2017九年级数学周周清试题14
九年级数学周清试题
参考数据:sin73.7°≈ ,cos73.7°≈ ,tan73.7°≈
21.(10分)如图①,△OAB中, A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.
(1)当m=4时,如图②.若反比例函数y= 的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;
(2)若反比例函数y= 的图象经过点A′及A′B′的中点M,求m的值.
二、填空题(每个小题4分,共24分)
13、用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是cm.
14、已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.
(第14题) (第15题)
15.如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是km.
5.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是( )
A.12cm2B.(12+π)cm2C.6π cm2D.8π cm2
6.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的正弦值是.
(第6题) (第7题)
7.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是( )
九年级数学上学期第1周周清试卷(含解析)新人教版
2016-2017学年山东省枣庄市滕州市鲍沟中学九年级(上)第1周周清数学试卷一、选择题1.菱形ABCD中,已知AC=6,BD=8,则此菱形的周长为()A.5 B.10 C.20 D.402.已知菱形ABCD的对角线AC,BD的长分别为6和8,则该菱形面积是()A.14 B.24 C.30 D.483.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形4.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.55.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.6.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补7.如图,在△ABC中,点D是BC的中点,点E、F分别在线段AD及其延长线上,且DE=DF.下列条件使四边形BECF为菱形的是()A.BE⊥CE B.BF∥CE C.BE=CF D.AB=AC8.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B 的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2)D.(2,1)二、填空题9.已知菱形的周长为40,两对角线比为3:4,则两对角线的长分别为.10.如图所示,菱形ABCD的一条对角线BD上一点O到菱形一边AB的距离为3,那么O点到另外一边BC的距离为.11.如图,在△ABC中,点D、E、F分别在BC、AB、AC上,且DE∥AC,DF∥AB.(1)如果∠BAC=90°,那么四边形AEDF是形;(2)如果AD是△ABC的角平分线,那么四边形AEDF是形.12.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.13.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为.14.如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合.若AB=4,则菱形ABCD的面积为.15.已知菱形ABCD的两条对角线AC,BD长分别为6cm、8cm,且AE⊥BC,这个菱形的面积S= cm2,AE= cm.16.如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为.三、解答题17.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD 是菱形.18.(1)如图1,在矩形ABCD中,∠BOC=120°,AB=5,求BD的长.(2)如图2,在菱形ABCD中,对角线AC,BD交于点O,长度分别是8和6,求菱形的周长.19.如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形;(2)若AB=1,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.2016-2017学年山东省枣庄市滕州市鲍沟中学九年级(上)第1周周清数学试卷参考答案与试题解析一、选择题1.菱形ABCD中,已知AC=6,BD=8,则此菱形的周长为()A.5 B.10 C.20 D.40【考点】菱形的性质;勾股定理.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.【解答】解:根据题意,设对角线AC、BD相交于O.则AC⊥BD.则由菱形对角线性质知,AO=AC=3,BO=BD=4.所以,在直角△ABO中,由勾股定理得AB===5.则此菱形的周长是4AB=20.故选C.2.已知菱形ABCD的对角线AC,BD的长分别为6和8,则该菱形面积是()A.14 B.24 C.30 D.48【考点】菱形的性质.【分析】根据菱形的面积等于对角线乘积的一半即可解决问题.【解答】解:∵四边形ABCD是菱形,AC=6,BD=8,∴菱形ABCD的面积=•AC•BD=×6×8=24.故答案为24.3.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形【考点】菱形的判定;作图—复杂作图.【分析】根据作图的痕迹以及菱形的判定方法解答.【解答】解:由作图痕迹可知,四边形ABCD的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.故选B.4.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.5【考点】菱形的性质;等边三角形的判定与性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.5.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.【考点】菱形的性质;勾股定理.【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm,故选D.6.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补【考点】菱形的性质;平行四边形的性质.【分析】根据平行四边形的性质和菱形的性质对各选项进行判断.【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选C.7.如图,在△ABC中,点D是BC的中点,点E、F分别在线段AD及其延长线上,且DE=DF.下列条件使四边形BECF为菱形的是()A.BE⊥CE B.BF∥CE C.BE=CF D.AB=AC【考点】菱形的判定.【分析】根据等腰三角形的性质和已知求出EF⊥BC,BD=DC,先根据平行四边形的判定得出四边形BECF是平行四边形,再根据菱形的判定推出即可.【解答】解:条件是AB=AC,理由是:∵AB=AC,点D是BC的中点,∴EF⊥BC,BD=DC,∵DE=DF,∴四边形BECF是平行四边形,∵EF⊥BC,∴四边形BECF是菱形,选项A、B、C的条件都不能推出四边形BECF是菱形,即只有选项D正确,选项A、B、C都错误;故选D.8.