海淀区2010-2011学年九年级第一学期期末考试数学试题及答案
北京市海淀区2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】
北京市海淀区2024-2025学年九年级数学第一学期开学统考模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)的结果是()A .2B .﹣2C .±2D .±42、(4分)如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为()A .B 1-C 1D .13、(4分)数据42.610-⨯用小数表示为()A .0.0026B .0.00026C .0.00026-D .0.0000264、(4分)已知关于x 的一元二次方程......()222340m x x m -++-=的一个根是0,则m 的值为()A .2m =±B .2m =C .2m =-D .1m =5、(4分)下列代数式属于分式的是()A .2xB .3yC .1xx -D .2x+y6、(4分)下列各式中,不是二次根式的是()A B C .D .7、(4分)方程20x x -=的根是()A .1x =B .120x x ==C .121x x ==D .10x =,21x =8、(4分)服装店为了解某品牌外套销售情况,对各种码数销量进行统计店主最应关注的统计量是()A .平均数B .中位数C .方差D .众数二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若式子有意义,则x 的取值范围为___________.10、(4分)如图,在菱形ABCD 中,∠ABC =∠EAF =60,∠BAE =20,则∠CEF =________.11、(4分)如图,在Rt △ABC 中,D 是斜边AB 的中点,AB=2,则CD 的长为_____.12、(4分)如图,双曲线3(0)y x x =>经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是_____.13、(4分)若分式2x x x 的值为零,则x=___________。
北京市海淀区九级(上)数学期末试卷
海淀区 2018-2018 学年九年级第一学期期末数学试卷(分数: 120 分时间: 120 分钟)一、选择题(此题共32 分,每题 4 分)下边各题均有四个选项,此中只有一个..是切合题意的.1.的值是()A.3B.- 3C.D.62.如图,将一张矩形纸片沿对角线剪开获得两个直角三角形纸片,将这两个直角三角形纸片经过图形变换组成以下四个图形,这四个图形中是中心对称图形的是 ( ).....矩形纸片A B C D3.如图,在△中,点、分别为边、上的点,且∥,若,,,则的长为()A.3B.6 C.9 D.124.二次函数的图象如下图,将其绕坐标原点O 旋转,则旋转后的抛物线的解读式为( )A .B .C. D .5.在平面直角坐标系中,以点为圆心, 4为半径的圆与y 轴所在直线的地点关系是 ()A .相离B.相切C.订交D.没法确立6.若对于的方程没有实数根,则的取值范围是A .B. C .D.7.如图,是⊙的切线,为切点,的延伸线交⊙于点,连结,若,,则等于 ( C. D.8.如图, Rt △ ABC 中, AC=BC =2 ,正方形CDEF 的极点 D 、F分别在 AC、 BC 边上,C、 D 两点不重合,设CD 的长度为 x,△ ABC 与正方形 CDEF 重叠部分的面积为y,则下列图象中能表示 y 与 x 之间的函数关系的是()yyy y22241111A B C D二、填空题(此题共16 分,每题 4 分)9.比较大小:(填“>”、“ =”或“ <”).10.如图,是⊙ O 上的点,若,则___________度.11.已知点 P( - 1,m)在二次函数的图象上,则m 的值为;平移此二次函数的图象,使点P 与坐标原点重合,则平移后的函数图象所对应的解读式为. 12.在△中,分别是边上的点,是边的等分点,,.如图1,若,,则∠+∠+∠++∠度;如图2,若,,则∠+∠+∠++∠(用含,的式子表示) .BP1P2P3F P n-1C E A图 2三、解答题(此题共30 分,每题 5 分)13.计算:.14.解方程:.15.如图,在△和△中,,为线段上一点,且.求证:.16.已知抛物线经过(0,- 1),(3,2)两点.求它的解读式及极点坐标.17.如图,在四边形ABCD 中,∥且,E是BC上一点,且.求证:.18.若对于的方程有实数根.(1)求的取值范围;(2)当获得最大整数值时,求此时方程的根.四、解答题(此题共20 分,每题 5 分)19.如图,用长为20M 的篱笆恰巧围成一个扇形花坛,且扇形花坛的圆心角小于180°,设扇形花坛的半径为M ,面积为平方 M .(注:的近似值取3)( 1)求出与的函数关系式,并写出自变量的取值范围;( 2)当半径为什么值时,扇形花坛的面积最大,并求面积的最大值.20.如图, AB 为O 的直径,射线AP 交O 于 C 点,∠ PCO 的均分线交O 于 D 点,过点 D作交AP于E点.( 1)求证: DE 为O 的切线;( 2)若,,求直径的长.21.已知二次函数.( 1)若点与在此二次函数的图象上,则(填“ >”、“ =”或“<”);( 2)如图,此二次函数的图象经过点,正方形ABCD 的极点C、 D 在 x 轴上,A、 B 恰幸亏二次函数的图象上,求图中暗影部分的面积之和.22.晓东在解一元二次方程时,发现有这样一种解法:如:解方程.解:原方程可变形,得.,,.直接开平方并整理,得.我们称晓东这类解法为“均匀数法”.( 1)下边是晓东用“均匀数法”解方程时写的解题过程.解:原方程可变形,得.,.直接开平方并整理,得¤.上述过程中的“”,“” ,“☆”,“¤”表示的数分别为_____,_____,_____, _____.(2)请用“均匀数法”解方程:.五、解答题(此题共22 分,第 23、 24 小题各 7 分,第 25 小题 8 分)23.已知抛物线().(1)求抛物线与轴的交点坐标;(2)若抛物线与轴的两个交点之间的距离为2,求的值;(3)若一次函数的图象与抛物线一直只有一个公共点,求一次函数的解读式.24.已知四边形ABCD 和四边形 CEFG 都是正方形,且AB>CE.( 1)如图 1,连结 BG、 DE.求证: BG=DE ;( 2)如图2,假如正方形ABCD 的边长为,将正方形CEFG 绕着点 C 旋转到某一地点时恰巧使得 C G//BD,BG=BD .①求的度数;②请直接写出正方形CEFG 的边长的值 .图 1图 225.如图 1,已知二次函数的图象与x轴交于A、B两点(B在A的左边),极点为C,点 D (1, m)在此二次函数图象的对称轴上,过点 D 作 y 轴的垂线,交对称轴右边的抛物线于 E 点.( 1)求此二次函数的解读式和点 C 的坐标;( 2)当点 D 的坐标为( 1, 1)时,连结BD、.求证:均分;( 3)点 G 在抛物线的对称轴上且位于第一象限,若以A、 C、 G 为极点的三角形与以G、D 、E 为极点的三角形相像,求点 E 的横坐标.图1备用图1备用图2海淀区九年级第一学期期末练习数学试卷答案及评分参照:1.,,, .2.,.3.,.32412345678A CB DC B B A1649<1013011 0,(2)12(2 )30,51354.5145.145 1552=3△△451650-1322341 - 25 175123△△.45 1851.12 212.34 ,52051951lM....2.3 2..5 205P 1:ECOD.21D,F 3.CDPCO A BO..1....DE O.2(2)O F..,.3,ODEF...4 Rt AOF...52151<.220 - 4m = - 43ABCDyOD=OC.Bn 2nn >0B..4 B24.=2 4=8522.5(1)42- 1- 7 .22..3.452223 24725823.71...x 1 00 .22..3...4 3..6.724.71...1..22BE.1BG=DE ...,.3,A D..4G,.BFC.E5.7 25.81 D 1 m1 C1-422D 1 1 DE y E 1 DE xyED EB O A xED E =C图 1A3,0B-1,0BD =BD=DE343ACG G D EGDEACGGA3,0C1-4,G1 1AG=AC=图 211/12AC=2 AG.GD=2 DE DE =2 GD .t >1.D G DE=t1-GD =() =.i.2GD =2 DE= 2(t- 1)..()5图 3 ii.3DE =2GDt - 1=2()..()6.DG DE=t - 1GD=1-()= -.i.4GD =2 DE= 2 t - 1 .图 4.()7=2 GDt- 1=2..()8E.图 512/12。
海淀区2021届初三第一学期期末考试数学试题及答案
海淀区初三第一学期期末学业水平调研数 学 2021.1一、 选择题(本题共24分,每小题3分) 1.已知反比例函数ky x=的图象经过点()2,3A ,则k 的值为 A .3B .4C .5D .62.围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.2017年5月,世界围棋冠军柯洁与人工智能机器人AlphaGo 进行围棋人机大战.截取首局对战棋谱中的四个部分,由黑白棋子摆成的图案是中心对称的是A .B .C .D .3.不透明袋子中有1个红球和2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,恰好是红球的概率为 A .13B .12C .23D .1 4.如图,△ABC 中,点D ,E 分别在边AB ,AC 的反向延长线上,且DE ∥BC .若AE =2,AC =4,AD =3,则AB 为 A .9 B .6C .3D .325.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是 A .10x -= B .20x x += C .210x -=D .210x +=B6.如图,⊙O的内接正六边形ABCDEF的边长为1,则BC的长为A.14πB.13πC.23πD.π7.已知二次函数2y ax bx c=++的部分图象如图所示,则使得函数值y大于2的自变量x的取值可以是A.-4B.-2C.0 D.28.下列选项中,能够被半径为1的圆及其内部所覆盖的图形是A的线段B.斜边为3的直角三角形C.面积为4的菱形D,圆心角为90°的扇形二、填空题(本题共24分,每小题3分)9.写出一个二次函数,使得它有最小值,这个二次函数的解析式可以是.10.若点(1,a),(2,b)都在反比例函数4yx=的图象上,则a与b的大小关系是:a b (填“>”、“=”或“<”).11.如图,△ABC为等腰三角形,O是底边BC的中点,若腰AB与⊙O相切,则AC与⊙O的位置关系为(填“相交”、“相切”或“相离”).12.关于x的一元二次方程230x x m-+=有一个根是1x=,则m=.CB13.某城市启动“城市森林”绿化工程,林业部门要考察某种树苗在一定条件下的移植成活率.在同样条件下,对这种树苗进行大量移植,并统计成活情况,数据如下表所示:估计树苗移植成活的概率是 (结果保留小数点后一位).14.如图,在测量旗杆高度的数学活动中,某同学在脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到旗杆的顶部.若眼睛距离地面AB =1.5 m ,同时量得BC =2 m ,CD =12 m ,则旗杆高度DE = m.15.如图,在Rt △ABC 中,∠ABC =90°,AB =BC =3,点D 在AC 上,且AD =2,将点D 绕着点A 顺时针方向旋转,使得点D 的对应点E 恰好落在AB 边上,则旋转角的度数为 ,CE 的长为 .16.已知双曲线3y x=-与直线y kx b =+交于点()11,A x y ,()22,B x y .(1)若120x x +=,则12y y += ;(2)若120x x +>时,120y y +>,则k 0,b 0(填“>”、“=”或“<”).A EDCB三、解答题(本题共52分,第17-20题,每小题5分,第21-23题,每小题6分,第24-25题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程:2430x x -+=.18.如图,在Rt △ABC 和Rt △ACD 中,∠B =∠ACD =90°,AC 平分∠BAD .(1)证明:△ABC ∽△ACD ;(2)若AB =4,AC =5,求BC 和CD 的长.CBAD19.如图1是博物馆展出的古代车轮实物,《周礼·考工记》记载:“……故兵车之轮六尺有六寸,田车之轮六尺有三寸……”据此,我们可以通过计算车轮的半径来验证车轮类型,请将以下推理过程补充完整.图1图2如图2所示,在车轮上取A、B两点,设AB所在圆的圆心为O,半径为r cm.作弦AB的垂线OC,D为垂足,则D是AB的中点.其推理的依据是:.经测量,AB=90cm,CD=15cm,则AD= cm;用含r的代数式表示OD,OD= cm.在Rt△OAD中,由勾股定理可列出关于r的方程:2r ,解得r=75.通过单位换算,得到车轮直径约为六尺六寸,可验证此车轮为兵车之轮.20.文具店购进了20盒“2B”铅笔,但在销售过程中,发现其中混入了若干“HB”铅笔.店员进行统计后,发现每盒铅笔中最多混入了2支“HB”铅笔,具体数据见下表:混入“HB”铅笔数012盒数6m n(1)用等式写出m,n所满足的数量关系;(2)从20盒铅笔中任意选取了1盒,①“盒中没有混入‘HB’铅笔”是事件(填“必然”、“不可能”或“随机”);②若“盒中混入1支‘HB’铅笔”的概率为14,求m和n的值.CB ADO21.如图,在平面直角坐标系xOy 中,线段AB 两个端点的坐标分别为A (1,2),B (4,2),以点O 为位似中心,相似比为2,在第一象限内将线段AB 放大得到线段CD .已知点B 在反比例函数(0)ky x x=>的图象上. (1)求反比例函数的解析式,并画出图象; (2)判断点C 是否在此函数图象上;(3)点M 为直线..CD 上一动点,过M 作x 轴的垂线,与反比例函数的图象交于点N .若MN AB ≥,直接写出点M 横坐标m 的取值范围.22.如图,Rt △ABC 中,∠ACB =90°,点D 在BC 边上,以CD 为直径的⊙O 与直线AB 相切于点E ,且E 是AB 中点,连接OA .(1)求证:OA =OB ;(2)连接AD ,若AD=,求⊙O 的半径.CBAOEDxy23.在平面直角坐标系xOy 中,点1(,)P m y 在二次函数2y x bx c =++的图象上,点()2,Q m y 在一次函数4y x =-+的图象上.(1)若二次函数图象经过点(0,4),(4,4).①求二次函数的解析式与图象的顶点坐标; ②判断0m <时,1y 与2y 的大小关系;(2)若只有..当1m ≥时,满足120y y ⋅≤,求此时二次函数的解析式.xy24.已知45MAN ∠=︒,点B 为射线AN 上一定点,点C 为射线AM 上一动点(不与点A 重合),点D 在线段BC 的延长线上,且CD CB =.过点D 作DE ⊥AM 于点E .图1 图2(1)当点C 运动到如图1的位置时,点E 恰好与点C 重合,此时AC 与DE 的数量关系是 ;(2)当点C 运动到如图2的位置时,依题意补全图形,并证明:2AC =AE +DE ; (3)在点C 运动的过程中,点E 能否在射线AM 的反向延长线上?若能,直接用等式表示线段AC 、AE 、DE 之间的数量关系;若不能,请说明理由.NMDC (E )BA25.如图1,对于△PMN 的顶点P 及其对边MN 上的一点Q ,给出如下定义:以P 为圆心,PQ 为半径的圆与直线MN 的公共点都在线段MN 上,则称点Q 为△PMN 关于点P 的内联点.图1 图2在平面直角坐标系xOy 中:(1)如图2,已知点(7,0)A ,点B 在直线1y x =+上.① 若点(3,4)B ,点(3,0)C ,则在点O ,C ,A 中,点_______是△AOB 关于点B 的内联点;②若△AOB 关于点B 的内联点存在,求点B 纵坐标n 的取值范围;(2)已知点(2,0)D ,点(4,2)E ,将点D 绕原点O 旋转得到点F ,若△EOF 关于点E的内联点存在,直接写出点F 横坐标m 的取值范围.QNMP海淀区初三第一学期期末学业水平调研数 学 2021.1参考答案一、选择题 (本题共24分,每小题3分)二、填空题(本题共24分,每小题3分) 9.不唯一,例如:2y x = 10.> 11.相切 12.2 13.0.9 14.915.45 (注:第一个空2分,第二个空1分) 16.(1)0;(2)<;>.(每空1分)三、解答题(本题共52分,第17~20题每题5分,第21~23题每题6分,第27~28题,每小题7分) 17.解:方法一:24410x x -+-=()221x -=……………………………………………………3分21x -=±121,3x x ==.……………………………………………………5分方法二:()2244434b ac ∆=-=--⨯=.422x ±=, ……………………………………3分121,3x x ==.……………………………………………………5分方法三: (1)(3)0x x --=………………………………3分10x -=或30x -=121,3x x ==.……………………………………………………5分18.(1)证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC . ………………………………………………1分 ∵∠B =∠ACD =90°,∴△ABC ∽△ACD . ………………………………………………3分(2)解:在Rt △ABC 中,∠B =90°,∵AB =4,AC =5,∴3BC .………………………………………………4分 ∵△ABC ∽△ACD , ∴AB BCAC CD =. ∴435CD=, ∴154CD =. ………………………………………………5分19. 垂直于弦的直径平分弦; ………………………………………………1分 45; ………………………………………………2分()15r -; ………………………………………………3分()224515r +-. ………………………………………………5分20.(1)14m n +=. ………………………………………………2分 (2)①随机 ………………………………………………3分②解:∵盒中混入1支‘HB ’铅笔的概率为14, ∴12054m =⨯=. ………………………………………………4分 ∵14m n +=,∴9n =. ………………………………………………5分21.(1)∵ 点B (4,2)在反比例函数ky x=的图象上, ∴ 428k =⨯=,即该函数的解析式为8y x=(0)x >. …………2分 如图…………3分(2)点C 在反比例函数的图象上. …………4分 (3)807m <≤或 8m ≥ …………6分 22.(1)证明:在⊙O 中,连接OE .∵ 直线AB 与⊙O 相切于点E ,∴ OE ⊥AB . …………1分 ∵ E 是AB 中点,∴ OA =OB . …………2分 (2)解:∵ OA =OB , ∴ ∠OAE =∠B . ∵∠ACB =90°,∴AE ,AC 是⊙O 的切线, ∴∠OAE =∠OAC .(切线长定理) ∴ ∠OAE =∠OAC =∠B . ∵ ∠OAE +∠OAC +∠B =90°, ∴ ∠OAC =30°.…………4分设⊙O 的半径为r ,则CD =2r 在Rt △AOC 中,AO =2OC =2r .∴ AC =. …………5分 在Rt △ACD 中,222AC CD AD +=,AD , ∴)()2227r +=,解得1r =.∴ ⊙O 的半径为1. …………6分23.(1)① ∵ 二次函数2y x bx c =++的图象过点(0,4),(4,4),∴4c =,1644b c ++=. --------1分 ∴ 4b =-.∴ 二次函数的解析式为244y x x =-+. …………2分 ∵ ()22y x =-,∴ 该二次函数的顶点坐标为(2,0). …………3分 ② 12y y >,…………4分(2)∵只有当1m ≥时,120y y ⋅≤,∴当1m <时,120y y ⋅>.而点2(,)Q m y 在一次函数4y x =-+图象上, ① 当1m <时,20y >,而120y y ⋅>,因此10y >; ② 当14m ≤<时,20y >,而120y y ⋅≤,因此10y ≤; ③ 当4m >时,20y <,而120y y ⋅≤,因此10y ≥;∵点1(,)P m y 在二次函数2y x bx c =++的图象上,∴当1m =或4时,10y =. …………5分∴平移后的二次函数解析式为2(1)(4)54y x x x x =--=-+…………6分(2)补全图形, …………3分证明:法1:在射线AM 上取点F ,使AC =CF , ∵ AC =CF ,BC =CD ,∠BCA =∠DCF , ∴ △ABC ≌△FDC . ∴ ∠DFE =∠A =45°. ∵ DE ⊥AM , ∴ DE =EF . ∵ AF =AE +EF =2AC , ∴ 2AC =AE +DE . …………5分法2:作BF ⊥AM 于点F , ∵ BF ⊥AM ,DE ⊥AM , ∴ ∠BFC =∠DEC =90°. ∵ CD =CB ,∠BCF =∠DCE , ∴ △BCF ≌△DCE . ∴ CF =CE ,BF =DE . ∵ ∠MAN =45°, ∴ AF =BF =DE .∴ AE +DE =AF +FE +DE =2(AF+FC)=2AC . …………5分 结论得证.(3)点E 能在线段AC 此时2AC +AE =DE . …………7分AA② 过点B 作BH ⊥x 轴于点H ,如图,根据定义,若点H 在线段OA 上,则H 为△AOB 关于点B 的一个内联点;若点H 不在线段OA 上,则对于线段OA 上任意一点Q ,其关于BH 的对称点Q '即为以B 为圆心,BQ 为半径的圆与直线AB 的另一个交点,而点Q '不在线段OA 上,此时△AOB 关于点B 的内联点不存在.因此要满足题意,H 点必须在OA 上. ∴点B 的横坐标的取值范围是07B x ≤≤.由于点B 在直线1y x =+上,所以点B 的纵坐标n 的取值范围是18n ≤≤. …………5分(2)0m ≤≤85m ≤. …………7分。
高等数学期末考试试题及答案(大一考试)
五、设函数由方程确定,求.(8分)六、若有界可积函数满足关系式,求。
(8分)七、求下列各不定积分(每题6分,共12分)(1).八、设求定积分。
(6分)九、讨论函数的单调区间、极值、凹凸区间和拐点坐标.(10分)十、求方程的通解(6分)十一、求证:.(5分)第一学期高等数学(上)(A)卷分标准题3分,共15分)2。
B 3。
D 4。
B 5.D分,共18分)为任意常数),4. 2 , 5。
6。
分 (6)分解:………………3分…………….6分 (8)导 (3)数)…………6分分解:(1)。
……。
.3分 (6)分分=……………6分时有极大值2,有极小值。
在上是凸的,在上是凹的,拐点为(0,0)………10分十、解;…………………..3分设方程(1)的解为代入(1)得………5分…………………….6分十一、证明:令………………1 分又…。
3分的图形是凸的,由函数在闭区间连续知道最小值一定在区间端点取到。
,所以…………。
5分.(2010至2011学年第一学期)一、单项选择题(15分,每小题3分)1、当时,下列函数为无穷小量的是( )(A)(B) (C)(D)2.函数在点处连续是函数在该点可导的()(A)必要条件(B)充分条件(C)充要条件(D)既非充分也非必要条件3.设在内单增,则在内()(A)无驻点(B)无拐点(C)无极值点(D)4.设在内连续,且,则至少存在一点使()成立。
(A)(B)(C)(D)5.广义积分当( )时收敛。
(A) (B) (C)(D)二、填空题(15分,每小题3分)1、若当时,,则;2、设由方程所确定的隐函数,则;3、函数在区间单减;在区间单增;4、若在处取得极值,则;5、若,则;三、计算下列极限.(12分,每小题6分)1、2、四、求下列函数的导数(12分,每小题6分)1、,求2、,求五、计算下列积分(18分,每小题6分)1、2、3、设,计算六、讨论函数的连续性,若有间断点,指出其类型。
(7分)七、证明不等式:当时,(7分)八、求由曲线所围图形的面积。
北京海淀区北京市十一学校2022-2023学年九年级上学期期末数学试题及解析
北京海淀区北京市十一学校2022-2023学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若)(250y x xy =≠,则下列比例式正确的是( ) A .52x y=B .25x y= C .25x y = D .25y x = 2.在Rt ABC △中,90C ∠=︒,4AB =,3BC =,则sin A 的值是( )A B .34C .35D .453.在平面直角坐标系xOy 中,抛物线2y x =向上平移2个单位长度得到的抛物线为( ) A .)(22y x =+B .)(22y x =-C .22y x =-D .22y x =+4.在平面直角坐标系xOy 中,抛物线)(20y ax bx c a =++≠的示意图如图所示,下列说法中正确的是( )A .a<0B .0b <C .0c >D .0∆>5.在平面直角坐标系xOy 中,若函数)(0ky x x=<的函数值y 随着自变量x 的增大而增大,则函数)(0ky x x=<的图象所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限6.如图,四边形ABCD 内接于O ,若四边形ABCO 是菱形,则D ∠的度数为( )A .45°B .60°C .90°D .120°7.正方形的面积y 与它的周长x 满足的函数关系是( ) A .正比例函数B .一次函数C .二次函数D .反比例函数8.在平面直角坐标系xOy 中,点123(1)(2)(4)y y y -,,,,,在抛物线22y ax ax c =-+上,当0a >时,下列说法一定正确的是( ) A .若120y y <,则30y > B .若230y y >,则10y < C .若130y y <,则20y >D .若1230y y y =,则20y =二、填空题 9.如图,ABCD ,AD ,BC 交于点O ,12AO OD =.若3BO =,则OC 的长为______.10.在半径为3的圆中,60°的圆心角所对的劣弧长等于_____. 11.如图,在平面直角坐标系xOy 中,P 为函数)(0my x x=>图象上一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为M ,N .若矩形PMON 的面积为3,则m 的值为______.12.如图,ABC 的高AD ,BE 相交于点O ,写出一个与AOE △相似的三角形,这个三角形可以是______.13.如图,PA ,PB 是O 的切线,切点分别为A ,B .若30OBA ∠=︒,3PA =,则AB 的长为________.14.有一块三角形的草坪,其中一边的长为10m .在这块草坪的图纸上,这条边的长为5cm .已知图纸上的三角形的周长为15cm ,则这块草坪的周长为______m . 15.北京冬奥会雪上项目竞赛场地“首钢滑雪大跳台”巧妙地融入了敦煌壁画“飞天”元素.如图,赛道剖面图的一部分可抽象为线段AB .已知坡AB 的长为30m ,坡角ABH∠约为37°,则坡AB 的铅直高度AH 约为______m .(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈.)16.如图,在平面直角坐标系xOy 中,P 为x 轴正半轴上一点.已知点)(0,2A ,)(0,8B ,M 为ABP 的外接圆.(1)点M 的纵坐标为______;(2)当APB ∠最大时,点P 的坐标为______.三、解答题17)(0604cos 451π︒-︒--18.如图,AE 平分BAC ∠,D 为AE 上一点,B C ∠=∠.(1)求证:ABEACD ;(2)若D 为AE 中点,4BE =,求CD 的长.19.在平面直角坐标系xOy 中,已知抛物线243y x x =-+. (1)求它的顶点坐标; (2)求它与x 轴的交点坐标.20.下面是小石设计的“过三角形一个顶点作其对边的平行线”的尺规作图过程. 已知:如图,ABC .求作:直线BD ,使得BD AC ∥. 作法:如图,①分别作线段AC ,BC 的垂直平分线1l ,2l ,两直线交于点O ; ①以点O 为圆心,OA 长为半径作圆;①以点A 为圆心,BC 长为半径作弧,交AB 于点D ; ①作直线BD .所以直线BD 就是所求作的直线. 根据小石设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明. 证明:连接AD ,①点A ,B ,C ,D 在O 上,AD BC =, ①AD =______.①DBA CAB ∠=∠(______)(填推理的依据). ①BD AC ∥.21.如图,在ABC 中,45B ∠=︒,2tan 3C =,AC =BC 的长.22.在平面直角坐标系xOy 中,二次函数图象上部分点的横坐标x ,纵坐标y 的对应值如下表:(1)求这个二次函数的表达式; (2)画出这个二次函数的图象;(3)若3y <-,结合函数图象,直接写出x 的取值范围.23.如图,AB 为O 的直径,点C 在O 上,连接AC ,BC ,过点O 作OD BC ⊥于点D ,过点C 作O 的切线交OD 的延长线于点E .(1)求证:E B ∠=∠;(2)连接AD .若CE =8BC =,求AD 的长.24.如图,排球运动场的场地长18m ,球网高度2.24m ,球网在场地中央,距离球场左、右边界均为9m .一名球员在场地左侧边界练习发球,排球的飞行路线可以看作是对称轴垂直于水平面的抛物线的一部分.某次发球,排球从左边界的正上方发出,击球点的高度为2m ,当排球飞行到距离球网3m 时达到最大高度2.5m .小石建立了平面直角坐标系xOy (1个单位长度表示1m ),求得该抛物线的表达式为215722y x =-+.根据以上信息,回答下列问题:(1)画出小石建立的平面直角坐标系; (2)判断排球能否过球网,并说明理由.25.在平面直角坐标系xOy 中,反比例函数)(0ky k x=≠的图象过点)(2,3A . (1)求k 的值;(2)过点)()(,00P m m ≠作x 轴的垂线,分别交反比例函数)(0ky k x =≠,4y x=-的图象于点M ,N .①当2m =-时,求MN 的长;①若5MN ≥,直接写出m 的取值范围.26.在平面直角坐标系xOy 中,()11,A m y -,()23,B y 是抛物线2224y x mx m =-+-上两点.(1)将2224y x mx m =-+-写成()2y a x h k =-+的形式; (2)若1m =,比较1y ,2y 的大小,并说明理由; (3)若12y y <,直接写出m 的取值范围.27.如图,AD 是ABC 的高,点B 关于直线AC 的对称点为E ,连接CE ,F 为线段CE 上—点(不与点E 重合),AF AB =.