Materials_Properties_Database
宇航结构金属数据库(ASMD)
CINDAS LLC及其材料性能数据库介绍CINDAS出版社CINDAS是情报与数值数据分析和综合中心(the Center for Information and Numerical Data Analysis and Synthesis)的缩写。
它是普渡大学(Purdue University)的一个部门,由美国国防部资助。
它专门从事材料性能和处理领域的复杂的和系统的研究项目长达45年,承担着类似于中国的国家实验室情报处理中心的作用。
CINDAS LLC是源自普渡大学的衍生公司,它是唯一被授权发布由CINDAS收集和分析的材料性能数据的机构。
从1960年到1996年间,CINDAS为美国国防部运营着5个信息分析中心(Information Analysis Centers,IACs)。
作为美国国防部的信息分析中心,CINDAS出版了多卷关于材料的机械性能、热物理性能、光学性能和热辐射性能的数据报告和手册,涉及的材料比如金属合金、铝化合物、硅化合物、铍化合物、陶瓷基复合材料、汞、镉碲合金、特级红外窗体与屋顶材料等。
此外,从1992年开始,CINDAS还负责为美国空军(United States Air Force, USAF)更新和发布多部手册,其中最著名的就是宇航结构金属手册。
根据CINDAS LLC与美国空军的合作研发协议,CINDAS LLC负责为其进行宇航结构金属数据库的研制和开发,以及该数据库的技术维护和销售。
----------------------------------------------------------------------------------------------------------------------------------------宇航结构金属数据库(Aerospace Structural Metals Database, ASMD)ASMD是宇航结构金属手册(Aerospace Structural Metals Handbook,ASMH)的网络版。
低温材料物性表
低温材料物性表Presented at the 11th International Cryocooler ConferenceJune 20-22, 2000Keystone, Co Cryogenic Material Properties Database Cryogenic Material Properties DatabaseE.D. Marquardt, J.P. Le, and Ray RadebaughNational Institute of Standards and TechnologyBoulder, CO 80303ABSTRACTNIST has published at least two references compiling cryogenic material properties. These include the Handbook on Materials for Superconducting Machinery and the LNG Materials & Fluids. Neither has been updated since 1977 and are currently out of print. While there is a great deal of published data on cryogenic material properties, it is often difficult to find and not in a form that is convenient to use. We have begun a new program to collect, compile, and correlate property information for materials used in cryogenics. The initial phase of this program has focused on picking simple models to use for thermal conductivity, thermal expansion, and specific heat. We have broken down the temperature scale into four ranges: a) less than 4 K, b) 4 K to77 K, c) 77 K to 300 K, and d) 300 K to the melting point. Initial materials that we have compiled include oxygen free copper, 6061-T6 aluminum, G-10 fiberglass epoxy, 718 Inconel, Kevlar, niobium titanium (NbTi), beryllium copper, polyamide (nylon), polyimide, 304 stainless steel, Teflon, and Ti-6Al-4V titanium alloy. Correlations are given for each material and property over some of the temperature range. We will continue to add new materials and increase the temperature range. We hope to offer these material properties as subroutines that can be called from your own code or from within commercial software packages. We will also identify where new measurements need to be made to give complete property prediction from 50 mK to the melting point.INTRODUCTIONThe explosive growth of cryogenics in the early 50’s led to much interest in material properties at low temperatures. Important fundamental theory and measurements of low temperature material properties were performed in the 50’s, 60’s, and 70’s. The results of this large amount of work has become fragmented and dispersed in many different publications, most of which are out of print and difficult to find. Old time engineers often have a file filled with old graphs; young engineers often don’t know how to find this information. Since most of the work was performed before the desktop computer became available, when data can be found, it is published in simple tables or graphically, making the information difficult to accurately determine and use.NIST has begun a program to gather cryogenic material property data and make it available in a form that is useful to engineers. Initially we tried to use models based upon fundamental physics but it soon became apparent that the models could not accurately predict properties overTable 1A . Coefficients for thermal conductivity for metals.Coeff.6061 -T6 Aluminum 304 SS 718 Inconel Beryllium copper Ti-6Al-4V a0.07918 -1.4087 -8.28921 -0.50015 -5107.8774 b1.09570 1.3982 39.4470 1.93190 