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B 的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2)D.(2,1)【考点】菱形的性质;坐标与图形性质.【分析】点A的横坐等于OC的长的一半,点A的纵坐标与点B的纵坐标互为相反数.【解答】解:∵点C的坐标为(4,0),∴OC=4,∴点B的纵坐标是﹣1,∴A(2,1).故选D.二、填空题9.已知菱形的周长为40,两对角线比为3:4,则两对角线的长分别为12,16 .【考点】菱形的性质.【分析】首先根据题意画出图形,然后设OA=3x,OB=4x,由菱形的性质,可得方程:102=(3x)2+(4x)2,继而求得答案.【解答】解:如图,∵菱形的周长为40,∴AB=10,OA=AC,OB=BD,AC⊥BD,∵两条对角线长度之比为3:4,∴OA:OB=3:4,设OA=3x,OB=4x,在Rt△AOB中,AB2=OA2+OB2,∴102=(3x)2+(4x)2,解得:x=2,∴OA=6,OB=8,∴AC=12,BD=16,∴对角线的长度分别为:12,16.故答案为:12,16.10.如图所示,菱形ABCD的一条对角线BD上一点O到菱形一边AB的距离为3,那么O点到另外一边BC的距离为 3 .【考点】菱形的性质;角平分线的性质.【分析】根据菱形的性质:对角线平分所在的角,则根据角平分线的性质即可得到O点到另外一边BC的距离等于点O到AB边的距离.【解答】解:根据菱形的性质及角平分线的性质可得到O点到另外一边BC的距离等于点O 到AB边的距离,即O点到另外一边BC的距离为3.故答案为311.如图,在△ABC中,点D、E、F分别在BC、AB、AC上,且DE∥AC,DF∥AB.(1)如果∠BAC=90°,那么四边形AEDF是矩形;(2)如果AD是△ABC的角平分线,那么四边形AEDF是菱形.【考点】矩形的判定;菱形的判定.【分析】(1)根据平行线得出四边形是平行四边形,根据∠CAB=90°即可推出四边形是矩形;(2)首先得出平行四边形,推出∠EDA=∠CAD=∠BAD,推出AE=DE,即可推出平行四边形是菱形.【解答】(1)解:四边形AEDF是矩形,理由是:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵∠BAC=90°,∴平行四边形AEDF是矩形,故答案为:矩.(2)解:四边形AEDF是菱形,理由是:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AD是△ABC的角平分线,∴∠BAD=∠CAD,∵DE∥AC,∴∠EDA=∠CAD,∴∠EDA=∠BAD,∴AE=DE,∴平行四边形AEDF是菱形,故答案为:菱.12.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为12 .【考点】中心对称;菱形的性质.【分析】根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.【解答】解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24,∵O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.故答案为:12.13.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为.【考点】轴对称-最短路线问题;菱形的性质.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,∵AB=2,∠A=120°,∴点P′到CD的距离为2×=,∴PK+QK的最小值为.故答案为:.14.如图,菱形ABCD中,E是AD的中点,将△CDE沿CE折叠后,点A和点D恰好重合.若AB=4,则菱形ABCD的面积为8.【考点】翻折变换(折叠问题);菱形的性质.【分析】根据菱形的性质,可得AD的长度,根据翻折的性质,可得AC的长度,根据勾股定理,可得CE的长,根据菱形的面积公式,可得答案.【解答】解:菱形ABCD中,AB=4,∴AD=AB=CD=BC=4,.将△CDE沿CE折叠后,点A和点D恰好重合,∴AC=CD=4,E是AD的中点,AE=2,由勾股定理,得CE===2,S菱形ABCD=AD•CE=4×=8,故答案为:8.15.已知菱形ABCD的两条对角线AC,BD长分别为6cm、8cm,且AE⊥BC,这个菱形的面积S= 24 cm2,AE= cm.【考点】菱形的性质.【分析】根据菱形的性质可得AO=AC=3cm,BO=BD=4cm,且AO⊥BO,利用勾股定理可计算出AB长,然后利用菱形的面积公式可得S=AC×BD,进而可得答案,再利用面积计算出AE即可.【解答】解:根据题意,设对角线AC、BD相交于O,∵四边形ABCD是菱形,∴AO=AC=3cm,BO=BD=4cm,且AO⊥BO,∴AB==5cm,∵菱形对角线相互垂直,∴菱形面积是S=AC×BD=24cm,∴菱形的高是AE=cm.故答案为:24,.16.如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为.【考点】规律型:点的坐标;等边三角形的判定与性质;菱形的性质.【分析】连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2014=335×6+4,因此点B4向右平移1340(即335×4)即可到达点B2014,根据点B4的坐标就可求出点B2014的坐标.【解答】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2014=335×6+4,∴点B4向右平移1340(即335×4)到点B2014.∵B4的坐标为(2,0),∴B2014的坐标为(2+1340,0),∴B2014的坐标为.故答案为:.三、解答题17.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD 是菱形.【考点】菱形的判定;梯形.【分析】首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.【解答】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,∴AD=DC,∴四边形AECD是菱形.18.(1)如图1,在矩形ABCD中,∠BOC=120°,AB=5,求BD的长.(2)如图2,在菱形ABCD中,对角线AC,BD交于点O,长度分别是8和6,求菱形的周长.【考点】矩形的性质;菱形的性质.【分析】(1)由在矩形ABCD中,∠BOC=120°,可求得∠ACB=30°,继而求得AC的长,然后由矩形的对角线相等,求得答案;(2)由在菱形ABCD中,对角线AC,BD交于点O,长度分别是8和6,可求得OA与OB的长,AC⊥BD,然后由勾股定理求得AB的长,继而求得答案.【解答】解:(1)∵四边形ABCD是矩形,∴AC=BD,OB=OC,∵∠BOC=120°,∴∠BCA=30°,∵在Rt△ABC中,AB=5,∴AC=2AB=10,∴BD=AC=10;(2)∵四边形ABCD是菱形,∴OA=AC═×8=4,OB=BD=×6=3,AC⊥BD,∴AB==5,∴菱形的周长为20.19.如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形;(2)若AB=1,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.【考点】菱形的判定与性质;正方形的判定与性质;中点四边形.【分析】(1)利用三角形的中位线定理可以证得四边形EGFH的四边相等,即可证得;(2)根据平行线的性质可以证得∠GFH=90°,得到菱形EGFH是正方形,利用三角形的中位线定理求得GE的长,则正方形的面积可以求得.【解答】(1)证明:∵四边形ABCD中,E、F、G、H分别是AD、BC、BD、AC的中点,∴FG=CD,HE=CD,FH=AB,GE=AB.∵AB=CD,∴FG=FH=HE=EG.∴四边形EGFH是菱形.(2)解:∵四边形ABCD中,G、F、H分别是BD、BC、AC的中点,∴GF∥DC,HF∥AB.∴∠GFB=∠DCB,∠HFC=∠ABC.∴∠HFC+∠GFB=∠ABC+∠DCB=90°.∴∠GFH=90°.∴菱形EGFH是正方形.∵AB=1,∴EG=AB=.∴正方形EGFH的面积=()2=.。
