万有引力定律及其应用

合集下载

高中物理万有引力知识点总结

高中物理万有引力知识点总结

高中物理万有引力知识点总结1. 牛顿的万有引力定律:任何两个物体间都存在引力,这个引力与它们的质量成正比,与它们之间距离的平方成反比。

这就是牛顿的万有引力定律。

公式表示为:F=G(m1m2)/r^2,其中F是两个物体间的引力,m1和m2分别是两个物体的质量,r是它们之间的距离,G是万有引力常量。

2. 万有引力定律的应用:天体运动:万有引力定律为解释和预测天体运动提供了基础。

例如,行星绕太阳的运动,卫星绕地球的运动等。

重力加速度:在地球表面,万有引力定律可以用来解释重力加速度的存在。

重力加速度是由地球的质量产生的万有引力引起的。

3. 开普勒三定律:第一定律(轨道定律):所有行星绕太阳的轨道都是椭圆,太阳在其中一个焦点上。

第二定律(面积定律):对于任何行星,它与太阳的连线在相同的时间内扫过的面积相等。

第三定律(周期定律):所有行星绕太阳一周的周期的平方与它们轨道半长轴的立方之比是一个常数。

4. 万有引力定律与天体运动的关系:通过万有引力定律和牛顿第二定律(F=ma),我们可以推导出天体运动的规律。

例如,行星的轨道周期与其轨道半径的三次方和质量的二次方之间的关系,这就是开普勒第三定律的来源。

5. 人造卫星:人造卫星是利用万有引力定律进行设计和操作的。

通过调整卫星的轨道和速度,可以实现各种任务,如通信、气象观测、导航等。

6. 逃逸速度:逃逸速度是指一个物体从某天体表面发射出去,要逃离该天体的引力束缚所需要的最小速度。

逃逸速度的计算涉及到万有引力定律和动能定理。

以上就是高中物理中万有引力知识点的主要内容。

掌握这些知识,可以帮助我们更好地理解和预测天体运动,以及设计和操作人造卫星等任务。

物理学中的万有引力定律

物理学中的万有引力定律

物理学中的万有引力定律物理学中的万有引力定律是一个基本的定律,描述了任意两个物体之间的引力相互作用。

该定律由英国科学家艾萨克·牛顿于1687年首次提出,并被广泛应用于天体力学、航天工程等领域。

本文将详细探讨万有引力定律的概念、公式及其应用,以及相关的实验验证。

一、万有引力定律的概念万有引力定律是指当两个物体之间存在引力时,这种引力的大小与它们之间的质量和距离有关。

根据牛顿的定律,两个物体之间的引力的大小与它们的质量成正比,与它们之间距离的平方成反比。

换句话说,质量越大,距离越近,引力越大。

二、万有引力定律的公式根据牛顿的万有引力定律,两个物体之间的引力可以通过以下公式计算:F =G * ((m1 * m2) / r^2)其中,F表示引力的大小,G为万有引力常数,m1和m2分别为物体1和物体2的质量,r表示它们之间的距离。

万有引力常数G是一个固定的数值,约为6.67430 * 10^-11 N·(m/kg)^2。

它的确定需要通过实验测量获得。

三、万有引力定律的应用1. 天体力学万有引力定律在天体力学中有广泛的应用。

它被用来描述行星、卫星、恒星等天体之间的引力相互作用,从而推导出行星运动的规律。

例如,根据万有引力定律,我们可以计算地球绕太阳的轨道、卫星绕地球的轨道以及其他天体的运动轨迹。

2. 航天工程在航天工程中,万有引力定律被用来计算太空飞船与其他天体之间的引力,这对轨道调整和航天任务的规划非常重要。

通过运用万有引力定律,科学家可以预测太空飞船在特定引力场下的轨道,并进行必要的调整以保证任务的成功。

3. 人造卫星人造卫星是利用万有引力定律设计和运行的。

科学家在发射卫星时,必须仔细考虑地球和其他天体之间的引力相互作用。

通过计算引力的大小和方向,可以使卫星保持正确的轨道,完成各种任务,如通信、气象观测和导航等。

四、万有引力定律的实验验证为了验证万有引力定律,科学家进行了许多实验。

其中最重要的是亨利·卡文迪什的“铅垂线实验”。

万有引力定律及其应用

万有引力定律及其应用

万有引力定律及其应用引力是自然界中普遍存在的一种力量,通过它,天体之间相互吸引并形成整个宇宙的结构和稳定。

而万有引力定律则是揭示了这一现象的基本规律。

本文将探讨万有引力定律的本质以及其在实际生活中的应用。

首先,我们来了解万有引力定律的定义。

万有引力定律由英国物理学家牛顿于17世纪提出,它是描述质点之间相互引力作用的基本定律。

该定律指出,任意两个质点之间的引力大小与它们的质量成正比,与它们之间的距离的平方成反比。

具体地,两个质量分别为m1和m2的质点之间的引力F,可以用如下公式表示:F =G * (m1 * m2) / r^2其中,G为万有引力常数,约等于6.67430×10^-11 N·m^2/kg^2;r为两个质点之间的距离。

这个公式揭示了引力与质量和距离的关系。

首先,引力与质量成正比,也就是说,质量越大,引力越大;质量越小,引力越小。

其次,引力与距离的平方成反比。

也就是说,距离越近,引力越大;距离越远,引力越小。

这样的规律在宇宙中的天体之间无处不在。

接下来,我们来看看万有引力定律在实际生活中的应用。

首先,它在天体运动的研究中发挥重要作用。

根据万有引力定律,我们可以计算出行星、卫星、彗星等天体之间的引力,并通过对它们的引力和运动状态的分析,来研究它们的轨道、周期和相互关系等。

正是通过这样的研究,我们才能建立起完整且准确的天体运动模型,不断探索和理解宇宙的奥秘。

其次,万有引力定律在地球上的日常生活中也有实际应用。

我们可以利用这一定律来解释为什么物体会下落,以及计算物体受到的重力。

例如,当我们举起一个物体时,它之所以能够下落,是因为地球对它施加了引力,而这个引力正好等于物体与地球质量的乘积与地球和物体之间的距离的平方的比值。

此外,万有引力定律还有助于我们理解一些日常现象,比如离心力、液体的上浮力等。

除了上述的基本应用外,万有引力定律还有许多其他领域的应用,例如航天工程、卫星通讯、射击、工程设计等。

万有引力定律及其应用

万有引力定律及其应用

万有引力定律及其应用万有引力定律是物理学中最基本的定律之一,描述了物体之间相互作用的力,被广泛应用于天体运动、地球运行、航天探索等领域。

本文将介绍万有引力定律的定义与公式,并探讨其在宇宙学、卫星运行和导航系统中的应用。

一、万有引力定律的定义和公式万有引力定律是由艾萨克·牛顿于1687年提出的,它描述了两个物体之间的引力大小与它们的质量及距离的关系。

牛顿的万有引力定律可以用以下公式表示:F =G * (m1 * m2) / r^2其中,F表示两个物体之间的引力,G是万有引力常数,m1和m2分别是两个物体的质量,r是它们之间的距离。