(1)比较AFE ∠与ABC ∠的大小;(2)用等式表示线段BD ,EF 的数量关系,并证明.(3)连接BF ,取BF 的中点M ,连接DM .判断DM 与AC 的位置关系,并证明.28.在平面直角坐标系xOy 中,O 的半径为2.点P ,Q 为O 外两点,给出如下定义:若O 上存在点M ,N ,使得P ,Q ,M ,N 为顶点的四边形为矩形,则称点P ,Q 是O 的“成对关联点”.(1)如图,点A ,B ,C ,D 横、纵坐标都是整数.在点B ,C ,D 中,与点A 组成O 的“成对关联点”的点是______;(2)点)(,E t t 在第一象限,点F 与点E 关于x 轴对称.若点E ,F 是O 的“成对关联点”,直接写出t 的取值范围;(3)点G 在y 轴上.若直线4y =上存在点H ,使得点G ,H 是O 的“成对关联点”,直接写出点G 的纵坐标G y 的取值范围.参考答案:1.C【分析】根据“内项之积等于外项之积”对四个选项进行计算,然后与条件进行对比即可判断. 【详解】解:A 、52xy =,得25x y =,故选项A 不符合题意; B 、 25x y=,得10xy =,故选项B 不符合题意; C 、25x y =,得52x y =,故选项C 符合题意; D 、25y x =,得52y x =,故选项D 不符合题意; 故选:C .【点睛】此题主要考查了比例的性质,正确将已知变形是解题关键. 2.B【分析】根据锐角的正弦为对边比斜边求出sin A 的值即可. 【详解】解:在Rt ABC △中,90C ∠=︒,4AB =,3BC =, ①3sin 4BC A AB ==. 故选:B .【点睛】本题考查锐角三角函数的定义及运用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边. 3.D【分析】抛物线的平移规律:左加右减,上加下减,利用平移规律直接可得答案. 【详解】解:抛物线2y x =向上平移2个单位长度得到的抛物线为22,y x故选D【点睛】本题考查的是抛物线的平移,掌握“抛物线的上下平移规律”是解本题的关键. 4.A【分析】根据抛物线开口方向可得a<0,可对A 进行判断;根据对称轴位置可得b >0,可对B 进行判断;根据抛物线与y 轴交点位置可得c <0,可对C 进行判断;根据抛物线与x 轴无交点可得①<0,可对D 进行判断;综上即可得答案. 【详解】①抛物线开口向下, ①a<0,故A 选项正确, ①对称轴在y 轴右侧,①2ba->0, ①b >0,故B 选项错误, ①抛物线与y 轴交于y 轴负半轴, ①c <0,故C 选项错误, ①抛物线与x 轴无交点, ①①<0,故D 选项错误, 故选:A .【点睛】本题考查二次函数图象与系数的关系,当a =0时,抛物线开口向上,当a <0时,开口向下;当对称轴在y 轴左侧时,a 、b 同号,当对称轴在y 轴右侧时,a 、b 异号;c 的符号由图象与y 轴的交点位置决定;当①>0时,图象与x 轴有2个交点,当①=0时,图象与x 轴有1个交点;①<0时,图象与x 轴没有交点;熟练掌握相关知识是解题关键. 5.B【分析】根据反比例函数的性质求解. 【详解】解:反比例函数)(0ky x x=<的函数值y 随着自变量x 的增大而增大, 所以双曲线的两支分别位于第二、第四象限,而x <0,则分支在第二象限. 故选:B .【点睛】本题考查了反比例函数的性质:反比例函数ky x=(k ≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大. 6.B【分析】设①ADC =α,①ABC =β,由菱形的性质与圆周角定理可得18012,求出β即可解决问题.【详解】解:设①ADC =α,①ABC =β; ①四边形ABCO 是菱形, ①①ABC =①AOC β=; ∴ ①ADC =12β;四边形ABCD 为圆的内接四边形,∴α+β=180°,①18012,解得:β=120°,α=60°,则①ADC =60°, 故选:B .【点睛】该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键. 7.C【分析】由周长,先求出正方形的边长,然后结合面积公式,即可得到答案. 【详解】解:①正方形的周长为x ,①正方形的边长为4x,①正方形的面积221()416x y x ==; 故选:C .【点睛】本题考查了函数表达式,解题的关键是掌握正方形的面积和周长公式. 8.A【分析】根据二次函数解析式可得抛物线对称轴及开口方向,根据各点横坐标可判断312y y y >>,进而求解.【详解】解:①22y ax ax c =-+中0a >, ①抛物线开口向上,对称轴为直线212ax a-=-=, ①411(1)21->-->-, ①312y y y >>,当120y y <时,12y y ,异号, ①1200y y ><,,①310y y >>,选项A 正确. 当3120y y y >>>时,230y y >, ①选项B 错误,当130y y <时,3100y y ><,, ①210y y <<,选项C 错误.当1230y y y =时,123y y y ,,中有1个值为0即可, ①选项D 错误. 故选:A .【点睛】本题考查二次函数图象上点的坐标特征,解题关键是掌握二次函数的性质,掌握二次函数图象与系数的关系. 9.6【分析】根据ABCD 可以证明ODC OAB △∽△,进而得出比例式,再根据12AO OD =和3BO =即可求出OC 的长度. 【详解】解:①ABCD ,AD ,BC 交于点O ,①D A ∠=∠,C B ∠=∠. ①ODC OAB △∽△. ①OD OCOA OB=. ①12AO OD =, ①2ODOA=. ①2OCOB=. ①3BO =, ①6OC =. 故答案为:6.【点睛】本题考查相似三角形的判定定理和性质,综合应用这些知识点是解题关键. 10.π【分析】弧长公式为l =n 180rπ,把半径和圆心角代入公式计算就可以求出弧长. 【详解】解:半径为3的圆中,60°的圆心角所对的劣弧长=603180π⨯=π, 故答案为:π.【点睛】本题主要考查了弧长计算,关键是掌握弧长计算公式.11.3【分析】根据反比例函数的解析式是m y x=,设点(,)P a b ,根据已知得出3ab =,即3xy =,求出即可.【详解】解:设反比例函数的解析式是my x=, 设点(,)P a b 是反比例函数图象上一点, 矩形PMON 的面积为3,3ab ∴=,即3m xy ==, 故答案为:3.【点睛】本题考查了矩形的面积和反比例函数的有关内容的应用,解题的关键是主要考查学生的理解能力和运用知识点解题的能力. 12.ACD ∆(答案不唯一)【分析】根据已知条件得到90AEO BDO ∠=∠=︒,AOE BOD ∠=∠,推出AOE BOD ∆∆∽;同理AOE ACD ∆∆∽,根据相似三角形的性质得到AFE C ∠=∠,又90AEO BEC ∠=∠=︒,于是得到AOE BCE ∆∆∽.【详解】解:本题答案不唯一;与AOE ∆相似的三角形有:BOD ∆,ACD ∆,BCE ∆, 选择求证:ACD AOE ∆∆∽.证明:ABC ∆的高AD ,BE 交于点O ,90ADC AEO ∴∠=∠=︒. CAD OAE ∠=∠, ACD AOE ∴∆∆∽,故答案是:ACD ∆.【点睛】本题考查了相似三角形的判定,三角形的高的定义,解题的关键是掌握有两角对应的两个三角形相似. 13.3【分析】根据切线长定理和切线的性质,得出PA PB =,90PBO ∠=︒,再根据等腰三角形的判定定理,得出PAB 为等腰三角形,再根据角之间的数量关系,得出60PBA ∠=︒,再根据等边三角形的判定定理,得出PAB 为等边三角形,再根据等边三角形的性质,得出AB PA =,进而即可得出答案.【详解】解:①PA ,PB 分别为O 的切线, ①PA PB =,90PBO ∠=︒, ①PAB 为等腰三角形, ①30OBA ∠=︒,①60PBA PBO OBA ∠=∠-∠=︒, ①PAB 为等边三角形, ①AB PA =, ①3PA =, ①3AB =. 故答案为:3【点睛】本题考查了切线长定理、切线的性质、等腰三角形的判定定理、等边三角形的判定与性质,解本题的关键在熟练掌握相关的性质定理. 14.30【分析】设这块草坪的周长为x m ,由实际的三角形草坪与图纸上的三角形草坪是相似三角形,再利用相似三角形的性质列方程即可. 【详解】解:设这块草坪的周长为x m ,由题意可得:实际的三角形草坪与图纸上的三角形草坪是相似三角形,10,155x解得:30x =,所以这块草坪的周长为30m. 故答案为:30【点睛】本题考查的是相似三角形的性质,掌握“相似三角形的周长之比等于相似比”是解本题的关键. 15.18【分析】由30,37,90,AB ABHAHB 结合sin 37,AHAB再解方程即可. 【详解】解:由题意得:30,37,90,AB ABH AHBsin 37,AHAB300.6018AHm ,故答案为:18【点睛】本题考查的是解直角三角形的实际应用,掌握“由锐角的正弦求解直角三角形的边长”是解本题的关键. 16. 5 (4,0)【分析】(1)根据点M 在线段AB 的垂直平分线上求解即可;(2)点P 在①M 切点处时,APB ∠最大,而四边形OPMD 是矩形,由勾股定理求解即可. 【详解】解:(1)①①M 为△ABP 的外接圆, ①点M 在线段AB 的垂直平分线上, ①A (0,2),B (0,8), ①点M 的纵坐标为:8252+=, 故答案为:5;(2)过点)(0,2A ,)(0,8B ,作①M 与x 轴相切,则点M 在切点处时,APB ∠最大, 理由:若点P '是x 轴正半轴上异于切点P 的任意一点, 设AP '交①M 于点E ,连接AE ,则①AEB =①APB , ①①AEB 是ΔA P 'E 的外角, ①①AEB>①A P 'B ,①①APB >①A P 'B ,即点P 在切点处时,①APB 最大, ①①M 经过点A (0,2)、B (0,8),①点M 在线段AB 的垂直平分线上,即点M 在直线y =5上,①①M 与x 轴相切于点P ,MP ①x 轴,从而MP =5,即①M 的半径为5,设AB 的中点为D ,连接MD 、AM ,如上图,则MD ①AB ,AD =BD =12AB =3,BM =MP =5,而①POD =90°,①四边形OPMD 是矩形,从而OP =MD , 由勾股定理,得MD 4=, ①OP =MD =4,①点P 的坐标为(4,0),故答案为:(4,0).【点睛】本题考查了切线的性质,线段垂直平分线的性质,矩形的判定及勾股定理,正确作出图形是解题的关键. 17.2【分析】将特殊角的三角函数值代入,然后利用二次根式的运算法则计算即可得.()0604cos 451π︒-︒--41-+31=-+2=.【点睛】题目主要考查特殊角的三角函数值的计算,二次根式的混合运算,0次幂的运算,熟记特殊角的三角函数值是解题关键. 18.(1)证明见详解;(2)CD 的长为2.【分析】(1)由角平分线的定义可得BAE EAC ∠=∠,根据相似三角形的判定定理即可证明; (2)由中点的定义可得12AD AE =,再由(1)中结论相似三角形的性质即可得. 【详解】解:(1)证明∵AE 平分BAC ∠, ∴BAE EAC ∠=∠, 在ABE ∆与ACD ∆中, ∵BAE EAC ∠=∠,B C ∠=∠,∴~ABE ACD ∆∆;(2)∵D 为AE 中点, ∴12AD AE =, ∵~ABE ACD ∆∆, ∴12AD CD AE BE ==, ∴122CD BE ==, ∴CD 的长为2.【点睛】题目主要考查相似三角形的判定和性质,角平分线和线段中点的性质,熟练掌握相似三角形的判定和性质是解题关键. 19.(1)()2,1-;(2)1,0,3,0. 【分析】(1)把抛物线化为顶点式即可;(2)令0,y = 则2430,x x -+=再利用因式分解法解一元二次方程即可. 【详解】解:(1)224321,yx x x所以抛物线的顶点坐标为:2,1. (2)令0,y = 则2430,x x -+=()()130,x x ∴--=10x ∴-=或30,x -=解得:121,3,x x ==所以抛物线与x 轴的交点坐标为:1,0,3,0.【点睛】本题考查的是求解抛物线的顶点坐标,抛物线与x 轴的交点坐标,掌握“把抛物线化为顶点式以及把0y =代入抛物线求解与x 轴的交点坐标”是解本题的关键. 20.(1)作图见解析;(2),BC 在同圆中,等弧所对的圆周角相等 【分析】(1)根据题干的作图步骤依次作图即可;(2)由作图可得AD BC =,证明AD BC =,利用圆周角定理可得DBA CAB ∠=∠,从而可得答案.【详解】解:(1)如图,直线BD 就是所求作的直线(2)证明:连接AD ,①点A ,B ,C ,D 在O 上,AD BC =, ①AD BC =.①DBA CAB ∠=∠(在同圆中,等弧所对的圆周角相等). ①BD AC ∥.故答案为:,BC 在同圆中,等弧所对的圆周角相等【点睛】本题考查的是作线段的垂直平分线,三角形的外接圆,平行线的作图,圆周角定理的应用,掌握“圆周角定理”是理解作图的关键. 21.10【分析】过点A 作AD ①BC ,结合三角函数值,分别求出BD 、CD 的长度,即可得到答案. 【详解】解:根据题意,过点A 作AD ①BC ,如图:①①ABD ,①ACD 都是直角三角形, ①2tan 3AD C CD ==, 设2AD x =,3CD x =,①AC == 解得:2x =(负值已舍去), ①4=AD ,6CD =, ①45B ∠=︒, ①4BD AD ==, ①4610BC =+=;【点睛】本题考查了三角函数,勾股定理,等腰直角三角形的性质,解题的关键是正确的求出BD 、CD 的长度.22.(1)22y x x =-+;(2)图象见解析;(3)1x <-或x >3【分析】(1)设二次函数的表达式为2y ax bx c =++,根据三组横坐标x 和纵坐标y 的值列出方程组求出a ,b ,c 的值即可得到二次函数的表达式;(2)计算并补充出一些横坐标x 和纵坐标y 的对应值,然后在平面直角坐标系中描点,并用平滑曲线连接即可;(3)根据二次函数的图象应用数形结合思想即可得到x 的取值范围. 【详解】解:(1)设二次函数的表达式为2y ax bx c =++. 将三组横坐标x ,纵坐标y 的值代入可得222000,111,022a b c a b c a b c ⎧=⨯++⎪=⨯++⎨⎪=⨯++⎩.解得1,2,0a b c =-⎧⎪=⎨⎪=⎩.所以二次函数的表达式为22y x x =-+. (2)横坐标x 与纵坐标y 的对应值如下表:建立平面直角坐标系,描点并用平滑曲线连接即可得到该二次函数的图象.(3)3y <-,即223x x -+<-.根据(2)中二次函数图象可以看出当1x <-或x >3时,3y <-. 所以x 的取值范围是1x <-或x >3.【点睛】本题考查二次函数的解析式,二次函数的图象和性质,熟练掌握这些知识点是解题关键.23.(1)证明见解析;(2)AD 【分析】(1)连接OC 通过垂径定理和等腰三角形性质证明①E =①B(2)连接AD 通过计算发现BC =EC ,再通过证明①CED ①①ABC 得到AC =DC =4. 【详解】(1)证明:连接OC 如图:OD ①CB①OB =OC ,①B =OCD又CE 为圆O 的切线①OC ①CE①①ECD +①DCO =①ECD +①E =90°①①E =①DCO =①B①①E =①B(2)连接AD 如图①①EDC 为R t①①DE由(1)得①E =①B又AB 为直径①①BCA =90°在①CED 和①ABC 中 ①B E EDC BCA ED BC ∠=∠⎧⎪∠=∠⎨⎪=⎩①①CED ①①ABC (AAS )①AC =DC =12BC =4①AD ==【点睛】本题考查垂径定理和全等三角形的判定与性质,掌握这些是本题解题关键.24.(1)见解析;(2)排球能过球网,理由见解析【分析】(1)根据该抛物线的表达式为215722y x =-+,可得抛物线的顶点坐标为50,2⎛⎫⎪⎝⎭,从而得到小石建立的平面直角坐标系是以O 为坐标原点,OB 所在的直线为x 轴,OA 所在的直线为y 轴,即可求解;(2)根据题意得:当3x = 时,2153 2.375 2.24722y =-⨯+=> ,即可求解. 【详解】解:(1)如图,①该抛物线的表达式为215722y x =-+, ①抛物线的顶点坐标为50,2⎛⎫ ⎪⎝⎭ ,①当排球飞行到距离球网3m 时达到最大高度2.5m .根据题意得:点A 的坐标为50,2⎛⎫ ⎪⎝⎭,①小石建立的平面直角坐标系是以O 为坐标原点,OB 所在的直线为x 轴,OA 所在的直线为y 轴,如下图:(2)排球能过球网,理由如下:根据题意得:点B 的横坐标为3,①当3x = 时,2153 2.375 2.24722y =-⨯+=> , ①排球能过球网.【点睛】本题主要考查了建立二次函数的图象和性质,建立适当的平面直角坐标系,熟练掌握二次函数的图象和性质是解题的关键.25.(1)6;(2)①5;①20m -<<或02m <<【分析】(1)把(2,3)A 代入k y x =中即可得出k 的值; (2)①令2x =-代入6y x =和4y x =-中,求出点M 、N 的坐标,即可得出MN 的长; ①令x m =代入6y x =和4y x=-中,求出点M 、N 的坐标,即可得出MN 含m 的表达式,由5MN >即可求出m 的取值范围.【详解】(1))把(2,3)A 代入k y x=中得:32k =, ①6k =;(2)①令2x =-代入6y x =中得:632y ,①(2,3)M --, 令2x =-代入4y x =-中得:422y =-=-, ①(2,2)N -,①235MN =+=;①令x m =代入6y x =中得:6y m =, ①6(2,)M m-, 令x m =代入4y x=-中得:4y m =-, ①4(2,)N m --,①6410+MN m m m==, 当0m >时,105MN m=>, 解得:2m <,①02m <<, 当0m <时,105MN m=->, 解得:2m >-,①20m -<<, 综上述所,m 的取值范围为20m -<<或02m <<.【点睛】本题考查反比例函数的综合应用,掌握待定系数法求解析式以及两点长度的表示是解题的关键.26.(1)()24y x m =-- (2)12y y <(3)2m <或4m >【分析】(1)利用完全平方公式即可求解;(2)当1m =时,确定函数解析式,根据点A ,点B 到对称轴的距离即可判断1y ,2y 的大小; (3)先求出抛物线的对称轴,根据12y y <可知点A 到对称轴的距离小于点B 到对称轴的距离,解不等式即可.【详解】(1)解:2224y x mx m =-+-()24x m =--;(2)解:12y y <,理由如下:若1m =,则抛物线的解析式为()214y x =--,()10,A y ,()23,B y , ∴对称轴为1x =,0131-<-,∴点()23,B y 到对称轴的距离大于点()10,A y 到对称轴的距离,0a >,∴12y y <;(3)解:()24y x m =--的图象开口向上,对称轴为x m =, ∴点()11,A m y -到对称轴的距离为11m m --=,点()23,B y 到对称轴的距离为3m -,12y y <, ∴31m ->,∴31m ->或31m -<-,∴2m <或4m >.【点睛】本题考查二次函数的顶点式,利用函数图象判断函数值的大小,解一元一次不等式等,熟练掌握二次函数的图象和性质是解题的关键.27.(1)AFE ABC ∠=∠,理由见详解;(2)2EF BD =,理由见详解;(3)DH①AC .【分析】(1)过点A 作AG ①CE ,然后利用HL 证明Rt ①ABD ①Rt ①AFG ,即可得到结论成立; (2)连接AE ,则AE =AF ,则AG 垂直平分EF ,则BD FG EG ==,即可得到答案;(3)连接BF ,取BF 的中点M ,连接AM ,DM 并延长交AC 于H ,由等腰三角形的性质知①BAM+①ABM=90°,再利用四边形内角和定理说明①ACB+①BAM=90°,则①ACD=①ABM ,由①AMB=①ADB=90°,由四点A 、B 、D 、M 共圆解决问题.【详解】解:(1)AFE ABC ∠=∠;理由如下:过点A 作AG ①CE ,如图:根据题意,点B 关于直线AC 的对称点为E ,①AC 平分①BCE ,①AD ①BC ,AG ①CE ,①AD =AG ,①AF =AB ,①Rt①ABD①Rt①AFG(HL),∠=∠;①AFE ABC(2)2=;EF BD理由如下:连接AE,如图:①Rt①ABD①Rt①AFG,=,①BD FG①点B关于直线AC的对称点为E,①AB=AE,①AE=AF,①AG垂直平分EF,=,①FG EG==,①BD FG EG①2=;EF BD(3)DM①AC,理由如下:连接BF,取BF的中点M,连接AM,DM并延长交AC于H,①AB=AF,点M为BF的中点,①AM①BF,①①BAM+①ABM=90°,①点B 关于直线AC 的对称点为E ,①①ACB=①ACF ,①①ABC=①AFE ,①①ABC+①AFC=180°,①①BAF+①BCF=180°,①①ACB+①BAM=90°,①①ACD=①ABM ,①①AMB=①ADB=90°,①四点A 、B 、D 、M 共圆,①①ABM=①ADM ,①①ADM+①HDC=90°,①①ACD+①HDC=90°,①DH①AC .【点睛】本题考查了轴对称的性质,全等三角形的判定和性质,垂直平分线的性质,角平分线的性质定理,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.28.(1)B 和C ;(22t ≤;(3)42G y <≤+【分析】(1)根据图形可确定与点A 组成O 的“成对关联点”的点;(2)如图,点E 在直线y x =上,点F 在直线y x =-上,当点E 在线段01E E 上,点F 在线段01F F 上时,有O 的“成对关联点”,求出即可得出t 的取值范围;(3)分类讨论:点G 在4y =上,点G 在4y =的下方和点G 在4y =的上方,构造O 的“成对关联点”,即可求出G y 的取值范围.【详解】(1)如图所示:在点B ,C ,D 中,与点A 组成O 的“成对关联点”的点是B 和C ,故答案为:B 和C ;(2)①(,)E t t①(,)E t t 在直线y x =上,①点F 与点E 关于x 轴对称,①(,)F t t -在直线y x =-,如下图所示:直线y x =和y x =-与O 分别交于点0E ,0F ,与直线2x =分别交于1E ,1F ,由题可得:0E ,当点E 在线段01E E 上时,有O 的“成对关联点”2t ≤;(3)如图,当点G 在4y =上时,GH x ∥轴,在O 上不存在这样的矩形;如图,当点G 在4y =下方时,也不存在这样的矩形;如图,当点G 在4y =上方时,存在这样的矩形GMNH ,当恰好只能构成一个矩形时,设(0,)G m ,直线4y =与y 轴相交于点K ,则GHK OGM ∠=∠,2OM =,OG m =,4GH MN ==,4GK m =-,①sin sin GHK OGM ∠=∠,即GK OM GH OG =, ①424m m-=,解得:2m =+2m =-,综上:当42G y <≤+G ,H 是O 的“成对关联点”.【点睛】本题考查几何图形综合问题,属于中考压轴题,掌握“成对关联点”的定义是解题的关键.。
海淀区2010-2011学年度第一学期初三语文期中试题及答案
海淀区2010-2011学年度第一学期初三语文期中试题及答案海淀区九年级第一学期期中练习语文2010.11学校:班级:姓名:成绩:考生须知1.本试卷共8页,六道大题,23道小题,满分120分。
考试时间150分钟。
2.在答题纸上准确填写学校名称、班级名称、姓名。
3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。
4. 考试结束,请将本试卷和答题纸一并交回。
一、选择。
下面各题均有四个选项,其中只有一个符合题意,选出答案后在答题纸上用铅笔把对应题目的选项字母涂黑涂满。
(共12分。
每小题2分)1.下列词语中加点字的读音完全正确的一项是A.惬意(qiè) 祈祷(qǐ) 避讳(huì) 装模作样(mú)B.自诩(xǔ) 倔强(jué) 负载(zài) 刚正不阿(ē)C.邮戳(chuō) 惩罚(chéng) 游弋(yì) 脍炙人口(zhì)D.联袂(mèi) 字帖(tiè) 脊梁(jǐ) 不屑置辩(xuè)2.下列词语书写完全正确的一项是A. 恻隐掂记分歧眼花缭乱B. 镂空蔓延闲暇断壁残垣C. 毕竟斟酌真谛破斧沉舟D. 秘诀谦逊修茸各行其是3.下列句子中加点词语运用有误的一项是A.经过十几天的追踪调查,原本扑朔迷离的案件现在终于水落石出。
B.经过三年的危房改造及环境配套建设,全市老旧小区居住环境豁然开朗。
C.随着“嫦娥二号”的顺利升空,围坐在大屏幕前观看的大学生们情不自禁地欢呼雀跃。
D.灾难可以毁掉家园,但摧不垮我们的意志,因为我们知道这世上没有过不去的火焰山。
4. 对下列病句修改不正确的一项是A.京剧是国之瑰宝,它以独特的艺术魅力倾倒和折服了无数热爱它的人们。
修改:删去“倾倒和”。
北京东城区2010-2011学年九年级第一学期数学期末试卷及答案
东城区2010-2011学年第一学期期末统一检测初三数学试卷2011.011. 一元二次方程122=-bx x 的常数项为( ) A. 1- B. 1 C. 0 D. 1±2. 下列图形中,是中心对称的图形是()3. 若DEF ABC ∆∆~,1:2:=DE AD 且ABC ∆的周长为16,则DE F ∆的周长为( ) A. 4 B. 16 C. 8 D. 324. 如图,在⊙O 中,CD 是直径,AB 是弦,CD AB ⊥于M ,8=AB ,5=OC ,则MD 的长为( )A. 4B. 2C.2 D. 15. 若关于x 的方程0222=--ax x 有两个不相等的实数根,则a 的值是( )A. 2B. 4C. 6D. 86. 抛物线2)1(32-+-=x y 经过平移得到抛物线23x y -=,平移的方法是( ) A. 向左平移1个单位,再向下平移2个单位 B. 向右平移1个单位,再向下平移2个单位C. 向左平移1个单位,再向上平移2个单位D. 向右平移1个单位,再向上平移2个单位7. 某圆与半径为2的圆相切,若两圆的圆心距为5,则此圆的半径为( )A. 3B. 7C. 3或7D. 5或78. 小明从二次函数c bx ax y ++=2的图象(如图)中观察得到了下面五条信息:①0<c ; ②0>abc ;③0>+-c b a ;④032=-b a ;⑤04>-b c ;你认为正确的信息是( ) A. ①②③⑤ B. ①②③④ C. ①③④⑤ D. ②③④⑤ 9. 抛物线152--=x x y 与y 轴的交点坐标是__________ 10. 若将分别写有“生活”、“城市”的2张卡片,随机放入“让生活更美好”中的两个内(每个只放1张卡片),则其中文字恰好组成“城市让生活更美好”的概率______11. 如图,AB ,AC 是⊙O 的两条弦,︒=∠30A ,经过点C 的切线与OB 的延D长线交于点D ,则D ∠的度数为_________12. 在等腰梯形ABCD 中,BC AD //,AD BC 4=,2=AD ,︒=∠45B 。
2012-2013上学期期末海淀区九年级数学试题及答案,纯word
