真核生物的 基因表达与调控

合集下载

真核生物的基因表达调控

真核生物的基因表达调控
并不就是所有得转录因子都能够与DNA结合, 也不就是所有得转录因子都就是激活基因得转 录。
转录因子得结构
绝大多数转录因子至少具有以下三种不同得结构域得 一种: (1)DNA结合结构域,直接与顺式作用元件结合得转录因子 都具有此结构域。转录因子通常使用此结构域之中得 特殊α-螺旋与顺式作用元件内得大沟接触,通过螺旋上 得特殊氨基酸残基得侧链基团与大沟中得特殊碱基对 之间得次级健(主要就是氢键)相互识别而产生特异性。 许多转录因子在此结构域上富含碱性氨基酸,这可能有 利于她和DNA骨架上带负电荷得磷酸根发生作用; (2)效应器结构域,这就是转录因子调节转录效率(激活或阻 遏)、产生效应得结构域; (3)多聚化结构域,此结构域得存在使得转录因子之间能够 组装成二聚体或多聚体(同源或异源)。下面将集中介绍 前两种结构域,特别就是DNA结合结构域。
在转录水平上得基因表达调控
真核生物得蛋白质基因得转录除了启动子、RNA聚合酶II和基础 转录因子以外,还需要其她顺式作用元件和反式作用因子得参与。 参与基因表达调控得主要顺式作用元件有:增强子、沉默子、绝缘 子和各种反应元件;参与基因表达调控得反式作用因子也称为转录 因子,她们包括激活蛋白、辅激活蛋白、阻遏蛋白和辅阻遏蛋白。 激活蛋白与增强子结合激活基因得表达,而阻遏蛋白与沉默子结合, 抑制基因得表达,某些转录因子既可以作为激活蛋白也可以作为阻 遏蛋白其作用,究竟就是起何种作用取决于被调节得基因。辅激活 蛋白缺乏DNA结合位点,但她们能够通过蛋白质与蛋白质得相互作 用而行使功能,作用方式包括:招募其她转录因子和携带修饰酶(如 激酶或乙酰基转移酶)到转录复合物而刺激激活蛋白得活性;辅阻 遏蛋白也缺乏DNA结合位点,但同样通过蛋白质与蛋白质得相互作 用而起作用,作用机理包括:掩盖激活蛋白得激活位点、作为负别构 效应物和携带去修饰酶去中和修饰酶(如磷酸酶或组蛋白去乙酰基 酶)得活性。

真核生物基因表达调控的多种方式

真核生物基因表达调控的多种方式

真核生物基因表达调控的多种方式真核生物基因表达包括转录、翻译和蛋白修饰等复杂过程,其中涉及多种调控方式。

以下是真核生物基因表达的各种表达调控方式的简述:1. 转录前调控转录前调控是指在 DNA 复制后被转录成 RNA 的过程中,通过调控 RNA 聚合酶 (RNA polymerase) 的亲和力、移动速度和活性等方式来控制基因的表达。