二、万有引力定律在宇宙学中的应用万有引力定律在宇宙学中起着重要作用。

根据该定律,行星围绕太阳运行,卫星绕地球运行,这是因为太阳和地球对它们产生了引力。

通过牛顿的定律,科学家们能够计算出天体之间的引力,从而预测它们的运动轨迹和相互作用。

世界各个国家的航天探索也依赖于万有引力定律。

比如,计算出行星和卫星的运动轨迹,对航天器进行准确的发射和着陆,都需要准确地应用万有引力定律。

此外,万有引力定律还促进了科学家对宇宙的进一步研究,帮助他们了解天体的形成和宇宙演化的规律。

三、万有引力定律在卫星运行中的应用卫星是应用万有引力定律的典型实例。

通过牛顿定律计算引力,可确定卫星轨道的稳定性和运行所需的速度。

在卫星发射前,科学家需要根据卫星要达到的轨道高度和地球质量计算出所需的发射速度,确保卫星能够稳定地绕地球运行。

此外,卫星之间也需要遵循万有引力定律的规律。

卫星在轨道上的相对位置和轨道调整都受到引力的影响。

科学家利用牛顿定律的公式,预测卫星之间的相对运动,确保卫星不会相互碰撞,从而保证卫星系统的正常运行。

四、万有引力定律在导航系统中的应用导航系统是现代社会不可或缺的一部分,而万有引力定律在导航系统中也发挥着关键作用。

通过利用地球的引力场,导航系统能够计算出接收器的位置和速度。

卫星导航系统如GPS(全球定位系统)就是基于万有引力定律工作的。

万有引力定律及其应用

万有引力定律及其应用

万有引力定律及其应用万有引力定律是物理学中最基本的定律之一,由英国科学家牛顿提出。

它描述了质点间的相互引力作用,并广泛应用于天体物理学、工程学以及其他领域中。

一、万有引力定律的描述万有引力定律指出,两个物体之间的引力与它们的质量成正比,与它们之间的距离平方成反比。

具体而言,设两个质量分别为m1和m2的物体之间的距离为r,它们之间的引力F可以表示为以下公式:F =G * (m1 * m2) / r^2其中G是一个常数,称为万有引力常数。

这个常数的数值约为6.67430 × 10^-11 N·(m/kg)^2。

根据万有引力定律,质点间的引力始终是吸引力,且大小与质量以及距离的关系密切。

二、天体物理学中的应用万有引力定律在天体物理学中有着广泛的应用。

例如,根据这一定律,我们可以计算出行星与恒星之间的引力,从而预测它们的运动轨迹。

此外,万有引力定律还可以解释地球和月球之间的引力,以及引力对行星、卫星等天体的影响。

在天体物理学中,还有一个重要的应用是质量测量。

通过监测天体之间的引力以及它们之间的距离,科学家可以估算出天体的质量。

例如,通过测量地球和人造卫星之间的引力,可以推导出地球的质量。

三、工程学中的应用除了天体物理学,万有引力定律在工程学中也有重要的应用。

例如,在建筑和桥梁设计中,工程师需要考虑结构物与地球之间的引力。

万有引力定律提供了一种计算这种引力的方法,以确保结构物的稳定性和安全性。

此外,万有引力定律还可以应用于导航系统的设计中。

卫星导航系统需要准确测量卫星与地球之间的引力,以确定接收器的位置。

通过使用万有引力定律进行引力计算,可以提高导航系统的准确性和可靠性。

四、其他领域中的应用除了天体物理学和工程学,万有引力定律还可以在其他领域中找到应用。

例如,在生物医学领域,研究人员可以利用万有引力定律来研究细胞之间的相互引力作用,以及人体内部的重力分布情况。

此外,在航天工程中,万有引力定律也被用于计算卫星轨道以及飞船的运行轨迹。

万有引力定律

万有引力定律

万有引力定律万有引力定律(Law of Universal Gravitation)是由英国科学家艾萨克·牛顿在17世纪提出的一条物理定律。

该定律描述了物体之间的引力作用,并为天体力学提供了重要的理论基础。

本文将介绍万有引力定律的基本原理、公式推导以及其在宇宙中的应用。

一、基本原理万有引力定律认为,任何两个物体之间都存在一种相互吸引的力,这种力称为引力。

而引力的大小与物体的质量密切相关,质量越大的物体之间的引力越大,质量越小的物体之间的引力越小。

此外,物体之间的距离也对引力产生影响,距离越近的物体之间的引力越大,距离越远的物体之间的引力越小。

二、公式推导根据牛顿的研究,我们可以通过以下公式来计算两个物体之间的引力:F =G * (m1 * m2) / r^2其中,F表示两个物体之间的引力,m1和m2分别表示两个物体的质量,r表示两个物体之间的距离,G为万有引力常数。

万有引力常数是一个确定的数值,在SI国际单位制中的数值约为6.67430×10^-11m^3·kg^-1·s^-2。

三、宇宙中的应用万有引力定律不仅适用于地球表面上的物体,还可以解释和预测宇宙中的许多现象。

以下是一些宇宙中的应用实例:1. 行星运动:万有引力定律提供了解释行星围绕太阳旋转的原理。

根据该定律,行星受到太阳的引力作用,以椭圆轨道绕太阳运动。

2. 人造卫星轨道:根据万有引力定律,科学家可以计算出将人造卫星送入特定轨道所需的速度和位置。

利用该定律,可以确保卫星按照预定轨道运行。

3. 星际探测:在太阳系以外的星际探测任务中,科学家利用万有引力定律来计算出星际空间中的行星、恒星等物体之间的引力,并据此规划探测器的航线和轨道。

4. 重力透镜效应:万有引力定律还可以解释重力透镜效应。

当光线经过质量很大的物体附近时,其路径会发生弯曲,从而使得远处的物体变得更明亮或更模糊。

这一效应在宇宙中的天体观测中具有重要意义。

万有引力的定律及应用

万有引力的定律及应用

万有引力的定律及应用万有引力定律是描述质点间万有引力作用的基本物理定律,由英国物理学家牛顿于1687年提出。

在不受其他力干扰的理想情况下,两个质点间的引力大小与它们质量的乘积成正比,与它们之间距离的平方成反比。

万有引力定律由以下公式给出:F =G * (m1 * m2) / r^2其中,F是两个质量为m1和m2的质点间的引力的大小,G是万有引力常数,它的数值约为6.67430 ×10^-11 N·(m/kg)^2,r是两个质点之间的距离。

应用方面,万有引力定律在天体物理学、工程学、地理学等领域都有广泛的应用。

以下是一些具体的应用:1. 行星运动:万有引力定律可以用于描述行星围绕太阳的轨道运动。

根据万有引力定律,太阳对行星的引力决定了行星的运动轨迹和速度。

利用这一定律,我们可以计算天体的轨道周期、轨道半径、行星速度等重要参数。

2. 卫星轨道:天文学家和航天科学家利用万有引力定律设计和计算卫星的轨道。

例如,地球上的人造卫星绕地球运动的轨道就是通过计算地球对卫星的引力和卫星的惯性力平衡得到的。

3. 理解地球重力:万有引力定律也可以用于解释地球上物体的重力。

地球上的物体受到地球对它们的引力作用,这个引力决定了物体的质量,以及物体受到的重力加速度。

地球上物体的重力加速度约为9.8 m/s^2。

4. 引力势能:根据万有引力定律,物体在引力场中具有势能。

利用万有引力定律,我们可以计算物体在引力场中的势能差。

例如,当物体从地球表面升到高空时,它的势能增加。

5. 测定天体质量:运用万有引力定律,我们可以通过测量天体间的引力和距离,来计算天体的质量。

例如,通过测量地球和月球间的引力和距离,我们可以确定地球和月球的质量。

总之,万有引力定律是一个十分重要的物理定律,它不仅可以解释天体运动、地球重力等现象,还有许多实际的应用。

通过对万有引力定律的研究和应用,我们可以更好地理解自然界中的各种现象,为科学研究和技术发展提供基础。

万有引力定律及其应用

万有引力定律及其应用

万有引力定律及其应用万有引力定律是物理学中的重要定律之一,由英国科学家牛顿在17世纪发现并公布。

它描述了物体之间相互作用的力与它们的质量和距离的关系。

本文将介绍万有引力定律的具体内容以及一些应用示例。

一、万有引力定律的表述万有引力定律指出,任何两个物体之间都存在着一种相互吸引的力,这个力称为引力。

它的大小与两个物体的质量成正比,与它们的距离平方成反比。

假设有两个物体,质量分别为m1和m2,它们之间的距离为r。

根据万有引力定律,它们之间的引力F可以通过以下公式计算得到:F =G * (m1 * m2) / r^2其中,G为万有引力常数,约等于6.67430 × 10^-11 N·(m/kg)^2。