海淀区九年级第一学期上册期末考试试题数 学 试 卷(分数:120分 时间:120分钟) 2013.01班级 姓名 学号 成绩 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.x 的取值范围是 A .12x ≠B .x ≥12C .x ≤12D .x ≠-122.将抛物线2y x =平移得到抛物线25y x =+,下列叙述正确的是 A.向上平移5个单位 B.向下平移5个单位C.向左平移5个单位D.向右平移5个单位3.如图,A C 与BD 相交于点E ,A D ∥BC .若:1:2AE EC =,则:AED C EB S S ∆∆为 A.2:1 B. 1:2 C.3:1 D. 1:44.下列一元二次方程中,有两个相等的实数根的是 A .2210x x -+=B . 2240x x +-=C .2250x x --=D .2240x x ++=5.如图,⊙O 是△ABC 的外接圆,∠A =40°,则∠OCB 等于 A .60°B .50°C .40°D .30°6.如图,平面直角坐标系中的二次函数图象所对应的函数解析式可能为 A .212y x =-B .21(1)2y x =-+C .1)1(212---=x y D . 21(1)12y x =-+-7.已知0a <2a 可化简为A. a -B. aC. 3a -D. 3a8. 如图,以(0,1)G 为圆心,半径为2的圆与x 轴交于A 、B 两点,与y 轴交于C 、D 两点,点E 为⊙G 上一动点,C F AE⊥于F .当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为 A .2B.3C.4D6二、填空题(本题共16分,每小题4分) 9-= .10. 若二次函数223y x =-的图象上有两个点(3,)A m -、(2,)B n ,则m n (填“<”或“=”或“>”).11.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 _________cm. 12.小聪用描点法画出了函数y =F ,如图所示.结合旋转的知识,他尝试着将图象F 绕原点逆时针旋转90︒得到图象1F ,再将图象1F 绕原点逆时针旋转90︒得到图象2F ,如此继续下去,得到图象n F .在尝试的过程中,他发现点P (4,2)--在图象 上(写出一个正确的即可);若点P (a ,b )在图象127F 上,则a = (用含b 的代数式表示) . 三、解答题(本题共30分,每小题5分) 13.计算:2011()(3)3π--+---14. 解方程:2280x x +-= .(0,1)I15.已知3a b +=,求代数式22285a b a b -+++的值.16.如图,正方形网格中,△ABC 的顶点及点O 在格点上.(1)画出与△ABC 关于点O 对称的△111A B C ;(2)画出一个以点O 为位似中心的△222A B C ,使得△222A B C 与△111A B C 的相似比为2.17.如图,在△ABC 与△A D E 中,C E ∠=∠,12∠=∠,AC AD =2AB ==6,求AE 的长.18.如图,二次函数223y x x =-++的图象与x 轴交于A 、B 两点,与y 轴交于点 C ,顶点为D , 求△BCD 的面积.四、解答题(本题共20分,每小题5分) 19.已知关于x 的方程04332=++m x x 有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为符合条件的最大整数,求此时方程的根.20. 已知:二次函数2y ax bx c =++(0)a ≠中的x 和y 满足下表:(1) 可求得m 的值为 ; (2) 求出这个二次函数的解析式;(3) 当03x <<时,则y 的取值范围为 .21.图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?22.如图,AB 为⊙O 的直径,BC 切⊙O 于点B ,AC 交⊙O 于点D ,E 为BC 中点. 求证:(1)DE 为⊙O 的切线;(2)延长ED 交BA 的延长线于F ,若DF =4,AF =2,求BC 的长.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23. 小明利用等距平行线解决了二等分线段的问题.作法:(1)在e上任取一点C,以点C为圆心,AB长为半径画弧交c于点D,交d于点E;(2)以点A为圆心,CE长为半径画弧交AB于点M;∴点M为线段AB的二等分点.图1解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB的三等分点;图2(2)点P是∠AOB内部一点,过点P作PM⊥OA于M,PN⊥OB于N,请找出一个满足下列条件的点P. (可以利用图1中的等距平行线)①在图3中作出点P,使得P M P N=.=;②在图4中作出点P,使得2P M P N图3 图424.抛物线2(3)3(0)y m x m x m =+-->与x 轴交于A 、B 两点,且点A 在点B 的左侧,与y 轴交于点C ,OB=OC . (1)求这条抛物线的解析式;(2)若点P 1(,)x b 与点Q 2(,)x b 在(1)中的抛物线上,且12x x <,PQ=n . ①求2124263x x n n -++的值;② 将抛物线在PQ 下方的部分沿PQ 翻折,抛物线的其它部分保持不变,得到一个新图象.当这个新图象与x 轴恰好只有两个公共点时,b 的取值范围是 .25.如图1,两个等腰直角三角板ABC 和DEF 有一条边在同一条直线l 上,2D E =,1A B =.将直线E B 绕点E 逆时针旋转45︒,交直线A D 于点M .将图1中的三角板ABC 沿直线l 向右平移,设C 、E 两点间的距离为k .图1 图2 图3解答问题:(1)①当点C 与点F 重合时,如图2所示,可得A M D M的值为 ;②在平移过程中,A M D M的值为 (用含k 的代数式表示);(2)将图2中的三角板A B C 绕点C 逆时针旋转,原题中的其他条件保持不变.当点A 落在线段D F 上时,如图3所示,请补全图形,计算A M D M的值;(3)将图1中的三角板ABC 绕点C 逆时针旋转α度,0α<≤90,原题中的其他条件保持不变.计算A M D M的值(用含k 的代数式表示).海淀区九年级第一学期期末练习数学试卷答案及评分参考二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13. 计算:2011()(3)3π--+---解:原式191+-- …………………………………………4分=7- …………………………………………5分14. 解方程:2280x x +-= .解法一:(4)(2)0x x +-=. …………………………………………3分40x +=或20x -=.∴ 124,2x x =-=. …………………………………………5分解法二: 1,2,8a b c ===-, …………………………………1分2241(8)360∆=-⨯⨯-=>. ……………………………………2分∴ 21x =⨯. …………………………………………3分∴ 124,2x x =-=. …………………………………………5分15.解法一:∵3a b +=,∴ 22285a b a b -+++=()()285a b a b a b +-+++ ………………………2分 =3()285a b a b -+++ ………………………3分 =5()5a b ++ ………………………4分 =535⨯+=20. ………………………5分解法二:∵3a b +=,∴3b a =-. .…………………………1分原式= 22(3)28(3)5a a a a --++-+.…………………………2分=22(96)22485a a a a a --+++-+ .…………………………3分 =582426922+-++-+-a a a a a .…………………………4分=20. ………………………5分16.例如:∴△111A B C 、△222A B C 为所求.(注:第(1)问2分;第(2)问3分,画出一个正确的即可.) 17. 解:∵12∠=∠,∴C A B E A D ∠=∠. ………………………1分 ∵C E ∠=∠,∴△CAB ∽△EAD . ………………………3分 ∴A B A C A DA E=. ………………………4分∵AC AD =2AB ==6, ∴=3A B . ∴36=6A E.∴12A E =. ………………………5分18. 解法一:依题意,可得223y x x =-++=214x --+(). ∴顶点(1,4)D . ……………1分 令0y =,可得3x =或1x =-.∴A (1,0)-、B (3,0). ……………2分令0x =,可得3y =.∴(0,3)C . ……………3分∴直线C D 的解析式为3y x =+. 设直线C D 交x 轴于E . ∴(3,0)E -.∴6B E =. …….………….…………4分 ∴3BC D BED BC E S S S =-= .∴△BCD 的面积为3. …….………….…………5分解法二:同解法一,可得A (1,0)-、B (3,0)、(0,3)C 、(1,4)D . ……………3分∴直线B C 的解析式为3y x =-+. 过点D 作D E ∥B C 交x 轴于E ,连接C E . ∴设过D 、E 两点的直线的解析式为y x b =-+.∵(1,4)D ,∴直线D E 的解析式为5y x =-+. ∴(5,0)E .∴2B E =. ….…………4分 ∵D E ∥B C , ∴132B C D B C E S S B E O C ==⨯⨯= .∴△B CD 的面积为3. . .………….………………5分 四、解答题(本题共20分,每小题5分)19.解:(1)∵关于x 的方程04332=++m x x有两个不相等的实数根,∴∆930m =->. …………………………1分∴3m <. .…………………………2分 (2)∵m 为符合条件的最大整数, ∴2m =. .…………………………3分 ∴23302x x ++=.2223333()()222x x ++=-+.233()24x +=.2331-=x ,2332--=x .∴方程的根为2331-=x ,2332--=x . .…………………………5分20.解:(1)m 的值为3; .…………………………1分 (2) ∵二次函数的图象经过点(1,0),(3,0),∴设二次函数的解析式为(1)(3)y a x x =--. .…………………………2分 ∵图象经过点(0,3),∴1a =. .…………………………3分∴这个二次函数的解析式为243y x x =-+. .…………………………4分 (3) 当03x <<时,则y 的取值范围为 1-≤3<y . .…………………5分 21. 解:如图所示,建立平面直角坐标系.设二次函数的解析式为2y ax =(0)a ≠. .…………………1分 ∵图象经过点(2,2)-, .…………………2分∴24a -=,12a =-.∴212y x =-. .…………………3分当3y =-时,x = .…………………4分答:当水面高度下降1米时,水面宽度为米. .…………………5分 22.(1)如图,连接,OD BD . ………………1分∵在⊙O 中,O D O B =, ∴∠1=∠2.∵A B 是⊙O 的直径,∴90AD B C D B ∠=∠=︒. ∵E 为BC 中点, ∴12E D B C E B ==.∴∠3=∠4. ∵BC 切⊙O 于点B ,∴90E B A∠=︒.∴132490∠+∠=∠+∠=︒,即90O D E∠=︒.∴O D⊥D E.∵点D在⊙O上,∴D E是⊙O的切线. ……………2分(2)∵O D⊥D E,∴90F D O∠=︒.设O A O D r==.∵222OF FD OD=+, DF=4,AF=2,∴222(2)4r r+=+.解得3r=. ……………………………………3分∴3,8OA OD FB===.∵,90F F FDO FBE∠=∠∠=∠=︒,∴△FDO∽△FBE. ……………………………………4分∴F D O D F B B E=.∴ 6.B E=∵E为BC中点,∴212.B C B E==……………………………………5分五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23. 解:(1)……………………2分(注:直接等分不给分,在等距平行线上有正确痕迹的给分,作出一个给1分.)(2)①②……………………4分……………………7分24.解:(1)解法一:∵抛物线2(3)3(0)y m x m x m =+-->与y 轴交于点C ,∴(0,3)C -. ……………………1分 ∵抛物线与x 轴交于A 、B 两点,OB=OC , ∴B (3,0)或B (-3,0).∵点A 在点B 的左侧,0m >,∴抛物线经过点B (3,0). ……………………2分 ∴093(3)3m m =+--. ∴1m =.∴抛物线的解析式为322--=x x y . ……………………3分 解法二:令0y =, ∴2(3)3=0m x m x +--. ∴(1)(3)0x mx +-=. ∴31,=x x m=-.0m > ,点A 在点B 的左侧,∴3(1,0),(,0)A B m-. ……………………1分令0x =,可得3y =-. ∴(0,3)C -.∴3O C =. ……………………2分 O B O C = , ∴33m =.∴1m =.∴322--=x x y . ……………………3分(2)①由抛物线322--=x x y 可知对称轴为1x =. ……………4分∵点P 1(,)x b 与点Q 2(,)x b 在这条抛物线上,且12x x <,PQ n =, ∴121,122n n x x =-=+. ……………………5分∴1222,22x n x n =-=+.∴原式=736)2()2(2=+++--n n n n . ……………………6分②42b -<<-或0b =. ……………………8分 (注:答对一部分给1分.) 25.解:(1)①1;……………………1分②2k;……………………2分(2)解:连接AE .∵ABC DEF ∆∆,均为等腰直角三角形,2,1DE AB ==,∴2,1,90,4545.EF BC DEF ==∠=︒∠=∠=︒∴90.D F AC EFB ==∠=︒∴2,D F AC AD ==∴点A 为C D 的中点. ……………………3分 ∴,.EA DF EA DEF ⊥∠平分∴90,45MAE AEF ∠=︒∠=︒,AE =∵45,BEM ∠=︒ ∴1+2=3+2=45∠∠∠∠︒. ∴1= 3.∠∠∴A E M ∆∽F E B ∆. ∴.A M A E B FE F= ……………………4分∴2A M =∴22D M AD AM =-=-=∴1A M D M=. ……………………5分(3) 过B 作B E 的垂线交直线EM 于点G ,连接A G 、B G . ∴90E B G ∠=︒. ∵45B E M ∠=︒,∴45EG B BEM ∠=∠=︒. ∴B E B G =.∵△A B C 为等腰直角三角形, ∴90.BA BC ABC =∠=︒,∴12∠=∠. ∴△ABG ≌△CBE . ……………………6分 ∴34AG EC k ==∠=∠,.∵3+65+4=45∠∠=∠∠︒, ∴65∠=∠. ∴A G ∥D E . ∴△AGM ∽△DEM . ∴.2A M A G k D MD E== ……………………7分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分.)海淀区九年级第一学期期末练习数学试卷答案及评分参考一、选择题(本题共32分,每小题4分)三、解答题(本题共30分,每小题5分)13. 计算:2011()(3)3π--+---.解:原式191+-- …………………………………………4分=7- …………………………………………5分14. 解方程:2280x x +-= .解法一:(4)(2)0x x +-=. …………………………………………3分40x +=或20x -=.∴ 124,2x x =-=. …………………………………………5分解法二: 1,2,8a b c ===-, …………………………………1分2241(8)360∆=-⨯⨯-=>. ……………………………………2分∴ 221x -±=⨯. …………………………………………3分∴ 124,2x x =-=. …………………………………………5分15.解法一:∵3a b +=,∴ 22285a b a b -+++=()()285a b a b a b +-+++ ………………………2分 =3()285a b a b -+++ ………………………3分 =5()5a b ++ ………………………4分 =535⨯+=20. ………………………5分 解法二:∵3a b +=,∴3b a =-. .…………………………1分原式= 22(3)28(3)5a a a a --++-+.…………………………2分=22(96)22485a a a a a --+++-+ .…………………………3分 =582426922+-++-+-a a a a a .…………………………4分=20. ………………………5分16.例如:∴△111A B C 、△222A B C 为所求.(注:第(1)问2分;第(2)问3分,画出一个正确的即可.) 17. 解:∵12∠=∠,∴C A B E A D ∠=∠. ………………………1分 ∵C E ∠=∠,∴△C A B ∽△EAD . ………………………3分∴A B A C A DA E=. ………………………4分∵AC AD =2AB ==6, ∴=3A B . ∴36=6A E.∴12A E =. ………………………5分18. 解法一:依题意,可得223y x x =-++=214x --+().∴顶点(1,4)D . ……………1分令0y =,可得3x =或1x =-.∴A (1,0)-、B (3,0). ……………2分令0x =,可得3y =.∴(0,3)C . ……………3分∴直线C D 的解析式为3y x =+. 设直线C D 交x 轴于E . ∴(3,0)E -.∴6B E =. …….………….…………4分 ∴3BC D BED BC E S S S =-= .∴△BCD 的面积为3. …….………….…………5分解法二:同解法一,可得A (1,0)-、B (3,0)、(0,3)C 、(1,4)D . ……………3分∴直线B C 的解析式为3y x =-+. 过点D 作D E ∥B C 交x 轴于E ,连接C E . ∴设过D 、E 两点的直线的解析式为y x b =-+.∵(1,4)D ,∴直线D E 的解析式为5y x =-+. ∴(5,0)E .∴2B E =. ….…………4分 ∵D E ∥B C ,∴132B C D B C E S S B E O C ==⨯⨯= .∴△BCD 的面积为3. . .………….………………5分 四、解答题(本题共20分,每小题5分) 19.解:(1)∵关于x 的方程04332=++m x x 有两个不相等的实数根,∴∆930m =->. …………………………1分 ∴3m <. .…………………………2分(2)∵m 为符合条件的最大整数, ∴2m =. .…………………………3分 ∴23302x x ++=.2223333()()222x x ++=-+.233()24x +=.2331-=x ,2332--=x .∴方程的根为2331-=x ,2332--=x . .…………………………5分20.解:(1)m 的值为3; .…………………………1分(2) ∵二次函数的图象经过点(1,0),(3,0),∴设二次函数的解析式为(1)(3)y a x x =--. .…………………………2分 ∵图象经过点(0,3),∴1a =. .…………………………3分∴这个二次函数的解析式为243y x x =-+. .…………………………4分 (3) 当03x <<时,则y 的取值范围为 1-≤3<y . .…………………5分 21. 解:如图所示,建立平面直角坐标系.设二次函数的解析式为2y ax =(0)a ≠. .…………………1分 ∵图象经过点(2,2)-, .…………………2分∴24a -=,12a =-.∴212y x =-. .…………………3分当3y =-时,x = .…………………4分答:当水面高度下降1米时,水面宽度为米. .…………………5分 22.(1)如图,连接,OD BD . ………………1分∵在⊙O 中,O D O B =,∴∠1=∠2.∵A B 是⊙O 的直径, ∴90AD B C D B ∠=∠=︒. ∵E 为BC 中点, ∴12E D B C E B ==.∴∠3=∠4.∵BC 切⊙O 于点B ,∴90E B A ∠=︒.∴132490∠+∠=∠+∠=︒, 即90O D E ∠=︒. ∴O D ⊥D E . ∵点D 在⊙O 上,∴D E 是⊙O 的切线. ……………2分 (2)∵O D ⊥D E , ∴90F D O ∠=︒. 设O A O D r ==.∵222OF FD OD =+, DF =4,AF =2, ∴222(2)4r r +=+.解得3r =. ……………………………………3分 ∴3,8OA OD FB ===. ∵,90F F FDO FBE ∠=∠∠=∠=︒,∴△F D O ∽△FBE . ……………………………………4分 ∴F D O D F BB E=.∴ 6.B E =∵E 为BC 中点,∴212.B C B E ==……………………………………5分五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23. 解:(1)……………………2分(注:直接等分不给分,在等距平行线上有正确痕迹的给分,作出一个给1分.) (2)① ②……………………4分 ……………………7分24.解:(1)解法一:∵抛物线2(3)3(0)y m x m x m =+-->与y 轴交于点C ,∴(0,3)C -. ……………………1分 ∵抛物线与x 轴交于A 、B 两点,OB=OC ,∴B (3,0)或B (-3,0).∵点A 在点B 的左侧,0m >,∴抛物线经过点B (3,0). ……………………2分 ∴093(3)3m m =+--. ∴1m =.∴抛物线的解析式为322--=x x y . ……………………3分 解法二:令0y =, ∴2(3)3=0m x m x +--. ∴(1)(3)0x mx +-=. ∴31,=x x m=-.0m > ,点A 在点B 的左侧,∴3(1,0),(,0)A B m-. ……………………1分令0x =,可得3y =-.∴(0,3)C -.∴3O C =. ……………………2分 O B O C = , ∴33m =.∴1m =.∴322--=x x y . ……………………3分(2)①由抛物线322--=x x y 可知对称轴为1x =. ……………4分 ∵点P 1(,)x b 与点Q 2(,)x b 在这条抛物线上,且12x x <,PQ n =, ∴121,122n n x x =-=+. ……………………5分∴1222,22x n x n =-=+.∴原式=736)2()2(2=+++--n n n n . ……………………6分 ②42b -<<-或0b =. ……………………8分 (注:答对一部分给1分.) 25.解:(1)①1;……………………1分②2k ;……………………2分(2)解:连接AE .∵ABC DEF ∆∆,均为等腰直角三角形,2,1DE AB ==,∴2,1,90,4545.EF BC DEF ==∠=︒∠=∠=︒∴90.D F AC EFB ==∠=︒∴2,D F AC AD ==∴点A 为C D 的中点. ……………………3分 ∴,.EA DF EA DEF ⊥∠平分∴90,45MAE AEF ∠=︒∠=︒,AE =∵45,BEM ∠=︒ ∴1+2=3+2=45∠∠∠∠︒. ∴1= 3.∠∠∴A E M ∆∽F E B ∆. ∴.A M A E B FE F= ……………………4分∴2A M =.∴22D M AD AM =-==. ∴1A M D M =. ……………………5分(3) 过B 作B E 的垂线交直线EM 于点G ,连接A G 、B G . ∴90E B G ∠=︒.∵45B E M ∠=︒,∴45EG B BEM ∠=∠=︒.∴B E B G =.∵△A B C 为等腰直角三角形,∴90.BA BC ABC =∠=︒,∴12∠=∠.∴△ABG ≌△C B E . ……………………6分∴34AG EC k ==∠=∠,.∵3+65+4=45∠∠=∠∠︒,∴65∠=∠.∴A G ∥D E .∴△A G M ∽△D EM . ∴.2A M A G k D M D E == ……………………7分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分.)。
2008-2012word年1月海淀初三数学期末试题及答案
2009-2010海淀区九年级第一学期期末测评2010.1 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1. 下列图形中是轴对称图形的是()A.B.C.D.2. 将抛物线2xy=平移得到抛物线=y25x-,叙述正确的是( )A.向上平移5个单位B.向下平移5个单位C.向左平移5个单位D.向右平移5个单位3.如图,在△ABC中,D、E两点分别在AB、AC边上,DE∥BC.若3:2:=BCDE,则ABCADESS∆∆:为()A. 4:9B. 9:4C. 3:2D. 3:24.抛物线2(1)7y x=-+的顶点坐标为( )A.)1,7(B.(1,7)C.(1,7)-D.(1,7)-5.如图,AB是⊙O的直径,CD是⊙O的弦.若∠BAD=23°,则ACD∠的大小为()A.23°B.57°C.67°D.77°6.二次函数cbxaxy++=2的图象如图所示,则下列说法正确的是()A.240b ac->B.0a<C.0c>D.0b>7. 如图,A、B、C三点在正方形网格线的交点处.若将△ACB绕着点A逆时针旋转得到△''AC B,则tan'B的值为( )A.14B.13C.12D. 18.一种胸花图案的制作过程如图1—图3,图1中每个圆的半径均为1. 将图1绕点O逆时针旋转60︒得到图2,再将图2绕点O逆时针旋转30︒得到图3,则图3中实线的长为( )图1 图2 图3A .πB .2πC .3πD .4π 二、填空题(本题共16分,每小题4分) 9.函数21-=x y 中自变量x 的取值范围是 .10.若二次函数223y x =-的图象上有两个点),1(m A 、(2,)B n ,则m n (填“<”或“=”或“>”).11.如图,△ABO 与△'''A B O 是位似图形,且顶点都在格点上,则位似中心的坐标是 .12. 图1中的“箭头”是以AC 所在直线为对称轴的轴对称图形,90BAD ∠=︒,2AB =.图2到图4是将“箭头”沿虚线剪拼成正方形的过程,则图1中BC 的长为 .图1 图2 图3 图4三、解答题(本题共30分,每小题5分)13. 计算:()112cos3020102-⎛⎫︒--++ ⎪⎝⎭.14. 解方程:2250x x +-= .15.化简:4-4)212-3(2x x x ÷++.16.如图,在△ABC 中,D 、E 两点分别在AC 、AB 两边上,ABC ADE ∠=∠,3,7==AD AB , 2.7AE =,求AC 的长.17. 已知:k 是方程01232=--x x 的一个根,求代数式7)1)(1(2)1(2+-++-k k k 的值.18. 已知:二次函数2y ax bx c =++(0)a ≠中的x y ,满足下表:(1)m 的值为 ; (2)求这个二次函数的解析式.四、解答题(本题共20分,每小题5分)19.将两个大小不同的含45︒角的直角三角板如图1所示放置在同一平面内.从图1中抽象出一个几何图形(如图2),B 、C 、E 三点在同一条直线上,连结DC . 求证:△ABE ≌△ACD .20.圣路易斯拱门是座雄伟壮观的抛物线形建筑物.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.21.已知:在△ABC 中,B ∠为锐角,4sin 5B =,15AB =,13AC =,求BC 的长.22. 如图,已知△ABC ,以AB 为直径的⊙O 经过BC 的中点D ,DE ⊥AC 于E .(1)求证:DE 是⊙O 的切线;(2)若21cos =C , 6DE =, 求⊙O 的直径.五、解答题(本题共22分,第23题7分,第24题8分,第25题7分)23. 如图1,已知四边形ABCD ,点P 为平面内一动点. 如果PAD PBC ∠=∠,那么我们称点P 为四边形ABCD 关于A 、B 的等角点.如图2,以点B 为坐标原点,BC 所在直线为x 轴建立平面直角坐标系,点C 的横坐标为6.(1)若A 、D 两点的坐标分别为(0,4)A 、(6,4)D ,当四边形ABCD 关于A 、B 的等角点P 在DC 边上时,则点P 的坐标为 ;(2)若A 、D 两点的坐标分别为(2,4)A 、(6,4)D ,当四边形ABCD 关于A 、B 的等角点P 在DC 边上时,求点P 的坐标;(3)若A 、D 两点的坐标分别为(2,4)A 、(10,4)D ,点(,)P x y 为四边形ABCD 关于A 、B 的等角点,其中2>x ,0y >,求y 与x 之间的关系式.B图1图2备用图1 备用图224.当060α<<时,下列关系式中有且仅有一个正确.A. 2sin(30)sin αα+=+B. 3sin 2)30sin(2+=︒+αα C. 2sin(30)cos ααα+=+ (1)正确的选项是 ;(2)如图1,△ABC 中, 1=AC ,∠B =30,α=∠A ,请利用此图证明(1)中的结论;(3)两块分别含4530和的直角三角板如图2方式放置在同一平面内,BD =ADC S ∆.图1图225.已知:抛物线2y ax bx c =++与x 轴交于点(2,0)A -、(8,0)B ,与y 轴交于点)4,0(-C .直线y x m =+与抛物线交于点D 、E (D 在E 的左侧),与抛物线的对称轴交于点F . (1) 求抛物线的解析式;(2) 当2m =时,求DCF ∠的大小;(3) 若在直线y x m =+下方的抛物线上存在点P ,使得45DPF ∠=︒,且满足条件的点P 只有两个,则m 的值为 .(第(3)问不要求写解答过程)备用图1 备用图2海淀区九年级第一学期期末练习数学试卷答案及评分参考一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13.计算:()112cos3020102-⎛⎫︒--++ ⎪⎝⎭.解:原式2122=⨯-++分1=.-------------------------------------5分14.解方程:2250x x +-= . 解法一:522=+x x .15122+=++x x .--------------------------------------------------2分 6)1(2=+x .------------------------------------------3分 61±=+x . 16-±=x . ∴161-=x ,162--=x .-----------------------------------------5分解法二:521-===c b a ,,.△=ac b 42-)5(1422-⨯⨯-=204+==240>.-------------------------------2分∴2x a=21=⨯----------------------------3分22-±=1=-±.∴161-=x ,162--=x .-------------------------------------------5分15.化简:2314()-22-4x x x +÷+.解:原式=23624[](2)(2)(2)(2)4x x x x x x x +-+÷-+-+-------------------------------------2分2236+2-4-44x x x x +-=⋅ ---------------------------------3分 2244-4-44x x x +=⋅ -----------------------------------4分 1x =+.-----------------------------------5分解法二:原式=2234142424x x x x --⋅+⋅-+--------------------------------------2分=36244x x +-+-----------------------------------------------------------4分=444x +=1x +.-----------------------------------------------5分 16.解: 在△ABC 和△ADE 中,∵ ABC ADE ∠=∠,,A A ∠=∠∴ △ABC ∽△ADE .-------------------------------2分 ∴AB AC ADAE=.----------------------------3分∴ AC AD=7 2.73⨯=----------------------------4分6.3=.---------------------------------5分17. 解: ∵ k 是方程01232=--x x 的一个根,∴ 23210k k --=.---------------------------1分 ∴ 2321k k -=.原式22212(1)7k k k =-++-+ ----------------------------3分2221227k k k =-++-+2326k k =-+ ----------------------------4分16=+7=.----------------------------5分18.解:(1)0 ;----------------------------2分(2)解法一:设这个二次函数的解析式为(1)(3)y a x x =+-.----------------------------3分∵ 点(0,3)-在函数图象上, ∴ 3(01)(03)a -=+-.解得 1a =.----------------------------4分∴ 这个二次函数的解析式为(1)(3)y x x =+-.----------------------------5分 解法二:设抛物线的解析式为2(1)4y a x =--.-------------------------3分 ∵ 抛物线经过点(1,0)-,∴ 20(11)4a =---.解得 1a =.----------------------------4分∴ 这个二次函数的解析式为2(1)4y x =--.----------------------------5分四、解答题(本题共20分,每小题5分)19. 证明: ∵ △ABC 和△ADE 均为等腰直角三角形,∴ ,,AB AC AD AE == ︒=∠=∠90DAE BAC .--------2分即 BAC CAE DAE CAE ∠+∠=∠+∠.∴ CAD BAE ∠=∠.-------------------3分 在△ABE 和△ACD 中,,,,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴ △ABE ≌△ACD .