19240.422 c-0.07277 0.2543 -83.4353 -1.69540 -30789.064 d0.08084 -0.6260 98.1690 0.71218 27134.756 e0.02803 0.2334 -67.2088 1.27880 -14226.379 f-0.09464 0.4256 26.7082 -1.61450 4438.2154 g0.04179 -0.4658 -5.72050 0.68722 -763.07767 h-0.00571 0.1650 0.51115 -0.10501 55.796592 I0 -0.0199 0 0 0 data range 4-300 K 4-300 K 4-300 K 4-300 K 20-300 Ka large temperature range and over different materials. Our current approach is to choose a few simple types of equations such as polynomial or logarithmic polynomials and determine the coefficients of different materials and properties. This will allow engineers to use the equations to predict material properties in a variety of ways including commercial software packages or their own code. Integrated and average values can easily be determined from the equations. These equations are not meant to provide any physical insight into the property or to provide ‘standard’ values but are for working engineers that require accurate values.MATERIALSInitial materials that we have compiled include oxygen free copper, 6061-T6 aluminum, G-10CR fiberglass epoxy, 718 Inconel, Kevlar 49, niobium titanium (NbTi), beryllium copper, polyamide (nylon), polyimide, 304 stainless steel, Teflon, and Ti-6Al-4V titanium alloy. These were chosen as some of the most common materials used in cryogenic systems in a variety of fields.MATERIAL PROPERTIESThermal ConductivityWidely divergent values of thermal conductivity for the same material are often reported in the literature. For comparatively pure materials (like copper), the differences are due mainly to slight material differences that have large effects on transport properties, such as thermal conductivity, at cryogenic temperatures. At 10 K, the thermal conductivity of commercial oxygen free copper for two samples can be different by more then a factor of 20 while the same samples at room temperature would be within 4%. It is also not uncommon for some experimental results to have uncertainties as high as 50%. Part of our program is to critically evaluate the literature to determine the best property values. Data references used to generate predictive equations will be reported.The general form of the equation for thermal conductivity, k , islog()log (log )(log )(log )(log )(log )(log )(log ),k a b T c T d T e T f T g T h T i T =++++++++2345678 (1)where a , b , c , d, e , f , g , h , and i are the fitted coefficients, and T is the temperature. These are common logarithms. While this may seem like an excessive number of terms to use, it was determined that in order to fit the data over the large temperature range, we required a large number of terms. It should also be noted that all the digits provided for the coefficients should be used, any truncation can lead to significant errors. Tables 1A and 1B show the coefficients for a variety of metals and non-metals. Equation 2 is the thermal conductivity for an average sample of oxygen free copper. It should be noted that thermal conductivity for oxygen free copper canTable 1B . Coefficients for thermal conductivity for non-metals.Coeff. Teflon Polyamide (nylon) Polyimide (Kapton) G10 CR (norm) G10 CR(warp)a2.7380 -2.6135 5.73101 -4.1236 -2.64827 b-30.677 2.3239 -39.5199 13.788 8.80228 c89.430 -4.7586 79.9313 -26.068 -24.8998 d-136.99 7.1602 -83.8572 26.272 41.1625 e124.69 -4.9155 50.9157 -14.663 -39.8754 f-69.556 1.6324 -17.9835 4.4954 23.1778 g23.320 -0.2507 3.42413 -0.6905 -7.95635 h-4.3135 0.0131 -0.27133 0.0397 1.48806 I0.33829 0 0 0 -0.11701 data range 4-300 K4-300 K 4-300 K 10-300 K 12-300 K Figure 1. Thermal conductivity of various materials.vary widely depending upon the residual resistivity ratio, RRR, and this equation should be used with caution. The thermal conductivities are displayed graphically in Figure 1.log .............k T T T T T T T T =?+?+?+?