根据这个定律,我们可以计算出物体之间的引力大小,并进一步研究物体的运动状态和相互作用。

二、万有引力定律的应用万有引力定律在物理学的研究中有广泛的应用。

下面将介绍一些具体的应用示例。

1. 行星运动万有引力定律对行星的运动轨迹和速度提供了解释。

根据定律,行星与恒星之间的引力使得行星绕恒星运动。

行星在受到引力作用下,沿着椭圆轨道围绕恒星旋转。

同时,根据引力的大小和方向,我们还可以计算出行星的速度和运动轨道。

2. 卫星轨道人造卫星的运行轨道也可以通过万有引力定律进行计算。

卫星以地球为中心,受到地球引力的作用,所以会围绕地球旋转。

通过计算引力大小和速度,可以确定卫星的轨道,从而实现正常运行和通信。

3. 弹道轨道使用火箭进行太空探索时,火箭也是根据万有引力定律的计算结果进行定位和轨道规划的。

引力对火箭产生的影响可以通过计算得到,从而确定火箭发射时的初始速度和轨道,确保火箭能够顺利进入太空。

4. 重力加速度万有引力定律还可以用于计算地球表面上的重力加速度,即物体下落的速度增加量。

根据质量和距离的关系,可以计算出地球表面上的引力大小,进而计算物体下落的加速度,并用于物理学中相关的问题解决。

以上仅是万有引力定律的一些应用示例,实际上在天文学、空间科学、物理学等许多领域都有涉及。

万有引力定律及其应用

万有引力定律及其应用

第一单元 万有引力定律及其应用基础知识一.开普勒运动定律(1)开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上.(2)开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等.(3)开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等. 二.万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. (2)公式:F =G221rm m ,其中2211/1067.6kg m N G ⋅⨯=-,称为为有引力恒量。

(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力.三、万有引力和重力重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F 向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g 随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m 2g =G221rm m ,g=GM/r 2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g 随物体离地面高度的增大而减小,即g h =GM/(r+h )2,比较得g h =(hr r +)2·g在赤道处,物体的万有引力分解为两个分力F 向和m 2g 刚好在一条直线上,则有F =F 向+m 2g , 所以m 2g=F 一F 向=G221rm m -m 2R ω自2因地球目转角速度很小G221rm m » m 2R ω自2,所以m 2g= G221rm m假设地球自转加快,即ω自变大,由m 2g =G 221rm m -m 2R ω自2知物体的重力将变小,当G221rm m =m 2R ω自2时,m 2g=0,此时地球上物体无重力,但是它要求地球自转的角速度ω自=13G m R,比现在地球自转角速度要大得多.四.天体表面重力加速度问题设天体表面重力加速度为g,天体半径为R ,由mg=2M m G R得g=2M GR,由此推得两个不同天体表面重力加速度的关系为21212212g R M g R M =*五.天体质量和密度的计算原理:天体对它的卫星(或行星)的引力就是卫星绕天体做匀速圆周运动的向心力. G2rmM =m224Tπr ,由此可得:M=2324GTr π;ρ=VM =334RM π=3223RGTr π(R 为行星的半径)由上式可知,只要用实验方法测出卫星做圆周运动的半径r 及运行周期T ,就可以算出天体的质量M .若知道行星的半径则可得行星的密度例题:某物体在地面上受到的重力为160 N ,将它放置在卫星中,在卫星以加速度a =½g 随火箭加速上升的过程中,当物体与卫星中的支持物的相互压力为90 N 时,求此时卫星距地球表面有多远?(地球半径R =6.4×103km,g 取10m/s 2) 解析:设此时火箭上升到离地球表面的高度为h ,火箭上物体受到的支持力为N,物体受到的重力为mg /,据牛顿第二定律.N -mg /=ma ……①在h 高处mg /=()2h RMmG+……② 在地球表面处mg=2RMm G……③把②③代入①得()ma R h mgRN++=22 ∴⎪⎪⎭⎫⎝⎛--=1ma N mgR h =1.92×104km.说明:在本问题中,牢记基本思路,一是万有引力提供向心力,二是重力约等于万有引力.2、讨论天体运动规律的基本思路基本方法:把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供。

万有引力定律

万有引力定律

万有引力定律万有引力定律是物理学中的基本定律之一,由英国科学家牛顿于17世纪提出。

它描述了物体之间的引力相互作用规律,广泛应用于天文学、力学等领域。

本文将详细介绍万有引力定律的原理、公式推导、应用以及其对人类认知宇宙的影响等相关内容。

一、定律原理万有引力定律是一项描述质点间引力相互作用的物理定律。

其原理表明,两个物体之间的引力大小与它们的质量成正比,与它们之间的距离平方成反比。

如果用F表示两物体之间的引力大小,m1和m2分别表示两物体的质量,r表示它们之间的距离,万有引力定律可表示为以下公式:F =G * ((m1 * m2) / r^2)其中,G为万有引力常数,其值为6.67430 × 10^-11 N·(m/kg)^2。

