高中物理弹簧类模型中的最值问题

合集下载

高考物理 常见弹簧类问题分析

高考物理 常见弹簧类问题分析

常见弹簧类问题分析

高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.

弹簧类命题突破要点

1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.

2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.

3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.

下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。

一、与物体平衡相关的弹簧问题

1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2,两轻质

弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴

弹簧模型问题

弹簧模型问题

1 Ep-μ(mBg+E1q)L= mBvB 2 2 vB=15 m/s 1 两球碰后结合为C,则C的速度为vC= vB=5 m/s 3 B与A碰撞过程中损失的机械能 1 1 2 ΔE= mBvB - (mA+mB)vC 2=1.5 J 2 2 (2)电场变化后,因E2q-mCg=0.6 N vC 2 mC R =0.3 N 所以C不能做圆周运动,而是做类平 抛运动, 由运动学规律得 (2分) 设经过时间t绳子在Q(x,y)处绷紧,
1 撞前后电荷量保持不变,碰后 C 的速度为碰前 B 速度的 .碰后 3 立即把匀强电场方向变为竖直向上,场强大小变为 E2=6× 103 N/C.(取 g=10 m/s2)求: (1)B 与 A 碰撞过程中损失的机械能.
(2)碰后 C 是否立即做圆周运动?如果是,求 C 运动到最高点时绳的拉力大小;如果不是, 则 C 运动到什么位置时绳子再次绷紧?
竖直方向h gt 2, 联立并代入数据解得s 1.2m
3 小钢珠在A点竖直方向分速度v Ay

2 gh 4m / s
vA y 4 24 tan ,得 53,即圆心角q 106(或tan ). 2 v 3 7 4 小钢珠从A点至O点机械能守恒, 1 1 2 2 有 m(v v Ay ) mgr(1 cos ) mv2 2 2 2 v2 在O点时FN mg m 联立并代入数据解得FN 8.6N r 根据牛顿第三定律知小钢珠对轨道的压力大小FN 8.6N

高中物理弹簧问题考点大全及常见典型考题

高中物理弹簧问题考点大全及常见典型考题

常见弹簧类问题分析

高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.

弹簧类命题突破要点

1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.

2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.

一、与物体平衡相关的弹簧问题

1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质

弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴

接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离

开上面弹簧.在这过程中下面木块移动的距离为( )

A.m1g/k1

B.m2g/k2

C.m1g/k2

D.m2g/k2

此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g /k2=m l g/k2.

高中物理-弹簧问题

高中物理-弹簧问题

弹簧问题

轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。

无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零。

弹簧读数始终等于任意一端的弹力大小。

弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。

性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。

其伸长量等于弹簧任意位置受到的力和劲度系数的比值。

性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;

有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。

性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。

分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。

弹簧问题的题目类型

1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)

2、求与弹簧相连接的物体的瞬时加速度

3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化)

4、有弹簧相关的临界问题和极值问题

除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题

1、弹簧问题受力分析

受力分析对象是弹簧连接的物体,而不是弹簧本身

找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。(灵活运用整体法隔离法);

通过弹簧形变量的变化来确定物体位置。(高度,水平位置)的变化

高考物理弹簧类问题的几种模型及其处理方法归纳

高考物理弹簧类问题的几种模型及其处理方法归纳
2 过程中所加外力F的最大值和最小值。 ⑵此过程中力F所做的功。(设整个过程弹簧都在弹性限度内,取 g=10m/s2)
分析:此题考查学生对A物体上升过程中详细运动过程的理解。在力 F刚刚作用在A上时,A物体受到重力mg,弹簧向上的弹力T,竖直向上的 拉力F。随着弹簧压缩量逐渐减小,弹簧对A的向上的弹力逐渐减小,则 F必须变大,以满足F+T-mg=ma。当弹簧恢复原长时,弹簧弹力消失,只 有F-mg=ma;随着A物体继续向上运动,弹簧开始处于拉伸状态,则物体 A的受到重力mg,弹簧向下的弹力T,竖直向上的拉力F,满足F-Tmg=ma。随着弹簧弹力的增大,拉力F也逐渐增大,以保持加速度不变。 等到弹簧拉伸到足够长,使得B物体恰好离开地面时,弹簧弹力大小等 于B物体的重力。
(2)弹簧压缩形变恢复过程:过了两物体速度相等这个瞬间,由于 弹簧仍然处于压缩状态,A继续减速,B继续加速,这就会使得B的速度 变的比A的速度大,于是A、B物体之间的距离开始变大,弹簧逐渐恢复 形变直至原长。
(3)弹簧的拉伸过程:由于B的速度比A的速度大,弹簧由原长变为 拉伸状态。此时,弹簧对两物体的弹力方向向内,使A向右加速运动,B 向右减速运动,直到A、B速度相等时弹簧拉伸到最长状态。
,若物体或系统动能增加了,势能必然减小,且增加的动能等于减 小的势能。
此类模型是涉及弹簧在内的系统机械能守恒,在这类模型中,一般 涉及动能、重力势能和弹性势能,列等式一般采用“转移式”或“转化 式”。

高中物理复习——弹簧专题

高中物理复习——弹簧专题

一、“轻弹簧”类问题

在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向

的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加

速度为 ,弹簧秤的读数为 .