+22154088068029505004831000032071047461013871002043000012810515205152(2) Specific HeatThe specific heat is the amount of heat energy per unit mass required to cause a unit increase in the temperature of a material, the ratio of the change in energy to the change in temperature. Specific heats are strong functions of temperature, especially below 200 K. Models for specific heat began in the 1871 with Boltzmann and were further refined by Einstein and Debye in the early part of the 20th century. While there are many variations of these first models, they generally only provide accurate results for materials with perfect crystal lattice structures. TheTable 2. Coefficients for specific heat. Coeff. OFCHcopper 6061 -T6 Aluminum 304 SS G-10 Teflon a-1.91844 46.6467 22.0061 -2.4083 31.8825 b-0.15973 -314.292 -127.5528 7.6006 -166.519 c8.61013 866.662 303.6470 -8.2982 352.019 d-18.99640 -1298.30 -381.0098 7.3301 259.981 e21.96610 1162.27 274.0328 -4.2386 -104.614 f-12.73280 -637.795 -112.9212 1.4294 24.9927 g3.54322 210.351 24.7593 -0.24396 -3.20792 h-0.37970 -38.3094 -2.239153 0.015236 0.165032 I0 2.96344 0 0 0 data range 3-300 K 3-300 K 3-300 K 3-300 K 3-300 KFigure 2. Specific heat of various materials.specific heat of many of the engineering materials of interest here is not described well by these simple models. The general form of the equation is the same as Equation 1. Table 2 shows the coefficients for the specific heat. Figure 2 graphically shows the specific heats.Thermal ExpansionFrom an atomic perspective, thermal expansion is caused by an increase in the average distance between the atoms. This results from the asymmetric curvature of the potential energy versus interatomic distance. The anisotropy results from the differences in the coulomb attraction and the interatomic repulsive forces.Different metals and alloys with different heat treatments, grain sizes, or rolling directions introduce only small differences in thermal expansion. Thus, a generalization can be made that literature values for thermal expansion are probably good for a like material to within 5%. This is because the thermal expansion depends explicitly on the nature of the atomic bond, and only those changes that alter a large number of the bonds can affect its value. In general, largeTable 3A . Integrated Linear Thermal Expansion Coefficients for Metals.Coeff.6061 -T6 Aluminum 304 SS 718 Inconel Beryllium copper Ti-6Al-4V NbTi a-4.1272E+02 -2.9546E+02-2.366E+02-3.132E+02-1.711E+02 -1.862E+02b-3.0640E-01 -4.0518E-01-2.218E-01-4.647E-01-2.171E-01 -2.568E-01 c8.7960E-03 9.4014E-03 5.601E-03 1.083E-02 4.841E-03 8.334E-03 d-1.0055E-05 -2.1098E-05-7.164E-06-2.893E-05-7.202E-06 -2.951E-05 e0 1.8780E-080 3.351E-080 3.908E-08 data range 4-300 K 4-300 K 4-300 K 4-300 K 4-300 K 4-300 KTable 3B. Integrated Linear Thermal Expansion Coefficients for Non-metals.Coeff. Teflon Polyamide G10 CR (norm) G10 CR(warp)a-2.165E+03 -1.389E+03-7.180E+02-2.469E+02 b3.278E+00 -1.561E-01 3.741E-01 2.064E-01 c-8.218E-03 2.988E-02 8.183E-03 3.072E-03 d7.244E-05 -7.948E-05-3.948E-06-3.226E-06 e0 1.181E-07 0 0 data range 4-300 K 4-300 K 4-300 K 4-300 Kchanges in composition (10 to 20%) are necessary to produce significant changes in the thermal expansion (~5%), and different heat treatments or conditions do not produce significant changes unless phase changes are involved.8Most of the literature reports the integrated linear thermal expansion as a percent change in length from some original length generally measured at 293 K,()/.L L L T ?293293 (3) Where L T is the length at some temperature T and L 293 is the length at 293 K. While this is a practical way of measuring thermal expansion, the more fundamental property is the coefficient of linear thermal expansion,α,α()().T L dL T dT=1 (4) The coefficient of linear thermal expansion is much less reported in the literature. In principal, we can simply take the derivative of the integrated linear thermal expansion that results in the coefficient of linear thermal expansion. While we have had success with this method over limited temperature ranges, we have not yet determined an equation form for the integrated expansion value that results in a good approximation of coefficient of linear thermal expansion. For the time being, we will report the integrated linear thermal expansion as a change in length and provide the coefficient of linear thermal expansion when it is directly reported in the literature. The general form of the equation for integrated linear thermal expansion is L L L a bT cT dT eT T ?