二、公式推导万有引力定律的公式由牛顿通过数学推导得出。

他首先研究了地球上物体下落的规律,提出了物体之间存在相互吸引的力。

然后,他通过实验观测行星运动轨迹的特点,得出了引力与距离平方成反比关系的结论。

牛顿使用了开普勒的行星运动定律作为基础,结合他的力学定律和数学知识,推导出了万有引力定律的公式。

根据公式推导的过程可以证明,这一定律可以适用于任何两个物体之间的引力相互作用。

三、应用万有引力定律的应用非常广泛。

首先,它可以解释天体运动规律,例如行星绕太阳的轨迹、卫星绕地球的运动等。

通过应用万有引力定律,科学家们可以准确预测和描述天体的运动。

其次,万有引力定律还用于研究地球上物体的运动和平衡。

例如,通过该定律可以解释地球上物体下落的原因,以及建筑物和桥梁的结构稳定性等。

此外,万有引力定律也被应用于航天探测和导航系统。

在航天器的轨道规划和导航定位中,必须考虑各个天体之间的引力相互作用,以保证航天器的安全和准确到位。

四、对人类认知宇宙的影响万有引力定律的发现和应用对人类认知宇宙产生了巨大影响。

它揭示了天体之间的引力相互作用规律,帮助我们更好地理解宇宙中的物体运动和相互关系。

万有引力定律的应用

万有引力定律的应用

万有引力定律的应用万有引力定律是牛顿在17世纪提出的,它描述了任何两个物体之间的引力大小与距离和质量有关。

这个定律在科学和工程领域有广泛的应用,下面将分析其中一些重要的应用。

一、天体运动万有引力定律被广泛应用于研究天体运动,如行星绕太阳的公转,卫星围绕地球的轨道等。

根据万有引力定律,行星和卫星之间的引力与它们的质量和距离有关。

通过计算引力和质量之间的平衡,科学家能够预测天体的轨道和运动方式,为航天飞行和地球观测提供了重要的依据。

二、地球引力地球的引力是万有引力定律的典型应用。

地球对物体的引力会使物体朝向地心方向运动,并决定了物体的重量。

人类在地球表面所感受到的重力就是地球对我们的引力。

地球引力对于建筑设计、桥梁建设和运输等领域的设计和计算非常重要。

三、人造卫星人造卫星的运行离不开万有引力定律的应用。

人造卫星需要在地球轨道上绕地球运行,以实现通信、气象观测和全球定位等功能。

科学家通过计算卫星与地球之间的引力平衡,确定卫星的速度和轨道,以便卫星能够稳定地绕地球运行。

四、航天器轨道设计航天器轨道设计也利用了万有引力定律。

在航天器发射时,它需要进入特定的轨道才能完成任务。

科学家利用万有引力定律计算出航天器需要达到的速度和轨道倾角,以便使航天器成功进入预定的轨道,从而实现科学研究、遥感观测和空间探索等目标。

五、行星间引力相互作用除了天体运动,万有引力定律还解释了行星间引力相互作用。

行星之间的引力相互作用决定了它们的相对位置和运动。

这种引力相互作用还解释了潮汐现象,即海洋潮汐和地球上其他物体的周期性起伏。

利用万有引力定律,科学家能够预测和解释行星间的引力相互作用,进而研究太阳系的演化和宇宙的结构。

六、重力加速度测量重力加速度是指物体受到引力作用时的加速度。

利用万有引力定律,可以计算出地球上某一点的重力加速度。

这对建筑工程、地质勘探和地质灾害预测等领域非常重要。

科学家可以通过测量物体的自由落体加速度,计算出该点所受的重力加速度,从而提供精确的数据。

万有引力定律

万有引力定律

万有引力定律及其应用1. 万有引力定律○1内容:自然界中任何两个物体都是相互吸引的,引力的大小跟两个物体的质量的乘积成正比,跟它们的距离的平方成反比。

○2表达式:221r m m G F = ○3万有引力定律是两个具有质量的物体间的相互作用力,是宇宙中物体间的一种基本作用形式。

公式中的r 应理解为相互作用的两个物体质心间的距离;对于均匀的球体,r 是两球心间的距离;对地表附近的物体,r 是物体和地心间的距离。

G 称作引力常量:G =6.67×10-11N ·m 2/kg 2(不要求记住)○4适用条件: 1、严格地说,万有引力定律的公式只适用于计算质点间的相互作用。

当两个物体间的距离比物体本身大得多时,也可用于近似计算两物体间的万有引力。

2、质量均匀的球体间的相互作用,也可用于万有引力定律公式来计算,式中的r 是两个球体球心间的距离。

3、一个均匀球体与球外一个质点的万有引力也可用计算,式中的是球体球心到质点的距离。

2. 三种宇宙速度(1)第一宇宙速度(环绕速度):v1= 7.9 km/s ,是人造地球卫星的最小发射速度.(2)第二宇宙速度(脱离速度):v2= 11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度.(3)第三宇宙速度(逃逸速度):v3= 16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度.3万有引力定律在天体运动中的应用1.在处理天体的运动问题时,通常把天体的运动看成是匀速圆周 运动,其所需要的向心力由 万有引力 提供.其基本关系式为:在天体表面,忽略自转的情况下有:2. 卫星的绕行速度、角速度、周期与轨道半径r 的关系r f m r Tm r m r v m r Mm G 22222)π2()π2(====ωmg R Mm G =23.体质量M、密度ρ的估算方法点拨1.分析天体运动类问题的一条主线就是F万=F向,抓住黄金代换GM= gR22.近地卫星的线速度即第一宇宙速度,是卫星绕地球做圆周运动的最大速度,也是发射卫星的最小速度.3.因卫星上物体的重力用来提供绕地球做圆周运动的向心力,所以均处于完全失重状态,与重力有关的仪器不能使用,与重力有关的实验不能进行.4.卫星变轨时,离心运动后速度变小 ,向心运动后速度变大 .5.确定天体表面重力加速度的方法有:①测重力法;②单摆法;③平抛(或竖直上抛)物体法;④近地卫星环绕法.【典型题解】类型一万有引力定律及其应用例1(2009·南京模拟)图1所示是我国的“探月工程”向月球发射一颗绕月探测卫星“嫦娥一号”的过程简图.“嫦娥一号”进入月球轨道后,在距离月球表面高为h的轨道上绕月球做匀速圆周运动.(1)若已知月球半径为R 月,月球表面的重力加速度为g 月,则“嫦娥一号”环绕月球运行的周期为多少?(2)若已知R 月= R 地/4,g 月= g 地/6,则近月卫星的运行速度约为近地卫星运行速度的多少倍?解析 (1)设“嫦娥一号”环绕月球运行的周期是T,根据牛顿第二定律得(2)对于靠近天体表面的行星或卫星有类型二 中心天体质量、密度的计算例2 把地球绕太阳公转看作匀速率圆周运动,轨道平均半径约为1.5×108 km,已知万有引力常量G=6.67×10-11 N ·m2/kg2,则可估算出太阳的质量大约是多少?(结果取一位有效数字)解析 题干给出地球轨道半径r=1.5×108 km,虽没直接给出地球运转周期数值,但日常知识告诉我们:地球绕太阳公转一周为365天,周期T=365×24×3 600 s=3.2×107 s.万有引力提供向心力 ,故太阳质量r Tm r Mm G 22)π2(例3美国“勇气”号火星车在火星表面成功登陆,登陆时间选择在6万年来火星距地球最近的一次,火星与地球之间的距离仅有5 580万千米,火星车在登陆前绕火星做圆周运动,距火星表面高度为H,火星半径为R,绕行N圈的时间为t.求:(1)若地球、火星绕太阳公转为匀速圆周运动,其周期分别为T地、T火,试比较它的大小;(2)求火星的平均密度(用R、H、N、t、万有引力常量G表示);(3)火星车登陆后不断地向地球发送所拍摄的照片,地球上接收到的第一张照片大约是火星车多少秒前拍摄的.解析(1)设环绕天体质量为m,中心天体质量为M,类型三卫星变轨问题例3 (2009·山东卷·18)2008年9月25日至28日,我国成功实施了“神舟”七号载人航天飞行并实现了航天员首次出舱.飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟.下列判断正确的是()A.飞船变轨前后的机械能相等B.飞船在圆轨道上时航天员出舱前后都处于失重状态C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度解析由于变轨过程中需点火加速,所以变轨后飞船的机械能增大,选项A错误;宇航员出舱前后均与飞船一起做匀速圆周运动,万有引力提供了做圆周运动的向心力,因此出舱前后航天员都处于失重状态,选项B正确;飞船在圆轨道上运行的周期为90分钟,而同步卫星的周期为24小时,所以飞船在圆轨道上运动的角速度大于同步卫星的角速度,选项C 正确.只要在同一点受到的万有引力相同,由牛顿第二定律得a=,即加速度相同,选项D 错误.答案 BC例4“嫦娥一号”探月卫星发动机关闭,轨道控制结束,卫星进入地月转移轨道.图2中MN 之间的一段曲线表示转移轨道的一部分,P 是轨道上的一点,直线AB 过P 点且和两边轨道相切.