----------------------5分20. 解:解法一:如图所示建立平面直角坐标系. --------------------1分此时,抛物线与x 轴的交点为C (100,0)-,D (100,0).设这条抛物线的解析式为(100)(100)y a x x =-+.--------------------2分 ∵ 抛物线经过点B (50,150), 可得 150(50100)(50100)a =-+ . 解得 501-=a . ∴ 抛物线的解析式为)100)(100(501+--=x x y . 当0x =时,200y =.-----------------------4分∴ 拱门的最大高度为200米. --------------------------5分 解法二:如图所示建立平面直角坐标系. -----------------------1分 设这条抛物线的解析式为2ax y =.-------------2分 设拱门的最大高度为h 米,则抛物线经过点).,100(),150,50(h D h B -+-可得 22100,15050.h a h a ⎧-=⎪⎨-+=⎪⎩解得,.200501⎪⎩⎪⎨⎧=-=h a .----------------------4分∴ 拱门的最大高度为200米.--------------------5分21.解:过点A 作AD ⊥BC 于D .-------------------1分 在△ADB 中,90ADB ∠=︒,∵ sin B =54,15AB =, ∴ AD =sin AB B ⋅41512.5=⨯=------------2分由勾股定理,可得BD =221215-9=.-------------3分在△ADC 中,90ADC ∠=︒,13,12,AC AD == 由勾股定理,可得5DC ===.∵ ,AD AC AB <<∴ 当C B 、两点在AD 异侧时,可得 9514BC BD CD =+=+=.------------4分 当C B 、两点在AD 同侧时,可得 954BC BD CD =-=-=. ∴ BC 边的长为14或4.--------------------5分22. 证明:(1)如图,连结OD . -------------------------1分 ∵ AC DE ⊥, ∴ ︒=∠90DEC .∵ O 为AB 中点,D 为BC 中点, ∴ OD 为△ABC 的中位线. ∴ OD ∥AC .∴ ︒=∠=∠90DEC ODE . 即 OD ⊥DE .∵ 点D 在⊙O 上,∴ DE 是⊙O 的切线. -------------------------------2分 (2) ∵ 21cos =C , ∴ ︒=∠60C . -------------------------------3分∵ OD ∥AC ,∴ ︒=∠=∠60C BDO . ∵ OD OB =,∴ ︒=∠=∠60ODB B . ∴ △ABC 为等边三角形.∵ 在△EDC 中,90DEC ∠=︒, 6DE =, ∴DC =分 ∵ D 为BC 中点, ∴2BC DC ==∴ AB =38.∴ ⊙O 的直径为38. ------------------------------5分五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23. 解:(1)P (6,2);----------------------------2分(2)依题意可得90D BCD ∠=∠=︒,PAD PBC ∠=∠,4,4, 6.AD CD BC === ∴ △PAD ∽△PBC .----------------------------3分 ∴4.6PD AD PC BC ==∵ 4,PD PC CD +== ∴ 125PC =. ∴ 点P 的坐标为12(6,)5. --------------------4分 (3)根据题意可知,不存在点P 在直线AD 上的情况;当点P 不在直线AD 上时,分两种情况讨论:① 当点P 在直线AD 的上方时,点P 在线段BA 的延长线上,此时有2y x =;② 当点P 在直线AD 的下方时,过点P 作MN ⊥x 轴,分别交直线AD 、BC 于M 、N 两点.与(2)同理可得 △PAM ∽△PBN ,4PM PN +=.由点P 的坐标为(,)P x y ,可知M 、N 两点的坐标分别为(,4)M x 、(,0)N x .∴PM AMPN BN =.可得42y x y x--=. ∴ 21xy x =-. 综上所述,当2>x ,0y >时,y 与x 之间的关系式为2y x =或21xy x =-.-----7分 (注:第(3)问中,当点P 不在直线AD 上时,只要写对一种情况就给2分) 24. 解:(1)C .-----------------------2分 (2)如图, 过点A 作AD ⊥BC 交BC 的延长线于点D . ∵ ∠B =30︒,BAC α∠=,1=AC , ∴ 30ACD α∠=+︒.∴ 在△ADC 中,90ADC ∠=︒,sin sin(30)AD AC ACD α=⋅∠=+︒.∵ 在△ABD 中,90ADB ∠=︒,∠B =30︒, ∴ 2AB AD =2sin(30)α=+︒.------------3分 过点C 作CE ⊥AB 于E .∴ 在△CEA 中,90AEC ∠=︒,sin ,cos CE AE αα==.在△BEC 中,90BEC ∠=︒,EB α==.---------------4分∴ cos AB AE BE αα=+=.∴ 2sin(30)cos AB ααα=+︒=+.-----------------------5分(3)由上面证明的等式易得cos sin(30)2ααα++︒=.如图,过点A 作AG ⊥CD 交CD 的延长线于点G . -----------------6分∵ △ABD 和△BCD 是两个含4530︒︒和的直角三角形,BD =∴ 75ADG ∠=︒,8AD =,CD =∵ sin 75sin(4530)︒=︒+︒==. ∴ 在△ADG 中,90AGD ∠=︒,sin 8sin 75AG AD ADG =⋅∠=⨯︒=.------------------7分∴ ADC S ∆=12CD AG ⋅= 12⨯=8.------------------8分25. 解:(1)依题意,设抛物线的解析式为(2)(8)y a x x =+-.∵ 抛物线与y 轴交于点)4,0(-C ,∴ 4(02)(08)a -=+-.解得 14a =. ∴ 抛物线的解析式为1(2)(8)4y x x =+-,即213442y x x =--.-------------2分 (2)由(1)可得抛物线的对称轴为3x =.∵ 2m =,∴ 直线的解析式为2y x =+.∵ 直线2y x =+与抛物线交于点D 、E ,与抛物线的对称轴交于点F ,∴ F 、D 两点的坐标分别为(3,5),(2,0)F D -. 设抛物线的对称轴与x 轴的交点为M . 可得 5.CM FM MD ===∴ F 、D 、C 三点在以M 为圆心,半径为5的圆上. ---------------------4分 ∴ DCF ∠=︒=∠4521DMF .---------------------5分 (3) 54m =-.--------------------------------------------7分(注:由于题目的解法可能不唯一,因此请老师根据评分标准酌情给分)海淀区九年级数学第一学期期末练习2011.1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.2(-=()A.3 B.3-C.3±D.92.已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是()A.外离B.外切C.相交D.内切3.将一枚硬币抛掷两次,则这枚硬币两次正面都向上的概率为()A.12B.13C.14D.164.如图,⊙O是△ABC的外接圆,已知∠ABO=30º,则∠ACB的大小为()A.60ºB.30ºC.45ºD.50º5.下列一元二次方程中没有..实数根的是()A.2240x x+-=B.2440x x-+=C.2250x x--=D.2340x x++=6.如图,有一枚圆形硬币,如果要在这枚硬币的周围摆放几枚与它完全相同的硬币,使得周围的硬币都和这枚硬币相外切,且相邻的硬币相外切,则这枚硬币周围最多可摆放()A.4枚硬币B.5枚硬币C.6枚硬币D.8枚硬币7.圆锥的母线长是3,底面半径是1,则这个圆锥侧面展开图圆心角的度数为()A.90°B.120°C.150°D.180°8.如图,E,B,A,F四点共线,点D是正三角形ABC的边AC的中点,点P是直线AB上异于A,B的一个动点,且满足30CPD∠=︒,则()A.点P一定在射线BE上B.点P一定在线段AB上CC .点P 可以在射线AF 上 ,也可以在线段AB 上D .点P 可以在射线BE 上 ,也可以在线段二、填空题(本题共16分,每小题4分)9.已知P 是⊙O 外一点,P A 切⊙O 于A ,PB 切⊙O 于B .若P A =6,则PB = . 10有意义,则x 的取值范围是 . 11.如图,圆形转盘中,A ,B ,C 三个扇形区域的圆心角分别为150°,120°和90°. 转动圆盘后,指针停止在任何位置 的可能性都相同(若指针停在分界线上,则重新转动圆盘), 则转动圆盘一次,指针停在B 区域的概率是 .12.(1) 如图一,等边三角形MNP 的边长为1,线段AB 的长为4,点M 与A 重合,点N 在线段AB 上.△MNP 沿线段AB 按A B →的方向滚动, 直至△MNP 中有一个点与点B 重合为止,则点P 经过的路程为 ;(2)如图二,正方形MNPQ 的边长为1,正方形ABCD 的边长为2,点M 与点A 重合,点N 在线段AB 上, 点P 在正方形内部,正方形MNPQ 沿正方形ABCD 的边按A B C D A →→→→→的方向滚动,始终保持M ,N ,P ,Q 四点在正方形内部或边界上,直至正方形MNPQ 回到初始位置为止,则点P 经过的最短路程为 .(注:以△MNP 为例,△MNP 沿线段AB 按A B →的方向滚动指的是先以顶点N 为中心顺时针旋转,当顶点P 落在线段AB 上时, 再以顶点P 为中心顺时针旋转,如此继续. 多边形沿直()A N P图二图一图三(A Q线滚动与此类似.)三、解答题(本题共30分,每小题5分) 13.计算:.解:14.某射击运动员在相同条件下的射击160次,其成绩记录如下:(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.15.解方程:24120x x +-=.16.如图,在ABC △中,AB 是O 的直径,O 与AC 交于点D ,60,75AB B C =∠=︒∠=︒,求BOD ∠的度数;17.如图,正方形ABCD 中,点F 在边BC 上,E 在边BA 的延长线上. (1)若DCF △按顺时针方向旋转后恰好与DAE △重合.则旋转中心是点 ;最少旋转了 度;(2)在(1)的条件下,若3,2AE BF ==,求四边形BFDE 的面积.18.列方程解应用题:随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2009年为10万只,预计2011年将达到14.4万只.求该地区2009年到2011年高效节能灯年销售量的平均增长率.四、解答题(本题共20分,每小题5分)19.如图,在△ABC 中,120,C ∠=︒,4AC BC AB ==,半圆的圆心O 在AB 上,且与AC ,BC 分别相切于点D ,E . (1)求半圆O 的半径;AD CBODCFBEA(2)求图中阴影部分的面积.20.如图,O 为正方形ABCD 对角线AC 上一点,以O 为圆心,OA 长为半径的⊙O 与BC 相切于点M .(1)求证:CD 与⊙O 相切;(2)若⊙O 的半径为1,求正方形ABCD 的边长.21.一个袋中有3张形状大小完全相同的卡片,编号为1,2,3,先任取一张,将其编号记为m ,再从剩下的两张中任取一张,将其编号记为n .(1)请用树状图或者列表法,表示事件发生的所有可能情况; (2)求关于x 的方程20x mx n ++=有两个不相等实数根的概率.22.如图一,AB 是O 的直径,AC 是弦,直线EF 和O 相切与点C ,AD EF ⊥,垂足为D .(1)求证CAD BAC ∠=∠;(2)如图二,若把直线EF 向上移动,使得EF 与O 相交于G ,C 两点(点C 在点G 的右侧),连结AC ,AG ,若题中其他条件不变,这时图中是否存在与CAD ∠相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.以坐标原点为圆心,1为半径的圆分别交x ,y 轴的正半轴于点A ,B .(1)如图一,动点P 从点A 处出发,沿x 轴向右匀速运动,与此同时,动点Q 从点B 处出发,沿圆图一图二周按顺时针方向匀速运动.若点Q 的运动速度比点P 的运动速度慢,经过1秒后点P 运动到点(2,0),此时PQ 恰好是O 的切线,连接OQ . 求QOP ∠的大小; 解:(2)若点Q 按照(1)中的方向和速度继续运动,点P 停留在点(2,0)处不动,求点Q 再经过5秒后直线PQ 被O 截得的弦长. 解:24.已知关于x的方程221(1)04x a -++=有实根.(1)求a 的值;(2)若关于x 的方程2(1)0mx m x a +--=的所有根均为整数,求整数m 的值.25.如图一,在△ABC 中,分别以AB ,AC 为直径在△ABC 外作半圆1O 和半圆2O ,其中1O 和2O 分别为两个半圆的圆心. F 是边BC 的中点,点D 和点E点.(1)连结1122,,,,,O F O D DF O F O E EF ,证明:12DO F FO E △≌△;图一图二(备用图)图一(2)如图二,过点A 分别作半圆1O 和半圆2O 的切线,交BD 的延长线和CE 的延长线于点P 和点Q ,连结PQ ,若∠ACB =90°,DB =5,CE =3,求线段PQ(3)如图三,过点A 作半圆2O 的切线,交CE 的延长线于点Q ,过点Q 作直线F A 的垂线,交BD 的延长线于点P ,连结P A . 证明:P A 是半圆1O 的切线.7.海淀区九年级数学第一学期期末练习参考答案及评分标准 2011.1说明: 合理答案均可酌情给分,但不得超过原题分数图二Q图三一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)注:第12题答对一个给2分,答对两个给4分 三、解答题(本题共30分,每小题5分)13.解:原式=…………………………….…………………………….2分=…………………………….…………………………….4分 =6 …………………………….…………………………….5分 14.(1)解: 48, …………………………….…………………………….1分0.81…………………………….…………………………….2分 (2)解:()90P =射中环以上 …………………………….…………………………….4分从频率的波动情况可以发现频率稳定在0.8附近,所以这名运动员射击一次时“射中9环以上”的概率是0.8. …………………………….…………………………….5分 注:简述的理由合理均可给分 15.解法一:因式分解,得()()620x x +-= …………………………….…………………………….2分于是得 60x +=或20x -=126,2x x =-=…………………………….…………………………….5分 解法二:1,4,12a b c ===-2464b ac ∆=-=…………………………….…………………………….2分482x -±==…………………………….…………………………….4分126,2x x =-=…………………………….…………………………….5分16.解:在ABC △中,60,75B C ∠=︒∠=︒ , 45A ∴∠=︒.…………………………….…………………………….2分AB 是⊙O 的直径,⊙O 与AC 交于点D, ∴290DOB A ∠=∠=︒.…………………………….…………………………….5分 17.解:(1)D ;90︒.…………………………….…………………………….2分 (2)DCF DEA △旋转后恰好与△重合, DCF DAE ∴△≌△.3,2AE CF BF ∴===又. 5BC BF CF ∴=+=.AED BFDE ABFD S S S ∴=+△四边形四边形DCF ABFD S S ∆=+四边形ABCD S =正方形2BC =25= 5分18.解:设该地区2009年到2011年高效节能灯年销售量的平均增长率为x . ……………….1分依据题意,列出方程()210114.4x += ……………………….…………………………….2分 化简整理,得: ()211.44x +=,解这个方程,得 1 1.2x +=±, ∴ 120.2, 2.2x x ==-.∵ 该地区2009年到2011年高效节能灯年销售量的平均增长率不能为负数. ∴ 2.2x =-舍去.∴ 0.2x =.…………………….…………………………….4分答:该地区2009年到2011年高效节能灯年销售量的平均增长率为20%. …………….5分四、解答题(本题共20分,每小题5分) 19.(1)解:连结OD ,OC ,∵半圆与AC ,BC 分别相切于点D ,E . ∴DCO ECO ∠=∠,且OD AC ⊥.∵AC BC =,∴CO AB ⊥且O 是AB 的中点. ∴122AO AB ==. ∵120C ∠=︒,∴60DCO ∠=︒. ∴30A ∠=︒.∴在R t AOD △中,112OD AO ==. 即半圆的半径为1.…………………………….…………………………….3分(2)设CO =x ,则在R t AOC △中,因为30A ∠=︒,所以AC =2x ,由勾股定理得: 222AC OC AO -= 即 222(2)2x x -= 解得x =x =舍去)∴11422ABC S AB OC =⋅=⨯=△……….…………………………….4分 ∵ 半圆的半径为1, ∴ 半圆的面积为2π,∴2S π=-=阴影 …………………………….…………………………….5分20.(1)解:过O 作ON CD ⊥于N ,连结OM ,则OM BC ⊥. ∵ AC 是正方形ABCD 的对角线,∴ AC 是BCD ∠的平分线. ∴ OM =ON.即圆心O 到CD 的距离等于⊙O 半径, ∴ CD 与⊙O 相切. …………………………….…………………………….3分 (2)由(1)易知MOC △为等腰直角三角形,OM 为半径, ∴ OM =MC =1.∴ 222112OC OM MC =+=+=, ∴OC =.∴1AC AO OC =+= 在R t ABC △中,AB =BC ,有 222A C AB BC =+ ∴ 222AB AC =∴AB =…………………………….…………………………….5分故正方形ABCD. 21.(1)解:依题意画出树状图(或列表)如下或…………………………….…………………………….2分注:画出一种情况就可给2分(2)解:当240m n ->时,关于x 的方程20x mx n ++=有两个不相等实数根,而使得240m n ->的m ,n 有2组,即(3,1)和(3,2). ………….…………………………….4分则关于x 的方程20x mx n ++=有两个不相等实数根的概率是13.∴P (有两个不等实根)=13.…………………….5分22.(1)证明:如图一,连结OC ,则OC EF ⊥,且OC=OA , 易得OCA OAC ∠=∠.∵ AD EF ⊥,∴OC//AD.∴OCA ∠=CAD ∠,∴CAD ∠=OAC ∠. 即 C A D B A C ∠=∠.123123312m n 图一…………………………….…………………………….2分 (2)解:与CAD ∠相等的角是BAG ∠.…………………………….…………………………….3分 证明如下: 如图二,连结BG .∵ 四边形ACGB 是O 的内接四边形, ∴ 180ABG ACG ∠+∠=︒. ∵ D ,C ,G 共线, ∴ 180ACD ACG ∠+∠=︒. ∴ ACD ABG ∠=∠. ∵ AB 是O 的直径, ∴ 90BAG ABG ∠+∠=︒ ∵ AD EF ⊥∴ 90CAD ACD ∠+∠=︒ ∴ CAD BAG ∠=∠.…………………………….…………………………….5分五、解答题(本题共22分,第23题7分,第24题7分,第25题823.(1)解:如图一,连结AQ .由题意可知:OQ =OA =1. ∵OP =2,∴A 为OP 的中点.∵PQ与O 相切于点Q ,∴OQP △为直角三角形.…………1分∴112AQ OP OQ OA ==== . …………2分即ΔOAQ 为等边三角形. ∴∠QOP =60°. …………3分(2)解:由(1)可知点Q 运动1秒时经过的弧长所对的圆心角为30°,若Q 按照(1)中的方向和速度继续运动,那么再过5秒,则Q 点落在O 与y 轴负半轴的交点处(如图二).设直线PQ 与O 的另外一个交点为D ,过O 作OC ⊥QD 于点C ,则C 为QD 的中点. …………4分 ∵∠QOP =90°,OQ =1,OP =2, ∴QP .…………5分图一图二∵1122OQ OP QP OC ⋅=⋅, ∴OC.…………6分∵OC ⊥QD ,OQ =1,OC,∴QC. ∴QD. …………7分 24.(1)解:∵关于x的方程为221(1)04x a -++=为一元二次方程,且有实根.故满足:220,1(4(1)0.4a a ≥⎧⎪⎨∆=--⨯⨯+≥⎪⎩……….…………………………….2分(注:每个条件1分) 整理得 20,(1)0.a a ≥⎧⎨-≤⎩∴1a =……….…………………………….4分(2)由(1)可知1a =,故方程2(1)0mx m x a +--=可化为2(1)10mx m x +--=.①当m =0时,原方程为10x -=,根为1x =,符合题意.………………………….5分 ②当m ≠0时,2(1)10mx m x +--=为关于x 的一元二次方程,2222(1)4(1)12421(1)0m m m m m m m m ∆=--⨯⨯-=-++=++=+≥.此时,方程的两根为 1211,x x m==-. ∵两根均为整数, ∴m =1±.………………………….7分综上所述,m 的值为1-,0 或1.25.(1)证明:如图一,∵1O ,2O ,F 分别是AB ,AC ,BC 边的中点,∴1O F ∥AC 且1O F =A 2O ,2O F ∥AB 且2O F =A 1O , ∴∠B 1O F=∠BAC ,∠C 2O F=∠BAC , ∴∠B 1O F=∠C 2O F∵点D 和点E 分别为两个半圆圆弧的中点, ∴1O F =A 2O =2O E ,2O F =A 1O =1O D ,………………………….2分∠B 1O D =90°,∠C 2O E =90°, ∴∠B 1O D=∠C 2O E . ∴∠D 1O F=∠F 2O E .∴12DO F FO E △≌△.………………………….3分(2)解:如图二,延长CA 至G ,使AG =AQ ,连接BG 、AE .∵点E 是半圆2O 圆弧的中点, ∴AE=CE=3 ∵AC 为直径 ∴∠AEC =90°,∴∠ACE =∠EAC =45°,AC=, ∵AQ 是半圆2O 的切线,∴CA ⊥AQ ,∴∠CAQ =90°, ∴∠ACE =∠AQE =45°,∠GAQ =90° ∴AQ =AC =AG=同理:∠BAP =90°,AB =AP= ∴CG=∠GAB =∠QAP ∴AQP AGB △≌△.……………………..5分 ∴PQ =BG ∵∠ACB =90°,图一图二∴BC∴BG∴PQ=……………………..6分 (3) 证法一:如图三,设直线F A 与PQ 的垂足为M ,过C 作CS ⊥MF 于S ,过B 作BR ⊥MF 于R ,连接DR 、AD 、DM.∵F 是BC 边的中点,∴ABF ACF S S =△△. ∴BR=CS ,由(2)已证∠CAQ =90°, AC =AQ, ∴∠2+∠3=90°∵FM ⊥PQ , ∴∠2+∠1=90°, ∴∠1=∠3, 同理:∠2=∠4,∴AMQ CSA △≌△,∴AM=CS , ∴AM=BR ,同(2)可证AD=BD ,∠ADB =∠ADP =90°,∴∠ADB =∠ARB =90°, ∠ADP =∠AMP =90°∴A 、D 、B 、R 四点在以AB 为直径的圆上,A 、D 、P 、M 四点在以AP 为直径的圆上,且∠DBR+∠DAR =180°,∴∠5=∠8, ∠6=∠7, ∵∠DAM +∠DAR =180°, ∴∠DBR =∠DAM ∴DBR DAM △≌△, ∴∠5=∠9, ∴∠RDM =90°, ∴∠5+∠7=90°, ∴∠6+∠8=90°, ∴∠P AB =90°,∴P A ⊥AB ,又AB 是半圆1O 直径, ∴P A 是半圆1O 的切线.……………………..8分证法二:假设P A 不是是半圆1O 的切线,如图四,过点A 作半圆1O 的切线交BD 的延长线于点P ', 则点P '异于点P ,连结P Q ',设直线F A 与PQ 的图三PP垂足为M ,直线F A 与P Q '的交点为M '.延长AF 至N ,使得AF =FN ,连结BN ,CN ,由于点F 是 BC 中点,所以四边形ABNC 是平行四边形. 易知,180BAC ACN ∠+∠=︒, ∵AQ 是半圆2O 的切线,∴∠QAC =90°,同理90P AB '∠=︒. ∴180P AQ BAC '∠+∠=︒. ∴P AQ ACN '∠=∠.由(2)可知,,AQ AC AB AP '==,∴P AQ NCA '△≌△. ∴NAC P QA '∠=∠. ∵90QAC ∠=︒,∴90NAC M AQ '∠+∠=︒.即 90AQM M AQ ''∠+∠=︒.∴90AM Q '∠=︒. 即 P Q A F '⊥.∵ PQ AF ⊥,∴ 过点Q 有两条不同的直线P Q '和PQ 同时与AF 垂直.这与在平面内过一点有且仅有一条直线与已知直线垂直相矛盾,因此假设错误.所以P A 是是半圆1O 的切线.海淀区九年级第一学期期末测评数 学 试 卷 2012.1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列说法正确的是 ( )A. 掷两枚硬币,一枚正面朝上,一枚反面超上是不可能事件 B .随意地翻到一本书的某页,这页的页码为奇数是随机事件 C .经过某市一装有交通信号灯的路口,遇到红灯是必然事件 D .某一抽奖活动中奖的概率为1001,买100张奖券一定会中奖2.下列图形中,既是轴对称图形,又是中心对称图形的是 ( )ABC3. 将抛物线y =x 2平移得到抛物线y =x 2+3,则下列平移过程正确的是 ( ) A. 向上平移3个单位 B. 向下平移3个单位 C. 向左平移3个单位 D. 向右平移3个单位4.下列一元二次方程中,有两个相等的实数根的是 ( )A .x 2+1=0B .9x 2-6x +1=0C .x 2-x +2=0D .x 2-2x -3=05. 已知圆锥的底面半径为2cm ,母线长为5cm ,则此圆锥的侧面积为 ( ) A. 5πcm 2 B. 10πcm 2 C. 14πcm 2 D. 20πcm 26. 如图,为了测量某棵树的高度,小明用长为2m 的竹竿作 测量工具,移动竹竿,使竹竿顶端、树的顶端的影子恰好落在地面的同一点.此时竹竿与这一点相距6m,与树相距 15m ,则树的高度为 ( )A. 4mB. 5mC. 7mD. 9m7. 已知二次函数y =ax 2+bx +c 的图象如右图所示,则下列 结论中正确的是 ( )A .a >0B .c <0C .042<-ac bD .a +b +c >08. 已知O 为圆锥顶点, OA 、OB 为圆锥的母线, C 为OB 中点, 一只小蚂蚁从点C 开始沿圆锥侧面爬行到点A , 另一只小蚂蚁绕着圆锥侧面爬 行到点B ,它们所爬行的最短路线的痕迹如右图所示. 若沿OA 剪开, 则得到的圆锥侧面展开图为 ( )A B C D 二、填空题(本题共16分,每小题4分) 9. 方程042=-x x 的解是 .ADEOB(A )C OA B CO A B(A )C O A B (A )C O A B (A )C C (A )B A O B A10. 如图, △ABD 与△AEC 都是等边三角形, 若∠ADC = 15︒, 则 ∠ABE = ︒ . 11. 若432z y x ==(x , y , z 均不为0),则z zy x -+2的值为 .12.用两个全等的含30︒角的直角三角形制作如图1所示的两种卡片, 两种卡片中扇形的 半径均为1, 且扇形所在圆的圆心分别为长直角边的中点和30︒角的顶点, 按先A 后B 的顺序交替摆放A 、B 两种卡片得到图2所示的图案. 若摆放这个图案共用两种卡片 8张,则这个图案中阴影部分的面积之和为 ; 若摆放这个图案共用两种 卡片(2n +1)张( n 为正整数), 则这个图案中阴影部分的面积之和为 . (结果 保留π )…… A 种 B 种图1 图 2, 三、解答题(本题共29分, 第13题~第15题各5分, 第16题4分, 第17题、第18题各5分) 13.解方程:x 2 -8x +1=0. 解:14.如图,在△ABC 中,D 、E 分别是AC 、AB 边上的点,∠AED =∠C ,AB =6,AD =4, AC =5, 求AE 的长.解:15. 抛物线y =ax 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如下表:(1)根据上表填空:① 抛物线与x 轴的交点坐标是 和 ;② 抛物线经过点 (-3, );③ 在对称轴右侧,y 随x 增大而 ; (2)试确定抛物线y =ax 2+bx +c 的解析式.解: (1)① 抛物线与x 轴的交点坐标是 和 ;② 抛物线经过点 (-3, );③ 在对称轴右侧,y 随x 增大而 .A CB DE(2)16. 如图, 在正方形网格中,△ABC 的顶点和O 点都在格点上. (1)在图1中画出与△ABC 关于点O 对称的△A ′B ′C ′;(2)在图2中以点O 为位似中心,将△ABC 放大为原来的2倍(只需画出一种即可). 解:图1 图2 结论: 为所求.17.已知关于x 的方程(k -2)x 2+2(k -2)x +k +1=0有两个实数根,求正整数k 的值. 解:18.在一个口袋中有3个完全相同的小球,把它们分别标号为1, 2, 3, 随机地摸出一个 小球记下标号后放回, 再随机地摸出一个小球记下标号, 求两次摸出小球的标号 之和等于4的概率. 解:四、解答题(本题共21分,第19题、第20题各5分, 第21题6分, 第22题5分) 19.某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w (双) 与销售单价x (元)满足280w x =-+(20≤x ≤40),设销售这种手套每天的利润为y (元). (1)求y 与x 之间的函数关系式;(2)当销售单价定为多少元时, 每天的利润最大?最大利润是多少? 解:20.已知二次函数y2+(3x -3 (m >0)的图象与x 轴交于点 (x 1, 0)和(x 2, 0), 且x 1<x 2.(1)求x 2的值;(2)求代数式96)3(112121++-++x m x m x m x m 的值.21. 如图,AB 是⊙O 的直径, 点C 在⊙O 上,CE ⊥ AB 于E , CD 平分∠ECB , 交过 点B 的射线于D , 交AB 于F , 且BC=BD . (1)求证:BD 是⊙O 的切线; (2)若AE =9, CE =12, 求BF 的长.解:22. 已知△ABC 的面积为a ,O 、D 分别是边AC 、BC 的中点.(1)画图:在图1中将点D 绕点O 旋转180︒得到点E , 连接AE 、CE . 填空:四边形ADCE 的面积为 ;(2)在(1)的条件下,若F 1是AB 的中点,F 2是AF 1的中点, F 3是AF 2的中点,…,F n 是AF n -1的中点 (n 为大于1的整数), 则△F 2CE 的面积为 ; △F n CE 的面积为 .解: (1)画图:图1填空:四边形ADCE 的面积为 .(2)△F 2CE 的面积为 ; △F n CE 的面积为 .备用图五、解答题(本题共22分,第23题7分, 第24题7分,第25题8分)23. 已知二次函数y =ax 2+bx +c 的图象与反比例函数xa y 4+=的图象交于点A (a , -3),与 y 轴交于点B .(1)试确定反比例函数的解析式;(2)若∠ABO =135︒, 试确定二次函数的解析式;(3)在(2)的条件下,将二次函数y =ax 2 + bx + c 的图象先沿x 轴翻折, 再向右平移到与反比例函数xa y 4+=的图象交于点P (x 0, 6) . 当x 0 ≤x ≤3时, 求平移后的二 次函数y 的取值范围.解:24. 已知在□ABCD中,AE⊥BC于E,DF平分∠ADC 交线段AE于F.(1)如图1,若AE=AD,∠ADC=60︒, 请直接写出线段CD与AF+BE之间所满足的等量关系;(2)如图2, 若AE=AD,你在(1)中得到的结论是否仍然成立, 若成立,对你的结论加以证明, 若不成立, 请说明理由;(3)如图3, 若AE :AD =a :b,试探究线段CD、AF、BE之间所满足的等量关系,请直接写出你的结论.解: (1)线段CD与AF+BE之间所满足的等量关系为:.AB C DF。