=++++??293293234510(). (5) Tables 3A and 3B provide the coefficients for the various materials while Figure 3 plots the integrated linear thermal expansions.FUTURE PLANSWe plan to continually add new materials, properties, and to expand the useful temperature range of the predictive equations for engineering use. We will report results in the literature but will also update our website on a continual basis. The initial phase of the program was a learningFigure 3. Integrated linear thermal expansion of various materials.experience on how to handle the information in the literature as well as for the development of a standard set of basic equation types used to fit experimental data. By using just a few types of equations, we hope to make the information easier to use. We shall now focus on developing large numbers of equations for a variety of materials and properties. Please check our web site at /doc/e6c9c70608a1284ac85043da.html /div838/cryogenics.html for updated information.REFERENCES1. Berman, R., Foster, E.L., and Rosenberg, H.M., "The Thermal Conductivity of SomeTechnical Materials at Low Temperature." Britain Journal of Applied Physics, 1955. 6: p.181-182.2. Child, G., Ericks, L.J., and Powell, R.L., Thermal Conductivity of Solids at RoomTemperatures and Below. 1973, National Bureau of Standards: Boulder, CO.3. Corruccini, R.J. and Gniewek, J.J., Thermal Expansion of Technical Solids at LowTemperatures. 1961, National Bureau of Standards: Boulder, CO.4. Cryogenic Division, Handbook on Materials for Superconducting Machinery. Mechanical,thermal, electrical and magnetic properties of structure materials. 1974, National Bureau of Standards: Boulder, CO.5. Cryogenic Division, LNG Materials and Fluids. 1977, National Bureau of Standards:Boulder, CO.6. Johnson, V.J., WADD Technical Report. Part II: Properties of Solids. A Compendium ofThe Properties of Materials at Low Temperature (phase I). 1960, National Bureau of Standard: Boulder, CO.7. Powells, R.W., Schawartz, D., and Johnston, H.L., The Thermal Conductivity of Metals andAlloys at Low Temperature. 1951, Ohio State University.8. Reed, R.P. and Clark, A.F., Materials at Low Temperature. 1983, Boulder, CO: AmericanSociety for Metals.9. Rule, D.L., Smith, D.R., and Sparks, L.L., Thermal Conductivity of a Polyimide FilmBetween 4.2 and 300K, With and Without Alumina Particles as Filler. 1990, National Institute of Standards and Technology: Boulder, CO.10. Simon, N.J., Drexter, E.S., and Reed, R.P., Properties of Copper Alloys at CryogenicTemperature. 1992, National Institute of Standards and Technology: Boulder, CO.11. Touloukian, Y.S., Recommended Values of The Thermophysical Properties of Eight Alloys,Major Constituents and Their Oxides. 1965, Purdue University.12. Veres, H.M., Thermal Properties Database for Materials at Cryogenic Temperatures. Vol. 1.13. Ziegler, W.T., Mullins, J.C., and Hwa, S.C.O., "Specific Heat and Thermal Conductivity ofFour Commercial Titanium Alloys from 20-300K," Advances in Cryogenic Engineering Vol. 8, pp. 268-277.。
material studio