下列说法中正确的是(BCD )A.卫星在此段轨道上,动能一直减小B.卫星经过P 点时动能最小C.卫星经过P 点时速度方向由P 向BD.卫星经过P 点时加速度为零解题归纳 卫星的变轨问题应结合离心运动和向心运动去分析,因为变轨的过程中不满足稳定运行的条件F 向=F 万,而是在原轨道上因为速度减小做向心运动而下降,速度增大做离心运动而升高,但是一旦变轨成功后又要稳定运行,这时又满足F 向=F 万,进而按规律分析即可,在这里要注意,因为原轨道上的速度减小做向心运动轨道降低了,但是降低后在低轨道运行的速度要比原高轨道的速度大.(2009·上海十校联考)2008年9月25日我国成功发射了“神舟七号”飞船,关于“神舟七号”飞船的运动,下列说法中正确的是 (CD )A.点火后飞船开始做直线运动时,如果认为火箭所受的空气阻力不随速度变化,同时认为推力F (向后喷气获得)和重力加速度g 不变,则火箭做匀加速直线运动B.入轨后,飞船内的航天员处于平衡状态C.入轨后,飞船内的航天员仍受到地球的引力作用,但该引力小于航天员在地面时受到的地球对他的引力D.返回地面将要着陆时,返回舱会开启反推火箭, 这个阶段航天员处于超重状态类型四 万有引力与航天科技例4(2009·天津卷·12)2008年12月,天文学家们通过观测的数据确认了银河系中央的黑洞“人马座A ”的质量与太阳质量的倍数关系.研究发现,有一星体S2绕人马座A 做椭圆运动,其轨道半长轴为9.50×102天文单位(地球公转轨道的半径为一个天文单位),人马座A 就处在该椭圆的一个焦点上.观测得到S2星的运动周期为15.2年.(1)若将S2星的运动轨道视为半径r=9.50×102天文单位的圆轨道,试估算人马座A 的质量MA 是太阳质量MS 的多少倍(结果保留一位有效数字);(2)黑洞的第二宇宙速度极大,处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚.由于引力的作用,黑洞表面处质量为22rGM mr GMmm 的粒子具有的势能为Ep=- (设粒子在离黑洞无限远处的势能为零),式中M 、R 分别表示黑洞的质量和半径.已知引力常量G=6.7×10-11N ·m2/kg2,光速c=3.0×108 m/s ,太阳质量MS=2.0×1030 kg ,太阳半径RS=7.0×108 m ,不考虑相对论效应,利用上问结果,在经典力学范围内求人马座A 的半径RA 与太阳半径RS 之比应小于多少(结果按四舍五入保留整数).解析 (1)S2星绕人马座A 做圆周运动的向心力由人马座A 对S2星的万有引力提供,设S2星的质量为mS2,角速度为ω,周期为T ,则rE=1天文单位 ⑤代入数据可得 =4×106 ⑥(2)引力对粒子作用不到的地方即为无限远,此时粒子的势能为零,“处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚”,说明了黑洞表面处以光速运动的粒子在远离黑洞的过程中克服引力做功,粒子在到达无限远之前,其动能便减小为零,此时势能仍为负值,则其能量总和小于零.根据能量守恒定律,粒子在黑洞表面处的能量也小于零,则有例5(2009·四川卷·15)据报道,2009年4月29 日,美国亚利桑那州一天文观测机构发现一颗与太 阳系其他行星逆向运行的小行星,代号为2009HC82.该小行星绕太阳一周的时间为3.39年, 直径2~3千米,其轨道平面与地球轨道平面呈 155°的倾斜.假定该小行星与地球均以太阳为中心 做匀速圆周运动,则小行星和地球绕太阳运动的速度大小的比值为 ( )22r m M G S A备考作业1.(2009·安徽卷·15)2009年2月11日,俄罗斯的“宇宙—2251”卫星和美国的“铱—33”卫星在西伯利亚上空约805 km处发生碰撞.这是历史上首次发生的完整在轨卫星碰撞事件.碰撞过程中产生的大量碎片可能会影响太空环境.假定有甲、乙两块碎片,绕地球运动的轨道都是圆,甲的运行速率比乙的大,则下列说法中正确的是()A.甲的运行周期一定比乙的长B.甲距地面的高度一定比乙的高C.甲的向心力一定比乙的小D.甲的加速度一定比乙的大解析根据万有引力提供向心力有由于v甲>v乙,所以甲离地面的高度小于乙离地面的高度,甲的周期小于乙的周期,甲的向心加速度比乙的大.由于甲、乙质量未知,所受向心力大小无法判断.综上所述正确选项为D项.2.(2009·上海市高三物理质量抽查卷)某探月卫星经过多次变轨,最后成为一颗月球卫星.设该卫星的轨道为圆形,且贴近月球表面,则该近月卫星的运行速度率约为(已知月球的质量约为地球质量的1/81,月球半径约为地球半径的1/4,近地地球卫星的速率为7.9 km/s)()A.1.8 km/sB.0.4 km/sC.11 km/sD.36 km/s3.(2009·徐州三检)卫星甲、乙、丙在如图4所示的三个椭圆轨道上绕地球运行,卫星甲与卫星乙的运行轨道在P点相切.不计大气阻力,以下说法正确的是()A.卫星甲运行时的周期最大B.卫星乙运行时的机械能最大C.卫星丙的加速度始终大于卫星乙的加速度D.卫星甲、乙分别经过P点时的速度相等4.(2009·苏锡常镇学情调查二)我国发射的“亚洲一号”地球同步通信卫星的质量为1.24 t,在某一确定的轨道上运行.下列说法正确的是()A.“亚洲一号”卫星定点在北京正上方太空,所以我国可以利用它进行电视转播B.“亚洲一号”卫星的轨道平面一定与赤道平面重合C.若要发射一颗质量为2.48 t的地球同步通信卫星,则该卫星的轨道半径将比“亚洲一号”卫星轨道半径小D.若要发射一颗质量为2.48 t的地球同步通信卫星,则该卫星的轨道半径和“亚洲一号”卫星轨道半径一样大解析同步卫星一定在赤道上方,周期24 h,且高度一定,所以本题应选择B、D.答案 BD5.(2009·长春调研)如图5所示,从地球表面发射一颗卫星,先让其进入椭圆轨道Ⅰ运动,A、B分别为椭圆轨道的近地点和远地点,卫星在远地点B变轨后沿圆轨道Ⅱ运动,下列说法中正确的是()A.卫星沿轨道Ⅱ运动的周期大于沿轨道Ⅰ运动的周期B.卫星在轨道Ⅱ上C点的速度大于在轨道Ⅰ上A点的速度C.卫星在轨道Ⅱ上的机械能大于在轨道Ⅰ上的机械能D.卫星在轨道Ⅱ上C点的加速度大于在轨道Ⅰ上A点的加速度6.(2009·苏北四市联考)为纪念伽利略将望远镜用于天文观测400周年,2009年被定为以“探索我的宇宙”为主题的国际天文年.我国发射的“嫦娥一号”卫星绕月球经过一年多的运行,完成了既定任务,于2009年3月1日16时13分成功撞月.如图6为“嫦娥一号”卫星撞月的模拟图,卫星在控制点1开始进入撞月轨道.假设卫星绕月球作圆周运动的轨道半径为R ,周期为T ,引力常量为G.根据题中信息,以下说法正确的是( )A.可以求出月球的质量B.可以求出月球对“嫦娥一号”卫星的引力C.“嫦娥一号”卫星在控制点1处应减速D.“嫦娥一号”在地面的发射速度大于11.2 km/s7.(2009·天津模拟)2007年10月24日18时29分,图7星箭成功分离之后,“嫦娥一号”卫星进入半径为205 km 的圆轨道上绕地球做圆周运动,卫星在这个轨道上“奔跑”一圈半后,于25日下午进行第一次变轨,变轨后,卫星轨道半径将抬高到离地球约600 km 的地方,如图7所示.已知地球半径为R,表面重力加速度为g,质量为m 的“嫦娥一号”卫星在地球上空的万有引力势能为Ep=(以无穷远处引力势能为零),r 表示物体到地心的距离.(1)质量为m 的“嫦娥一号”卫星以速率v 在某一圆轨道上绕地球做圆周运动,求此时卫星距地球地面高度h1.(2)要使“嫦娥一号”卫星上升,从离地面高度h1再增加h的轨道上做匀速圆周运动,卫星发动机至少要做多少功?rm gR28.(2009·上海卢湾区)牛顿在1684年提出这样一些理论:当被水平抛出物体的速度达到一定数值v1时,它会沿着一个圆形轨道围绕地球飞行而不落地,这个速度称为环绕速度;当抛射的速度增大到另一个临界值v2时,物体的运动轨道将成为抛物线,它将飞离地球的引力范围,这里的v2我们称其为逃离速度,对地球来讲逃离速度为11.2 km/s.法国数学家兼天文学家拉普拉斯于1796年曾预言:“一个密度如地球而直径约为太阳250倍的发光恒星,由于其引力作用,将不允许任何物体(包括光)离开它.由于这个原因,宇宙中有些天体不会被我们看见.”这种奇怪的天体也就是爱因斯坦在广义相对论中预言的“黑洞(black hole)”.已知对任何密度均匀的球形天体,v2恒为v1的2倍,万有引力恒量为G,地球的半径约为6 400 km,太阳半径为地球半径的109倍,光速c=3.0×108 m/s.请根据牛顿理论求:(1)求质量为M,半径为R的星体逃离速度v2的大小;(2)如果有一黑洞,其质量为地球的10倍,则其半径满足什么条件?(3)若宇宙中一颗发光恒星,直径为太阳的248倍,密度和地球相同,试通过计算分析,该恒星能否被我们看见.。