九年级数学第一周周清试卷及答案
九年级数学第一周周清一、选择题(每小题3分,共30分) 1. -2的倒数是( )A. -2B. 2C. -12D. 122. 柳絮纤维的直径约是0.00000105 m .数据“0.00000105”用科学记数法表示为( )A. 1.05×106B. 0.105×10-6C. 1.05×10-6D. 105×10-83. 下列图形中,既是轴对称图形又是中心对称图形的是( )4. 下列运算准确的是( ) A. a 2+a 2=a 4 B. a 3·a 2=a 6 C. (3a )2=6a 2 D. 2a 4÷a 2=2a 25. 如图是正方体的一种展开图,其每个面上都标有一个汉字,那么在原正方体中,与汉字“智”相对的面上的汉字是( )第5题图A. 义B. 仁C. 信D. 礼6. 不等式组⎩⎨⎧2x >3x -114x ≤1的解集在数轴上表示准确的是( )7. 如图,在平面直角坐标系中,第二象限内的点P 是反比例函数y =kx (k ≠0)图象上的一点,过点P 作P A ⊥x 轴于点A ,点B 为AO 的中点,若△P AB 的面积为3,则k 的值为( )第7题图A. 6B. -6C. 12D. -128. 某校有47名同学参加学校举行的科技创新比赛,预赛分数各不相同,取前24名同学参加决赛,其中一名同学知道自己的分数后,要判断自己能否进入决赛,还需要知道这47名同学分数的( )A. 平均数B. 中位数C. 众数D. 方差9. 如图,四边形OABC 是矩形,A (2,1),B (0,5),点C 在第二象限,则点C 的坐标是( )A. (-1,3)B. (-1,2)C. (-2,3)D. (-2,4)第9题图10.如图,边长为2的正方形ABCD绕AD的中点O顺时针旋转后得到正方形A′B′C′D′,当点A的对应点A′落在对角线BD上时,点B所经过的路径与A′B,A′B′围成的阴影部分的面积是( )第10题图A. 73 B.52C. 54π-32 D.52π-23二、填空题(每小题3分,共15分)11.-|-2|+9=________.12.化简2mm2-n2-1m-n的结果是________.13.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆,背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张,请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是________.14.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用以下步骤作图:①以点A为圆心,适当长为半径画弧交射线AN于点C,交线段AB于点D;②以点C为圆心,适当长为半径画弧;然后再以点D为圆心,同样长为半径画弧,前后两弧在∠NAB内交于点E;③作射线AE,交PQ于点F,若AF=23,∠F AN=30°,则线段BF的长为________.第14题图15.如图,在四边形纸片ABCD中,AB=12,CD=2,AD=BC =6,∠A=∠B.现将纸片沿EF折叠,使点A的对应点A′落在AB边上,连接A′C.若△A′BC恰好是以A′C为腰的等腰三角形,则AE的长为________.第15题图三、解答题(8分)16. (8分)先化简,再求值:2x-y -x+yx2-2xy+y2÷x+yx-y,其中x=5-2,y=5+2.答案1. C2. C 【解析】0.00000105=1.05×10-6. 3. D4. D 【解析】5. A6. A 【解析】由2x >3x -1,解得x <1,由14x ≤1,解得x ≤4,∴不等式组的解集为x <1.在数轴上表示为选项A .7. D 【解析】如解图,连接PO ,第7题解图∵点B 为AO 的中点,△P AB 的面积为3,S △OAP =2S △P AB =2×3=6.又∵S △OAP =12|k |.∴12|k |=6,|k |=12.∵双曲线的一支位于第二象限,∴k <0.∴k =-12.8. B9. D 【解析】如解图,过点C 作CE ⊥y 轴于点E ,过点A 作AF ⊥y 轴于点F ,∴∠CEO =∠AFB =90°.∵四边形OABC 是矩形,∴AB =OC ,AB ∥OC .∴∠ABF =∠COE .∴△OCE ≌△BAF (AAS ).同理△BCE ≌△OAF ,∴CE =AF ,OE =BF ,BE =OF .∵A (2,1),B (0,5),∴AF =CE =2,BE =OF =1,OB =5.∴OE =4.∴点C 的坐标是(-2,4).第9题解图10. C 【解析】如解图,连接OB ,OB ′.∵四边形ABCD 是正方形,∴∠ADB =45°.∵点O 是AD 的中点,∴OA =OD .由旋转的性质可知OA ′=OA ,∵∠OA ′D =∠ODA ′=45°,∴∠AOA ′=90°.∴∠BOB ′=90°.在Rt △AOB 中,AO =1,AB =2,∴OB =12+22= 5.∴S 扇形BOB ′=90π×(5)2360=54π.∵S △OBA ′=12×1×1=12,S △OB ′A ′=12×1×2=1,S 阴影=S 扇形BOB ′-S △OBA ′-S △OB ′A ′,∴S阴影=54π-12-1=54π-32.故选C .第10题解图11. 1 【解析】原式=-2+3=1. 12.1m +n 【解析】原式=2m(m +n )(m -n )-m +n (m +n )(m -n )=m -n (m +n )(m -n )=1m +n.13. 916【解析】记矩形、菱形、等边三角形、圆分别为A 、B 、C 、D .列表如下:从表中能够得到,所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种,∴两次都抽到既是中心对称图形又是轴对称图形的概率是916.14. 2 【解析】如解图,过点B 作BG ⊥AF 于点G ,∵MN ∥PQ ,∴∠F AN =∠3=30°.由题意得AF 平分∠NAB ,∴∠1=∠2=30°.∴∠1=∠3=30°.∴AB =BF .又∵BG ⊥AF ,∴AG =GF =12AF = 3.∴Rt △BFG 中,BF =GF cos30°=332=2.第14题解图15. 1或215 【解析】如解图,过点C 作CM ⊥AB 于点M ,过点D 作DN ⊥AB 于点N ,∵AD =BC =6,∠A =∠B ,∠DNA =∠CMB =90°,∴△ADN ≌△BCM (AAS ).∴AN =BM ,DN =CM ,且DN ∥CM ,DN ⊥AB .∴四边形DCMN 是矩形,.∴CD =MN =2.∴AN =BM =AB -MN2=5.∵将纸片沿EF 折叠,使点A 的对应点A ′落在AB 边上,∴AE =A ′E .如解图①,若A ′C =BC ,且CM ⊥AB ,∴BM =A ′M =5.∴AA ′=AB -A ′B =12-10=2.∴AE =1;如解图②,若A ′C =A ′B ,过点A ′作A ′H ⊥BC ,于点H ,∵CM 2=BC 2-BM 2=A ′C 2-A ′M 2,∴36-25=A ′B 2-(5-A ′B )2,解得A ′B =185.∴AA ′=AB -A ′B =12-185=425.∴AE =215.综上所述,AE 的长为1或215.图①图②第15题解图16. 解:原式=2x -y -x +y (x -y )2·x -y x +y=2x -y -1x -y =1x -y, 当x =5-2,y =5+2时,原式=15-2-(5+2)=-14.。