material studioMaterial StudioIntroduction:Material Studio is a versatile software package that is designed for modeling, visualizing, and analyzing various materials at the atomic and molecular level. It is a powerful tool for researchers and scientists in the field of materials science, chemistry, and engineering to study the properties and behavior of different materials. This document aims to provide an overview of Material Studio, its features, and its applications.Features:1. Material Modeling: Material Studio provides a wide range of tools and modules for modeling different materials. It allows users to construct molecular structures, simulate their behavior under various conditions, and analyze their properties. The software supports various modeling techniques such as molecular dynamics, Monte Carlo simulations, and quantum chemistry calculations.2. Visualization: Material Studio offers advanced visualization capabilities that enable users to visualize and explore the structures and properties of materials. It provides a variety of tools for rendering 3D structures, generating molecular graphics, and creating interactive visualizations. The software supports interactive plot creation, molecular animations, and high-resolution rendering.3. Property Analysis: Material Studio includes a wide range of tools for analyzing the properties of materials. It allows users to calculate various properties such as energy, force field parameters, thermodynamic properties, and electronic properties. The software also provides tools for analyzing crystal structures, calculating phase diagrams, and predicting material properties based on empirical models.4. Database Integration: Material Studio allows users to access various material databases and integrate them with their modeling and analysis workflows. It provides tools to search, retrieve, and import experimental and theoretical data from databases such as the Cambridge Structural Database, Materials Project, and NIST databases. The software also enables users to create and share their own material databases.Applications:1. Drug Discovery: Material Studio plays a crucial role in drug discovery by enabling researchers to model and analyze the interactions between drugs and biological targets. It allows users to predict drug binding affinities, optimize drug structures, and study drug-protein interactions. The software also provides tools for virtual screening, ligand docking, and molecular dynamics simulations.2. Nanotechnology: Material Studio is widely used in the field of nanotechnology to study the properties of nanomaterials and nanostructures. It enables researchers to simulate and analyze the behavior of nanoparticles, nanotubes, and nanowires. The software provides tools for calculating electronic properties, mechanical properties, and optical properties of nanostructures.3. Catalysis: Material Studio is extensively used in the study of catalysis to understand the mechanisms and kinetics of chemical reactions. It allows researchers to model and analyze the behavior of catalysts and reaction intermediates. The software provides tools for simulating reaction pathways, calculating reaction energies, and predicting catalytic activity.4. Energy Materials: Material Studio is valuable for the study of energy materials such as batteries, fuel cells, and solar cells. It enables researchers to model and analyze the properties ofmaterials used in energy conversion and storage devices. The software provides tools for simulating electrochemical processes, calculating charge transfer energies, and optimizing material structures for improved performance.Conclusion:Material Studio is a comprehensive software package that offers powerful tools for modeling, visualizing, and analyzing materials at the atomic and molecular level. Its wide range of features and applications make it an indispensable tool for researchers and scientists in the field of materials science. Whether it is for drug discovery, nanotechnology, catalysis, or energy materials research, Material Studio provides the necessary tools to advance scientific understanding and accelerate the development of new materials and technologies.。
materials project 材料分类