牛顿万有引力定律的应用

牛顿万有引力定律的应用

牛顿万有引力定律的应用牛顿万有引力定律是描述物体间引力相互作用的重要定律。

这个定律指出,两个物体之间的引力大小与它们的质量成正比,与它们之间的距离的平方成反比。

在科学和工程领域,牛顿万有引力定律有许多重要的应用,下面将重点介绍其中几个案例。

1. 行星运动牛顿万有引力定律被广泛应用于研究行星、卫星和其他天体之间的运动。

根据定律,太阳对行星的引力与行星质量和距离太阳的距离的平方成正比。

这使得我们能够计算行星的轨道、速度和加速度,从而更好地了解行星的运动规律。

2. 地球引力地球作为一个大的物体,也受到牛顿万有引力定律的影响。

地球对物体的引力是使物体保持在地球表面的原因。

这种引力还可应用于测量物体的质量,通过测量物体在地球上受到的重力来推算物体的质量。

3. 卫星轨道卫星轨道设计依赖于牛顿万有引力定律。

科学家需要根据卫星的质量、所处高度和所需轨道来计算卫星所需要的速度。

通过精确的计算,可以将卫星放置在预期轨道上,来满足通信、气象等各种应用需求。

4. 弹道学弹道学是研究飞行物体的运动和飞行轨迹的科学。

在这个领域,牛顿万有引力定律被应用于计算导弹、火箭等飞行物体的轨迹与所需速度。

通过准确计算引力的大小和方向,可以帮助飞行物体准确地到达目标地点。

5. 天体测量利用牛顿万有引力定律的原理,天文学家可以通过测量天体之间的引力来确定它们的质量。

例如,通过观察行星或恒星与其他天体的相互作用,可以计算出它们的质量。

这为我们更好地了解宇宙中的天体提供了重要的数据基础。

总结起来,牛顿万有引力定律的应用非常广泛,涵盖了行星运动、地球引力、卫星轨道、弹道学以及天体测量等多个领域。

这个定律的重要性在于它为科学家和工程师提供了计算和预测物体之间引力相互作用的数学工具,推动了许多技术和科学的发展。

通过深入研究和应用牛顿万有引力定律,我们可以更好地理解自然界,并应用于实际生活和工作中。

万有引力定律在生活中的应用

万有引力定律在生活中的应用

万有引力定律在生活中的应用
万有引力定律是牛顿在1687年发表的一项重要成果,它描述了任何两个物体之间都存在着一种相互吸引的力,这种力的大小与两个物体的质量和它们之间的距离有关。

这个定律不仅在天文学和物理学中有着广泛的应用,而且在我们日常生活中也有着许多实际的应用。

1. 行星的运动:万有引力定律是描述行星运动的基础。

行星绕着太阳公转的轨道是由于太阳的引力作用而产生的。

这个定律也可以解释为什么行星在轨道上的速度是不断变化的,因为它们的距离在不断变化。

2. 地球的重力:地球的重力是由于地球的质量和我们身体的质量之间的相互吸引力。

这个力使我们保持在地球表面,而不飞走。

这个定律也可以解释为什么我们在不同的地方体重不同,因为地球的质量在不同的地方是不同的。

3. 弹跳运动:当我们跳起来时,我们的身体会受到地球的引力作用,但我们也会受到地球对我们的反作用力。

这个反作用力会使我们弹起来,并且在我们落地时减缓我们的速度。

4. 卫星的轨道:人造卫星绕地球运动的轨道是由于地球的引力作用而产生的。

这个定律也可以解释为什么卫星的轨道是稳定的,因为它们的速度和距离是经过精确计算的。

5. 摆钟的运动:摆钟的运动是由于地球的引力作用而产生的。

当摆钟摆动时,它的重力会使它回到中心位置,这个过程会不断重复。

总之,万有引力定律在我们的日常生活中有着广泛的应用,它可以解释许多我们所看到的现象,并且对于科学研究和技术应用都有着重要的意义。

万有引力定律应用的12种典型案例

万有引力定律应用的12种典型案例

万有引力定律应用的12种典型案例万有引力定律是牛顿力学中的基本定律之一,它描述了物体之间的引力相互作用。

根据万有引力定律,两个物体之间的引力与它们的质量和距离的平方成正比,与它们的质量之积成正比。

以下是12种典型案例,展示了万有引力定律的应用。

1.行星运动:行星绕着太阳运动的路径是通过万有引力定律来解释的。

行星受到太阳的引力作用,使其绕太阳运行。

2.月球引力:地球对于月球的引力使月球绕地球运动,并导致潮汐现象的发生。

3.人造卫星轨道:人造卫星绕地球运动的轨道也是通过万有引力定律计算得出的。

它们的轨道必须满足引力和离心力的平衡。

4.天体运动:星系、恒星、星云等天体之间的相互作用和星系的相对运动等现象也可以通过万有引力定律来解释。

5.天体测量:通过测量天体之间的引力相互作用,可以研究天体的质量、密度和结构等重要参数。

6.卫星通信:卫星通信的成功依赖于精确的轨道计算和调整,其中也会考虑万有引力的影响。

7.建筑结构:在设计大桥、高楼和其他高度建筑物时,需要考虑到物体的质量以及地球引力对其产生的影响。

8.全球定位系统(GPS):GPS依赖于卫星的精确定位,而卫星的运行轨道需要考虑到地球的引力。

9.天体轨迹模拟:通过利用万有引力定律,可以开发出模拟软件,用于模拟行星、卫星和彗星等天体的轨迹。

10.飞行器轨迹规划:在飞行器的轨迹规划中,需要考虑地球的引力场,以确保飞行器达到预定的目标。

11.岩石运动:山体滑坡、泥石流等自然灾害的预测和防范也需要考虑到万有引力的作用。

12.模拟地球重力:在电影特效、虚拟现实和游戏开发中,为了提高真实感,需要模拟地球重力对角色或物体的影响。

这些典型案例展示了万有引力定律的广泛应用范围。

它不仅在天文学和航天领域中起着重要的作用,也在建筑、工程和计算机图形学等领域中得到广泛应用。

万有引力定律的正确应用有助于解释自然界中的许多现象,并促进科学研究和技术发展。

万有引力定律以及应用

万有引力定律以及应用

Mm mg = G 2 R
行星(或卫星) 行星(或卫星)做匀速圆周运动所需的
◆.万有引力
提供向心力 提供向心力
Mm v2 2π 2 2 G 2 = ma向 = m = mrω = mr ( ) r r T
天体质量、 天体质量、密度的计算
gR M = G
2
4π 3 v= R 3 M ρ= V
ρ=
3g 4π RG
卫星中的失重
卫星 m 支持力F 支持力 对整个卫星, 对整个卫星,有:
F引
M
r
Mm 卫星 G = m 卫星a向 2 r GM ∴ a向 = 2 r 对卫星中的物体m, 对卫星中的物体 ,有:
最近观看 的幻灯片
Mm GM G 2 − F = ma向 = m 2 r r ∴F = 0
宇宙速度
(1)第一宇宙速度: (1)第一宇宙速度:V=7.9km/s 第一宇宙速度 (2)推导 推导: (2)推导:GMm mv 2 GM
Mm F=G 2 太阳 r m的 的
太阳
M F∝ 2 r
与行星间的
行星绕太阳运动遵守这个规律, 行星绕太阳运动遵守这个规律, 那么在其他地方是否适用这个规律 呢?
一、月 - 地检验 二、万有引力定律
1、内容:自然界中任何两个物体都是相互吸引, 内容:自然界中任何两个物体都是相互吸引, 引力的大小跟这两个物体的质量m1和m2的乘积 引力的大小跟这两个物体的质量m 成正比,跟它们的距离r的二次方成反比。 成正比,跟它们的距离r的二次方成反比。 2、公式: 公式:
地球
V1=7.9km/s
11.2km/s>v>7.9km/s
R
2
=
R
, 解得 : v =