2012年海淀区初三上学期数学期末试题及答案
数学试卷答案及评分参考 2012.01说明: 与参考答案不同, 但解答正确相应给分.一、选择题(本题共32分,每小题4分)1. B2.D3.A4.B5. B6. C7.D8. C二、填空题(本题共16分,每小题4分)9. x =0或x =4 10. 15 11. 1 12. π(2分); 32π12n(2分)三、解答题(本题共29分,第13题~第15题各5分,第16题4分,第17题、第18题各5分)13.解法一: a =1, b =-8, c =1, …………………………1分24600b ac ∆=-=>. …………………………2分 86022b x a -±∆±==. …………………………3分 ∴ 154,15421-=+=x x . …………………………5分 解法二:281x x -=-.2816116x x -+=-+. …………………………1分 2(4)15x -=. …………………………2分 415x -=±. …………………………3分 ∴154,15421-=+=x x . …………………………5分14.证明: 在△AED 和△ACB 中,∵ ∠A =∠A , ∠AED =∠C , ……………………………2分 ∴ △AED ∽△ACB. ……………………………3分∴ .ABAD AC AE = ……………………………4分 ∴ .645=AE ∴ .310=AE ……………………………5分 15.(1)① (-2 ,0), (1, 0);② 8; ③增大 (每空1分) ……………………………3分(2)依题意设抛物线解析式为 y =a (x +2) (x -1).由点 (0, -4)在函数图象上,得-4=a (0+2) (0-1). (4)分解得 a =2.∴ y =2 (x +2) (x -1). …………………………………………………5分即所求抛物线解析式为y =2x 2+2x -4.16.(1)正确画图(1分)标出字母(1分) ……………………………………2分(2)正确画图(1分),结论(1分) ………………………………………………4分17.解:由题意得{220,[2(2)]4(2)(1)0.k k k k -≠∆=---+≥ …………………1分 由①得 2k ≠. ………………………………………………………2分由②得 2k ≤. ………………………………………………………4分∴2k <.∵k 为正整数, ∴1k =. ……………………………………………………5分18.解法一:由题意画树形图如下:…………………3分① ②第二次摸球第一次摸球312321233211从树形图看出,所有可能出现的结果共有9个,这些结果出现的可能性相等,标号之和等于4的结果共有3种. ………………………………………………………4分所以P (标号之和等于4)=3193=. ………………………………………………………5分 解法二:……………………………………3分由上表得出,所有可能出现的结果共有9个,这些结果出现的可能性相等,标号之和等于4的结果共有3种. ………………………………………………………4分所以P (标号之和等于4)=3193=. ………………………………………………………5分 四、解答题(本题共21分, 第19题、第20题各5分, 第21题6分,第22题5分)19.(1)(20)(280)(20)y w x x x =-=-+- ……………………………………2分221201600x x =-+-.(2)22(30)200y x =--+.∵2040x ≤≤, a =-2<0,∴当30x =时,200y =最大值. ……………………………………4分答:当销售单价定为每双30元时,每天的利润最大,最大利润为200元. ………5分20.(1)∵二次函数y =m x 2+(3-m )x -3 (m >0)的图象与x 轴交于点 (x 1, 0)和(x 2, 0), ∴ 令0y =,即 m x 2+(3-m )x -3=0.………………………………………………1分 (m x +3)( x -1)=0.∵m >0,∴0m >.解得 1x =或3x m=-. …………………………………………………………2分 ∵ x 1 <x 2,103<<-m,∴21x =. ……………………………………………………………3分 (2)由(1)13x m =-,得13x m =-. 由13x m=-是方程mx 2+(3-m )x -3=0的根, 得m x 12+(3-m )x 1=3. ∴mx 12 +m x 12 +(3-m ) x 1+ 6m x 1+9 =m x 12 +(3-m ) x 1+(m x 1+3)2=3. ………5分21.解:(1)证明:∵CE AB ⊥, ∴ 90CEB ∠= . ∵ CD 平分ECB ∠, BC =BD , ∴ 12∠=∠, 2D ∠=∠. ∴ 1D ∠=∠. …………………………1分标号标号 标号 之和 1 2 3 1 2 3 4 2 3 4 5 3 4 5 6 21E F O B C A∴ CE ∥BD .∴ 90DBA CEB ∠=∠= .∵ AB 是⊙O 的直径,∴ BD 是⊙O 的切线. ………………………………………………………2分(2)连接AC ,∵ AB 是⊙O 直径,∴ 90ACB ∠= .∵CE AB ⊥,可得 2CE AE EB =⋅.∴ .162==AECE EB ………………………………………………………3分 在Rt △CEB 中,∠CEB =90︒, 由勾股定理得 2220.BC CE EB =+= ……………4分 ∴ 20BD BC ==.∵ 1D ∠=∠, ∠EFC =∠BFD ,∴ △EFC ∽△BFD. ………………………………………………………5分∴ BFEF BD EC =. ∴101620BF BF-=. ∴ BF =10. ………………………………………………………………………6分 22.(1)画图: 图略(1分); 填空: a (1分) …………………………………2分(2)a 85 (1分), a n n 1212++ (2分) ……………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(1)∵A (a , -3)在4a y x+=的图象上, ∴43a a +=-. 解得1a =-. ……………………………………1分 ∴反比例函数的解析式为3y x=. ……………………………………2分 (2)过A 作AC ⊥y 轴于C .∵ A (-1, -3),∴ AC =1,OC =3.∵ ∠ABO =135︒, ∴ ∠ABC =45︒. 可得 BC =AC =1. ∴ OB =2. ∴ B (0, -2). …………………3分由抛物线2y ax bx c =++与y 轴交于B ,得c = -2. ∵ a = -1, ∴22y x bx =-+-. ∵ 抛物线过A (-1,-3), ∴ 123b ---=-.∴ b =0.∴ 二次函数的解析式为22y x =--. (4)C BA 234-2-3-4-4-3-243211-1-1y x O分(3)将22y x =--的图象沿x 轴翻折,得到二次函数解析式为22y x =+. ……………5分设将22y x =+的图象向右平移后的二次函数解析式为2()2y x m =-+ (m >0).∵ 点P (x 0, 6)在函数3y x=上, ∴036.x = ∴012x =. ∴2()2y x m =-+的图象过点1(,6)2P . ∴62)21(2=+-m . 可得1253,22m m ==-(不合题意,舍去). ∴ 平移后的二次函数解析式为25()22y x =-+. …………………………6分∵ a =1>0,∴ 当2521≤≤x 时,62≤≤y ; 当325≤<x 时,492≤<y . ∴ 当132x ≤≤时,26y ≤≤. ……………………………………7分 ∴ 平移后的二次函数y 的取值范围为 26y ≤≤.24. (1)CD =AF +BE . …………………1分(2)解:(1)中的结论仍然成立. 证明:延长EA 到G ,使得AG =BE ,连结DG .∵ 四边形ABCD 是平行四边形, ∴ AB =CD , AB ∥CD ,AD =BC . ∵ AE ⊥BC 于点E ,∴ ∠AEB =∠AEC =90︒.∴∠AEB =∠DAG =90︒. ∴ ∠DAG =90︒.∵ AE =AD , ∴ △ABE ≌△DAG . …………………………………………………………………3分 ∴∠1=∠2, DG =AB .∴∠GFD =90︒-∠3.∵ DF 平分∠ADC ,∴∠3=∠4.∴∠GDF =∠2+∠3=∠1+∠4=180︒-∠FAD -∠3=90︒-∠3.∴∠GDF =∠GFD . ………………………………………………………………4分 ∴ DG =GF .∴ CD =GF =AF +AG = AF + BE .即 CD = AF +BE . ………………………………………………………………5分(3)a CD AF BE b =+或bCD aAF bBE =+或b b CD AF BE a a=+. …………………7分 25. 解:(1)∵ 抛物线过原点和A (23,0-),4321GD A F CE B O x y -1-111234-2-3-4-4-3-2432A B C∴ 抛物线对称轴为3-=x .∴ B (3,3-). 设抛物线的解析式为2+33y a x =+().∵ 抛物线经过(0, 0),∴ 0=3a +3.∴ a =-1. ∴3)3(2++-=x y ……………………………………………1分 =.322x x --∵ C 为AB 的中点, A (23,0-)、B (3,3-),可得 C (333,22-) . 可得直线OC 的解析式为x y 33-=. ……………………………………………2分 (2)连结OB . 依题意点E 为抛物线x x y 322--=与直线x y 33-=的交点(点E 与点O 不重合).由23323,y x y x x ⎧=-⎪⎨⎪=--⎩, 解得 53,35,3x y ⎧=-⎪⎪⎨⎪=⎪⎩或0,0.x y =⎧⎨=⎩(不合题意,舍). ∴ E (535,33-) …………………………3分 过E 作EF ⊥y 轴于F , 可得OF =53, ∵ OE =DE ,EF ⊥y 轴, ∴ OF=DF .∴ DO =2OF =103. ∴ D (0, 10)3. ………………………………………………………………………4分∴ BD =2210233733-+-=()(). ……………………………………………5分 (3)E 点的坐标为(333,22-)或(31,22-). ……………………………………………8分 说明:此问少一种结果扣1分.F C D E B A y x O。
2014-2015海淀区初三数学期末试题及答案
海淀区九年级第一学期期末测评数 学 试 卷(分数:120分 时间:120分钟)班级 姓名 学号 成绩 一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.方程2350x x --=的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根 2.在Rt △ABC 中,∠C =90º,35BC AB ==,,则sin A 的值为A.35 B.45 C. 34 D. 433.若右图是某个几何体的三视图,则这个几何体是A. 长方体B. 正方体C. 圆柱D. 圆锥4.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是 A.16 B. 13 C. 12 D. 235.如图,△ABC 和△A 1B 1C 1是以点O 为位似中心的位似三角形,若C 1为OC 的中点,AB =4,则A 1B 1的长为A. 1B. 2C. 4D. 86.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数3=-y x的图象上的两点,若x 1<0<x 2,则下列结论正确的是A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<07.如图,AB 是半圆O 的直径,AC 为弦,OD ⊥AC 于D ,过点O 作 OE ∥AC 交半圆O 于点E ,过点E 作EF ⊥AB 于F .若AC =2,则OF 的长为A .12B .34C .1D .28.如图1,在矩形ABCD 中,AB <BC ,AC ,BD 交于点O .点E 为线段AC 上的一个动点,连接DE ,BE ,过E 作EF ⊥BD 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的图1 图2A .线段EFB .线段DEC .线段CED .线段BE 二、填空题(本题共16分,每小题4分)9.若扇形的半径为3cm ,圆心角为120°,则这个扇形的面积为__________ cm 2.10.在某一时刻,测得一根高为2m 的竹竿的影长为1m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为 m.11.如图,抛物线2y ax =与直线y =bx +c 的两个交点坐标分别为()2,4A -,()1,1B ,则关于x 的方程20ax bx c --=的解为__________.12.对于正整数n ,定义210()=()10,,≥n n F n f n n ⎧<⎨⎩,其中()f n 表示n 的首位数字、末位数字的平方和.例如:2(6)636F ==,()22(123)1231310F f ==+=.规定1()()F n F n =,1()(())k k F n F F n +=(k 为正整数).例如:()()112312310F F ==,21(123)((123))(10)1F F F F ===. (1)求:2(4)F =____________,2015(4)F =______________; (2)若3(4)89m F=,则正整数m 的最小值是_____________.三、解答题(本题共30分,每小题5分)13.计算:()()1201511sin30 3.142-⎛⎫-+-π-+ ⎪⎝⎭.14.如图,△ABC 中,AB =AC ,D 是BC 中点,BE ⊥AC 于E . 求证:△ACD ∽△BCE .15.已知m 是一元二次方程2320x x --=的实数根,求代数式(1)(1)1m m m+--的值.16.抛物线22y x =平移后经过点(0,3)A ,(2,3)B ,求平移后的抛物线的表达式.17.如图,在平面直角坐标系xOy 中,正比例函数2y x =与反比例函数ky x=的图象交于A ,B 两点,A 点的横坐标为2,AC ⊥x 轴于点C ,连接BC .(1)求反比例函数的解析式; (2)若点P 是反比例函数ky x=图象上的一点,且满足△OPC 与△ABC 的面积相等,请直接写出点P 的坐标.B18.如图,△ABC 中,∠ACB =90°,4sin 5A =, BC =8,D 是AB 中点,过点B 作直线CD 的垂线,垂足为E . (1)求线段CD 的长; (2)求cos ABE ∠的值.四、解答题(本题共20分,每小题5分) 19.已知关于x 的一元二次方程()2220mx m x -++=有两个不相等的实数根12,x x .(1)求m 的取值范围; (2)若20x <,且121x x >-,求整数m 的值.20. 某工厂生产的某种产品按质量分为10个档次,据调研显示,每个档次的日产量及相应为了便于调控,此工厂每天只生产一个档次的产品.当生产质量档次为x 的产品时,当天的利润为y 万元.(1)求y 关于x 的函数关系式;(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.A21.如图,四边形ABCD 是平行四边形,点A ,B ,C 在⊙O 上,AD 与⊙O 相切,射线AO 交BC 于点E ,交⊙O 于点F .点P 在射线AO 上,且∠PCB =2∠BAF . (1)求证:直线PC 是⊙O 的切线;(2)若ABAD =2,求线段PC 的长.22.阅读下面材料:小明观察一个由11⨯正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1.他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值. 请回答:(1)如图1,A 、B 、C 是点阵中的三个点,请在点阵中找到点D ,作出线段CD ,使得CD ⊥AB ;(2)如图2,线段AB 与CD 交于点O .为了求出AOD ∠的正切值,小明在点阵中找到了点E ,连接AE ,恰好满足AE CD ⊥于F ,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明计算:OC =_______________;tan AOD ∠=_______________;C图1 图2 图3参考小明思考问题的方法,解决问题:如图3,计算:tan AOD ∠=_______________.五、解答题(本题共22分,第23题7分,第24题7分,第25小题8分) 23.在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点(1,4)A ,(,)B m n . (1) 求代数式mn 的值;(2) 若二次函数2(1)y x =-的图象经过点B ,求代数式32234m n m n mn n -+-的值; (3) 若反比例函数k y x=的图象与二次函数2(1)y a x =-的图象只有一个交点,且该交点在直线y x =的下方,结合函数图象,求a 的取值范围.24.如图1,在△ABC 中,BC =4,以线段AB 为边作△ABD ,使得AD=BD , 连接DC ,再以DC 为边作△CDE ,使得DC = DE ,∠CDE =∠ADB =α.(1)如图2 ,当∠ABC=45°且α=90°时,用等式表示线段AD ,DE 之间的数量关系;(2)将线段CB 沿着射线CE 的方向平移,得到线段EF ,连接BF ,AF . ① 若α=90°,依题意补全图3, 求线段AF 的长; ②请直接写出线段AF 的长(用含α的式子表示).图2 图3 备用图BBB图1图325. 在平面直角坐标系xOy 中,设点()11,P x y ,()22,Q x y 是图形W 上的任意两点.定义图形W 的测度面积:若12x x -的最大值为m ,12y y -的最大值为n ,则S mn = 为图形W 的测度面积.例如,若图形W 是半径为1的⊙O .当P ,Q 分别是⊙O 与x 轴的交点时,如图1,12x x - 取得最大值,且最大值m =2;当P ,Q 分别是⊙O 与y 轴的交点时,如图2,12y y -取得最大值,且最大值n =2.则图形W 的测度面积4S mn ==.(1)若图形W 是等腰直角三角形ABO ,OA =OB =1.①如图3,当点A ,B 在坐标轴上时,它的测度面积S = ; ②如图4,当AB ⊥x 轴时,它的测度面积S = ; (2)若图形W 是一个边长为1的正方形ABCD ,则此图形测度面积S 的最大值为 ; (3)若图形W 是一个边长分别为3和4的矩形ABCD ,求它的测度面积S 的取值范围.图1图2海淀区九年级第一学期期末练习2015.1数学试卷答案及评分参考阅卷须知:1. 为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2. 若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3. 评分参考中所注分数,表示考生正确做到步应得的累加分数.二、填空题(本题共16分,每小题4分) 9. 3π;10. 24 ;11. 122,1x x =-= ; 12. (1)37,26;(每个答案1分)(2)6.(2分)三、解答题:(本题共30分,每小题5分) 13.(本小题满分5分) 解:原式11122=-+-+ ……………………………………………………………………4分 12=. ………………………………………………………………………………5分 14. (本小题满分5分)证明:∵AB =AC ,D 是BC 中点,∴AD ⊥BC . …………………………………………………………………………1分 ∴∠ADC =90°. ∵BE ⊥AC , ∴∠BEC =90°.∴∠ADC =∠BEC . ……………………………………………………………………3分 在△ACD 和△BCE 中,ACD BCE ADC BEC ∠=∠⎧⎨∠=∠⎩,, ∴△ACD ∽△BCE .……………………………………………………………………5分15. (本小题满分5分)解:由已知,可得2320m m --=.………………………………………………………1分∴223m m -=. ………………………………………………………………………2分∴原式=2211233m m mm m m---===.………………………………………………5分16. (本小题满分5分)解一:设平移后抛物线的表达式为22y x bx c =++. …………………………………1分∵平移后的抛物线经过点(0,3)A ,(2,3)B ,∴3,382.c b c =⎧⎨=++⎩………………………………………………………………………3分解得4,3.b c =-⎧⎨=⎩ …………………………………………………………………………4分所以平移后抛物线的表达式为2243y x x =-+. ………………………………5分 解二:∵平移后的抛物线经过点(0,3)A ,(2,3)B ,∴平移后的抛物线的对称轴为直线1x =. …………………………………………1分∴设平移后抛物线的表达式为()221y x k =-+. ………………………………2分 ∴()23221k =⨯-+..………………………………………………………………3分 ∴1k =..………………………………………………………………………………4分 所以平移后抛物线的表达式为()2211y x =-+. ………………………………5分 17. (本小题满分5分)解:(1)将2x =代入2y x =中,得224y =⨯=.∴点A 坐标为(2,4).………………………………………………………………1分 ∵点A 在反比例函数ky x=的图象上, ∴248k =⨯=.……………………………………………………………………2分 ∴反比例函数的解析式为8y x=. ………………………………………………3分 (2)()1,8P 或()1,8P --.……………………………………………………………5分 18. (本小题满分5分)解:(1)∵△ABC 中,∠ACB =90°,4sin 5A =, BC =8, ∴8104sin 5BC AB A ===.…………………………………………………………1分 ∵△ABC 中,∠ACB =90°,D 是AB 中点,∴152CD AB ==.…………………………………………………………………2分(2)解法一:过点C 作CF ⊥AB 于F ,如图.∴∠CFD =90°.在Rt △ABC中,由勾股定理得6AC ==.∵CF AB AC BC ⋅=⋅, ∴245AC BC CF AB ⋅==.………………………………3分 ∵BE ⊥CE ,∴∠BED =90°. ∵∠BDE =∠CDF ,∴∠ABE =∠DCF .………………………………………4分∴24245cos cos 525CF ABE DCF CD ∠=∠===. …………………………………5分 解法二:∵D 是AB 中点,AB =10,∴152BD AB ==.……………………………………………………………………3分 ∴12BDCABC S S ∆∆=. 在Rt △ABC中,由勾股定理得6AC ==.∴168242ABC S ∆=⨯⨯=. ∴12BDC S ∆=.∴1122BE CD =. ∵5CD =,∴245BE =. ………………………………………………4分∵BE ⊥CE , ∴∠BED =90°.∴24245cos 525BE ABE BD ∠===.……………………………………………………5分AA四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解:(1)由已知,得0m ≠且()()2222424420m m m m m ∆=+-⨯=-+=->,∴0m ≠且2m ≠.…………………………………………………………………2分(2)原方程的解为()()222m m x m+±-=.∴1x =或2x m=. …………………………………………………………………3分 ∵20x <,∴11x =,220x m=<.∴0m <.∵121x x >-, ∴12m>-.∴2m >-.又∵02m m ≠≠且,∴20m -<<.……………………………………………………………………4分 ∵m 是整数,∴1m =-. ………………………………………………………5分20. (本小题满分5分)解:(1)()()210052410180400y x x x x =-+=-++. ……………………………2分(110x ≤≤且x 为整数).(2)∵()22101804001091210y x x x =-++=--+.…………………………3分又∵110x ≤≤且x 为整数,∴当9x =时,函数取得最大值1210.…………………………………………4分 答:工厂为获得最大利润,应生产第9档次的产品,当天的最大利润为1210万元.………………………………………………………………5分21. (本小题满分5分)解:(1)连接OB ,OC .∵AD 与⊙O 相切于点A ,∴FA ⊥AD .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴FA ⊥BC .……………………………………1分∵FA 经过圆心O ,∴OF ⊥BC 于E ,CF BF =. ∴∠OEC =90°,∠COF =∠BOF . ∵∠BOF =2∠BAF .∴∠COF =2∠BAF . ∵∠PCB =2∠BAF , ∴∠PCB =∠COF .∵∠OCE +∠COF =180°-∠OEC =90°, ∴∠OCE +∠PCB =90°,即∠OCP =90°. ∴OC ⊥PC .∵点C 在⊙O 上,∴直线PC 是⊙O 的切线.…………………………………………………………2分(2) ∵四边形ABCD 是平行四边形,∴BC=AD=2. ∴BE=CE =1.在Rt △ABE 中,∠AEB =90°,AB,∴3AE =.…………………………………………………………3分设⊙O 的半径为r ,则OC OA r ==,3OE r =-. 在Rt △OCE 中,∠OEC =90°, ∴222OC OE CE =+. ∴ ()2231r r =-+.解得53r =.…………………………………………………………………………4分 ∵∠COE=∠PCE ,∠OEC=∠CEP =90°, ∴△OCE ∽△CPE .∴OE OCCE CP =. ∴553331CP -=. ∴54CP =.……………………………………………………………………………5分22.(本小题满分5分)(1)如图,线段CD 即为所求;……………………1分 (2)OC,tan AOD ∠=5;……………………3分 (3)tan AOD ∠=74.…………………………………5分B五、解答题:(本题共22分,第23题7分,第24题8分,第25题7分) 23.(本小题满分7分) 解:(1)∵反比例函数ky x=的图象经过点(1,4)A , ∴4k =.………………………………………………………………………1分 ∴反比例函数的解析式为4y x=. ∵反比例函数4y x=的图象经过点(,)B m n , ∴4mn =.………………………………………………………………………2分 (2)∵二次函数2(1)y x =-的图象经过点(,)B m n ,∴2(1)n m =-.…………………………………………………………………3分 由(1)得4mn =,∴原式2(21)24mn m m mn n =-++-24184m n =-+-()484n n =+-8=.……………………………………………………………………4分(3)由(1)得反比例函数的解析式为4y x=. 令y x =,可得24x =,解得2x =±.∴反比例函数4y x=的图象与直线y x =交于点(2,2),(2,2)--.…………………………5分当二次函数2(1)y a x =-的图象经过点(2,2)当二次函数2(1)y a x =-的图象经过点(2,2)--∵二次函数2(1)y a x =-的顶点为(1,0),∴由图象可知,符合题意的a 的取值范围是02a <<或29a <-.…………7分24. (本小题满分7分)(1) AD+DE=4.……………………………………………………………………………………1分(2)①补全图形.……………………………………………………………………………………2分解:设DE与BC相交于点H,连接AE,交BC于点G,如图.∠ADB=∠CDE =90°,∴∠ADE=∠BDC.在△ADE与△BDC中,,,,AD BDADE BDCDE DC=⎧⎪∠=∠⎨⎪=⎩∴△ADE≌△BDC. (3)∴AE= BC,∠AED=∠BCD.DE与BC相交于点H,∴∠GHE=∠DHC.∴∠EGH=∠EDC=90°.…………………………………………………………………………4分线段CB沿着射线CE的方向平移,得到线段EF,∴EF = CB=4, EF // CB.∴AE= EF.CB//EF,∴∠AEF=∠EGH=90°.AE=EF,∠AEF=90°,∴∠AFE=45°.∴AF=cos45EF (5)分②8sin2AFα=. (7)分25.(本小题满分8分)解:(1)① 1;………………………………………………………………………………1分② 1.………………………………………………………………………………2分(2) 2. …………………………………………………………………………………4分 (3)不妨设矩形ABCD 的边AB =4,BC =3.由已知可得,平移图形W 不会改变其测度面积S 的大小,将矩形ABCD 的其中一个顶点B 平移至x 轴上.当顶点A ,B 或B ,C 都在x 轴上时,如图5和图6,矩形ABCD 的测度面积S 就是矩形ABCD 的面积,此时S =12.………………………………5分当顶点A ,C 都不在x 轴上时,如图7.过A 作直线AE ⊥x 轴于点E ,过C 作直线CF ⊥x 轴于点F , 过D 作直线GH ∥x 轴,与直线AE ,CF 分别交于点H 和点 G ,则可得四边形EFGH 是矩形.当点P ,Q 分别与点A ,C 重合时,12x x -取得最大值m , 且最大值m EF =;当点P ,Q 分别与点B ,D 重合时,12y y -取得最大值n ,且最大值n GF =. ∴图形W 的测度面积S EF GF =⋅.∵∠ABC =90°,∴∠ABE +∠CBF =90°. ∵∠AEB =90°,∴∠ABE +∠BAE =90°. ∴∠BAE =∠CBF .又∵90AEB BFC ∠=∠=,∴△ABE ∽△BCF .…………………………………………………………………………6分 ∴43AE EB AB BF FC BC ===. 设4,4AE a EB b ==()0,0a b >>,则3,3BF a FC b ==, 在Rt △ABE 中,由勾股定理得222AE BE AB +=. ∴22161616a b +=.即221a b +=. ∵0b >,∴b =易证△ABE ≌△CDG . ∴4CG AE a ==.∴43EF EB BF b a =+=+,34GF FC CG b a =+=+.∴()()4334S EF GF b a b a =⋅=++22121225a b ab =++1225=+12=+12=+12=+∴当212a =,即2a =时,测度面积S 取得最大值4912252+=.…………7分∵0,0a b >>0>.∴12S >.∴当顶点A ,C 都不在x 轴上时,S 的范围为49122≤S <. 综上所述,测度面积S 的取值范围是49122≤≤S .………………………………………8分。