九年级数学第一周周清试卷及答案
九年级数学第一周周清一、选择题(每小题3分,共30分) 1. -2的倒数是( )A. -2B. 2C. -12D. 122. 柳絮纤维的直径约是0.00000105 m .数据“0.00000105”用科学记数法表示为( )A. 1.05×106B. 0.105×10-6C. 1.05×10-6D. 105×10-83. 下列图形中,既是轴对称图形又是中心对称图形的是( )4. 下列运算准确的是( ) A. a 2+a 2=a 4 B. a 3·a 2=a 6 C. (3a )2=6a 2 D. 2a 4÷a 2=2a 25. 如图是正方体的一种展开图,其每个面上都标有一个汉字,那么在原正方体中,与汉字“智”相对的面上的汉字是( )第5题图A. 义B. 仁C. 信D. 礼6. 不等式组⎩⎨⎧2x >3x -114x ≤1的解集在数轴上表示准确的是( )7. 如图,在平面直角坐标系中,第二象限内的点P 是反比例函数y =kx (k ≠0)图象上的一点,过点P 作P A ⊥x 轴于点A ,点B 为AO 的中点,若△P AB 的面积为3,则k 的值为( )第7题图A. 6B. -6C. 12D. -128. 某校有47名同学参加学校举行的科技创新比赛,预赛分数各不相同,取前24名同学参加决赛,其中一名同学知道自己的分数后,要判断自己能否进入决赛,还需要知道这47名同学分数的( )A. 平均数B. 中位数C. 众数D. 方差9. 如图,四边形OABC 是矩形,A (2,1),B (0,5),点C 在第二象限,则点C 的坐标是( )A. (-1,3)B. (-1,2)C. (-2,3)D. (-2,4)第9题图10.如图,边长为2的正方形ABCD绕AD的中点O顺时针旋转后得到正方形A′B′C′D′,当点A的对应点A′落在对角线BD上时,点B所经过的路径与A′B,A′B′围成的阴影部分的面积是( )第10题图A. 73 B.52C. 54π-32 D.52π-23二、填空题(每小题3分,共15分)11.-|-2|+9=________.12.化简2mm2-n2-1m-n的结果是________.13.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆,背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张,请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是________.14.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用以下步骤作图:①以点A为圆心,适当长为半径画弧交射线AN于点C,交线段AB于点D;②以点C为圆心,适当长为半径画弧;然后再以点D为圆心,同样长为半径画弧,前后两弧在∠NAB内交于点E;③作射线AE,交PQ于点F,若AF=23,∠F AN=30°,则线段BF的长为________.第14题图15.如图,在四边形纸片ABCD中,AB=12,CD=2,AD=BC =6,∠A=∠B.现将纸片沿EF折叠,使点A的对应点A′落在AB边上,连接A′C.若△A′BC恰好是以A′C为腰的等腰三角形,则AE的长为________.第15题图三、解答题(8分)16. (8分)先化简,再求值:2x-y -x+yx2-2xy+y2÷x+yx-y,其中x=5-2,y=5+2.答案1. C2. C 【解析】0.00000105=1.05×10-6. 3. D4. D 【解析】5. A6. A 【解析】由2x >3x -1,解得x <1,由14x ≤1,解得x ≤4,∴不等式组的解集为x <1.在数轴上表示为选项A .7. D 【解析】如解图,连接PO ,第7题解图∵点B 为AO 的中点,△P AB 的面积为3,S △OAP =2S △P AB =2×3=6.又∵S △OAP =12|k |.∴12|k |=6,|k |=12.∵双曲线的一支位于第二象限,∴k <0.∴k =-12.8. B9. D 【解析】如解图,过点C 作CE ⊥y 轴于点E ,过点A 作AF ⊥y 轴于点F ,∴∠CEO =∠AFB =90°.∵四边形OABC 是矩形,∴AB =OC ,AB ∥OC .∴∠ABF =∠COE .∴△OCE ≌△BAF (AAS ).同理△BCE ≌△OAF ,∴CE =AF ,OE =BF ,BE =OF .∵A (2,1),B (0,5),∴AF =CE =2,BE =OF =1,OB =5.∴OE =4.∴点C 的坐标是(-2,4).第9题解图10. C 【解析】如解图,连接OB ,OB ′.∵四边形ABCD 是正方形,∴∠ADB =45°.∵点O 是AD 的中点,∴OA =OD .由旋转的性质可知OA ′=OA ,∵∠OA ′D =∠ODA ′=45°,∴∠AOA ′=90°.∴∠BOB ′=90°.在Rt △AOB 中,AO =1,AB =2,∴OB =12+22= 5.∴S 扇形BOB ′=90π×(5)2360=54π.∵S △OBA ′=12×1×1=12,S △OB ′A ′=12×1×2=1,S 阴影=S 扇形BOB ′-S △OBA ′-S △OB ′A ′,∴S阴影=54π-12-1=54π-32.故选C .第10题解图11. 1 【解析】原式=-2+3=1. 12.1m +n 【解析】原式=2m(m +n )(m -n )-m +n (m +n )(m -n )=m -n (m +n )(m -n )=1m +n.13. 916【解析】记矩形、菱形、等边三角形、圆分别为A 、B 、C 、D .列表如下:从表中能够得到,所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种,∴两次都抽到既是中心对称图形又是轴对称图形的概率是916.14. 2 【解析】如解图,过点B 作BG ⊥AF 于点G ,∵MN ∥PQ ,∴∠F AN =∠3=30°.由题意得AF 平分∠NAB ,∴∠1=∠2=30°.∴∠1=∠3=30°.∴AB =BF .又∵BG ⊥AF ,∴AG =GF =12AF = 3.∴Rt △BFG 中,BF =GF cos30°=332=2.第14题解图15. 1或215 【解析】如解图,过点C 作CM ⊥AB 于点M ,过点D 作DN ⊥AB 于点N ,∵AD =BC =6,∠A =∠B ,∠DNA =∠CMB =90°,∴△ADN ≌△BCM (AAS ).∴AN =BM ,DN =CM ,且DN ∥CM ,DN ⊥AB .∴四边形DCMN 是矩形,.∴CD =MN =2.∴AN =BM =AB -MN2=5.∵将纸片沿EF 折叠,使点A 的对应点A ′落在AB 边上,∴AE =A ′E .如解图①,若A ′C =BC ,且CM ⊥AB ,∴BM =A ′M =5.∴AA ′=AB -A ′B =12-10=2.∴AE =1;如解图②,若A ′C =A ′B ,过点A ′作A ′H ⊥BC ,于点H ,∵CM 2=BC 2-BM 2=A ′C 2-A ′M 2,∴36-25=A ′B 2-(5-A ′B )2,解得A ′B =185.∴AA ′=AB -A ′B =12-185=425.∴AE =215.综上所述,AE 的长为1或215.图①图②第15题解图16. 解:原式=2x -y -x +y (x -y )2·x -y x +y=2x -y -1x -y =1x -y, 当x =5-2,y =5+2时,原式=15-2-(5+2)=-14.。