物理必修三知识点

物理必修三知识点

物理必修三知识点物理必修三知识点【万有引力定律及其应用】1.万有引力定律:引力常量G=6.67×N?m2/kg22.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r 小得多时,可以看成质点)3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)(2)重力=万有引力地面物体的重力加速度:mg=Gg=G≈9.8m/s2高空物体的重力加速度:mg=Gg=G9.8m/s24.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是的。

由mg=mv2/R或由==7.9km/s5.开普勒三大定律6.利用万有引力定律计算天体质量7.通过万有引力定律和向心力公式计算环绕速度8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)功、功率、机械能和能源1.做功两要素:力和物体在力的方向上发生位移2.功:功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J)3.物体做正功负功问题(将α理解为F与V所成的角,更为简单)(1)当α=90度时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功,如小球在水平桌面上滚动,桌面对球的支持力不做功。

(2)当α90度时,cosα0,W0.这表示力F对物体做正功。

如人用力推车前进时,人的推力F对车做正功。

(3)当α大于90度小于等于180度时,cosα0,W0.这表示力F对物体做负功。

如人用力阻碍车前进时,人的推力F对车做负功。

一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。

例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。

说了“克服”,就不能再说做了负功4.动能是标量,只有大小,没有方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万有引力定律及其应用 一、万有引力定律1.内容:自然界中任何两个物体都是相互吸引的,引力的方向沿两物体的连线,引力的大小F 与这两个物体______________成正比,与这两个物体间____________成反比. 2.公式:F =Gm 1m 2r2,其中G =6.67×10-11N ·m 2/kg 2,它是在牛顿发现万有引力定律一百年后英国物理学家卡文迪许利用扭秤装置测出的.3.适用条件:公式适用于质点间的相互作用,当两物体间的距离远远大于物体本身的大小时,物体可视为质点,质量分布均匀的球体也可适用.r 为两球心间的距离.练习1.关于万有引力公式F =G m 1m 2r2,以下说法中正确的是( ).A .公式只适用于星球之间的引力计算,不适用于质量较小的物体B .当两物体间的距离趋近于0时,万有引力趋近于无穷大C .两物体间的万有引力也符合牛顿第三定律D .公式中引力常量G 的值是牛顿规定的二、万有引力定律在天体运动中的应用-----(两种情景、两条思路) 情景1.在地面附近的物体所受的万有引力近似等于物体的重力,F 引=mg ,即G MmR 2=mg ,整理得 (1)星球表面g= GM /R 2.(2)高空g= GM /(R +h )2.(3)黄金代换GM =gR 2.(4)中心天体质量M= gR 2/G 天体密度ρ=M V =M 43πR 3=3g 4πGR.例1、假设火星和地球都是球体,火星的质量M 火和地球的质量M 地之比M 火/M 地=p ,火星的半径R 火和地球的半径R 地之比R 火/R 地=q ,那么火星表面处的重力加速度g 火和地球表面处的重力的加速度g 地之比等于[ ]A .p/q2 B.pq2 C.p/q D.pq练2.火星的质量和半径分别约为地球的110和12,地球表面的重力加速度为g ,则火星表面的重力加速度约为( ).A .0.2gB .0.4gC .2.5gD .5g情景2.天体运动都可近似地看成匀速圆周运动,其向心力由万有引力提供,即F 引=F 向.即G Mm r 2=ma = m v 2r =m r ω2=m r 4π2T2=mr(2nf)2=mvw(1) F,a,V,W,T,a 与r 关系:向心力F 和向心加速度a :由F =G Mm r2=ma 可得,随着轨道半径的增加,卫星的向心力和向心加速度都减小.线速度v = G Mr ,随着轨道半径的增加,卫星的线速度减小. 角速度ω=G Mr3,随着轨道半径的增加,做匀速圆周运动的卫星的角速度减小.周期T =2πr 3GM ,随着轨道半径的增加,卫星的周期增大. 例2.人造卫星在轨道上绕地球做圆周运动,它所受的向心力F 跟轨道半径r 的关系是( ) A .由公式F= G Mm r2 可知F 和r 成反比 B .由公式F=mr ω2可知F 和r 成正比 C .由公式F=mv ω可知F 和r 无关D .由公式F= m v 2r可知F 和r 成反比练3.人造地球卫星在环形轨道上绕地球运转,它的轨道半径、周期和环绕速度的关系是( ) A .半径越小,速度越小,周期越小 B .半径越小,速度越大,周期越小 C .半径越大,速度越大,周期越小 D .半径越大,速度越小,周期越小例3.设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍可看做是均匀的球体,月球仍沿开采前的圆周轨道运动.则与开采前相比 ( ) A .地球与月球的万有引力将变大 B .地球与月球的万有引力将变小 C .月球绕地球运动的周期将变长 D .月球绕地球运动的周期将变短练4.两颗人造地球卫星,都绕地球作圆周运动,它们的质量相等,轨道半径之比r 1 /r 2=1/2,则它们的速度大小之比v 1/v 2等于 ( )A . 2B .2C . 1/2D . 4练5.两行星A 和B 各有一颗卫星a 和b ,卫星的圆轨道接近各自行星表面,如果两行星质量之比Ma :Mb=2 : 1,两行星半径之比Ra :Rb=1 : 2,则两个卫星周期之比Ta :Tb 为 ( ) A .1 : 4 B .1 : 2 C .1 : 1 D .4 : 1练6.两颗人造卫星A 、B 绕地球作圆周运动, 周期之比为Ta:Tb=1:8,则轨道半径之比和运动速率之比分别为 ( )A .Ra:Rb=4:1, va:vb=1:2B .Ra:Rb=4:1, va:vb=2:1C .Ra:Rb=1:4, va:vb=2:1D .Ra:Rb=1:4, va:vb=1:2练7.人造地球卫星在运行中,由于受到稀薄大气的阻力作用,其运动轨道半径会逐渐减小,在此进程中,以下说法中正确的是 ( )A .卫星的速率将增大B .卫星的周期将增大C .卫星的向心加速度将增大D .卫星的向心力将减小(2)天体质量M 、密度ρ的估算:若测出卫星绕天体做匀速圆周运动的半径r 和周期T .由G Mm r 2=m 4π2T2r 得M =4π2GT 2r 3,ρ=M V =M 43πr 30=3πGT 2r 30r 3,其中r 0为天体的半径,当卫星沿天体表面绕天体运动时,r=r 0,则ρ=3πGT.例4.为了计算一个天体的质量,需要知道绕着该天体做匀速圆周运动的另一星球的条件是( ) A .质量和运转周期 B .运转周期和轨道半径 C .运转速度和轨道半径 D .运转速度和质量练8.(2009年高考全国卷Ⅰ)天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G =6.67×10-11N ·m2/kg2,由此估算该行星的平均密度为( )A .1.8×103 kg/m3B .5.6×103 kg/m3C .1.1×104 kg/m3D .2.9×104 kg/m3练9.