【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m

-=

仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .

说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.

【答案】12F F a m

-= 1F

二、质量不可忽略的弹簧

【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹

簧平放在光滑的水平面,在弹簧右端施加一水平力

F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M

=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力

为:

【答案】x x

T F L

=

三、弹簧的弹力不能突变(弹簧弹力瞬时)问题

弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a =

高中物理复习-弹簧类问题分类例析

高中物理复习-弹簧类问题分类例析
(7)
即物块向上运动到达的最高点距O点的距离。
评析:该题综合性很强,物理情景复杂,物理过程较多,难度较大,运用公式较多。此题主要用来考查学生分析、综合、推理判断能力,还考查了机械能守恒定律以及动量守恒定律的应用。解这种类型试题时,要认真分析物理全过程中有哪些物理现象,找到每一现象所对应的物理规律,并从这些规律所反映的各类物理量的关系,获得所求量的定性解释或定量计算。
评析:简谐运动的对称性在弹簧问题的运动上有广泛的应用,因此在解决有关于位移、速度、加速度及力的变化时,经常用到。
二、用胡克定律解题
例2如图2所示,两木块的质量分别为和,两轻质弹簧的劲度系数分别为和,上面木块压在上面的弹簧上(但不栓接),整个系统处于平衡状态。现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为()
解析:本题涉及两个物理过程,第一过程就是m下落与钢板的作用过程,第二过程就是2m下落与钢板的作用过程。第一过程包括:自由落体、碰撞、振动3个过程;第二过程包括:自由落体、碰撞、振动、竖直上抛4个过程。此题涉及的物理过程有4个,用到的物理规律和公式有4个,它将动量守恒和机械能守恒完美地统一在一起,交替使用,可以说是一道考查考生能力的好试题。
弹簧类问题分类例析
王培伟孙向锋
弹簧作为一种工具和模型,在各地历年高考中经常出现,笔者经过多年的研究,现分类总结如下:
一、应用对称Hale Waihona Puke Baidu解题

弹簧模型专题(有答案)

弹簧模型专题(有答案)

高中物理弹簧模型专题

一、弹簧称的示数

例1.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上;②中弹簧的左端受大小也为 F 的拉力作用;③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以 l 1、l 2、l 3、l 4依次表示四个弹簧的伸

长量,则判断l 1、l 2、l 3、

l 4的大小关系。

变式训练.一个质量为m 的物体在一弹簧称的作用下沿竖直向上做加速度为a 的匀加速直线运动,忽略空气阻力,重力加速度为g ,求弹簧称的示数.

规律总结:弹簧称的示数等于轻质弹簧一端的拉力大小,并不一定等于物体的重力

二、与物体平衡相关的弹簧问题

例2.如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现

缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移

动的距离为 ( C )

A.m 1g/k 1

B.m 2g/k 2

C.m 1g/k 2

D.m 2g/k 2

三、弹簧的瞬时性问题

例3.质量分别为m 和2m 的小球P 、Q 用轻弹簧相连,P 用细线悬挂在天花板下,

开始系统处于静止。求:

(1)剪断细线瞬间,P 、Q 的加速度

(2)剪断弹簧瞬间,P 、Q 的加速度 变式训练.如图所示,小球P 、Q 质量均为m ,分别用轻弹簧b 和细线c 悬挂在天

花板下,再用另一细线d 、e 与左边的固定墙相连,静止时细线d 、e 水平,b 、c 与竖直方向夹角均为θ=37º。下列判断正确的是

弹簧问题类型含答案

弹簧问题类型含答案

弹簧问题类型

轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。

无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。合力恒等于零。

弹簧读数始终等于任意一端的弹力大小。

弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。

性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。

其伸长量等于弹簧任意位置受到的力和劲度系数的比值。

性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;

有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。

性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。

分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。

弹簧问题的题目类型

1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)

2、求与弹簧相连接的物体的瞬时加速度

3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断vSaF变化)

4、有弹簧相关的临界问题和极值问题

除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题

1、弹簧问题受力分析

受力分析对象是弹簧连接的物体,而不是弹簧本身

找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。(灵活运用整体法隔离法);