九年级数学14周周清题
九年级数学第14周周清题一、选择题(每小题4分共40分)1、用放大镜将图形放大,应属于哪一种变换( )A 、对称变换B 、平移变换C 、旋转变换D 、相似变换.2.若875c b a ==,且3a -2b +c =3,则2a +4b -3c 的值是( )A.14B.42C.7D.314 3.如图,已知直角三角形的两条直角边长的比为a ∶b =1∶2,其斜边长为 45 cm ,那么这个三角形的面积是( )A.32 cm 2B.16 cm 2C.8 cm 2D.4 cm2C第3题 第4题4.如图,在△ABC 中,DE∥BC,DE 分别与AB 、AC 相交于点D 、E ,若AD=4,DB=2,则DE∶BC 的值为( )A .B .C .D .5.下列结论不正确的是( )A.所有的矩形都相似B.所有的正方形都相似C.所有的等腰直角三角形都相似D.所有的正八边形都相似6.如图3,为了测量一池塘的宽DE ,在岸边找一点C ,测得 CD=30m ,在DC 的延长线上找一点A ,测得AC=5m ,过点A 作AB ∥DE ,交EC 的延长线于B ,测得AB=6m ,则池塘的宽DE 为( )A 、25mB 、30mC 、36mD 、40m7.如图4,已知AB CD EF ∥∥, 那么下列结论正确的是( )A .AD BC DF CE =B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF= 8.如果△ABC ∽△A ′B ′C ′,BC =3,B ′C ′=1.8,则△A ′B ′C ′与△ABC 的相似比为( )A.5∶3B.3∶2C.2∶3D.3∶5 9.已知3x=4y ,则yx = ( ) A 、34 B 、43 C 、43- D 、以上都不对 图4图310.下列各组中得四条线段成比例的是( )A 、4cm 、2cm 、1cm 、3cmB 、1cm 、2cm 、3cm 、4cmC 、25cm 、35cm 、45cm 、55cmD 、1cm 、2cm 、20cm 、40cm二、填空题(本大题共7小题,每小题4分,共28分)1.在一张地图上,甲、乙两地的图上距离是3 cm,而两地的实际距离为1500 m ,那么这张地图的比例尺为________.2、在比例尺为1:8000000的“中国政区”地图上,量得甲市与乙市之间的距离是6.5cm ,则这两市之间的实际距离为 km ;3.如图,DE 与△ABC 的边AB ,AC 分别相交于D ,E 两点,且DE ∥BC .若DE =2㎝,BC =3㎝,EC =32㎝,则AC =______㎝.第3题 第6题 第7题4.如果Rt△ABC ∽Rt△A ′B ′C ′,∠C =∠C ′=90°,AB =3,BC =2,A ′B ′=12,则A ′C ′=________.5、已知:x ∶y ∶z=2∶3∶4,则zy x z y x 32+--+的值为 。
第三周周清试卷(有答案
第三周九年级数学周测(2017年9月20日)班级__________ 姓名__________ 分数_____________一、选择题:(每小题3分,共30分) 1.下列函数中是二次函数的是( )A .21y x =B . 21y x =+C . 23122y x x =+ D . 245y x =-+2.函数22y mx x m =+- (m 为常数)的图象与x 轴的交点有( )A . 0个B .1个C .2个D .1个或2个 3.抛物线y =x 2 –2x –3 的对称轴和顶点坐标分别是( )A .直线x =1,(1,-4)B .直线x =1,(1,4)C .直线x =-1,(-1,4)D .直线x =-1,(-1,-4)4.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式是( )A .2(1)3y x =--+B . 2(1)3y x =-++C .2(1)3y x =---D . 2(1)3y x =-+-5.函数2ax y =与b ax y +=(0a ≠,b<0)在同一坐标系中的大致图象为( )6.如图,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 ( ) A .(2,3) B .(3,2) C .(3,3) D .(4,3)7.已知函数222--=x x y 的图象如图所示,根据其中提供的信息, 可求得使y ≥1成立的x 的取值范围是 ( ) A .-1≤x ≤3 B . -3≤x <1 C . x ≥-3 D . x ≥3 或x ≤-18.二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( ) A . (—1,—1) B . (1,—1) C . (1,1) D . ( —1,1)9. 已知二次函数772--=x kx y 的图象与x 轴有两个交点,则k 的取值范围为( )A .47->kB .47>k 第7题第6题第17题第18题C .47->k 且0≠k D .0>k10. 已知抛物线y=x ²-4x+3与x 轴相交于A.B (A 在B 左侧),顶点为M ,平移该抛物线,使点M 平移后对应点M ’落在x 轴上,点B 平移后的对应点B ’落在y 轴上,则平移后的抛物线解析式为( )A.y=x ²+2x+1B.y=x ²+2x-1C.y=x ²-2x+1D.y=x ²-2x-1 二、填空题:(每小题3分,共24分)11.二次函数24(1)3y x =-+的图象的顶点坐标是 ,开口方向 .12.二次函数y =222k kx x ++的图象与x 轴的一个交点坐标为(2-,0),则k 的值是 .13.已知二次函数的图象开口向下,且与y 轴的正半轴相交,请你写出一个满足条件的二次函数表达式: .14.已知抛物线y =ax 2 +bx +c 的对称轴为x =2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_______________. 15.已知方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,则抛物线y =ax 2+bx +c (a ≠0)的顶点在_______________.16.已知二次函数y =ax 2+bx +c 的图象如下图所示,则下列结论:①a +b +c > 0;② a -b +c < 0;③b =2a ;④b 2-4a c > 0;⑤ab c > 0 请写出你认为正确的所有结论的序号 .17. 二次函数23y x mx =-+的图象与x 轴的交点如图所示m 的值是 .18.二次函数22y x x =--的取值范围是 .三、解答题:(共46分) 19.(10分)已知二次函数的图象过点)5 1(--,,)4 0(-,和)1 1(,,求这个二次函数的解析式。
初中数学九年级数学第一次周周清测试题