2010-2011学年海淀区九年级上数学期末统一试卷及答案
海淀区九年级数学第一学期期末练习 2011.1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2(-=( )A .3B .3-C .3±D .92.已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是 ) A .外离B .外切C .相交D .内切3.将一枚硬币抛掷两次,则这枚硬币两次正面都向上的概率为( )A .12B .13C .14D .164.如图,⊙O 是△ABC 的外接圆,已知∠ABO =30º,则∠ACB 的大小为( )A .60ºB .30ºC .45ºD .50º5.下列一元二次方程中没有..实数根的是( ) A .2240x x +-= B .2440x x -+= C .2250x x --=D .2340x x ++=6.如图,有一枚圆形硬币,如果要在这枚硬币的周围摆放几枚与它完全相同的硬币,使得周围的硬币都和这枚硬币相外切,且相邻的硬币相外切,则这枚硬币周围最多可摆放( )A .4枚硬币B .5枚硬币C .6枚硬币D .8枚硬币7.圆锥的母线长是3,底面半径是1,则这个圆锥侧面展开图圆心角的度数为( )A .90°B .120°C .150°D .180°8.如图,E ,B ,A ,F 四点共线,点D 是正三角形ABC 的边AC 的中点,点P 是直线AB 上异于A ,B 的一个动点,且满足30CPD ∠=︒,则( )A .点P 一定在射线BE 上B .点P 一定在线段AB 上C .点P 可以在射线AF 上 ,也可以在线段AB 上D .点P 可以在射线BE 上 ,也可以在线段 二、填空题(本题共16分,每小题4分)9.已知P 是⊙O 外一点,P A 切⊙O 于A ,PB 切⊙O 于B .若P A =6,则PB = . 10x 的取值范围是 .11.如图,圆形转盘中,A ,B ,C 三个扇形区域的圆心角分别为150°,120°和90°. 转动圆盘后,指针停止在任何位置的可能性都相同(若指针停在分界线上,则重新转动圆盘),则转动圆盘一次,指针停C12.(1) 如图一,等边三角形MNP 的边长为1,线段AB 的长为4,点M 与A 重合,点N 在线段AB 上. △MNP 沿线段AB 按A B →的方向滚动, 直至△MNP 中有一个点与点B 重合为止,则点P 经过 的路程为 ;(2)如图二,正方形MNPQ 的边长为1,正方形ABCD 的边长为2,点M 与点A 重合,点N 在线段AB 上, 点P 在正方形内部,正方形MNPQ 沿正方形ABCD 的边按A B C D A →→→→→ 的方向滚动,始终保持M ,N ,P ,Q 四点在正方形内部或边界上,直至正方形MNPQ 回到初始位置为 止,则点P 经过的最短路程为 .(注:以△MNP 为例,△MNP 沿线段AB 按A B →的方向滚动指的是先以顶点N 为中心顺时针旋转, 当顶点P 落在线段AB 上时, 再以顶点P 为中心顺时针旋转,如此继续. 多边形沿直线滚动与此类 似.)三、解答题(本题共30分,每小题5分) 13.计算:.14(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.15.解方程:24120x x +-=. ()A N P图二图一图三(A Q16.如图,在ABC △中,AB 是⊙O 的直径,⊙O 与AC 交于点D,60,75AB B C =∠=︒∠=︒,求B O D ∠的度数;17.如图,正方形ABCD 中,点F 在边BC 上,E 在边BA 的延长线上. (1)若DCF △按顺时针方向旋转后恰好与DAE △重合.则旋转中心是点 ;最少旋转了 度;(2)在(1)的条件下,若3,2AE BF ==,求四边形BFDE 的面积.18.列方程解应用题:随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2009年为10万只,预计2011年将达到14.4万只.求该地区2009年到2011年高效节能灯年销售量的平均增长率.四、解答题(本题共20分,每小题5分)19.如图,在△ABC 中,120,C ∠=︒,4AC BC AB ==,半圆的圆心O 在AB 上,且与AC ,BC 分别相切于点D ,E . (1)求半圆O 的半径;(2)求图中阴影部分的面积. ADCBODCFBEA20.如图,O 为正方形ABCD 对角线AC 上一点,以O 为圆心,OA 长为半径的⊙O 与BC 相切于点M . (1)求证:CD 与⊙O 相切;(2)若⊙O 的半径为1,求正方形ABCD 的边长.21.一个袋中有3张形状大小完全相同的卡片,编号为1,2,3,先任取一张,将其编号记为m ,再从剩下的两张中任取一张,将其编号记为n .(1)请用树状图或者列表法,表示事件发生的所有可能情况; (2)求关于x 的方程20x mx n ++=有两个不相等实数根的概率.22.如图一,AB 是O 的直径,AC 是弦,直线EF 和O 相切与点C ,AD EF ⊥,垂足为D . (1)求证CAD BAC ∠=∠;(2)如图二,若把直线EF 向上移动,使得EF 与O 相交于G ,C 两点(点C 在点G 的右侧),连结AC ,AG ,若题中其他条件不变,这时图中是否存在与CAD ∠相等的角?若存在,找出一个这样 的角,并证明;若不存在,说明理由.图一图二五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.以坐标原点为圆心,1为半径的圆分别交x ,y 轴的正半轴于点A ,B .(1)如图一,动点P 从点A 处出发,沿x 轴向右匀速运动,与此同时,动点Q 从点B 处出发,沿圆周按顺时针方向匀速运动.若点Q 的运动速度比点P 的运动速度慢,经过1秒后点P 运动到点(2,0),此时PQ 恰好是O 的切线,连接OQ . 求QOP ∠的大小;(2)若点Q 按照(1)中的方向和速度继续运动,点P 停留在点(2,0)处不动,求点Q 再经过5秒后直线PQ 被O 截得的弦长.24.已知关于x的方程221(1)04x a -++=有实根.(1)求a 的值;(2)若关于x 的方程2(1)0mx m x a +--=的所有根均为整数,求整数m 的值.图一图二(备用图)25.如图一,在△ABC 中,分别以AB ,AC 为直径在△ABC 外作半圆1O 和半圆2O ,其中1O 和2O 分别为两个半圆的圆心. F 是边BC 的中点,点D 和点E 分别为两个半圆圆弧的中点. (1)连结1122,,,,,O F O D DF O F O E EF ,证明:12DO F FO E △≌△;(2)如图二,过点A 分别作半圆1O 和半圆2O 的切线,交BD 的延长线和CE 的延长线于点P 和点Q ,连结PQ ,若∠ACB=90°,DB=5,CE=3,求线段PQ 的长;(3)如图三,过点A 作半圆2O 的切线,交CE 的延长线于点Q ,过点Q 作直线F A 的垂线,交BD 的延长线于点P ,连结P A . 证明:P A 是半圆1O 的切线. 图一图二Q图三海淀区九年级数学第一学期期末练习参考答案及评分标准 2011.1说明: 合理答案均可酌情给分,但不得超过原题分数三、解答题(本题共30分,每小题5分)13.解:原式=…………………………….…………………………….2分= …………………………….…………………………….4分 =6 …………………………….…………………………….5分 14.(1)解: 48,…………………………….…………………………….1分 0.81…………………………….…………………………….2分 (2)解:()90.8P =射中环以上…………………………….…………………………….4分从频率的波动情况可以发现频率稳定在0.8附近,所以这名运动员射击一次时“射中9环以上” 的概率是0.8. …………………………….…………………………….5分 注:简述的理由合理均可给分 15.解法一:因式分解,得()()620x x +-= …………………………….…………………………….2分 于是得 60x +=或20x -= 126,2x x =-= ………………………….5分 解法二:1,4,12a b c ===-2464b ac ∆=-=…………………………….…………………………….2分482x -±== …………………………….…………………………….4分126,2x x =-= …………………………….…………………………….5分16.解:在ABC △中,60,75B C ∠=︒∠=︒ ,45A ∴∠=︒. …………………………….…………………………….2分AB 是⊙O 的直径,⊙O 与AC 交于点D, ∴290DOB A ∠=∠=︒. …………………………….…………………………….5分17.解:(1)D ;90︒. …………………………….…………………………….2分 (2)DCF DEA △旋转后恰好与△重合, DCF DAE ∴△≌△.3,2AE CF BF ∴===又. 5BC BF CF ∴=+=.AED BFDE ABFD S S S ∴=+△四边形四边形DCF ABFD S S ∆=+四边形ABCD S =正方形2BC =25= 5分18.解:设该地区2009年到2011年高效节能灯年销售量的平均增长率为x .……………….1分依据题意,列出方程 ()210114.4x += ……………………….…………………………….2分 化简整理,得: ()21 1.44x +=, 解这个方程,得 11.2x +=±, ∴ 120.2, 2.2x x ==-. ∵ 该地区2009年到2011年高效节能灯年销售量的平均增长率不能为负数. ∴ 2.2x =-舍去. ∴ 0.2x =. …………………….…………………………….4分四、解答题(本题共20分,每小题5分) 19.(1)解:连结OD ,OC ,∵半圆与AC ,BC 分别相切于点D ,E . ∴DCO ECO ∠=∠,且OD AC ⊥. ∵AC BC =,∴CO AB ⊥且O 是AB 的中点.∴122AO AB ==. ∵120C ∠=︒,∴60DCO ∠=︒. ∴30A ∠=︒.∴在R t AOD △中,112OD AO ==.即半圆的半径为1. …………………………….…………………………….3分(2)设CO =x ,则在R t AOC △中,因为30A ∠=︒,所以AC =2x ,由勾股定理得: 222AC OC AO -= 即 222(2)2x x -= 解得x =(x =舍去)∴11422ABC S AB OC =⋅=⨯=△……….…………………………….4分∵ 半圆的半径为1,∴ 半圆的面积为2π,∴2S π=-=阴影…………………………….…………………………….5分20.(1)解:过O 作ON CD ⊥于N ,连结OM ,则OM BC ⊥. ∵ AC 是正方形ABCD 的对角线, ∴ AC 是BCD ∠的平分线. ∴ OM =ON.即圆心O 到CD 的距离等于⊙O 半径, ∴ CD 与⊙O 相切.…………………………….…………………………….3分(2)由(1)易知MOC △为等腰直角三角形,OM 为半径, ∴ OM =MC =1.∴ 222112OC OM MC =+=+=, ∴OC =.∴1AC AO OC =+= 在R t ABC △中,AB =BC ,有 222A C A BB C=+ ∴ 222AB AC = ∴AB =…………………………….…………………………….5分故正方形ABCDN21.(1)解:依题意画出树状图(或列表)如下或…………………………….…………………………….2分注:画出一种情况就可给2分(2)解:当240m n ->时,关于x 的方程20x mx n ++=有两个不相等实数根,而使得240m n ->的m ,n 有2组,即(3,1)和(3,2). ………….…………………………….4分则关于x 的方程20x mx n ++=有两个不相等实数根的概率是13.∴P (有两个不等实根)=13. …………………….5分22.(1)证明:如图一,连结OC ,则OC EF ⊥,且OC=OA ,易得OCA OAC ∠=∠.∵ AD EF ⊥,∴OC//AD.∴OCA ∠=CAD ∠,∴CAD ∠=OAC ∠. 即 C A D B A C ∠=∠.…………………………….…………………………….2分 (2)解:与CAD ∠相等的角是BAG ∠.…………………………….…………………………….3分证明如下: 如图二,连结BG .∵ 四边形ACGB 是O 的内接四边形, ∴ 180ABG ACG ∠+∠=︒. ∵ D ,C ,G 共线,∴ 180ACD ACG ∠+∠=︒. ∴ ACD ABG ∠=∠.∵ AB 是O 的直径, ∴ 90BAG ABG ∠+∠=︒ ∵ AD EF ⊥ ∴ 90CAD ACD ∠+∠=︒ ∴ CAD BAG ∠=∠. …………………………….…………………………….5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(1)解:如图一,连结AQ .由题意可知:OQ =OA =1. ∵OP =2, ∴A 为OP 的中点. ∵PQ 与O 相切于点Q ,∴OQP △为直角三角形. …………1分∴112AQ OP OQ OA ==== . …………2分即ΔOAQ 为等边三角形.123123312m n 图一图二(2)解:由(1)可知点Q 运动1秒时经过的弧长所对的圆心角为30°,若Q 按照(1)中的方向和速度继续运动,那么再过5秒,则Q 点落在O 与y 轴负半轴的交点处(如图二).设直线PQ 与O 的另外一个交点为D ,过O 作OC ⊥QD 于点C ,则C 为QD 的中点. …………4分 ∵∠QOP =90°,OQ =1,OP =2,∴QP…………5分 ∵1122OQ OP QP OC ⋅=⋅, ∴OC. …………6分∵OC ⊥QD ,OQ =1,OC∴QC∴QD. …………7分24.(1)解:∵关于x的方程为221(1)04x a -++=为一元二次方程,且有实根.故满足:220,1(4(1)0.4a a ≥⎧⎪⎨∆=--⨯⨯+≥⎪⎩ ……….…………………………….2分(注:每个条件1分) 整理得 20,(1)0.a a ≥⎧⎨-≤⎩ ∴1a =……….…………………………….4分(2)由(1)可知1a =,故方程2(1)0mx m x a +--=可化为2(1)10mx m x +--=.①当m =0时,原方程为10x -=,根为1x =,符合题意. ………………………….5分②当m ≠0时,2(1)10mx m x +--=为关于x 的一元二次方程,2222(1)4(1)12421(1)0m m m m m m m m ∆=--⨯⨯-=-++=++=+≥.此时,方程的两根为 1211,x x m==-. ∵两根均为整数, ∴m =1±.………………………….7分综上所述,m 的值为1-,0 或1.图二1125.(1)证明:如图一,∵1O ,2O ,F 分别是AB ,AC ,BC 边的中点,∴1O F ∥AC 且1O F =A 2O ,2O F ∥AB 且2O F =A 1O , ∴∠B 1O F=∠BAC ,∠C 2O F=∠BAC , ∴∠B 1O F=∠C 2O F∵点D 和点E 分别为两个半圆圆弧的中点, ∴1O F =A 2O =2O E ,2O F =A 1O =1O D ,分 ∠B 1O D =90°,∠C 2O E =90°, ∴∠B 1O D=∠C 2O E . ∴∠D 1O F=∠F2O E .∴12DO F FO E △≌△.………………………….3分(2)解:如图二,延长CA 至G ,使AG =AQ ,连接BG 、AE .∵点E 是半圆2O 圆弧的中点, ∴AE=CE=3 ∵AC 为直径 ∴∠AEC =90°,∴∠ACE =∠EAC =45°,AC = ∵AQ 是半圆2O 的切线, ∴CA ⊥AQ ,∴∠CAQ =90°,∴∠ACE =∠AQE =45°,∠GAQ =90° ∴AQ =AC =AG =同理:∠BAP =90°,AB =AP = ∴CG =∠GAB =∠QAP ∴AQP AGB △≌△. ……………………..5分∴PQ =BG ∵∠ACB =90°,∴BC ∴BG ∴PQ=……………………..6分(3) 证法一:如图三,设直线F A 与PQ 的垂足为M ,过C 作CS ⊥MF 于S ,过B 作BR ⊥MF 于R ,连接DR 、AD 、DM.∵F 是BC 边的中点,∴ABF ACF S S =△△. ∴BR=CS ,由(2)已证∠CAQ =90°, AC =AQ,∴∠2+∠3=90° ∵FM ⊥PQ , ∴∠2+∠1=90°, ∴∠1=∠3, 同理:∠2=∠4,∴AMQ CSA △≌△, ∴AM=CS , ∴AM=BR ,图一图二图三12同(2)可证AD=BD ,∠ADB =∠ADP =90°,∴∠ADB =∠ARB =90°, ∠ADP =∠AMP =90° ∴A 、D 、B 、R 四点在以AB 为直径的圆上,A 、D 、P 、M 四点在以AP 为直径的圆上, 且∠DBR+∠DAR =180°, ∴∠5=∠8, ∠6=∠7, ∵∠DAM +∠DAR =180°, ∴∠DBR =∠DAM ∴DBR DAM △≌△, ∴∠5=∠9, ∴∠RDM =90°,∴∠5+∠7=90°, ∴∠6+∠8=90°, ∴∠P AB =90°,∴P A ⊥AB ,又AB 是半圆1O 直径, ∴P A 是半圆1O 的切线.……………………..8分证法二:假设P A 不是是半圆1O 的切线,如图四,过点A 作半圆1O 的切线交BD 的延长线于点P ', 则点P '异于点P ,连结P Q ',设直线F A 与PQ 的 垂足为M ,直线F A 与P Q '的交点为M '.延长AF 至N ,使得AF =FN ,连结BN ,CN ,由于点F 是 BC 中点,所以四边形ABNC 是平行四边形. 易知,180BAC ACN ∠+∠=︒, ∵AQ 是半圆2O 的切线,∴∠QAC =90°,同理90P AB '∠=︒. ∴180P AQ BAC '∠+∠=︒. ∴P AQ ACN '∠=∠.由(2)可知,,AQ AC AB AP '==,∴P AQ NCA '△≌△. ∴NAC P QA '∠=∠. ∵90QAC ∠=︒,∴90NAC M AQ '∠+∠=︒.即 90AQM M AQ ''∠+∠=︒.∴90AM Q '∠=︒. 即 P Q A F '⊥.∵ PQ AF ⊥,∴ 过点Q 有两条不同的直线P Q '和PQ 同时与AF 垂直.这与在平面内过一点有且仅有一条直线与已知直线垂直相矛盾,因此假设错误.所以P A 是是半圆1O 的切线.Q图四。
2022-2023学年北京市海淀区第四中学数学九年级第一学期期末复习检测试题含解析
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.下图中几何体的左视图是( )A .B .C .D .2.如图,在⊙O 中,半径OC 垂直弦AB 于D ,点E 在⊙O 上,22.52E AB ︒∠=,=,则半径OB 等于()A .1B 2C .2D .223.已知2x=5y (y ≠0),则下列比例式成立的是( )A .25xy= B .52xy= C .25xy = D .52xy =4.4的平方根是( )A .2B .–2C .±2D .±125.﹣3﹣(﹣2)的值是( )A .﹣1B .1C .5D .﹣56.方程x (x ﹣1)=0的根是( )A .x =0B .x =1C .x 1=0,x 2=1D .x 1=0,x 2=﹣17.一组数据3,1,4,2,-1,则这组数据的极差是( )A .5B .4C .3D .28.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程2(1)(1)0a x b x c -+-+=的解为( ) A .120,2x x == B .122,4x x =-= C .120,4x x == D .122,2x x =-=9.四边形ABCD 内接于⊙O ,点I 是ABC ∆的内心,124AIC ∠=,点E 在AD 的延长线上,则CDE ∠的度数为( )A .56°B .62°C .68°D .48°10.如图,矩形AOBC 的面积为4,反比例函数k y x =(0k ≠)的图象的一支经过矩形对角线的交点P ,则该反比例函数的解析式是( )A .4y x =B .2y x =C .2y x =-D .1y x=- 11.用配方法解一元二次方程x 2﹣2x =5的过程中,配方正确的是( )A .(x +1)2=6B .(x ﹣1)2=6C .(x +2)2=9D .(x ﹣2)2=912.某同学用一根长为(12+4π)cm 的铁丝,首尾相接围成如图的扇形(不考虑接缝),已知扇形半径OA =6cm ,则扇形的面积是( )A .12πcm 2B .18πcm 2C .24πcm 2D .36πcm 2二、填空题(每题4分,共24分)13.若关于x 的一元二次方程21x x m 20-+-=有实数根,则m 的取值范围是___________.14.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为_____.15.如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线kyx(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=_____.16.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么AFAG的值为__________.17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=1010,则CD的长等于_____.18.计算:1(27)33-⨯= . 三、解答题(共78分)19.(8分)如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.20.(8分)如图,在Rt ABC ∆中,90ACB ︒∠=,D 为边AB 上的中点,DE AB ⊥交AC 于点E ,2AD DE =.(1)求sin B 的值;(2)若5CD =,求CE 的值.21.(8分)如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在轴,轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数k y x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数k y x=的表达式,并直接写出E 、F 两点的坐标. (2)求△AEF 的面积.22.(10分)如图,点A B C ,,在O 上,//BE AC ,交O 于点E ,点D 为射线BC 上一动点, AC 平分BAD ∠,连接AC .(1)求证://AD CE ;(2)连接EA ,若3BC =,则当CD =_______时,四边形EBCA 是矩形.23.(10分)如图,将矩形ABCD 绕点C 旋转得到矩形EFGC ,点E 在AD 上.延长AD 交FG 于点H(1)求证:△EDC ≌△HFE ;(2)若∠BCE =60°,连接BE 、CH .证明:四边形BEHC 是菱形.24.(10分)某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为每千克8元,下面是他们在活动结束后的对话.小丽;如果以每千克10元的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:如果以每千克13元的价格销售,那么每天可获取利润750元.(1)已知该水果每天的销售量y (千克)与销售单价x (元)之间存在一次的函数关系,请根据他们的对话,判决该水果每天的销售量y (千克)与销售单价x (元)之间存在怎样的函数关系,并求出这个函数关系式;(2)设该超市销售这种水果每天获取的利润为W (元),求W (元)与x (元)之间的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?(3)当销售利润为600元并且尽量减少库存时,销售单价为每千克多少元?25.(12分)如图,一次函数6y x =-+的图象与反比例函数(0)k y k =≠在第一象限的图象交于()2,A a 和B 两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点M在x轴上,且AMC∆的面积为10,求点M的坐标.26.如图,已知反比例函数kyx=(x > 0,k是常数)的图象经过点A(1,4),点B(m , n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:∆ACB∽∆NOM;(3)若∆ACB与∆NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.参考答案一、选择题(每题4分,共48分)1、D【分析】根据左视图是从左面看到的图形,即可.【详解】从左面看从左往右的正方形个数分别为1,2,【点睛】本题主要考查几何体的三视图,理解左视图是从左面看到的图形,是解题的关键.2、B【分析】直接利用垂径定理进而结合圆周角定理得出ODB ∆是等腰直角三角形,进而得出答案. 【详解】半径OC ⊥弦AB 于点D ,AC BC ∴=,22.5E ︒∴∠=,45BOC ︒∴∠=,ODB ∴∆是等腰直角三角形,2AB =,1DB OD ∴==,则半径OB ==故选:B .【点睛】此题主要考查了勾股定理,垂径定理和圆周角定理,正确得出ODB ∆是等腰直角三角形是解题关键.3、B【解析】试题解析:∵2x=5y , ∴ 52xy =. 故选B .4、C【分析】根据正数的平方根的求解方法求解即可求得答案.【详解】∵(±1)1=4, ∴4的平方根是±1. 故选:C .5、A【解析】利用有理数的减法的运算法则进行计算即可得出答案.【详解】﹣3﹣(﹣2)=﹣3+2=﹣1,故选A .【点睛】本题主要考查了有理数的减法运算,正确掌握运算法则是解题关键.6、C【分析】由题意推出x =0,或(x ﹣1)=0,解方程即可求出x 的值.【详解】解:∵x (x ﹣1)=0,∴x 1=0,x 2=1,故选C .【点睛】此题考查的是一元二次方程的解法,掌握用因式分解法解一元二次方程是解决此题的关键.7、A【分析】根据极差的定义进行计算即可.【详解】这组数据的极差为:4-(-1)=5.故选A.【点睛】本题考查极差,掌握极差的定义:一组数据中最大数据与最小数据的差,是解题的关键.8、C【分析】设方程2(1)(1)0a x b x c -+-+=中,1t x =-,根据已知方程的解,即可求出关于t 的方程的解,然后根据1t x =-即可求出结论. 【详解】解:设方程2(1)(1)0a x b x c -+-+=中,1t x =-则方程变为20at bt c ++=∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴关于t 的方程20at bt c ++=的解为11t =-,23t =, ∴对于方程2(1)(1)0a x b x c -+-+=,11x -=-或3解得:10x =,24x =,故选C .【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.9、C【分析】由点I 是ABC 的内心知2BAC IAC =∠∠ ,2ACB ICA =∠∠,从而求得()1802180B AIC =︒-⨯︒-∠∠ ,再利用圆内接四边形的外角等于内对角可得答案.【详解】∵点I 是ABC 的内心∴2BAC IAC =∠∠ ,2ACB ICA =∠∠∵124AIC =︒∠∴B ()180BAC ACB =︒-+∠∠()1802180AIC =︒-⨯︒-∠68=︒∵四边形ABCD 内接于⊙O∴68CDE B ==︒∠∠故答案为:C .【点睛】本题考查了三角形的内心,圆内接四边形的性质,掌握三角形内心的性质和圆内接四边形的外角等于内对角是解题的关键.10、D【分析】过P 点作PE ⊥x 轴于E ,PF ⊥y 轴于F ,根据矩形的性质得S 矩形OEPF =14S 矩形OACB =1,然后根据反比例函数的比例系数k 的几何意义求解.【详解】过P 点作PE ⊥x 轴于E ,PF ⊥y 轴于F ,如图所示:∵四边形OACB 为矩形,点P 为对角线的交点,∴S 矩形OEPF =14S 矩形OACB =14×4=1. ∴k=-1,所以反比例函数的解析式是:1y x=-. 故选:D考查了反比例函数的比例系数k 的几何意义:在反比例函数y=k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.11、B 【分析】在方程左右两边同时加上一次项系数一半的平方即可.