一宇宙飞船在一个星球表面附近做匀速圆周运动,宇航员要估测星球的密度,只需要测定飞船的( )A :环绕半径B :环绕速度C :环绕周期D :环绕角速度练10 .已知万有引力恒量G ,则还已知下面哪一选项的数据,可以计算地球的质量( ) A :已知地球绕太阳运行的周期及地球中心到太阳中心的距离. B :已知月球绕地球运行的周期及月球中心到地球中心的距离. C :已知人造地球卫星在地面附近绕行的速度和运行周期. D :已知地球同步卫星离地面的高度.(3)三种宇宙速度:第一宇宙速度(环绕速度)v 1=___ km/s ,是人造地球卫星的_____发射速度,也是人造地球卫星绕地球做圆周运动的_____环绕速度.推导方法:①G Mm r 2=m v 2rv =G M r ② mg= m v 2rv=gR 环绕速度与发射速度的比较: 近地卫星的环绕速度v =G MR=gR =7.9 km/s ,通常称为第一宇宙速度,它是地球周围所有卫星的最大环绕速度,是在地面上发射卫星的最小发射速度.不同高度处的人造卫星在圆轨道上的运行速度v =G MR,其大小随半径的增大而减小.但是,由于在人造地球卫星发射过程中火箭要克服地球引力做功,所以将卫星发射到离地球越远的轨道所需的发射速度就越大.第二宇宙速度(脱离速度)v 2=_____ km/s ,是使物体挣脱地球引力束缚的_____发射速度. 第三宇宙速度(逃逸速度)v 3=_____ km/s ,是使物体挣脱太阳束缚的最小发射速度. 提示:三种宇宙速度均指发射速度,不能理解为环绕速度.练11.关于第一宇宙速度,下列说法正确的是 ( ) A .它是人造地球卫星绕地球飞行的最小速度 B .它是近地圆形轨道上人造地球卫星的运行速度 C .它是能使卫星进入近地圆形轨道的最小发射速度 D .它是卫星在椭圆轨道上运行时在近地点的速度(4).地球同步卫星:只能在赤道_______,与地球自转具有相同的______和________,相对地面静止,线速度,高度是一定的.其环绕的高度是________.(六个一定)练12.通信卫星又叫同步卫星,下面关于同步卫星的说法中正确的是 ( )A .所有的地球同步卫星都位于地球的赤道平面内B .所有的地球同步卫星的质量都相等C .所有的地球同步卫星绕地球作匀速圆周运动的角速度都相等D .所有的地球同步卫星离地心的距离都相等练13.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星,相对自己静止不动,则这两位观察者的位置及两人造卫星到地球中心的距离可能是( )A .一人在南极,一人在北极,两卫星到地球中心的距离一定相等B .一人在南极,一人在北极,两卫星到地球中心的距离可以不等,但应成整数倍C .两人都在赤道上,两卫星到地球中心的距离一定相等D .两人都在赤道上,两卫星到地球中心的距离可以不等,但应成整数倍(5).人造地球卫星的超重和失重①人造地球卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动.这两个过程加速度方向均向上,因而都是超重状态.②人造地球卫星在沿圆轨道运行时,由于万有引力提供向心力,因此处于完全失重状态.在这种情况下凡是与重力有关的力学现象都不会发生.因此,在卫星上的仪器,凡是制造原理与重力有关的均不能使用.同理,与重力有关的实验也将无法进行.练14.绕地球作匀速圆周运动的人造地球卫星内,其内物体处于完全失重状态,则物体( ) A .不受地球引力作用 B .所受引力全部用来产生向心加速度 C .加速度为零 D .物体可在飞行器悬浮练15.2008年9月27日“神舟七号”宇航员翟志刚顺利完成出舱活动任务,他的第一次太空行走标志着中国航天事业全新时代的到来.“神舟七号”绕地球做近似匀速圆周运动,其轨道半径为r ,若另有一颗卫星绕地球做匀速圆周运动的半径为2r ,则可以确定( )A .卫星与“神舟七号”的加速度大小之比为1∶2B .卫星与“神舟七号”的线速度大小之比为1∶ 2C .翟志刚出舱后不再受地球引力D .翟志刚出舱任务之一是取回外挂的实验样品,假如不小心实验样品脱手,则它做自由落体运动(6)卫星在轨、变轨问题 1.卫星的轨道(1)赤道轨道:卫星的轨道在赤道平面内.同步卫星就是其中的一种.(2)极地轨道:卫星的轨道过南北两极,即在垂直于赤道的平面内.如定位卫星系统中的卫星轨道. (3)其他轨道:除以上两种轨道外的卫星轨道2.卫星的稳定运行与变轨运行分析 (1)圆轨道上的稳定运行若卫星所受万有引力等于做匀速圆周运动的向心力,将保持匀速圆周运动,即G Mm r 2=m v 2r =mr ω2=mr (2πT)2(2)变轨运行分析当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力就不再等于向心力,卫星将做变轨运行.①当v 增大时,所需向心力m v 2r增大,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道运行,由v =GMr知其运行速度要减小,动能减小但重力势能、机械能均增加.②当卫星的速度突然减小时,向心力mv 2r减小,即万有引力大于卫星所需的向心力,因此卫星将做向心运动,同样会脱离原来的圆轨道,轨道半径变小,进入新轨道运行时由v =GMr知运行速度将增大,但重力势能、机械能均减少.(卫星的发射和回收就是利用了这一原理). 【名师点睛】:(1)一切地球卫星的轨道圆心都与地心重合.(2)卫星的变轨问题是离心运动和近心运动的具体应用.例5. 2010(江苏卷) 2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图5-4-2所示.关于航天飞机的运动,下列说法中不正确的是( )A .在轨道Ⅱ上经过A 的速度小于经过B 的速度B .在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能C .在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D .在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度解析:选D.航天飞机在椭圆轨道上运动,距地球越近,速度越大,A 项正确.航天飞机在轨道Ⅰ经A 点时减速才能过渡到轨道Ⅱ,所以对于A 点在轨道Ⅰ上的速度、动能都大于轨道Ⅱ上的,即B 正确.由开普勒第三定律知,航天飞机在轨道Ⅱ上的角速度大于在轨道Ⅰ的,故航天飞机在轨道Ⅱ上的周期小,即C 正确.由万有引力Gm 1m 2r 2=m 1a 知,加速度仅与间距有关,D 不正确.练16. 我国发射的“嫦娥二号”探月卫星简化后的路线示意图如图所示,卫星由地面发射后经过发射轨道进入停泊轨道,然后在停泊轨道经过调速后进入地月转移轨道,经过几次制动后进入工作轨道,卫星开始对月球进行探测.已知地球与月球的质量之比为a ,卫星的停泊轨道与工作轨道的半径之比为b ,卫星在停泊轨道和工作轨道上均可视为做匀速圆周运动,则卫星( )①在停泊轨道和工作轨道运行的速度之比为 a b ②在停泊轨道和工作轨道运行的周期之比为b a③在停泊轨道运行的速度大于地球的第一宇宙速度 ④从停泊轨道进入地月转移轨道时,卫星必须加速 A .①② B .①②③ C .①④ D .①②③④【解析】 由G Mm r 2=m v 2r 得v =G M r ,所以v 1v 2= M 1r 2M 2r 1= a b,选项①正确.由G Mm r 2=m 4π2T 2r 得T 1T 2=r 31r 32·M 2M 1= b 3a,选项②错误.由v =G Mr可知,轨道半径越大,运行速度越小,所以选项③错误.要使卫星从停泊轨道进入地月转移轨道,必须使卫星做离心运动,即应增加卫星的动能,选项④正确.故选项C 正确.【规律总结】 卫星的速度增大,应做离心运动,要克服万有引力做负功,其动能要减小,速度也减小,所以稳定后速度减小与卫星原来速度增大并不矛盾,这正是能量守恒定律的具体体现. (7)人造卫星能量问题它在近地点时,速度最大,动能最大;此时离地面最近,重力势能最小。

相关文档
最新文档