其中一些调控因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。

此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的移动,从而加快转录速率。

2. 转录调控转录调控是指通过调控 RNA 聚合酶结合到特定基因的启动子上,来控制基因的表达。

转录调控可以通过调节转录因子的数量、亲和力和活性等方式来实现。

一些转录因子可以与启动子区域中的特定序列结合,从而抑制或增强 RNA 聚合酶的活性。

此外,一些转录因子还可以与 RNA 聚合酶结合,促进 RNA 聚合酶的活性,从而加快转录速率。

3. 转录后调控转录后调控是指在基因被转录后,通过调控 RNA 剪接、RNA 编辑、RNA 降解等方式来控制基因的表达。

这些调控方式可以影响 RNA 的稳定性、可用性和转录本的多样性。

例如,一些调控因子可以与 RNA 剪接因子结合,从而改变 RNA 剪接的速率和方向。

一些 RNA 编辑酶可以编辑 RNA,改变基因表达。

此外,RNA 降解酶可以降解 RNA,从而抑制基因的表达。

4. 翻译调控翻译调控是指通过调控 mRNA 的稳定性、可用性和翻译速率等方式来控制基因的表达。

例如,一些调控因子可以与 RNA 聚合酶结合,从而抑制或增强 RNA 聚合酶的活性。

此外,一些翻译调控因子可以与 mRNA 结合,从而改变 mRNA 的稳定性和翻译速率。

5. 蛋白修饰调控蛋白修饰调控是指通过调控蛋白质的修饰方式来控制蛋白质的活性、稳定性和可用性等方式来控制基因的表达。

例如,一些修饰因子可以与蛋白质结合,从而改变蛋白质的修饰方式。

真核生物的基因表达调控

真核生物的基因表达调控

31
• 锌指结构域The zinc finger domain
锌指结构有2种形式: C2H2 zinc finger和C4 zinc finger •C2H2 zinc finger:由12个氨基酸组成的环,通过2个半胱氨 酸(C,Cys)和2个组氨酸(H,His)残基固定,这4个残基 与Zn2+在空间上形成一个四面体结构。 一般情况下需要3个 或更多的C2H2型锌指才能与DNA结合,如在TFIIA有9个重复, 转录因子SP1有3个重复。 •C4 zinc finger: Zn2+与4个半胱氨酸(C,Cys)结合,存 在于类固醇激素受体转录因子中。
限定于结构域之内。
26
反式作用因子的结构与功能
(1)概念:为DNA结合蛋白,核内蛋白,可使邻近基因开 放(正调控)或关闭(负调控)。
(2)通用或基本转录因子—RNA聚合酶结合启动子所必需 的一组蛋白因子。如:TFⅡA、 TFⅡB、 TFⅡD、 TFⅡE 等。 (3)特异转录因子( special transcription factors)—个别 基因转录所必需的转录因子.如:OCT-2:在淋巴细胞中特 异性表达,识别Ig基因的启动子和增强子。
(2) 动态模型(dynamic model):认为转录因子与组 蛋白处于动态竞争之中,基因转录前染色质必须经 历结构上的改变,即染色质重塑。在染色质重塑过 程中,某些转录因子可以在结合DNA的同时使核小 体解体。
6
组蛋白的乙酰化-去乙酰化 蛋白的乙酰化和去乙酰化是蛋白活性调节的一种 重要的形式,通过乙酰化或去乙酰化,改变了染色质 结构或是转录因子的活性,可以调节基因转录的活性。 组蛋白的乙酰化和去乙酰化能打开或关闭某些基因, 增强或抑制某些基因的表达。 组蛋白的8个亚基上有32个潜在的乙酰化位点。组 蛋白的乙酰化过程由组蛋白乙酰转移酶催化完成。