materials project 材料分类英文版Materials Project: Classification of MaterialsThe Materials Project is a groundbreaking initiative aimed at advancing the discovery and understanding of new materials. It is an ambitious effort that leverages cutting-edge computing capabilities and advanced algorithms to create a comprehensive database of materials properties. Central to this initiative is the classification of materials, a crucial step in the quest to identify and develop materials with desired properties.Material classification is the process of grouping materials based on their shared physical, chemical, and mechanical properties. This classification system is essential for efficiently organizing and retrieving information about materials, enabling researchers to quickly identify potential candidates for specific applications.Within the Materials Project, materials are classified into several broad categories, including metals, ceramics, polymers, composites, and semiconductors. Each category is further subdivided into subclasses based on specific properties or characteristics. For example, metals can be further classified as ferrous or non-ferrous, depending on their iron content. Ceramics, on the other hand, can be categorized based on their structure, such as crystalline or amorphous.This detailed classification system is invaluable for materials research. It allows researchers to quickly identify materials that exhibit specific properties, such as high conductivity or strength, making them suitable for particular applications. Additionally, by understanding the relationships between different material classes, researchers can gain insights into the fundamental principles governing material behavior, leading to the discovery of new and improved materials.In conclusion, the Materials Project represents a significant advancement in materials science. By classifying materials intodistinct categories, the project enables researchers to efficiently explore the vast landscape of materials, identify promising candidates for specific applications, and ultimately, contribute to the development of innovative materials that transform our world.中文版材料项目:材料分类材料项目是一项开创性的倡议,旨在推动新材料的发现和理解。
SpringerMaterials数据库使用介绍
数据库内容按季度持续更新
关键材料科学主题涵盖
理化数据
•电子、光学、磁学性质 •机械性质、反应等
材料分析
•光谱 •显微成像
•表征
13
材料结构
•相图 •晶体数据
热力学
•相平衡于转换 •混合物性质
表面科学
•气体扩散 •金属腐蚀
•扩散
数据类型:相图、 晶体结构、数据表格、材料性质
14
档案、曲线图等
数据库内容按季度更新
无机材料: 结构性质
15
金属,合金,玻璃,陶瓷
反应
• Q Values • Cross sections
表征
• Neutron Resonance Parameters
• Particle Detection Methods
材料表征
21
光谱与显微成像
光谱 Large collections of data for all material types (metals, organics, liquids, polymers, etc.)
由超过1000名专家、学 者、编辑评审的数据
柏林 1883
The Landolt-Börnstein Series
Landolt-Börnstein:威名显赫的作者
10
John B. Goodenough, 2019 Nobel Prize
https:///lb/docs/sm_l bs_978-3-540-36202-9_36
材料学科常用的20个数据库列表
/cljpk//biaozun.php/fms/WebCourse/chapter1/c1-s1.asp/index.jsp?url=htt...g%3D1%26age%3D0/index.jsp材料大全A到Z (金属、陶瓷、高分子、复合材料)(免费) 材料大全A到Z (金属、陶瓷、高分子、复合材料)(免费)/materials.asp日本国立材料科学研究所:材料数据库(免费)http://mits.nims.go.jp/db_top_eng.htmDatabase of Published Interatomic Parameters(免费)/DFRL/researc ... database/index.htmlLiqCryst Online (液晶数据库)(部分免费)http://liqcryst.chemie.uni-hamburg.de/PoLyInfo (高分子材料设计所需的各种数据)(免费)http://polymer.nims.go.jp/polyinfo_top_eng.htm保温材料数据库NASA TPSX(免费)/CAMPUS (塑料产品数据库, 免费)/Chemical Resistance of Resin Materials(免费)/html/chemical.htmlGoodfellow (金属与材料)/ILL's 3D structure gallery in VRML (各种有趣的无机材料的3D结构)http://www.ill.fr/dif/3D-crystals/index.htmlKey to Metals (有色金属数据库)/Materials Science International Services (合金材料组成和相图数据)/World Wide Composites Search Engine (英特网复合材料搜索引擎)/材料手册, Ceramic Industry(免费)/FILES/HTML/MaterialsHandbook/0,2772,,00.html化学相容性(化学品与材料之间)数据库, Cole-Parmer(免费)/techinfo/chemcomp.asp金属合金物性数据库(Principal Metals, Inc.提供)(免费)/prime/step1.asp科学数据库/美国、加拿大再生塑料产品/厂家目录(Recycled Plastic Products Directory)(免费)/溶剂选择数据库(免费)/。
材料高级性能数据库:CAE 的新发展和新机会
Key to Metals - The World’s Most Comprehensive METALS Properties Databases
2
来自100多个国家的专业用户
Key to Metals - The World’s Most Comprehensive METALS Properties Databases
3
工程设计的材料性能数据需求
• 挑战 – 工程师需要精确的材 料数据 • 当前解决途径 – 通过分散的 资源,比如标准,手册,论文 或者网上搜索,有时能找到些 信息,而且还是免费的 • 但是结果….