【详解】解:方程两边同时加上一次项系数一半的平方,得到x 2﹣2x+1=5+1,即(x ﹣1)2=6,故选:B .【点睛】本题考查了配方法,解题的关键是注意:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12、A【分析】首先根据铁丝长和扇形的半径求得扇形的弧长,然后根据弧长公式求得扇形的圆心角,然后代入扇形面积公式求解即可.【详解】解:∵铁丝长为(12+4π)cm ,半径OA =6cm ,∴弧长为4πcm , ∴扇形的圆心角为:18046ππ⨯=120°, ∴扇形的面积为:21206360π⨯=12πcm 2, 故选:A .【点睛】本题考查了扇形的面积的计算,解题的关键是了解扇形的面积公式及弧长公式,难度不大.二、填空题(每题4分,共24分)13、m 9≤ 【分析】根据根的判别式可得方程21x x m 204-+-=有实数根则Δ0≥,然后列出不等式计算即可. 【详解】根据题意得:()221Δb 4ac 141m 204⎛⎫∴=-=--⨯⨯-≥ ⎪⎝⎭ 解得:m 9≤故答案为:m 9≤本题考查的是一元二次方程的根的判别式,根据一元二次方程的根的情况确定24b ac - 与0的关系是关键.14、33.【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB ′, 则线段BF 为所求的最短路线.设∠BAB ′=n °.∵64180n ππ⋅=, ∴n =120,即∠BAB ′=120°.∵E 为弧BB ′中点,∴∠AFB =90°,∠BAF =60°,Rt △AFB 中,∠ABF =30°,AB =6∴AF =3,BF 2263-3∴最短路线长为3.故答案为:3【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.15、1【解析】证明△ODA ∽△CDO ,则OD 2=CD•DA ,而则OD 2=(4﹣n )2+n 2=2n 2﹣1n+16,CD 2(m+n ﹣4),DA 2n ,即可求解.【详解】解:点A 、B 的坐标分别为(4,0)、(0,4),即:OA =OB ,∴∠OAB =45°=∠COD ,∠ODA =∠ODA ,∴△ODA ∽△CDO ,∴OD2=CD•DA,设点E(m,n),则点D(4﹣n,n),点C(m,4﹣m),则OD2=(4﹣n)2+n2=2n2﹣1n+16,CD(m+n﹣4),DA n,即2n2﹣1n+16(m+n﹣4)n,解得:mn=1=k,故答案为1.【点睛】本题考查的是反比例函数与一次函数的交点问题,涉及到三角形相似、一次函数等知识点,关键是通过设定点E的坐标,确定相关线段的长度,进而求解.16、3 5【分析】由题中所给条件证明△ADF~△ACG,可求出AFAG的值.【详解】解:在△ADF和△ACG中,AB=6,AC=5,D是边AB的中点AG是∠BAC的平分线,∴∠DAF=∠CAG∠ADE=∠C∴△ADF~△ACG∴35 AF ADAG AC==.故答案为35.【点睛】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.17、16【解析】如图作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.易知四边形BEDF是矩形,理由面积法求出DE,再利用等腰三角形的性质,求出DF即可解决问题.【详解】连接BD,过点B分别作BM⊥AD于点M,BN⊥DC于点N,∵梯形ABCD是等距四边形,点B是等距点,∴AB=BD=BC=10,∵10cos A=AMAB,∴10,∴22AB AM-10,∵BM⊥AD,∴10,∵AB//CD,∴S△ABD=11·22AB BN AD BM=⋅,∴BN=6,∵BN⊥DC,∴22BD BN-,∴CD=2DN=16,故答案为16.18、1.【解析】试题分析:原式127333﹣1=1,故答案为1.考点:二次根式的混合运算.三、解答题(共78分)19、(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出222OA AB OB-=.根据直角三角形斜边的中线等于斜边的一半即可求解. 详解:(1)证明:∵AB∥CD,∴CAB ACD∠=∠∵AC平分BAD∠∴CAB CAD∠=∠,∴CAD ACD∠=∠∴AD CD =又∵AD AB =∴AB CD =又∵AB ∥CD ,∴四边形ABCD 是平行四边形又∵AB AD =∴ABCD 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB 中,90AOB ∠=︒.∴2OA ==.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC 中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.20、(1);5(2)32 【分析】(1)根据题意证出∠B=∠ADE ,进而设出DE 和AD 的值,再结合勾股定理求出AE 的值即可得出答案; (2)根据斜中定理求出AD 和AB 的值,结合∠B 和∠AED 的sin 值求出AC 和AE 的值,相减即可得出答案.【详解】(1)∵DE AB ⊥,∴90ACB ADE ︒∠=∠=.又∵A A ∠=∠,∴90B AED A ︒∠=∠=-∠.设DE x =,则22AD DE x ==.在Rt ADE ∆中,AE = ,则sin sinADB AEDAE=∠===(2)∵D为Rt ABC∆斜边AB上的中点,∴AD BD CD===∴AB=则sin45AB BAC=⋅==,5sin2ADAEAED===∠,∴53422CE AC AE=-=-=.【点睛】本题考查的是解直角三角形,难度适中,需要熟练掌握直角三角形中的相关性质与定理.21、(1)2yx=,E(2,1),F(-1,-2);(2)32.【分析】(1)先得到点D的坐标,再求出k的值即可确定反比例函数解析式;(2)过点F作FG⊥AB,与BA的延长线交于点G.由E、F两点的坐标,得到AE=1,FG=2-(-1)=3,从而得到△AEF 的面积.【详解】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得到x=1,∴点D的坐标为(1,2).∵函数kyx=的图象经过点D,∴21k=,∴k=2,∴函数kyx=的表达式为2yx=.(2)过点F作FG⊥AB,与BA的延长线交于点G.根据反比例函数图象的对称性可知:点D与点F关于原点O对称∴点F的坐标分别为(-1,-2),把x=2代入2yx=得,y=1;∴点E的坐标(2,1);∴AE=1,FG=2-(-1)=3,∴△AEF的面积为:12AE•FG=131322⨯⨯=.22、(1)见详解;(2)1【分析】(1)先证E DAC ∠=∠,再证E ACE ∠=∠,可得ACE DAC ∠=∠,即可得出结论;(2)根据矩形的性质可得∠BCA=90°,再证△ABC ≌△ADC ,即可解决问题.【详解】(1)证明:∵AC 平分BAD ∠∴BAC DAC ∠=∠∵E BAC ∠=∠∴E DAC ∠=∠∵//BE AC∴E ACE ∠=∠∴ACE DAC ∠=∠∴//AD EC(2) 当CD =1时,四边形EBCA 是矩形.当四边形EBCA 是矩形,∴∠BCA=90°, 又∵AC 平分BAD ∠,∴∠BAC=∠DAC∴△ABC ≌△ADC ,∴BC=DC又∵3BC =∴DC=1故答案为1.【点睛】本题考查矩形判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1)见解析;(2)见解析.【解析】(1)依据题意可得到FE=AB=DC ,∠F=∠EDC=90°,FH ∥EC ,利用平行线的性质可证明∠FHE=∠CED ,然后依据AAS 证明△EDC ≌△HFE 即可;(2)首先证明四边形BEHC 为平行四边形,再证明邻边BE=BC 即可证明四边形BEHC 是菱形.【详解】(1)证明:∵矩形FECG 由矩形ABCD 旋转得到,∴FE =AB =DC ,∠F =∠EDC =90°,FH ∥EC ,∴∠FHE =∠CED .在△EDC 和△HFE 中,F EDC FHE CED EF DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EDC ≌△HFE (AAS );(2)∵△EDC ≌△HFE ,∴EH =EC .∵矩形FECG 由矩形ABCD 旋转得到,∴EH =EC =BC ,EH ∥BC ,∴四边形BEHC 为平行四边形.∵∠BCE =60°,EC =BC ,∴△BCE 是等边三角形,∴BE =BC ,∴四边形BEHC 是菱形.【点睛】本题主要考查的是旋转的性质、菱形的判定,熟练掌握相关图形的性质和判定定理是解题的关键.24、(1)y=﹣50x+800(x >0);(2)单价为12元时,每天可获得的利润最大,最大利润是800元;(3)每千克10元或14元.【解析】本题是通过构建函数模型解答销售利润的问题.依据题意首先确定学生对话中一次函数关系;然后根据销售利润=销售量×(售价-进价),列出平均每天的销售利润w (元)与销售价x 之间的函数关系,再依据函数的增减性求得最大利润.【详解】(1)当销售单价为13元/千克时,销售量为:750÷(13﹣8)=150千克, 设:y 与x 的函数关系式为:y=kx+b (k≠0)把(10,300),(13,150)分别代入得:k=﹣50,b=800∴y 与x 的函数关系式为:y=﹣50x+800(x >0).(2)∵利润=销售量×(销售单价﹣进价),由题意得∴W=(﹣50x+800)(x ﹣8)=﹣50(x ﹣12)2+800,∴当销售单价为12元时,每天可获得的利润最大,最大利润是800元.(3)将w=600代入二次函数W=(﹣50x+800)(x ﹣8)=600解得:x 1=10,x 2=14即:当销售利润为600元时,销售单价为每千克10元或14元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利用函数的增减性来解答,我们首先要读懂题意,确定变量,建立函数模型,然后结合实际选择最优方案.25、(1)8y x=;(2)()1,0或()11,0 【分析】(1)先把点()2,A a 代入6y x =-+解得a 的值,再代入反比例函数(0)k y k x=≠中解得k 的值即可; (2)AMC ∆的面积可以理解为是以MC 为底,点A 的纵坐标为高,根据三角形的面积公式列式求解即可.【详解】解:(1)把点()2,A a 代入6y x =-+,得26a =-+,解得:4a =,()2,4A ∴把()2,4A 代入反比例函数k y x=, 248k ∴=⨯=; ∴反比例函数的表达式为8y x =; (2)一次函数6y x =-+的图象与x 轴交于点C ,()6,0C ∴,设(),0M x ,6MC x ∴=-,164102AMC S x ∆∴=-⨯=, 1x ∴=或11x =,M ∴的坐标为()1,0或()11,0.【点睛】本题主要考查一次函数和反比例函数的交点问题,注意MC 的值有两个.26、(1)4y x =;(2)证明见解析;(3)43,?3⎛⎫ ⎪⎝⎭,41633y x =-+. 【解析】试题分析:(1)把 A 点坐标代入y k x=可得k 的值,进而得到函数解析式; (2)根据A 、B 两点坐标可得AC=4-n ,BC=m-1,ON=n ,OM=1,则4AC n NO n-=,再根据反比例函数 解析式可得4m =n ,则1AC m ON =-,而11BC m MO -=,可得AC BC NO MO =,再由∠ACB=∠NOM=90°,可得 △ACB ∽△NOM ;(3)根据△ACB 与△NOM 的相似比为2可得m-1=2,进而得到m 的值,然后可得B 点坐标,再利用待定系数法求出AB 的解析式即可.试题解析:(1)∵y k x =(x >0,k 是常数)的图象经过点A (1,4), ∴k=4,∴反比例函数解析式为y=4x; (2)∵点 A (1,4),点 B (m ,n ),∴AC=4-n ,BC=m-1,ON=n ,OM=1, ∴441AC n NO n n-==-, ∵B (m ,n )在y=4x 上, ∴4m =n , ∴1AC m ON =-,而11BC m MO -=, ∴AC BC NO MO=, ∵∠ACB=∠NOM=90°,∴△ACB ∽△NOM ;(3)∵△ACB 与△NOM 的相似比为 2,∴m-1=2,m=3,∴B (3,43), 设AB 所在直线解析式为 y=kx+b , ∴43{34k b k b=+=+,解得,43 {163 kb=-=∴AB的解析式为y=-43x+163.考点:反比例函数综合题.。
2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)
九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。
2024-2025学年北京市海淀区一零一中学数学九年级第一学期开学达标测试试题【含答案】
2024-2025学年北京市海淀区一零一中学数学九年级第一学期开学达标测试试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列命题正确的个数是()(1)若x 2+kx +25是一个完全平方式,则k 的值等于10;(2)正六边形的每个内角都等于相邻外角的2倍;(3)一组对边平行,一组对角相等的四边形是平行四边形;(4)顺次连结四边形的四边中点所得的四边形是平行四边形A .1B .2C .3D .42、(4分)下列各式中是二次根式的为()A B C D .3、(4分)如图,已知一次函数y =kx+b 的图象经过A 、B 两点,那么不等式kx+b >0的解集是()A .x >3B .x <3C .x >5D .x <54、(4分)在下列命题中,是假命题的个数有()①如果22a b =,那么a b =.②两条直线被第三条直线所截,同位角相等③面积相等的两个三角形全等④三角形的一个外角等于不相邻的两个内角的和.A .3个B .2个C .1个D .0个5、(4分)如图,已知▱AOBC 的顶点O (0,0),A (﹣1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G ,则点G 的坐标为()A .﹣1,2)B.2)C .(3,2)D .(﹣2,2)6、(4分)如图,在2×2的正方形网格中,每个小正方形边长为1,点A ,B,C 均为格点,以点A 为圆心,AB 长为半径作弧,交格线于点D,则CD 的长为()A .12B .13C D .27、(4分)一副三角板按图1所示的位置摆放,将△DEF 绕点A(F)逆时针旋转60°后(图2),测得CG =8cm ,则两个三角形重叠(阴影)部分的面积为()A .16+16cm 2B .16cm 2C .16cm 2D .48cm 28、(4分)环保部门根据我市PM2.5一周的检测数据列出下表.这组数据的中位数是A .18B .20C .21D .25二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)不等式3(2)7x -≤的正整数解有________个.10、(4分)反比例函数y=4a x +的图象如图所示,A,P 为该图象上的点,且关于原点成中心对称.在△PAB 中,PB∥y 轴,AB∥x 轴,PB 与AB 相交于点B.若△PAB 的面积大于12,则关于x 的方程(a-1)x 2-x+14=0的根的情况是________________.11、(4分)x 的取值范围是__________.12、(4分)在矩形ABCD 中,点A 关于∠B 的平分线的对称点为E ,点E 关于∠C 的平分线的对称点为F .若AD AB =AF 2=_____.13、(4分)我校八年一班甲、乙两名同学10次投篮命中的平均数x 均为7,方差2S 甲=1.45,2S 乙=2.3,教练想从中选一名成绩较稳定的同学加入校篮球队,那么应选_____.三、解答题(本大题共5个小题,共48分)14、(12分)春节前小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A,B 两种水果进行销售,并分别以每箱35元与60元的价格出售,设购进A 水果x 箱,B 水果y 箱.(1)让小王将水果全部售出共赚了215元,则小王共购进A 、B 水果各多少箱?(2)若要求购进A 水果的数量不得少于B 水果的数量,则应该如何分配购进A,B 水果的数量并全部售出才能获得最大利润,此时最大利润是多少?15、(8分)在矩形ABCD 中,点E 在BC 上,AE AD =,DF AE ⊥,垂足为F .(1)求证:DF AB =;(2)若135FEC ∠=︒,且4AB =,求AD .16、(8分)如图1.在边长为10的正方形ABCD 中,点M 在边AD 上移动(点M 不与点A ,D 重合),MB 的垂直平分线分别交AB ,CD 于点E ,F ,将正方形ABCD 沿EF 所在直线折叠,则点B 的对应点为点M ,点C 落在点N 处,MN 与CD 交于点P ,(1)若4AM =,求BE 的长;(2)随着点M 在边AD 上位置的变化,MBP ∠的度数是否发生变化?若变化,请说明理由;若不变,请求出MBP ∠的度数;(3)随着点M 在边AD 上位置的变化,点P 在边CD 上位置也发生变化,若点P 恰好为CD 的中点(如图2),求CF 的长.17、(10分)某商店计划购进A ,B 两种型号的电机,其中每台B 型电机的进价比A 型多400元,且用50000元购进A 型电机的数量与用60000元购进B 型电机的数量相等.(1)求A ,B 两种型号电机的进价;(2)该商店打算用不超过70000元的资金购进A ,B 两种型号的电机共30台,至少需要购进多少台A 型电机?18、(10分)在数学学习中,及时对知识进行归纳和整理是提高学习效率的重要方法,善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,对照图形,把相关知识归纳整理如下:一次函数与方程(组)的关系:(1)一次函数的解析式就是一个二元一次方程;(2)点B 的横坐标是方程kx+b=0的解;(3)点C 的坐标(x ,y )中x ,y 的值是方程组①的解.一次函数与不等式的关系:(1)函数y=kx+b 的函数值y 大于0时,自变量x 的取值范围就是不等式kx+b >0的解集;(2)函数y=kx+b 的函数值y 小于0时,自变量x 的取值范围就是不等式②的解集.(一)请你根据以上归纳整理的内容在下面的数字序号后写出相应的结论:①;②;(二)如果点B 坐标为(2,0),C 坐标为(1,3);①直接写出kx+b≥k1x+b1的解集;②求直线BC 的函数解析式.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,平行四边形ABCD 中,AB :BC =3:2,∠DAB =60°,E 在AB 上,如果AE :EB =1:2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,那么DP :DC 等于_____.20、(4分)如图,反比例函数()10ky x x =>与正比例函数2y mx =和3y nx =的图像分别交于点A (2,2)和B (b ,3),则关于x 的不等式组k mx x k nx x ⎧<⎪⎪⎨⎪>⎪⎩的解集为___________。
北京市海淀区一零一中学2022-2023学年数学九年级第一学期期末考试试题含解析
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.如图是半径为2的⊙O 的内接正六边形ABCDEF ,则圆心O 到边AB 的距离是( )A .2B .1C .3D .322.正比例函数y =2x 和反比例函数2y x=的一个交点为(1,2),则另一个交点为( ) A .(﹣1,﹣2)B .(﹣2,﹣1)C .(1,2)D .(2,1)3.如图,在ABC ∆中,,A B 两个顶点在x 轴的上方,点C 的坐标是()1,0- .以点C 为位似中心,在x 轴的下方作ABC ∆的位似,图形A B C ∆'',使得A B C ∆''的边长是ABC ∆的边长的2倍.设点B 的横坐标是-3,则点B '的横坐标是( )A .2B .3C .4D .54.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴上,反比例函数y =kx(x >0)的图象经过矩形OABC 对角线的交点M ,分别交AB 、BC 于点D 、E .若四边形ODBE 的面积为9,则k 的值为( )A .2B .52C .3D .925.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( ) A .摸出的三个球中至少有一个球是黑球 B .摸出的三个球中至少有一个球是白球 C .摸出的三个球中至少有两个球是黑球 D .摸出的三个球中至少有两个球是白球 6.如果53a b b -=,那么a bb+的值等于( ) A .85 B .115C .83D .1137.将二次函数246y x x =-+化成顶点式,变形正确的是:( )A .2(2)2y x =-+B .2(2)2y x =++C .2(2)2y x =+-D .2(2)2y x =--8.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( ) A .13B .23C .49D .599.已知点11(,)A x y ,22(,)B x y 在双曲线8y x=上.如果12x x <,而且120x x ⋅>,则以下不等式一定成立的是( ) A .120y y +> B .120y y ->C .120y y ⋅<D .120y y < 10.如图,在ABCD 中,E 为CD 上一点,已知S △DEF : S △ABF =4: 25,则DE :EC 为( )A .4:5B .4:25C .2:3D .3:211.一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是( )A .红球比白球多B .白球比红球多C .红球,白球一样多D .无法估计12.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( ) A .(0,﹣1)B .(﹣2,﹣1)C .(2,﹣1)D .(0,1)二、填空题(每题4分,共24分)13.已知抛物线2y x c =+,过点(0,2),则c =__________.14.小明家的客厅有一张直径为1.2米,高0.8米的圆桌BC ,在距地面2米的A 处有一盏灯,圆桌的影子为DE ,依据题意建立平面直角坐标系,其中D 点坐标为(2,0),则点E 的坐标是_____.15.如图,有一菱形纸片ABCD ,∠A =60°,将该菱形纸片折叠,使点A 恰好与CD 的中点E 重合,折痕为FG ,点F 、G 分别在边AB 、AD 上,联结EF ,那么cos ∠EFB 的值为____.16.如图,正方形ABEF 与正方形BCDE 有一边重合,那么正方形BCDE 可以看成是由正方形ABEF 绕点O 旋转得到的,则图中点O 的位置为_____.17.如图所示的点阵中,相邻的四个点构成正方形,小球只在矩形ABCD 内自由滚动时,则小球停留在阴影区域的概率为___________.18.若分式293x x --的值为0,则x 的值为_______.三、解答题(共78分)19.(8分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s 0 1 2 3 …滑行距离y/m 0 4 12 24 …(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.20.(8分)如图,Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上一点(0<AD<12AB).过点B作BE⊥CD,垂足为E.将线段CE绕点C逆时针旋转90°,得到线段CF,连接AF,EF.设∠BCE的度数为α.(1)①依题意补全图形.②若α=60°,则∠CAF=_____°;EFAB=_____;(2)用含α的式子表示EF与AB之间的数量关系,并证明.21.(8分)已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(-1,0),与y轴交于点C,求直线BC与这个二次函数的解析式;(3)在直线BC上方的抛物线上有一动点D,DE x轴于E点,交BC于F,当DF最大时,求点D的坐标,并写出DF最大值.22.(10分)如图,C是直径AB延长线上的一点,CD为⊙O的切线,若∠C=20°,求∠A的度数.23.(10分)如图,四边形ABCD 为矩形.(1)如图1,E为CD上一定点,在AD上找一点F,使得矩形沿着EF折叠后,点D落在BC边上(尺规作图,保留作图痕迹);(2)如图2,在AD和CD边上分别找点M,N,使得矩形沿着MN折叠后BC的对应边B' C'恰好经过点D,且满足B' C' ⊥BD(尺规作图,保留作图痕迹);(3)在(2)的条件下,若AB=2,BC=4,则CN= .24.(10分)已知:如图,在△ABC中,AD⊥BC于点D,E是AD的中点,连接CE并延长交边AB于点F,AC=13,BC=8,cos∠ACB=5 13.(1)求tan∠DCE的值;(2)求AFBF的值.25.(12分)解方程:(1)2x(x﹣1)=3(x﹣1);(2)x2﹣3x+1=1.26.随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,西宁市某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:A.积极参与,B.一定参与,C.可以参与,D.不参与.根据调查结果制作了如下不完整的统计表和统计图.学生参与“朗读”的态度统计表类别人数所占百分比A18 aB20 40%C m16%D 4 b合计n100%请你根据以上信息,解答下列问题:(1)a=______,m=______,并将条形统计图补充完整;(2)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?(3)“朗读”活动中,九年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率,并列出所有等可能的结果.参考答案一、选择题(每题4分,共48分)1、C【分析】过O作OH⊥AB于H,根据正六边形ABCDEF的性质得到∠AOB=3606︒=60°,根据等腰三角形的性质得到∠AOH=30°,AH=12AB=1,于是得到结论.【详解】解:过O作OH⊥AB于H,在正六边形ABCDEF中,∠AOB=3606=60°,∵OA=OB,∴∠AOH=30°,AH=12AB=1,∴OH=3AH=3,故选:C.【点睛】本题主要考查了正多边形和圆,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.2、A【详解】∵正比例函数y=2x和反比例函数y= 2x的一个交点为(1,2),∴另一个交点与点(1,2)关于原点对称,∴另一个交点是(-1,-2).故选A.3、B【解析】设点B′的横坐标为x,然后根据△A′B′C与△ABC的位似比为2列式计算即可求解.【详解】设点B′的横坐标为x,∵△ABC的边长放大到原来的2倍得到△A′B′C,点C的坐标是(-1,0),∴x-(-1)=2[(-1)-(-1)],即x+1=2(-1+1),解得x=1,所以点B的对应点B′的横坐标是1.故选B.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似比列出方程是解题的关键.4、C【分析】本题可从反比例函数图象上的点E 、M 、D 入手,分别找出△OCE 、△OAD 、▱OABC 的面积与|k |的关系,列出等式求出k 值.【详解】解:由题意得:E 、M 、D 位于反比例函数图象上,则1||2OCE S k ∆=,1||2OAD S k ∆=, 过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S ▱ONMG =|k |, 又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO =4S ▱ONMG =4|k |, 由于函数图象在第一象限, ∴k >0,则9422k kk ++=, ∴k =1. 故选:C .【点睛】本题考查了反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |.本知识点是中考的重要考点,同学们应高度关注. 5、A【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可. 【详解】A 、是必然事件; B 、是随机事件,选项错误; C 、是随机事件,选项错误; D 、是随机事件,选项错误. 故选A . 6、D 【分析】依据53a b b -=,即可得到a =83b ,进而得出a bb+的值. 【详解】∵53a b b -=,∴3a ﹣3b =5b ,∴3a =8b ,即a =83b ,∴a b b +=83b b b+=113. 故选D .【点睛】本题考查了比例的性质,解决问题的关键是运用内项之积等于外项之积. 7、A【分析】将246y x x =-+化为顶点式,再进行判断即可. 【详解】246y x x =-+()222y x =-+故答案为:A . 【点睛】本题考查了一元二次方程的问题,掌握一元二次方程的顶点式表示形式是解题的关键. 8、C【分析】根据列表法列出所有的可能情况,从中找出两个球颜色相同的结果数,再利用概率的公式计算即可得到答案. 【详解】解:列表如图所示:由表可知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果 所以摸出两个球颜色相同的概率是49故选:C . 【点睛】本题考查的是列表法与树状图的知识,解题的关键是能够用列表或者树状图将所有等可能结果列举出来. 9、B【解析】根据反比例函数的性质求解即可. 【详解】解:反比例函数y =8x的图象分布在第一、三象限,在每一象限y 随x 的增大而减小, 而12x x <,而且12,x x 同号, 所以12y y >,即120y y ->, 故选B . 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y =kx(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .也考查了反比例函数的性质. 10、C【分析】根据平行四边形的性质及相似三角形的判定定理得出△DEF ∽△BAF ,再根据S △DEF :S △ABF =4:25即可得出其相似比,由相似三角形的性质即可求出DE :AB 的值,由AB=CD 即可得出结论. 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD , ∴△DEF ∽△BAF , ∵S △DEF :S △ABF =4:25, ∴DE :AB=2:5, ∵AB=CD , ∴DE :DC=2:5, ∴DE :EC=2:1. 故选C. 