真核基因表达调控的特点

真核基因表达调控的特点

真核基因表达调控的特点
真核基因表达调控有以下几个特点:
1. 基因组的复杂性:真核生物的基因组通常比原核生物更大且更复杂。

真核基因组包含多个非编码区域和大量的调控元件,这些元件可以影响基因的表达水平和模式。

2. 转录的调控:真核生物中的基因表达主要通过转录调控来实现。

转录调控包括转录因子的结合和调节,以及染色质状态的改变。

转录因子是一类能够结合到特定DNA序列上并调控相关基因转录的蛋白质。

它们可以增强或抑制基因的转录,从而影响基因表达。

3. 多级调控网络:真核生物中的基因表达调控是一个多级的网络系统。

这个网络包括许多调控元件、转录因子和其他调控蛋白质之间的相互作用。

这些元件和因子可以形成复杂的调控回路和信号传递路径,从而调控基因的表达。

4. 组蛋白修饰:染色质状态的改变在真核基因表达调控中起着重要作用。

染色质是DNA与蛋白质的复合物,通过不同的化学修饰可以改变染色质的结构和可及性,从而影响基因的转录。

常见的染色质修饰包括DNA甲基化、组蛋白乙酰化和甲基化等。

5. RNA后转录调控:除了转录调控外,真核生物中还存在着RNA 后转录调控机制。

这些调控机制包括RNA剪接、RNA编辑和非编码RNA 的功能等。

它们可以影响基因的转录后处理和调控基因表达的多样性。

综上所述,真核基因表达调控具有基因组的复杂性、转录的调控、多级调控网络、组蛋白修饰和RNA后转录调控等特点,这些特点共同
作用来调控基因的表达水平和模式。

真核生物基因表达调控

真核生物基因表达调控
真核生物基因表达调控,根据其性质可分为两大类。第一类是瞬时调控或称可逆调控 ,它相当于原核细胞对环境条件变化所作出的反应,包括某种底物或激素水平升降及 细胞周期不同阶段中酶活性和浓度的调节。第二类是发育调控或称不可逆调控,是真 核生物基因调控的精髓部分,它决定了真核细胞生长、分化、发育的全部进程
真核生物基因表达调控
真核生物基因表达调控
顺式作用元件
真核生物基因表达调控
反式作用因子
-
感谢您的莅临
著特征是能在 特定时间和特定细胞 中激活特定的基因, 从而实现"预定"的、 有序的、不可逆转的 分化、发育过程,并 使生物的组织和器官 在一定环境条件范围 内保持正常功能
真核生物基因表达调控
真核生物基因表达调控的特点如下
①基因表达有转录水平和转录后的调控,且以转录水平调控为主 ②在结构基因上游和下游甚至内部存在多种调控成分,并依靠特异蛋白因子与这些调控 成分结合而调控基因的转录 ③真核生物基因表达调控的环节多:转录与翻译间隔进行,个体发育复杂,具有调控基 因特异性表达的机制 ④真核生物活性染色体结构的变化对基因表达具有调控作用:DNA拓扑结构变化、DNA碱 基修饰变化、组蛋白变化等都具有调控作用 ⑤具有细胞特异性或组织特异性:在生长发育过程中,随着细胞需求的不断改变,各种 基因变得有活性或沉寂 ⑥正性调节占主导,且一个真核生物基因通常有多个调控序列,需要有多个激活物
真核生物基因表 达调控
-
1
基因表达调控
2
真核生物基因表达调控的特点
3
转录水平的调控
真核生物基因表达调控
基因表达调控
基因表达(gene expression)是基因经过转录、翻译,产生具有特异生物学功能的蛋 白质分子或RNA分子的过程。表达调控(gene regulation)是基因表达时受到内源及外 源信号调控的过程。基因表达调控大多数是对基因的转录和翻译速率的调节,从而导 致其编码产物的水平发生变化,进而影响其功能

真核生物基因的表达调控

真核生物基因的表达调控

细胞周期与基因表达
G1期
细胞在G1期主要合成与DNA 复制有关的蛋白质,如复制因 子等。
G2期
G2期细胞主要合成与分裂期有 关的蛋白质,如微管蛋白等。
细胞周期
真核生物细胞周期分为间期和 分裂期,不同时期基因表达DNA的复制,同 时合成组蛋白等与染色体组装 有关的蛋白质。
翻译和后翻译修饰
翻译
mRNA在细胞质中被核糖体读取并翻译成蛋白质。翻译的效率受到多种因素的 影响,包括mRNA的浓度、核糖体的数量、以及各种翻译调控因子。
后翻译修饰
新合成的蛋白质经常需要进行翻译后修饰,如磷酸化、乙酰化、糖基化等,以 增加其活性和稳定性。这些修饰通常由特定的酶催化,并受到细胞内环境和信 号通路的调节。
肾上腺素
02
03
甲状腺激素
肾上腺素可以激活糖原分解和脂 肪分解相关基因的表达,提高能 量供应。
甲状腺激素可以促进细胞代谢, 提高基础代谢率,同时还可以影 响神经系统的发育。
神经递质对基因表达的调控
多巴胺
01
多巴胺可以影响奖赏和愉悦相关基因的表达,与成瘾行为和心
理健康有关。
5-羟色胺
02
5-羟色胺可以影响情绪和行为,与抑郁症和精神分裂症等精神
染色质重塑
染色质重塑是基因表达调控的另一重要机制,通过改变染色质的结构和组成,影响转录因 子的结合和RNA聚合酶的活性。
microRNA的调节
microRNA通过与mRNA结合,调控靶基因的表达水平,参与多种生物学过程,如发育、 代谢和应激反应等。
02
转录水平的调控
转录因子
1 2 3
转录因子概述
葡萄糖
葡萄糖水平可以影响胰岛素的分 泌,进而影响与胰岛素相关的基 因表达。