通过弹簧形变量的变化来确定物体位置。(高度,水平位置)的变化

动量之弹簧类问题

动量之弹簧类问题

动量之弹簧类问题

第一部分弹簧类典型问题

1.弹簧类模型的最值问题

在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

1、最大、最小拉力

例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。求此过程中所加外力的最大和最小值。

图1

2、最大高度

例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端

。一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x

3

x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0

它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。

图2

3、最大速度、最小速度

例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。

高考物理弹簧类问题的几种模型及其处理方法归纳

高考物理弹簧类问题的几种模型及其处理方法归纳

弹簧类问题的几种模型及其处理方法

学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。

一、弹簧类命题突破要点

1.弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。

2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。

3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。弹

性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。

二、弹簧类问题的几种模型

1.平衡类问题

例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。在此过程中,m2的重力势能增加了

高考物理弹簧模型例题解析

高考物理弹簧模型例题解析

高考物理弹簧模型例题解析

在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,如果你感到困难,本文就此类问题逐一归类分析。

最大、最小拉力问题

例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s

2)。求此过程中所加外力的最大和最小值。

最大高度问题

2019-12-07

高中物理

最大速度、最小速度问题

例3. 如图3所示,一个劲度系数为k的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m的平板B相连而处于静止状态。今有另一质量为m的物块A从B的正上方h高处自由下落,与B发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v。

最大转速和最小转速问题

最大加速度问题

例6. 两木块A、B质量分别为m、M,用劲度系数为k的轻质弹簧连在一起,放在水平地面上,如图6所示,用外力将木块A压下一段距离静止,释放后A做简谐运动,在A振动过程中,木块B刚好始终未离开地面,求木块A的最大加速度。

最大振幅

例7. 如图7所示,小车质量为M,木块质量为m,它们之间静摩擦力最大值为Ff,轻质弹簧劲度系数为k,振动系统沿水平地面做简谐运动,设木块与小车间未发生相对滑动,小车振幅的最大值是多少?

高考物理弹簧类问题专题复习

高考物理弹簧类问题专题复习

高考物理弹簧类问题专题复习

《弹簧问题专题》教案

一、学习目标

轻弹簧是一种理想化的物理模型,该模型是以轻弹簧为载体,设置复杂的物理情景,可以考查力的概念、物体的平衡、牛顿定律的应用、能的转化与守恒,以及我们分析问题、解决问题的能力,所以在高考命题中时常出现这类问题,也是高考的难点之一。

二、有关弹簧题目类型

1、平衡类问题

2、突变类问题

3、简谐运动型弹簧问题

4、功能关系型弹簧问题

5、碰撞型弹簧问题

6、综合类弹簧问题

三、知能演练

1、平衡类问题

例1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )

A.m1g/k1

B.m2g/k2

C.m1g/k2

D.m2g/k2

解析:我们把看成一个系统,当整个系统处于平衡状态时,整个

系统受重力和弹力,即

当上面木块离开弹簧时,受重力和弹力,则

【例2】、(2012 浙江)14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg的物体。细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。物体静止在斜面上,弹簧秤的示数为4.9N。关于物体受力的

判断(取g=9.8m/s2),下列说法正确的是C

A.斜面对物体的摩擦力大小为零

B. 斜面对物体的摩擦力大小为4.9N,方向沿斜面向上

C. 斜面对物体的摩擦力大小为4.9N,方向沿斜面向下

D. 斜面对物体的摩擦力大小为4.9N,方向垂直斜面向上

高考弹簧专题

高考弹簧专题

弹簧专题

一、“轻弹簧”类问题

在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F ,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .

二、质量不可忽略的弹簧

【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.

三、弹簧的弹力不能突变(弹簧弹力瞬时)问题

弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a =

【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为0

专题:受力分析之弹簧问题

专题:受力分析之弹簧问题

弹簧类问题的几种模型及其处理方法

学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析。

一、弹簧类命题突破要点

1.弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。

2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。

3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。同时要注意弹力做功的特点:弹力做

功等于弹性势能增量的负值。弹性势能的公式,高考不作定量要求,可作定性讨论,

因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。

二、弹簧类问题的几种模型

1.平衡类问题

例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为

m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴

高中物理弹簧类模型中的最值问题

高中物理弹簧类模型中的最值问题

弹簧类模型

一、最大、最小拉力问题

例例1. 1. 一个劲度系数为一个劲度系数为k =600N/m 的轻弹簧,

两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,将它们竖直静止地放在水平地面上,如图如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s 0.5s,,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2

)。求此过程中所加外力的最大和最小值。。求此过程中所加外力的最大和最小值。

图1

解析:开始时弹簧弹力恰等于解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量D l mg k

m ==025.,0.5s 末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,D D l l m '.==025,故对A 物体有

212

2

D l at =,代入数据得a m s =42/。刚开始时F 为最小且F ma N N min =

==15460×,B 物体刚要离开地面时,物体刚要离开地面时,F F 为最大且有F

mg mg ma max --=,解得F mg ma N max =+=

2360。 二、最大高度问题

例例2. 2. 如图如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。点的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹簧类模型