九年级数学第一次周周清测试题班级 姓名 学号一、选择题(每题5分,共30分)1.已知⊙O 的直径为10,点P 到点O 的距离大于8,那么点P 的位置( ) (A )一定在⊙O 的内部 (B) 一定在⊙O 的外部 (C ) 一定在⊙O 的上 (D) 不能确定2.已知:如图,弦AB 的垂直平分线交⊙O 于点C 、D ,则下列说法中不正确的是 ( )(A)弦CD 一定是⊙O 的直径 (B)点O 到AC 、BC 的距离相等 (C) ∠A 与∠ABD 互余 (D) ∠A 与∠CBD 互补(2题图) (3题图) (5题图) (6题图) 3.如图,已知⊙O 中∠AOB 度数为100°,C是圆周上的一点,则 ∠ACB 的度数为( )(A)130° (B) 100° (C) 80° (D) 50° 4.如果圆的半径为6,那么60°的圆心角所对的弧长为( ) (A)π (B)2π (C)3π (D) 6π5.如图,以AB 为直径的⊙O 与弦CD 相交于点E ,且AC =2,AE =,CE =1.则弧BC 的长是( ) 6.如图,BC 是圆O 的直径,P 是CB 延长线上的一点,PA 切圆O 于点A ,如果 PA =3,PB =1,那么∠APC 等于( )(A)15° (B)30° (C) 45° (D) 60°A .B .C .D .OACBOCD ABO CPB A二、填空题(每题5分,共35分)7.如图所示AB是⊙O的弦,OC⊥AB于C,若OA=2cm,OC=1cm,则AB长为______.(7题图)(8题图)(10题图)8.如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则AB的长为米;9.已知扇形的圆心角为1500,弧长为20πcm,则扇形的半径为_______cm,面积_______ cm2.10.如图所示,⊙O的直径CD过弦EF中点G,∠EOD=40°,则∠DCF=______.11.如图所示,点M,N分别是正八边形相邻两边AB,BC上的点,且AM=BN,则∠MON=_________________度.(11题图)(12题图)(13题图)12如图所示,⊙A的圆心坐标为(0,4),若⊙A的半径为3,则直线y=x与⊙A•的位置关系是.13.如图所示,O是△ABC的内心,∠BOC=100°,则∠A= .三、解答题(共35分)14.(9分)如图所示,CE是⊙O的直径,弦AB⊥CE于D,若CD=2,AB=6,求⊙O•半径的长.15.(9分)如图,⊙P 与扇形OAB 的半径OA 、OB 分别相切于点C 、D ,与弧AB 相切于点E ,已知OA=15cm ,∠AOB=60°,求图中阴影部分的面积.16.(9分)如图所示,AB 是⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,E 是BC•边上的中点,连结PE ,PE 与⊙O 相切吗?若相切,请加以证明,若不相切,请说明理由.17.(8分)已知:如图,⊙O 1与坐标轴交于A (1,0)、B (5,0)两点,点O 15.求⊙O 1的半径.B AOx y A BO 1OOCADEP。
九年级数学《一元二次方程》周周清试题
九年级数学《一元二次方程》周周清试题一、选择题(每小题3分,共30分)1. 下列方程中,不是一元二次方程的是( )A.0722=+xB.013222=++x xC.04152=++xx D.01)1(232=+++x x x 2.使分式2561x x x --+ 的值等于零的x 是( ) A.6 B.-1或6 C.-1 D.-63.方程0)1()23(22=++--x x x 的一般形式是( )A.0552=+-x xB.0552=++x xC.0552=-+x xD.052=+x4.方程2850x x -+=的左边配成一个完全平方式后得到的方程是( )A.2(6)11x -=B.2(4)11x -=C.2(4)21x -=D.2(6)21x -=5.若一元二次方程04)15(3)2(222=-+++-m x m x m 的常数项是0,则m 为( )A.2B.±2C.-2D.-106.若代数式652++x x 与1+-x 的值相等,则x 的值为( )A.5,121-=-=x xB.1,621=-=x xC.3,221-=-=x xD.1-=x7.已知1562+-=x x y ,若0≠y ,则x 的取值情况是( ) A.61≠x 且1≠x B.21≠x C.31≠x D.21≠x 且31≠x 8.方程)3(5)3(2+=+x x x 的根是( ) A.25=x B.3-=x 或25=x C.3-=x D.25-=x 或3=x 9.下列方程中,不含一次项的是( )A.3x 2 – 5=2xB. 16x=9x 2C.x(x –7)=0D. (x+5)(x-5)=010. 如果a 是一元二次方程x 2-3x +m =0的一个根,-a 是一元二次方程x 2+3x -m =0的一个根,那么a 的一个值等于( )A 、1或2B 、0或-3C 、-1或-2D 、0或3二、填空题(每空3分,共24分)11.关于x 的方程5)3(72=---x x m m 是一元二次方程,则m =_________.12.方程0652=+-x x 与0442=+-x x 的公共根是_________. 13.32-是方程012=-+bx x 的一个根,则b =_________,另一个根是_________.14.已知012722=+-y xy x ,那么x 与y 的关系是_________.15.若一元二次方程ax 2+bx+c=0(a ≠0)有一个根为1,则a+b+c=______;若有一个根为-1,则b 与a 、c 之间的关系为_______;若有一个根为零,则c=_______.16. 当x 时,分式2233x x x ---的值为零. 三、解答题(共46分)17.解下列方程(每题5分,共30分)(1)022=+x x (2)22)12()1(-=+x x(3)3(2)5(2)x x x -=-; (4)2(51)2x -=.(5)2610+-x22=x4-+=.(6) 0x x118. 已知关于x的二次方程(m+1)x2+3x+m2– 3m – 4=0的一个根为0,求m 的值。
九年级数学第14周周周清试卷.doc
九年级数学第14周周周清试卷学校:___________ 姓名: __________ 班级:___________ 考号:___________一.选择题(10*3)1.下列图形中,是轴对称图形,但不是中心对称图形的是()2.某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内矜分别是:①互相关心;②互相提醒:③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择宥人看护的游泳池.小颖从这6张纸条中随机抽山一张,抽到内容描述正确的纸条的概率是()A. —B. —C. —D.—2 3 3 63.—个等腰三角形的边长是6,腰长是一元二次方程x2-7x+12=o的一根,则此三角形的周长是()A. 12B. 13C. 14D. 12 成144.如图,AABC的三个顶点分别为A (1,2),B (4,2),C (4,4).若反比例函数y=A在X第一象限内的图象与AABC有交点,则k的収值范围是(A. 1彡k彡4B. 2彡k彡8C. 2彡k<16D. 8彡k<165. —次函数”狀外与反比例函数y=4,其中ab<0, a、b为常数,它们在同一坐标系中的图象可以是(9.如图,网格中的每个小正方形的边长都是1,A 2、A 3、...都在格点上,△A 1A 2A 3、AA 3A 4A 5> AAsAeAy 、...都 是斜边在x 轴上,且斜边氐分别为2、4、6、...的等腰直角三角形.若AAiAAs 的三个顶点坐标为Ai (2, 0)、A 2 (1,C.6. 若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数力(A. 60°B. 90°C. 120°D. 180°7. 小明家凉台呈圆弧形,凉台的宽度AB 为8m ,凉台的最外端C 点离AB 的距离CD 为2m ,则凉台所在圆的半径为( )A. 4m B. 5m C. 6m D. 7m8. 如图,己知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH 的面积为s ,AE 为X ,则s 关于x 的函数图象大致是( ))A. xB.C ,-1)、A 3 (0, 0),则依图中规律,A 19的坐标为()14. 如图,将矩形ABCD 绕点C 沿顺时针方向旋转90°到矩形A'B'CD'的位置,AB=2, AD=4, 则阴影部分的而积为 _______ .15. 如图,已知双曲线y=l (k 〉0)经过直角三角形OAB 斜边OB 的中点D ,与直角边AB相交于点C.若AOBC 的面积为3,则k= __________ .16.如阁,在x 轴的正半轴上依次截取OAfAiAfAzAfAAzAnAs,过点Ay A 2、A 3、A 4、A 5分别作x 轴的垂线与反比例函数y=2 (x 关0)的图象相交于点P:、P 2、P 3、P 4、P 5,得直x 角三角形 OPiAn A I P 2A 2> A 2P 3A 3、A 3P 4A 4、A4P5A5,并设K •而积分别为 Si 、S 2、S 3、S 4、S s ,则s 5的值为 _______ .三.解答题(共8小题)17. (1)计算(2017 - n )。