真核生物基因表达调控的层次

真核生物基因表达调控的层次

真核生物基因表达调控的层次引言:基因表达调控是指基因转录和翻译过程中的调节机制,它决定了细胞在不同时间和环境中产生不同功能的蛋白质。

真核生物基因表达调控具有多个层次,包括染色质结构调控、转录水平调控、RNA加工和转运调控、翻译调控以及蛋白质修饰和定位调控。

本文将就这些层次进行详细介绍。

一、染色质结构调控:染色质结构调控是指通过改变染色质的结构和组织方式来调控基因表达。

染色质的结构包括开放的区域和紧密的区域,开放的区域便于转录因子的结合和启动子的访问,从而促进基因的转录。

染色质结构调控包括DNA甲基化、组蛋白修饰以及非编码RNA的参与等。

DNA甲基化是一种常见的染色质结构调控方式,通过甲基化酶催化DNA上的甲基化反应,使得某些基因的启动子区域被甲基化,从而阻止转录因子的结合。

组蛋白修饰包括乙酰化、甲基化、磷酸化等,这些修饰可以改变染色质的结构,影响基因的转录水平。

非编码RNA是一类不编码蛋白质的RNA分子,它可以通过与染色质相互作用来调控基因的表达。

二、转录水平调控:转录水平调控是指在转录过程中对RNA合成的调控。

转录调控涉及到转录因子的结合、启动子的可访问性以及转录复合物的组装等。

转录因子是一类蛋白质,它们可以通过与DNA结合来调控基因的转录。

转录因子的结合位点通常位于启动子区域,它们可以通过激活或抑制转录的方式来调控基因的表达。

启动子的可访问性是指转录复合物能否顺利结合到启动子上,这涉及到染色质的开放程度以及转录因子的作用。

转录复合物的组装包括RNA聚合酶与转录因子的结合以及其他辅助因子的参与,这些因子的作用可以影响基因的转录速度和效率。

三、RNA加工和转运调控:RNA加工和转运调控是指在RNA合成后对RNA分子的修饰和定位调控。

RNA加工包括剪接、剪切和多聚腺苷酸化等过程,这些过程可以改变RNA的结构和功能。

剪接是指将RNA前体分子中的内含子剪切掉,从而形成成熟的mRNA分子。

剪切的方式和位置不同,可以产生不同的转录产物。

医学分子生物学原理-真核基因表达与调控

医学分子生物学原理-真核基因表达与调控
• 能识别并结合调控区的顺式作用元件; • 对基因表达有正性调节(激活)和负性调节
(抑制)二种方式。 • 其调节机制涉及顺式作用元件、RNA聚合酶
和其它调节蛋白。
(二)转录调节因子分类 (按功能特性)
* 基本转录因子
是RNA聚合酶结合启动子所必需的一组 蛋白因子,决定三种RNA(mRNA、tRNA及 rRNA)转录的类别。TF I;TF II;TF III
一个真核生物基因的转录需要3至5个转 录因子。转录因子之间不同方案组合,生成 有活性、专一性的复合物,再与RNA聚合酶 搭配而有针对性地结合、转录相应的基因。
按不同组合,人类约3.5万个基因,估 计需转录因子300余个即可。
(四)转录起始调控模式
主要通过调节反式作用因子的活性控制转录起始;
反式作用因子(有活性) 反式作用因子(无活性)
为重要,需要2个帽结合蛋白参与(CBP80 和CBP20)
A基因表达
A
B
C
A
B
B基因关闭 D
三、转录后调控
(一)mRNA加帽和加尾的调控意义
• 5′帽子结构的作用:
– 防止mRNA被5′→ 3′核酸酶降解; – 能被帽结合蛋白识别,增强mRNA的可翻译
性,没帽子结构,翻译效率降低; – 促进mRNA从核到胞浆的运输过程; – 增强mRNA的剪接效率, 帽对exon1的剪接尤
• Ⅱ类顺式作用元件包括: 核心启动子( Core promoter),增强子(enhancer),沉 默子(silencer ),及各种反应元件等。
1. 核心启动子( Core promoter)
• Ⅱ类启动子的核心启动子常由TATA盒、位于 TATA盒上游的的上游启动子元件、以转录点 为中心的起始子和下游启动子元件,4个元件 组合而成。