【点睛】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键. 11、A【解析】根据题意可得5位同学摸到红球的频率为85976357505010++++==,由此可得盒子里的红球比白球多.故选A . 12、C【解析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可. 【详解】解:∵顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ), ∴y =2(x ﹣2)2﹣1的顶点坐标是(2,﹣1). 故选:C . 【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.二、填空题(每题4分,共24分)13、2【分析】将点(0,2)代入原解析式解出c 的值即可.【详解】∵抛物线2y x c =+,过点(0,2),∴220c =+,∴c=2,故答案为:2.【点睛】本题主要考查了抛物线的性质,熟练掌握相关概念是解题关键.14、 (4,0)【解析】根据相似三角形的判定和性质即可得到结论.【详解】解:∵BC∥DE,∴△ABC∽△ADE, ∴20.82BC DE -=, ∵BC=1.2,∴DE=2,∴E(4,0).故答案为:(4,0).【点睛】本题考查了中心投影,相似三角形的判定和性质,正确的识别图形是解题的关键.15、17【分析】连接BE ,由菱形和折叠的性质,得到AF=EF ,∠C=∠A=60°,由cos ∠C=12,12CE BC =,得到△BCE 是直角三角形,则BE BC =,则△BEF 也是直角三角形,设菱形的边长为m ,则EF=m FB -,BE =,由勾股定理,求出FB=18m ,则78EF m =,即可得到cos ∠EFB 的值. 【详解】解:如图,连接BE ,∵四边形ABCD 是菱形,∴AB=BC=CD ,∠C=∠A=60°,AB ∥DC ,由折叠的性质,得AF=EF ,则EF=AB -FB ,∵cos ∠C=1cos602︒=, ∵点E 是CD 的中线, ∴12CE BC =, ∴1cos 2C C E BC ∠==, ∴△BCE 是直角三角形,即BE ⊥CD ,∴BE ⊥AB ,即△BEF 是直角三角形.设BC=m ,则BE=sin 603BC ︒=, 在Rt △BEF 中,EF=m FB -,由勾股定理,得:222FB BE EF +=, ∴2223()2FB m FB +=-, 解得:18FB m =, 则78EF m =, ∴118cos 778m FB EFB EF m ∠===; 故答案为:17. 【点睛】本题考查了解直角三角形,特殊角的三角函数值,菱形的性质,折叠的性质,以及勾股定理的运用,解题的关键是正确作出辅助线,构造直角三角形,从而利用解直角三角形进行解题.16、点B 或点E 或线段BE 的中点.【分析】由旋转的性质分情况讨论可求解;【详解】解:∵正方形BCDE 可以看成是由正方形ABEF 绕点O 旋转得到的,∴若点A 与点E 是对称点,则点B 是旋转中心是点B ;若点A 与点D 是对称点,则点B 是旋转中心是BE 的中点;若点A 与点E 是对称点,则点B 是旋转中心是点E ;故答案为:点B 或点E 或线段BE 的中点.【点睛】本题考查了旋转的性质,正方形的性质,利用分类讨论是本题的关键.17、34【分析】分别求出矩形ABCD 的面积和阴影部分的面积即可确定概率.【详解】设每相邻两个点之间的距离为a则矩形ABCD 的面积为222a a a = 而利用梯形的面积公式和图形的对称性可知阴影部分的面积为2113(2)3222a a a a a a +== ∴小球停留在阴影区域的概率为2233224a a = 故答案为34【点睛】本题主要考查随机事件的概率,能够求出阴影部分的面积是解题的关键.18、-1【分析】根据分式的值为零的条件可以求出x 的值. 【详解】解:根据题意得:29=030x x ⎧-⎨-≠⎩, 解得:x=-1.故答案为:-1.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.三、解答题(共78分)19、(1)20s ;(2)2511222y x ⎛⎫=+- ⎪⎝⎭ 【解析】(1)利用待定系数法求出函数解析式,再求出y =840时x 的值即可得;(2)根据“上加下减,左加右减”的原则进行解答即可.【详解】解:(1)∵该抛物线过点(0,0),∴设抛物线解析式为y =ax 2+bx ,将(1,4)、(2,12)代入,得: 44212a b a b +=⎧⎨+=⎩, 解得:22a b =⎧⎨=⎩, 所以抛物线的解析式为y =2x 2+2x ,当y =840时,2x 2+2x =840,解得:x =20(负值舍去),即他需要20s 才能到达终点;(2)∵y =2x 2+2x =2(x +12)2﹣12, ∴向左平移2个单位,再向下平移5个单位后函数解析式为y =2(x +2+12)2﹣12﹣5=2(x +52)2﹣112. 【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律.20、(1)①补图见解析;②30,12;(2)EF =ABcosα;证明见解析. 【分析】(1)①利用旋转直接画出图形,②先求出∠CBE =30°,再判断出△ACF ≌△BCE ,得出∠CAF =30°,再利用等腰直角三角形的性质计算即可得出结论;(2)先判断出△ACF ≌△BCE ,得出∠CAF =α,再同(1)②的方法即可得出结论.【详解】(1)①将线段CE 绕点C 逆时针旋转90°,得到线段CF ,连接AF ,EF ,如图1;②∵BE⊥CD,∠CEB=90°,∵α=60°,∴∠CBE=30°,在Rt△ABC中,AC=BC,∴AC=22AB,∵∠FCA=90°﹣∠ACE,∠ECB=90°﹣∠ACE,∴∠FCA=∠ECB=α.在△ACF和△BCE中,AC=BC,∠FCA=∠ECB,FC=EC,∴△ACF≌△BCE(SAS),∴∠AFC=∠BEC=90°,∠CAF=∠CBE=30°,∴CF=12 AC,由旋转知,CF=CE,∠ECF=90°,∴EF2CF=22AC=22×22AB=12AB,∴EFAB=12,故答案为30,12;(2)EF=ABcosα.证明:∵∠FCA=90°﹣∠ACE,∠ECB=90°﹣∠ACE,∴∠FCA=∠ECB=α.同(1)②的方法知,△ACF≌△BCE,∴∠AFC=∠BEC=90°,∴在Rt△AFC中,cos∠FCA=FC AC.∵∠ACB =90°,AC =BC ,∴∠CAB =∠CBA =45°.∵∠ECF =90°,CE =CF ,∴∠CFE =∠CEF =45°.在△FCE 和△ACB 中,∠FCE =∠ACB =90°,∠CFE =∠CAB =45°,∴△FCE ∽△ACB , ∴EF FC AB AC==cos ∠FCA =cosα, 即EF =ABcosα.【点睛】此题是相似形综合题,主要考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,判断出△ACF ≌△BCE 是解本题的关键.21、(1)m >-1;(2)y =-x +3,y =-x 2+2x +3;(3)D (315,24),DF=94 【分析】(1)利用判别式解答即可;(2)将点A 的坐标代入抛物线y =-x 2+2x +m 即可求出解析式,由抛物线的解析式求出点B (3,0),设直线BC 的解析式为y =kx +b ,将B(3,0),C(0,3)代入y =kx +b 中即可求出直线BC 的解析式;(3)由点D 在抛物线上,设坐标为(x ,-x 2+2x +3),F 在直线AB 上,坐标为(x ,-x +3) ,得到DF=-x 2+2x +3-(-x +3)=-x 2+3x=239()24x --+,利用顶点式解析式的性质解答即可. 【详解】(1)当抛物线与x 轴有两个交点时,∆>0,即4+4m >0,∴m >-1;(2)∵点A(-1,0)在抛物线y =-x 2+2x +m 上,∴-1-2+m =0,∴m =3,∴抛物线解析式为y =-x 2+2x +3,且C(0,3),当x=0时,-x 2+2x +3=0,解得x=-1,或x=3,∴B (3,0),设直线BC 的解析式为y =kx +b ,将B(3,0),C(0,3)代入y =kx +b 中,得:303k b b +=⎧⎨=⎩, 解得13k b =-⎧⎨=⎩, ∴直线AB 的解析式为y =-x +3;(3)点D 在抛物线上,设坐标为(x ,-x 2+2x +3),F 在直线AB 上,坐标为(x ,-x +3) ,∴DF=-x 2+2x +3-(-x +3)=-x 2+3x=239()24x --+, ∴当32x =时,DF 最大,为94,此时D 的坐标为(315,24). 【点睛】此题考查了利用判别式已知抛物线与坐标轴的交点个数求未知数的取值范围,利用待定系数法求函数解析式,利用顶点式解析式的性质求出线段的最值.22、35°【分析】连接OD ,根据切线的性质得∠ODC =90°,根据圆周角定理即可求得答案.【详解】连接OD ,∵CD 为⊙O 的切线,∴∠ODC =90°,∴∠DOC =90°﹣∠C =70°,由圆周角定理得,∠A =12∠DOC =35°. 【点睛】本题考查了切线的性质和圆周角定理,有圆的切线时,常作过切点的半径.23、(1)图见解析(2)图见解析(3)512【分析】(1)以点E 为圆心,以DE 长为半径画弧,交BC 于点D ′,连接DD ′,作DD ′的垂直平分线交AD 于点F 即可;(2)先作射线BD ,然后过点D 作BD 的垂线与BC 的延长线交于点H ,作∠BHD 的角平分线交CD 于点N ,交AD 于点M ,在HD 上截取HC ′=HC ,然后在射线C ′D 上截取C ′B ′=BC ,此时的M 、N 即为满足条件的点;(3)在(2)的条件下,根据AB=2,BC=4,即可求出CN的长.【详解】(1)如图,点F为所求;(2)如图,折痕MN、矩形A’B’C’D’为所求;(3)在(2)的条件下,∵AB=2,BC=4,∴BD=5∵BD⊥B′C′,∴BD⊥A′D′,得矩形DGD′C′.∴DG=C′D′=2,∴BG=5设CN的长为x,CD′=y.则C′N=x,D′N=2−x,BD′=4−y,∴(4−y)2=y2+()2,解得y.(2−x)2=x2)2解得x=12..【点睛】本题考查了作图−复杂作图、矩形的性质、翻折变换,解决本题的关键是掌握矩形的性质.24、(1)tan∠DCE=65;(2)AFBF=58.【分析】(1)根据已知条件求出CD,再利用勾股定理求解出ED,即可得到结果;(2)过D作DG∥CF交AB于点G,根据平行线分线段成比例即可求得结果;【详解】解:(1)∵AD⊥BC,∴∠ADC=90°,在Rt△ADC中,AC=13,cos∠ACB=513CDAC=,∴CD=5,由勾股定理得:AD12,∵E是AD的中点,∴ED=12AD=6,∴tan∠DCE=65 EDCD=;(2)过D作DG∥CF交AB于点G,如图所示:∵BC=8,CD=5,∴BD=BC﹣CD=3,∵DG∥CF,∴35BD BGCD FG==,1AF AEFG DE==,∴AF=FG,设BG=3x,则AF=FG=5x,BF=FG+BG=8x∴58 AFBF=.【点睛】本题主要考查了解直角三角形的应用,结合勾股定理和平行线分线段成比例求解是解题的关键.25、(1)x1=1,x2=1.2;(2)135 2x+=或2352x-=【分析】(1)利用因式分解法求解可得;(2)利用公式法求解可得.【详解】解:(1)∵2x(x﹣1)=3(x﹣1),∴2x(x﹣1)﹣3(x﹣1)=1,则(x﹣1)(2x﹣3)=1,∴x﹣1=1或2x﹣3=1,解得x=1或x=1.2;故答案为x=1或x=1.2.(2)∵a=1,b=﹣3,c=1,∴△=(-3)2﹣4×1×1=2>1,则x2435-±-==±b b ac,135 2x+=或2352x-=【点睛】本题考查了一元二次方程的解法,熟练掌握其常见的解法是解决本类题的关键.26、(1)36%,8,补图详见解析;(2)这次活动能顺利开展;(3)P(两人都是女生)1 6 =【分析】(1)先用20除以40%求出样本容量,然后求出a,m的值,并补全条形统计图即可;(2)先求出b的值,用b的值乘以1500,然后把计算的结果与150进行大小比较,则可判断这次活动能否顺利开展;(3)画树状图展示所有12种等可能的结果数,找出所选两人都是女生的结果数为2,然后根据概率公式计算.【详解】解:(1))20÷40%=50人,a=18÷50×100%=36%,m=50×16%=8,(2)b=4÷50×100%=8%,15008%120⨯=(人)∵120150<∴这次活动能顺利开展.(3)树状图如下:由此可见,共有12种等可能的结果,其中所选两人都是女生的结果数有2种∴P(两人都是女生)21= 126 =.【点睛】此题考查了统计表和条形统计图的综合,用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区九年级数学第一学期期末练习2011.1一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2(= ( )A .3B .3-C .3±D .92.已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是( )A .外离B .外切C .相交D .内切 3.将一枚硬币抛掷两次,则这枚硬币两次正面都向上的概率为( )A .12B .13C .14D .164.如图,⊙O 是△ABC 的外接圆,已知∠ABO =30º, 则∠ACB 的大小为 ( ) A .60º B .30º C .45ºD .50º 5.下列一元二次方程中没有..实数根的是( )A .2240x x +-=B .2440x x -+=C .2250x x --=D .2340x x ++=6.如图,有一枚圆形硬币,如果要在这枚硬币的周围摆放几枚与它 完全相同的硬币,使得周围的硬币都和这枚硬币相外切,且相邻 的硬币相外切,则这枚硬币周围最多可摆放 ( )A .4枚硬币B .5枚硬币C .6枚硬币D .8枚硬币7.圆锥的母线长是3,底面半径是1,则这个圆锥侧面展开图圆心角的度数为( )A .90°B .120°C .150°D .180°8.如图,E ,B ,A ,F 四点共线,点D 是正三角形ABC 的边AC 的中点,点P 是直线AB 上异于A ,B 的一个动点,且满足30CPD ∠=︒, 则 ( )A .点P 一定在射线BE 上B .点P 一定在线段AB 上 CC.点P可以在射线AF上,也可以在线段AB上D.点P可以在射线BE上,也可以在线段二、填空题(本题共16分,每小题4分)9.已知P是⊙O外一点,PA切⊙O于A,PB切⊙O于B.若PA=6,则PB=.10x的取值范围是.11.如图,圆形转盘中,A,B,C三个扇形区域的圆心角分别为150°,120°和90°. 转动圆盘后,指针停止在任何位置的可能性都相同(若指针停在分界线上,则重新转动圆盘),则转动圆盘一次,指针停在B区域的概率是.12.(1)如图一,等边三角形MNP的边长为1,线段AB的长为4,点M与A重合,点N 在线段AB上. △MNP沿线段AB按A B→的方向滚动,直至△MNP中有一个点与点B重合为止,则点P经过的路程为;(2)如图二,正方形MNPQ的边长为1,正方形ABCD的边长为2,点M与点A重合,点N在线段AB上,点P在正方形内部,正方形MNPQ沿正方形ABCD的边按A B C D A→→→→→的方向滚动,始终保持M,N,P,Q四点在正方形内部或边界上,直至正方形MNPQ回到初始位置为止,则点P经过的最短路程为.(注:以△MNP为例,△MNP沿线段AB按A B→的方向滚动指的是先以顶点N为中心顺时针旋转,当顶点P落在线段AB上时,再以顶点P为中心顺时针旋转,如此继续. 多边形沿直线滚动与此类似.)三、解答题(本题共30分,每小题5分)13.计算:)()A NP图二图一图三(AQ解:14.某射击运动员在相同条件下的射击160次,其成绩记录如下:(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.15.解方程:24120x x +-=.16.如图,在ABC △中,AB 是O 的直径,O 与AC 交于点D ,60,75AB B C =∠=︒∠=︒,求BOD ∠的度数;17.如图,正方形ABCD 中,点F 在边BC 上,E 在边BA 的延长线上. (1)若DCF △按顺时针方向旋转后恰好与DAE △重合.则旋转中心是点 ;最少旋转了 度;(2)在(1)的条件下,若3,2AE BF ==,求四边形BFDE 的面积.18.列方程解应用题:随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2009年为10万只,预计2011年将达到14.4万只.求该地区2009年到2011年高效节能灯年销售量的平均增长率.四、解答题(本题共20分,每小题5分)19.如图,在△ABC 中,120,C ∠=︒,4AC BC AB ==,半圆的圆心O 在AB 上,且与AC ,BC分别相切于点D ,E . (1)求半圆O 的半径; (2)求图中阴影部分的面积.20.如图,O 为正方形ABCD 对角线AC 上一点,以O 为圆心,OA 长为半径的⊙O 与BC 相ADCBODCFBEA切于点M.(1)求证:CD与⊙O相切;(2)若⊙O的半径为1,求正方形ABCD的边长.21.一个袋中有3张形状大小完全相同的卡片,编号为1,2,3,先任取一张,将其编号记为m,再从剩下的两张中任取一张,将其编号记为n.(1)请用树状图或者列表法,表示事件发生的所有可能情况;(2)求关于x的方程20++=有两个不相等实数根的概率.x mx n22.如图一,AB是O相切与点C,AD EF的直径,AC是弦,直线EF和O⊥,垂足为D.(1)求证CAD BAC∠=∠;图一(2)如图二,若把直线EF向上移动,使得EF与O相交于G,C两点(点C在点G的右侧),连结AC,AG,若题中其他条件不变,这时图中是否存在与CAD∠相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.以坐标原点为圆心,1为半径的圆分别交x ,y 轴的正半轴于点A ,B .(1)如图一,动点P 从点A 处出发,沿x 轴向右匀速运动,与此同时,动点Q 从点B 处出发,沿圆周按顺时针方向匀速运动.若点Q 的运动速度比点P 的运动速度慢,经过1秒后点P 运动到点(2,0),此时PQ 恰好是O 的切线,连接OQ . 求QOP ∠的大小; 解:(2)若点Q 按照(1)中的方向和速度继续运动,点P 停留在点(2,0)处不动,求点Q 再经过5秒后直线PQ 被O 截得的弦长. 解:24.已知关于x的方程221(1)04x a -++=有实根.(1)求a 的值;(2)若关于x 的方程2(1)0mx m x a +--=的所有根均为整数,求整数m 的值.图一图二(备用图)25.如图一,在△ABC 中,分别以AB ,AC 为直径在△ABC 外作半圆1O 和半圆2O ,其中1O 和2O 分别为两个半圆的圆心. F 是边BC 的中点,点D 和点E 分别为两个半圆圆弧的中点. (1)连结1122,,,,,O F O D DF O F O E EF ,证明:12DO F FO E △≌△;(2)如图二,过点A 分别作半圆1O 和半圆2O 的切线,交BD 的延长线和CE 的延长线于点P 和点Q ,连结PQ ,若∠ACB =90°,DB =5,CE =3,求线段PQ 的长;(3)如图三,过点A 作半圆2O 的切线,交CE 的延长线于点Q ,过点Q 作直线FA 的垂线,交BD 的延长线于点P ,连结PA . 证明:PA 是半圆1O 的切线. 图一图二Q图三7.海淀区九年级数学第一学期期末练习参考答案及评分标准 2011.1说明: 合理答案均可酌情给分,但不得超过原题分数 一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)注:第12题答对一个给2分,答对两个给4分 三、解答题(本题共30分,每小题5分)13.解:原式=…………………………….…………………………….2分= …………………………….…………………………….4分 =6 …………………………….…………………………….5分 14.(1)解: 48,…………………………….…………………………….1分 0.81…………………………….…………………………….2分 (2)解:()90.8P =射中环以上…………………………….…………………………….4分从频率的波动情况可以发现频率稳定在0.8附近,所以这名运动员射击一次时“射中9环以上”的概率是0.8. …………………………….…………………………….5分 注:简述的理由合理均可给分 15.解法一:因式分解,得()()620x x +-= …………………………….…………………………….2分 于是得 60x +=或20x -=126,2x x =-= …………………………….…………………………….5分解法二:1,4,12a b c ===-2464b ac ∆=-= …………………………….…………………………….2分482x -±== …………………………….…………………………….4分126,2x x =-= …………………………….…………………………….5分16.解:在ABC △中,60,75B C ∠=︒∠=︒ ,45A ∴∠=︒. …………………………….…………………………….2分AB 是⊙O 的直径,⊙O 与AC 交于点D, ∴290DOB A ∠=∠=︒. …………………………….…………………………….5分17.解:(1)D ;90︒. …………………………….…………………………….2分 (2)DCF DEA △旋转后恰好与△重合, DCF DAE ∴△≌△.3,2AE CF BF ∴===又. 5BC BF CF ∴=+=.AED BFDE ABFD S S S ∴=+△四边形四边形DCF ABFD S S ∆=+四边形ABCD S =正方形2BC =25= 5分18.解:设该地区2009年到2011年高效节能灯年销售量的平均增长率为x . ……………….1分依据题意,列出方程 ()210114.4x += ……………………….…………………………….2分 化简整理,得: ()21 1.44x +=, 解这个方程,得 11.2x +=±, ∴ 120.2, 2.2x x ==-.∵ 该地区2009年到2011年高效节能灯年销售量的平均增长率不能为负数. ∴ 2.2x =-舍去.∴ 0.2x =. …………………….…………………………….4分 答:该地区2009年到2011年高效节能灯年销售量的平均增长率为20%. …………….5分四、解答题(本题共20分,每小题5分) 19.(1)解:连结OD ,OC ,∵半圆与AC ,BC 分别相切于点D ,E . ∴DCO ECO ∠=∠,且OD AC ⊥. ∵AC BC =,∴CO AB ⊥且O 是AB 的中点. ∴122AO AB ==. ∵120C ∠=︒,∴60DCO ∠=︒. ∴30A ∠=︒.∴在R t AOD △中,112OD AO ==. 即半圆的半径为1.…………………………….…………………………….3分(2)设CO =x ,则在R t AOC △中,因为30A ∠=︒,所以AC =2x ,由勾股定理得:222AC OC AO -= 即 222(2)2x x -= 解得x =x =舍去)∴11422ABC S AB OC =⋅=⨯=△ (4)分∵ 半圆的半径为1, ∴ 半圆的面积为2π,∴2S π=-=阴影 …………………………….…………………………….5分20.(1)解:过O 作ON CD ⊥于N ,连结OM ,则OM BC ⊥.∵ AC 是正方形ABCD 的对角线,∴ AC 是BCD ∠的平分线.∴ OM =ON.即圆心O 到CD 的距离等于⊙O 半径, ∴ CD 与⊙O 相切. …………………………….…………………………….3分(2)由(1)易知MOC △为等腰直角三角形,OM 为半径, ∴ OM =MC =1.∴ 222112OC OM MC =+=+=, ∴OC =.∴1AC AO OC =+= 在R t ABC △中,AB =BC ,有 222A C A BB C =+ ∴ 222AB AC =∴AB = …………………………….…………………………….5分故正方形ABCD.21.(1)解:依题意画出树状图(或列表)如下或123123312m n…………………………….…………………………….2分注:画出一种情况就可给2分(2)解:当240m n ->时,关于x 的方程20x mx n ++=有两个不相等实数根,而使得240m n ->的m ,n 有2组,即(3,1)和(3,2). ………….…………………………….4分则关于x 的方程20x mx n ++=有两个不相等实数根的概率是13.∴P (有两个不等实根)=13.…………………….5分 22.(1)证明:如图一,连结OC ,则OC EF ⊥,且OC=OA , 易得OCA OAC ∠=∠. ∵ AD EF ⊥,∴OC//AD.∴OCA ∠=CAD ∠,∴CAD ∠=OAC ∠. 即 C A D B A C ∠=∠.…………………………….…………………………….2分 (2)解:与CAD ∠相等的角是BAG ∠.…………………………….…………………………….3分证明如下: 如图二,连结BG .∵ 四边形ACGB 是O 的内接四边形, ∴ 180ABG ACG ∠+∠=︒. ∵ D ,C ,G 共线, ∴ 180ACD ACG ∠+∠=︒. ∴ ACD ABG ∠=∠. ∵ AB 是O 的直径, ∴ 90BAG ABG ∠+∠=︒ ∵ AD EF ⊥∴ 90CAD ACD ∠+∠=︒ ∴ CAD BAG ∠=∠.…………………………….…………………………….5分五、解答题(本题共22分,第23题7分,第24题7分,第25题823.(1)解:如图一,连结AQ .由题意可知:OQ =OA =1. ∵OP =2, ∴A 为OP 的中点. ∵PQ 与O 相切于点Q ,∴OQP △为直角三角形. …………1分图一图二∴112AQ OP OQ OA ==== . …………2分即ΔOAQ 为等边三角形.∴∠QOP =60°. …………3分(2)解:由(1)可知点Q 运动1秒时经过的弧长所对的圆心角为30°,若Q 按照(1)中的方向和速度继续运动,那么再过5秒,则Q 点落在O 与y 轴负半轴的交点处(如图二).设直线PQ 与O 的另外一个交点为D ,过O 作OC ⊥QD 于点C ,则C 为QD 的中点. …………4分 ∵∠QOP =90°,OQ =1,OP =2, ∴QP …………5分 ∵1122OQ OP QP OC ⋅=⋅, ∴OC . …………6分 ∵OC ⊥QD ,OQ =1,OC ,∴QC ∴QD . …………7分24.(1)解:∵关于x 的方程为221(1)04x a -++=为一元二次方程,且有实根.故满足:220,1(4(1)0.4a a ≥⎧⎪⎨∆=--⨯⨯+≥⎪⎩ ……….…………………………….2分(注:每个条件1分) 整理得 20,(1)0.a a ≥⎧⎨-≤⎩∴1a = (4)分(2)由(1)可知1a =,故方程2(1)0mx m x a +--=可化为2(1)10mx m x +--=.①当m =0时,原方程为10x -=,根为1x =,符合题意. ………………………….5分②当m ≠0时,2(1)10mx m x +--=为关于x 的一元二次方程,2222(1)4(1)12421(1)0m m m m m m m m ∆=--⨯⨯-=-++=++=+≥.此时,方程的两根为 1211,x x m==-. ∵两根均为整数, 图二∴m =1±.………………………….7分综上所述,m 的值为1-,0 或1.25.(1)证明:如图一,∵1O ,2O ,F 分别是AB ,AC ,BC 边的中点,∴1O F ∥AC 且1O F =A 2O ,2O F ∥AB 且2O F =A 1O , ∴∠B 1O F=∠BAC ,∠C 2O F=∠BAC ,∴∠B 1O F=∠C 2O F∵点D 和点E 分别为两个半圆圆弧的中点, ∴1O F =A 2O =2O E ,2O F =A 1O =1O D , ………………………….2分∠B 1O D =90°,∠C 2O E =90°, ∴∠B 1O D=∠C 2O E . ∴∠D 1O F=∠F 2O E .∴12DO F FO E △≌△.………………………….3分(2)解:如图二,延长CA 至G ,使AG =AQ ,连接BG 、AE .∵点E 是半圆2O 圆弧的中点, ∴AE=CE=3 ∵AC 为直径 ∴∠AEC =90°,∴∠ACE =∠EAC =45°,AC=, ∵AQ 是半圆2O 的切线, ∴CA ⊥AQ ,∴∠CAQ =90°, ∴∠ACE =∠AQE =45°,∠GAQ =90° ∴AQ =AC =AG=同理:∠BAP =90°,AB =AP=∴CG=∠GAB =∠QAP ∴AQP AGB △≌△.……………………..5分 ∴PQ =BG ∵∠ACB =90°, ∴BC ∴BG∴PQ= ……………………..6分(3) 证法一:如图三,设直线FA 与PQ 的垂足为M ,过C 作CS ⊥MF 于S ,过B 作BR ⊥MF 于R ,连接DR 、AD 、DM.∵F 是BC 边的中点,∴ABF ACF S S =△△. ∴BR=CS ,由(2)已证∠CAQ =90°, AC =AQ, ∴∠2+∠3=90° ∵FM ⊥PQ , ∴∠2+∠1=90°, ∴∠1=∠3, 同理:∠2=∠4, ∴AMQ CSA △≌△, ∴AM=CS ,∴AM=BR ,图二同(2)可证AD=BD ,∠ADB =∠ADP =90°,∴∠ADB =∠ARB =90°, ∠ADP =∠AMP =90° ∴A 、D 、B 、R 四点在以AB 为直径的圆上,A 、D 、P 、M 四点在以AP 为直径的圆上, 且∠DBR+∠DAR =180°,∴∠5=∠8, ∠6=∠7, ∵∠DAM +∠DAR =180°, ∴∠DBR =∠DAM ∴DBR DAM △≌△, ∴∠5=∠9, ∴∠RDM =90°, ∴∠5+∠7=90°, ∴∠6+∠8=90°, ∴∠PAB =90°, ∴PA ⊥AB ,又AB 是半圆1O 直径, ∴PA 是半圆1O 的切线.……………………..8分证法二:假设PA 不是是半圆1O 的切线,如图四,过点A 作半圆1O 的切线交BD 的延长线于点P ', 则点P '异于点P ,连结P Q ',设直线FA 与PQ 的 垂足为M ,直线FA 与P Q '的交点为M '.延长AF 至N ,使得AF =FN ,连结BN ,CN ,由于点F 是 BC 中点,所以四边形ABNC 是平行四边形. 易知,180BAC ACN ∠+∠=︒, ∵AQ 是半圆2O 的切线, ∴∠QAC =90°,同理90P AB '∠=︒. ∴180P AQ BAC '∠+∠=︒. ∴P AQ ACN '∠=∠. 由(2)可知,,AQ AC AB AP '==,∴P AQ NCA '△≌△. ∴NAC P QA '∠=∠. ∵90QAC ∠=︒, ∴90NAC M AQ '∠+∠=︒.即 90AQM M AQ ''∠+∠=︒.∴90AM Q '∠=︒. 即 P Q A F '⊥.∵ PQ AF ⊥,Q图四∴过点Q有两条不同的直线P Q 和PQ同时与AF垂直.这与在平面内过一点有且仅有一条直线与已知直线垂直相矛盾,因此假设错误.所以PA是是半圆O的切线.1。