一、最大、最小拉力问题

例1. 一个劲度系数为k =600N/m 的轻弹簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F 在物体A 上,使物体A 开始向上做匀加速运动,经0.5s ,B 物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g =10m/s 2

)。求此过程中所加外力的最大和最小值。

图1

解析:开始时弹簧弹力恰等于A 的重力,弹簧压缩量∆l mg

k

m =

=025.,0.5s 末B 物体刚要离开地面,此时弹簧弹力恰等于B 的重力,∆∆l l m '.==025,故对A 物体有

212

2

∆l at =

,代入数据得a m s =42/。刚开始时F 为最小且F ma N N min ===15460×,B 物体刚要离开地面时,F 为最大且有

F mg mg ma max --=,解得F mg ma N max =+=2360。

二、最大高度问题

例2. 如图2所示,质量为m 的钢板与直立弹簧的上端连接,弹簧下端固定在地面上,平衡时弹簧的压缩量为x 0。一物体从钢板正上方距离为30x 的A 处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点,若物体质量为2m 仍从A 处自由下落,则物块与钢板回到O 点时还有向上的速度,求物块向上运动到达的最高点与O 点的距离。

图2

解析:物块碰撞钢板前作自由落体运动,设v 0表示物块与钢板碰撞时的速度,则:

v gx 006= ①

物块与钢板碰撞后一起以v 1速度向下运动,因碰撞时间极短,碰撞时遵循动量守恒,即:mv mv 012= ②

刚碰完时弹簧的弹性势能为E p ,当它们一起回到O 点时,弹簧无形变,弹性势能为0,根据机械能守恒有:E m v mgx p +

=1

2

22120() ③ 设v 2表示质量为2m 的物块与钢板碰撞后开始向下运动的速度,由动量守恒有:

2302mv mv = ④

碰撞后,当它们回到O 点时具有一定速度v ,由机械能守恒定律得: E m v mgx m v p +

=+123312

32202()() ⑤ 当质量为2m 的物块与钢板一起回到O 点时两者分离,分离后,物块以v 竖直上升,

其上升的最大高度:h v g

=2

2 ⑥

解①~⑥式可得h x =

2

。 三、最大速度、最小速度问题 例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。

图3

解析:A 下落到与B 碰前的速度v 1为: v gh 12= ①

A 、

B 碰后的共同速度v 2为:mv m m v 12=+() ② B 静止在弹簧上时,弹簧的压缩量为x 0,且: mg kx =0 ③

A 、

B 一起向下运动到最大速度v 时的位移为x ,此时A 、B 的加速度为0,即有:

20mg k x x =+() ④

由机械能守恒得: 212212

2222mgx m v m v E p +

=+()()∆ ⑤ ∆E m v p =

1

2

22() ⑥ 解①~⑥得:v mg k gh =

+21

4

例4. 在光滑水平面内,有A 、B 两个质量相等的木块,m m kg A B ==2,中间用轻质弹簧相连。现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。

图4

解析:当撤除恒力F 后,A 做加速度越来越小的加速运动,弹簧等于原长时,加速度等于零,A 的速度最大,此后弹簧压缩到最大,当弹簧再次回复原长时速度最小,根据动

量守恒得:2mv mv mv A B =+ ① 根据机械能守恒得:1001212

22

=

+mv mv A B ② 由以上两式解得木块A 的最小速度v =0。 四、最大转速和最小转速问题

例5. 有一水平放置的圆盘,上面放一个劲度系数为k 的轻弹簧,其一端固定于轴O 上,另一端系着质量为m 的物体A ,物体A 与盘面间最大静摩擦力为F fm ,弹簧原长为L ,现将弹簧伸长∆L 后置于旋转的桌面上,如图5所示,问:要使物体相对于桌面静止,圆盘转速n 的最大值和最小值各是多少?

图5

解析:当转速n 较大时,静摩擦力与弹簧弹力同向,即: k L F m n L L fm ∆∆+=+()()212

π ① n k L F m L L fm 11

2=

++π

∆∆()

当转速n 较小时,静摩擦力与弹簧弹力反向,即: k L F m n L L fm ∆∆-=+()()222

π ② n k L F m L L fm 212=

-+π

∆∆()

所以圆盘转速n 的最大值和最小值分别为:

12π

k L F m L L fm ∆∆++()

12π

k L F m L L fm ∆∆-+()

五、最大加速度问题

例6. 两木块A 、B 质量分别为m 、M ,用劲度系数为k 的轻质弹簧连在一起,放在水平地面上,如图6所示,用外力将木块A 压下一段距离静止,释放后A 做简谐运动,在A 振动过程中,木块B 刚好始终未离开地面,求木块A 的最大加速度。

相关文档
最新文档