分子生物学-真核生物基因表达调控

分子生物学-真核生物基因表达调控

3 基因重排与交换
将一个基因从远离启动子的地方移到距它很
Hale Waihona Puke 近的位点从而启动转录,这种方式称为基因 重排。
通过基因重排调节基因活性的典型例子是免
疫球蛋白和T-细胞受体基因的表达。
V、C和J基因片段在胚胎细胞中相隔较远。编码产生免疫球蛋白的细胞发 育分化时,通过染色体内DNA重组把4个相隔较远的基因片段连接在一起, 从而产生了具有表达活性的免疫球蛋白基因。
发育早期:只有一个着丝点行使功能,
从头合成型甲基转移酶:催化未甲基化的CpG成 为mCpG
基因丢失
在细胞分化过程中,可以通过丢失掉某些基
因而去除这些基因的活性。某些原生动物、 线虫、昆虫和甲壳类动物在个体发育中,许 多体细胞常常丢失掉整条或部分的染色体, 只有将来分化产生生殖细胞的那些细胞一直 保留着整套的染色体。
一.
基因丢失: 在细胞分化过程中,某些原生动物、线虫 、昆虫等体细胞通过丢失某些基因而除去 这些基因的活性。 马蛔虫:只有一对染色体,染色体上有许 多着丝点。
假基因
是基因组中因突变而失活的基因,无蛋白质产
物。
一般是启动子出现问题。
8.2 DNA水平的基因表达调控
1染色质水平的调节:“开放”型活性染色质
(activechromatin)结构对转录的影响
2基因扩增
3基因重排与交换
4
DNA甲基化与基因活性的调控
1 染色质状态对基因表达的调控
能相关的基因,这些基因成套组合称为基因家族。 如:编码组蛋白、免疫球蛋白和血红蛋白的基因都 属于基因家族 同一家族中的成员有时紧密地排列在一起,成为 一个基因簇(gene cluster) 。
1、简单多基因家族

真核生物基因表达调控的机制

真核生物基因表达调控的机制

真核生物基因表达调控的机制
真核生物基因表达调控的机制
真核生物中的基因表达调控是一个复杂而且受多种影响的过程,其机制也极为复杂,主要包括以下七个方面。

一、基因结构调控
基因的结构调控可以通过改变基因的翻译或者转录起始点,改变基因的拷贝数量,改变基因的外显子结构等,从而调节基因表达。

这种机制也称为“结构调控”。

二、编码序列调控
基因编码序列可以用来调节基因表达。

包括基因内部的种类多样性,基因突变等,都会影响基因编码序列,从而影响基因表达。

三、转录因子调控
转录因子可以调节基因转录的开始时间,结束时间,影响基因转录的效率,从而影响基因表达。

四、mRNA加工调控
当mRNA处于加工过程中,其加工过程也会受到调控,这种调控会影响mRNA的翻译效率,从而影响基因的表达。

五、mRNA翻译调控
翻译调控是一种比较常见的调控机制,它可通过影响mRNA的结构、翻译初始效率以及翻译开始时间来调节基因的表达。

六、蛋白质稳定性调控
蛋白质稳定性的调控是指通过改变蛋白质的稳定性,来影响基因
的表达。

七、基因激活与抑制
基因激活与抑制是指通过外界影响,改变激活因子或者抑制因子的表达,来影响基因表达。

以上就是真核生物基因表达调控的七个机制,同时,也是基因组学研究中需要重点关注的重要机制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



18
19
20
翻译水平的调控
5’端UTR(非翻译区)结构与翻译起始的调节
5‘帽子结构的甲基化:1)保护mRNA免遭5’外切 酶的降解。2)为mRNA的从核中输出提供转运信号。3) 提高翻译模板的稳定性和翻译效率。 翻译起始因子的调控: •eIF-2-4F的磷酸化能提高翻译速度 •eIF-2α的磷酸化能抑制翻译起始
16
17
真核基因转录后水平的调控

5′端加帽(cap)和3′端多聚腺苷酸化(polyA)的调控意
义 使mRNA稳定,在转录过程中不被降解 mRNA的选择剪接(alternative splicing)对基因表达 的调控 外显子选择(optional exon)、内含子选择 (optional intron)、互斥外显子、内部剪接位点 mRNA 运输的控制