2017-2018学年人教版九年级上数学第三周周清试卷(有答案)AKwlPU
第三周九年级数学周测(2017年9月20日)班级__________ 姓名__________ 分数_____________一、选择题:(每小题3分,共30分)1.下列函数中是二次函数的是( )A .21y x =B . 21y x =+C . 23122y x x =+ D . 245y x =-+2.函数22y mx x m =+- (m 为常数)的图象与x 轴的交点有( )A . 0个B .1个C .2个D .1个或2个3.抛物线y =x 2 –2x –3 的对称轴和顶点坐标分别是( )A .直线x =1,(1,-4)B .直线x =1,(1,4)C .直线x =-1,(-1,4)D .直线x =-1,(-1,-4)4.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式是( )A .2(1)3y x =--+B . 2(1)3y x =-++C .2(1)3y x =---D . 2(1)3y x =-+-5.函数2ax y =与b ax y +=(0a ≠,b<0)在同一坐标系中的大致图象为( )6.如图,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 ( )A .(2,3)B .(3,2)C .(3,3)D .(4,3)7.已知函数222--=x x y 的图象如图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是 ( )A .-1≤x ≤3B . -3≤x <1C . x ≥-3D . x ≥3 或x ≤-18.二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( )A . (—1,—1)B . (1,—1)C . (1,1)D . ( —1,1) 9. 已知二次函数772--=x kx y 的图象与x 轴有两个交点,则k 的取值范围为( )A .47->kB .47>k C .47->k 且0≠k D .0>k 10. 已知抛物线y=x ²-4x+3与x 轴相交于A.B (A 在B 左侧),顶点为M ,平移该抛物线,使点M 平移后对应点M ’落在x 轴上,点B 平移后的对应点B ’落在y 轴上,则平移后的抛物线解析式为( )A.y=x ²+2x+1B.y=x ²+2x-1C.y=x ²-2x+1D.y=x ²-2x-1二、填空题:(每小题3分,共24分)11.二次函数24(1)3y x =-+的图象的顶点坐标是 ,开口方向 .12.二次函数y =222k kx x ++的图象与x 轴的一个交点坐标为(2-,0),则k 的值是 .13.已知二次函数的图象开口向下,且与y 轴的正半轴相交,请你写出一个满足条件的二次函数表达第7题第17题式: .14.已知抛物线y =ax 2 +bx +c 的对称轴为x =2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_______________.15.已知方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,则抛物线y =ax 2+bx +c (a ≠0)的顶点在_______________.16.已知二次函数y =ax 2+bx +c 的图象如下图所示,则下列结论:①a +b +c > 0;② a -b +c < 0;③b=2a ;④b 2-4a c > 0;⑤ab c > 0 请写出你认为正确的所有结论的序号 .17. 二次函数23y x m x =-+的图象与x ,根据图中信息可得到m 的值是 .18.二次函数22y x x =--的取值范围是 .三、解答题:(共46分) 19.(10分)已知二次函数的图象过点)5 1(--,,)4 0(-,和)1 1(,,求这个二次函数的解析式。
九年级数学上学期第周围周测试题新人教版
灌云县2017-2018学年上学期第4周九年级数学试卷(时刻:100分钟 总分:150分)温馨提示:1.本试卷共6页,全卷总分值150分,考试时刻100分钟。
考生答题全数答在答题纸上,在草稿纸、试卷上答题无效。
2.请按题号顺序在各题目的答题区域内作答,超出答题区域的答案无效。
3.答题卡上作答内容不得利用胶带纸和涂改液,答错的用黑笔涂掉并在上(下)方空白处添上。
4.维持答题纸清洁,不要折叠、不要弄破。
一、选择题(每题4分,共32分)1.一元二次方程32x =5x 的二次项系数和一次项系数别离是( ). A 3,5 B 3,-5 C 3,0 D 5,0 2.以下方程中,是关于x 的一元二次方程的是( ).A ()()23121x x +=+ B211x x +-2=0 C 20ax bx c ++= D 2221x x x -=+3. 关于x 一元二次方程225250x x p p -+-+=的一个根为1,p =( ) A .4B .0或2C .1D .1-4.方程()()1132=-+x x 的解的情形是( ) A .有两个不相等的实数根 B .没有实数根 C .有两个相等的实数根 D .有一个实数根5.假设关于x 的一元二次方程的两个根为11x =,22x =,那么那个方程是( ) A.2320x x +-= B.2320x x -+= C.2230x x -+= D.2320x x ++= 6.依照以下表格对应值:x3.24 3.25 3.26 2ax bx c ++-0.020.010.03判定关于x 的方程20(0)ax bx c a ++=≠的一个解x 的范围是( ) A.x <3.24 B.3.24<x <3.25 C.3.25<x <3.26 D.3.26<x <3.28班级: 姓名: 考试号:7..以3、4为两边长的三角形的第三边长是方程040132=+-x x 的根,那么那个三角形的周长为( )A.15或12B.12C.15D.以上都不对8.某种花卉每盆的盈利与每盆的株数有必然的关系,每盆植3株时,平均每株盈利4元;假设每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,可列出的方程是( )A.340.515x x +-=)(()B.340.515x x ++=()() C.430.515x x +-=()()D.140.515x x +-=()()二.填空题(每题4分,共32分)9. 方程3(1)0x x +=的二次项系数是 ,一次项系数是 ,常数项是 . 10.x 的一元二次方程1(1)(2)30n n xn x n +++-+=中,一次项系数是 .11.一元二次方程2230x x --=的根是 .12.假设关于x 的一元二次方程()()22111x m x x x -++=+化成一样形式后二次项的系数为1,一次项的系数为-1,那么m 的值为 。
九年级上周周清测试数学试卷(一元二次方程)
