三角形的个数是多少?
每个直角三角形都由正多边形的哪些元素组成?
4.强化练习
(1)正 n 边形的半径和边心距把正 n 边形分成___ 个全等的直角三角形;
(2)正三角形的半径为 R,则边长为_____,边心 距为______,面积为________.若正三角形边长为 a, 则半径为______;
2.小组合作学习
正多边形的边有什么性质、角有什么性质? 各边相等,各角相等. 什么叫正多边形的中心角? 正多边形的一边所对正多边形外接圆的圆心角.
2.小组合作学习
正 n 边形的中心角度数如何计算? 中心角的度数= 360

人教版九年级数学课件《正多边形和圆》

人教版九年级数学课件《正多边形和圆》

达标检测
人教版数学九年级上册
8.如图,M,N分别是☉O内接正多边形AB,BC上的点,且BM=CN.
(1)求图①中∠MON=_1_2_0__°__;图②中∠MON=90 ° ;
图③中∠MON=72 °;
(2)试探究∠MON的度数与正n边形的边数n的关系.
MON
360 n
A
E
A
D
M .O
M
B
NCB
图①
积等于4,求⊙O的面积.
解:∵正方形的面积等于4, ∴正方形的边长AB=2.
则半径为 AB sin 45 2. ∴⊙O的面积为 ( 2)2 2 .
达标检测
人教版数学九年级上册
7.如图,正六边形ABCDEF的边长为2 3 ,点P为六边形内任一点.则点
P到各边距离之和是多少? 解:过P作AB的垂线,分别交AB、DE于H、K, 连接BD,作CG⊥BD于G.
正多边形每一条边所对的圆心角,叫做正多边形的中心角.
360 正多边形的每个中心角都等于 n
针对练习
练一练
完成下面的表格:
正多边 形边数
3 4 6
n
内角
60 ° 90 ° 120 °
(n 2) 180 n
人教版数学九年级上册
正多边形的外角=中心角
中心角
120 ° 90 ° 60 °
360 n
外角
120 ° 90 ° 60 °
在Rt△OMB中,OB=4, MB=
∴BC=2MB=4,周长为 4×6=24m 利用勾股定理,可得边心距
r 42 22 2 3. 亭子地基的面积
S 1 l r 1 24 2 3 41.6(m2 ). 22
人教版数学九年级上册

人教版九年级数学上册课件243正多边形和圆课件人教新课标版ppt

人教版九年级数学上册课件243正多边形和圆课件人教新课标版ppt

OM , 则 OM AB 于 M , AM BM .
在 Rt AOM 中 ,
AOM 1 AOB 30 , 2
OM R ,tan 30 AM , OM
AM OM tan 30 1 3 R 3
AMB R
F
O
C
E
D
P6 6 AB 12 AM 4 3 R
1 S 6 2 6 AB OM
把正n边形的边数无限增多,就接近于圆.
正多边形

由圆怎样得到 正多边形?
探究
把一个圆4等分,并依次连接这些点, 得到正多边形吗??
正方形
探究 量角器作图
已知⊙O的半径为2cm,求作圆的内接正三角形
A
120 ° O
C
B
一题多解
①用量角器度量,使 ∠AOB=∠BOC=∠COA =120°.
②用量角器或30°角的三 角板度量,使 ∠BAO=∠CAO=30°.
正多边形的性质
60°
➢ 每条边都相等
108°
➢ 每个角都相等
135°
正n边形内角和: (n-2)180°
正多边形的性质
正五边形
正八边形
正三边形
➢ 轴对称图形,
什么叫中心?
➢ 一个正n边形共有n条对称轴,
➢ 每条对称轴都通过n边形的中心.
正多边形的性质
正八边形
正六边形
➢ 边数是偶数的正多边形 ➢ 是中心对称图形, ➢ 它的中心就是对称中心.
∵B⌒CE=C⌒DA=3A⌒B
∴∠1=∠2
34
C
D
同理∠2=∠3=∠4=∠5
又∵顶点A、B、C、D、E都在⊙O上,
∴五边形ABCDE是⊙O的内接正五边形.

最新人教版九年级数学上册243 正多边形和圆

最新人教版九年级数学上册243 正多边形和圆

6.将一块正六边形硬纸片(图 1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂
直于底面,见图 2),需在每一个顶点处剪去一个四边形,例如图中的四边形 AGA/H,那么∠GA/H
的大小是
度.
7.(200 6 年威海市)如图,若正方形 A1B1C1D1 内接于正方形 ABCD 的内接圆,则 A1B1 的值 AB
(3) 试探索∠APN 的度数与正多边形边数 n 的关系(直接写答案)
A
O.
N
P
B
C
M
图 10-1
A
D
.O
N
P
B
C
M
图 10-2
A
B
O.
E
P
N
C M
D
图 10-3
A
O.
P
B M
N C
图 10-4
24.3 正多边形和圆:
1.B. 2.C. 3.A 4.2. 5. 45° 6. 60° 7.B. 8. 10 2cm .
B. 3 : 2 :1
C.1: 2 : 3
D. 3 : 2 :1
4. 已知正六边形 ABCDEF 内接于⊙O,图中阴影部分的面积为 12 3 ,则⊙O 的半径为 ______________________.
E
A
D
O
B
C
5.如图,正方形 ABCD 内 接于⊙O,点 E 在 AD 上,则∠BEC=

24.3 正多边形和圆
1.下列边长为 a 的正多边形与边长为 a 的正方形组合起来,不能镶嵌成平面 的是( )
(1)正三角形 (2)正五 边形 (3)正六边形 (4)正八边形
A.(1)(2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档