4
多 层 次 调 控
5
染色体水平的调控
染色质的结构:
基本结构是核小体。
在细胞中的状态: (1)紧密压缩 (2)被阻遏状态 (3)有活性状态
(4)被激活状态
异染色质化
6
组蛋白的乙酰化-去乙酰化 蛋白的乙酰化和去乙酰化是蛋白活性调节的一种 重要的形式,通过乙酰化或去乙酰化,改变了染色质 结构或是转录因子的活性,可以调节基因转录的活性。 组蛋白的乙酰化和去乙酰化能打开或关闭某些基因, 增强或抑制某些基因的表达。 组蛋白的8个亚基上有32个潜在的乙酰化位点。组 蛋白的乙酰化过程由组蛋白乙酰转移酶催化完成。
(1)启动子(promoter): 3种类型; (2)增强子(enhancer):
(3)沉默子(silencer ):负性调节元件,起阻遏作用。
(4)绝缘子(insulator,boundary element):在真核基因 及其调控区的一段DNA远离转录起始点(上游或下游)的一段可增强启动子 活性的调控元件,大小为100-200bp。最初在DNA病毒 SV40的基因组中发现。 •特性:
图:持家基因的CpG岛及其启动子
9
DNA甲基化与转录抑制
甲基化(methylated)程度高,对基因转录抑制的
调控能力越强。
去甲基化(undermethylated):基因转录激活
10
甲基化影响DNA与蛋白质的 相互作用 DNaseI的超敏感区域
(1)组蛋白被一种序列特异性蛋白 结合而被破坏,DNA裸露出来; (2)转录区域,DNA链打开而暴露; (3)活跃转录区
子(intron)、 外显子(exon)

非编码区多于编码序列(9:1)
3
真和基因都是由蛋白质编码序列和费蛋白质编码序 列组成。编码序列被称为外显子,而非编码序列称 为内含子。 在一个结构基因中,编码某一蛋白质不同区域的各个 外显子并不连续排列在一起,而是常常被长度不等 的内含子所隔离,形成断裂方式。所以真和基因被 称为断裂基因。 而这个序列分析表明,几乎每个内含子5末端起始 的两个碱基都是GT,而3末端最后两个碱基总是AG.
真核生物的基因表达调控 Regulation of Gene Expression in Eukaryotes
1
真核生物基因表达调控的特点
真核生物表达调控与原核生物的不同:
(1)染色体结构不同; (2)原核生物具有正调控和负调控并重的特点,真核 生物目前已知的主要是正调控; (3)原核生物的转录和翻译是相偶联的,真核生物的 转录和翻译在时空上是分开的;
(1) (3) (2)
11
真核基因转录水平的调控

顺式作用元件( cis-acting element) 反式作用因子 (trans-acting Factor)
12
顺式作用元件(cis-acting element)
顺式作用元件 -位于基因的旁侧可以调控和影响基因表
达的核苷酸序列;
顺式作用元件类型:
(4)真核生物是多细胞的,在生物的个体发育过程中 其基因表达在时间和空间上具有特异性,即细胞特异性 或组织特异性表达。
2
•真核基因组结构特点

真核基因组结构庞大:3×109bp、染色质、染色体、核膜 单顺反子(monocistron) 含有大量重复序列 基因不连续性:断裂基因(interrupted gene)、内含
21
翻译后水平的调控



新生肽链的水解:酶解 肽链N端的第一个氨基酸:稳定化氨基酸(Met、Ser、Thr、 Ala、Val、Cys、Gly、Pro)与去稳定氨基酸 肽链中氨基酸的共价修饰:磷酸化、甲基化、酰基化 通过信号肽(signal peptide)分拣、运输、定位
22
7
非组蛋白(NHP)
非组蛋白大多数是磷蛋白,以磷酸化/去磷酸化修饰
的方式调节细胞的代谢、生长、增殖和变异等,并能 在核内接受外来信号,构成核内信息转导系统,形成 一条调节基因表达的重要途径。
8
DNA水平上的调控
DNA甲基化(DNA Methylation)
哺乳动物基因中的5‘--CG--3’序列中C—5的甲基化称之 CpG 甲基化。 5‘--CG--3’序列是在表达基因位点处的染色体保 持适当包装水平的重要化学修饰序列。当基因序列中的CpG 密度 达到10/100bp时称为CpG 岛。
(1)加强相连基因从正确起始位点的转录活性
(2)增强子无论是在下游或在上游均可激活转录 (3)无论是在下游或在上游,可在远离起始位点1Kb以上 发挥作用 (4)两个启动子串联在一起时,增强子优先激活距离最近 的那一个
14
15
反式作用因子和结构特点
概念:直接或间接地识别或结合在顺式作用元件核心 序列上,参与与调控靶基因转录效率的蛋白质。 (1)三个功能结构域:DNA结合结构域(DNA-binding domain);转录激活结构域(transcriptional activation domain);二聚化结构域。 (2)能识别并结合顺式作用元件(cis-acting element) (3)正调控与负调控
相关文档
最新文档