清流城中九年级周周清测试班级姓名座号成绩一、填空题:〔每空3分,共27分〕1、把方程3x(x1)(x2)(x2)9化成一般式是;常数项是。
2、方程(x1)(x2)0的根是。
3、对于x的方程2x23x10实根.〔注:填写“有〞或“没有〞〕4、假如二次三项式x212x m1是一个完整平方式,那么m的取值为5、一个两位数,个位数字比十位数字大3,个位数字的平方恰好等于这个两位数,两位数。
6、对于x的方程3x22x m0的一个根为-1,那么方程的另一个根为_____。
7、请给c的一个值,c=时,方程x26x c0无实数根。
8、参加一次同学聚会,每两人都握一次手,全部人共握了45次,假定设共有x人参加同学聚会。
列方程得。
二、选择题:〔每题4分,共24分〕9、以下方程中,属于一元二次方程的是〔〕A.x2+4y+5=0.B.x25x x21C.3y2y60D、2x3x50410、假定0是一元二次方程(m1)x26xm210的一个根,那么m取值为〔〕A、1B、-1C、±1D、以上都不是11、用配方法解以下方程,此中应在左右两边同时加上4的是〔〕A、x22x5;B、2x24x5;C、x24x5;D、x22x5.12、直角三角形一条直角边和斜边的长分别是一元二次方程x216x600的一个实数根,那么该三角形的面积是〔〕A、24B、24或30C、48D、3013、以3和1为两根的一元二次方程是〔〕;A、x22x30B、x22x30C、x22x30D、x22x3014、某厂一月份的总产量为500吨,三月份的总产量抵达为720吨。
假定均匀每个月增率是x,那么可第1页共2页以列方程〔〕;A、500(12x)720B、500(1x)2720C、500(1x2)720D、720(1x)2500三、解答题:15、用适合的方法解一元二次方程〔每题5分,共30分〕〔1〕3x214x〔2〕x22x3990〔3〕2x27x 0 〔4〕〔6〕4x 6 (2x 3)216、〔6分〕假定对于x的方程x2-2x+k-1=0有实数根,那么 k的取值范围17、〔6分〕x1,x2是方程2x 23x40的两个根,求1122的值:x1x218、〔7分〕一张桌子的桌面长为6米,宽为4米,台布面积是桌面面积的2倍,假如将台布铺在桌子上,各边垂下的长度同样,求这块台布的长和宽.第2页共2页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学周周清(14)
一、选择题:(每题3分,共36分)
1、已知⊿ABC∽⊿A′B′C′,且BC:B′C′=AC:A′C′,若AC=3,A′C′=1.8,则△A′B′C′与△ABC的相似比
是()。
A. 2:3 B. 3:2 C. 5:3 D. 3:5
2、如图,Rt△ABC∽Rt△ACD,且AB=10cm,AC=8cm,则AD的长是()
A.2厘米 B.4厘米 C.6厘米 D.6.4厘米
3、如图,△ABC中,DE∥BC,AD=3,DB=2,则△ADE与△ABC的相似比是()
A 3:2 B.2:3 C.3:5 D.5:3
第2题第3题第5题第6题
4、△ABC中,AB=63,BC=15,AC=49,和它相似的三角形的最短边是5,则最长边是()
A.18 B.21 C.24 D.17
5、如图,在△ABC中,点D在BC上,在下列四个条件:①∠BAD=∠C;②∠ADC+∠BAC=180°;
③BA2=BD·BC;④中能使△BDA∽△BAC的条件有()
A.1个
B.2个
C.3个
D.4个
6、如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相
似三角形()
A 1对
B 2对
C 3对
D 4对
7、在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有()
A ΔADE∽ΔAEF
B ΔECF∽ΔAEF
C ΔADE∽ΔECF
D ΔAEF∽ΔABF
第7题第8题第12题第13题
8、如图,P是RtΔABC的斜边BC上异于B、C的一点,过点P做直线截ΔABC,使截得的三角
形与ΔABC相似,满足这样条件的直线共有()
A、 1条
B、 2条
C、 3条
D、 4条9、如图,在大小为4×4的正方形网格中,是相似三角形的是()
①②③④
A.①和②
B.②和③
C.①和③
D.②和④
10、下列各组图形一定相似的是().
A.有一个角相等的等腰三角形 B.有一个角相等的直角三角形
C.有一个角是100°的等腰三角形 D.有一个角是对顶角的两个三角形
11. 小刚身高1.7 m,测得他站立在阳光下的影子长为0.85 m,紧接着他把手臂竖直举起,测得影子长为1.1 m,那么小刚举起的手臂超出头顶()
A.0.5 m
B.0.55 m
C.0.6 m
D.2.2 m
12.如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC 于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()
A.11 B.10 C.9 D.8
二.填空题:(每题3分,共18分)
13、小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球
的高度h为.
第15题第16题第18题14.如图, C为线段AB上的一点,△ACM、△CBN都是等边三角形,若AC=3,BC=2,则△MCD与△BND的面积比为。
15.如图,梯形ABCD中,AD∥BC,AC、BD交于O点,S△AOD:S△COB=1:9,则S△DOC:S△BOC=
16.如图,身高为1.7m的小明AB站在河的一岸,利用树的倒影去测量河对岸一棵树CD的高度,CD在水中的倒影为C′D,A、E、C′在一条线上.已知河BD的宽度为12m,BE=3m,则树CD的高为.
17.如图,已知点D是AB边的中点,AF∥BC,CG∶GA=3∶1,BC=8,则AF=
18.如图,在Rt△ABC中,AB=BC,∠B=90°,AC=10 2.四边形BDEF是△ABC的内接正方形(点D、E、F在三角形的边上),则此正方形的面积是.
A
C
D
M
N
第14题
A
B
D
O
A
B
D
F
G
C
E
第17题
A
C
Q M D N P
E 三.解答题:(共66分)
19.(8分)如图,已知△ABC 的高CD 、BE 相交于点F ,
求证:CF ·FD=BF ·FE .
20
.
(10
分)已知:如图,AB 是半圆O 的直径,CD ⊥AB 于D 点,AD =4cm ,DB =9cm ,求CB 的长.
22. (12分)一天晚上,李明和张龙利用灯光下的影子来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立身高AM 与其影子长AE 正好相等,接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB =1.25m.已知李明直立时的身高为1.75m ,求路灯CD 的高.
21.(12分)如图,在▱ABCD 中,E 是CD 的延长线上一点,连接BE 交AD 于点F ,且AF =2FD .
(1)求证:△ABF ∽△CEB ;
(2)若△CEB 的面积为9,求▱ABCD 的面积.
21.(12分)如图10所示,E 是正方形ABCD 的边AB 上的动点, EF ⊥DE 交BC 于点F .(1)求证: ∆ADE ∽∆BEF ;(2)设正方形的边长为4, AE =x ,BF =y .当x 取什么值时, y 有最大值?并求出这个最大值.
24.(12分)如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把
它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上, (1)若这个矩形是正方形,那么边长是多少?
(2)若这个矩形的长是宽的2倍,则边长是多少?
B
C E D
F。