Key to Metals - The World’s Most Comprehensive METALS Properties Databases
16
物理性能
Key to Metals - The World’s Most Comprehensive METALS Properties D附数据来源(参考文献)
每个数据集都 会备注数据来 源(参考文献)
• 解决方案 - KEY to METALS 核心数据库
– 超过20万种来自的国标/协会标准/厂标的全 球金属材料牌号 – 只需几秒钟即可获得 – 来自标准文献的数据,经过质量体系认证的 数据录入流程,保证数据的权威性和准确性
机械性能
Key to Metals - The World’s Most Comprehensive METALS Properties Databases
• 汽车行业 – Aisin, Benteler, Bentley, Brembo, Daimler, DAF, Dana, Delphi, Ducati, Eaton, FIAT, Ferrari, Ford, Honda, Italdesign, Iveco, Lear, Marelli, Pirelli, Toyota, Yamaha, and more • 能源行业 – ABB, Alstom, Ansaldo, Black & Veatch, ChevronTexaco, ConocoPhillips, General Electric, Halliburton, Repsol, Saipem, Schlumberger, Shell, Total, and more • 金属生产行业– ArcelorMittal, Glencore, Hitachi Metals, ISCAR, JFE, Kennametal, Lenox, Nippon Yakin, Sandvik, Sasol, SSAB, Thyssen, Vöst Alpine, Wikus, and more • 机械制造行业 – Black & Decker, Bosch, CNH, Cummins, Danieli, Emerson, Festo, General Dynamics, Hyundai, Kawasaki, Lincoln Electric, LORD, MAN, Siemens, SMS, SKF, Sulzer, Voith, Volvo, Wärtsilä, and more • 多元化 – Alcatel, Apple, Disney, Dow Jones, Goodrich, IKEA, Lego, Lufthansa, Michelin, Spectro, Swatch, Tetra Pak, Thermo, and more • 大学 – Aarhus Technical University, Lehigh University, Stanford University, Texas A & M University, University of Bologna, University of Genoa, University of Valencia, and others • 研究机构 – Finish Standardization Organization, Indian Standardization Bureau, Korean Standardization Association, Livermore National Laboratory, Lloyds, SGS,TÜV, and others
materialsstudio
materialsstudioMaterials StudioIntroduction:Materials Studio is a comprehensive modeling and simulation software package developed by BIOVIA, a leading provider of scientific software solutions. It is widely used in the field of materials science and engineering to predict and understand the properties and behavior of various materials. This powerful software provides researchers and scientists with a range of tools and capabilities to design, analyze, and optimize materials for a wide variety of applications.Features and Capabilities:Materials Studio offers a wide range of features and capabilities that enable researchers to explore and analyze materials at the atomic and molecular levels. Some of the key features of Materials Studio include:1. Atomic-scale Modeling: Materials Studio allows users to build, visualize, and manipulate atomic structures of different materials. It includes powerful molecular modeling tools that enable the creation and manipulation of complex structures.2. Property Prediction: With Materials Studio, researchers can predict various properties of materials, including mechanical, electronic, and thermodynamic properties. This helps in understanding material behavior under different conditions and designing materials with desired properties.3. Simulation and Modeling: Materials Studio provides a variety of simulation techniques, such as molecular dynamics and Monte Carlo simulations, to study material properties and behavior at different length and time scales. These simulations help in predicting material behavior and understanding the underlying mechanisms.4. Structure-Property Relationships: Materials Studio enables researchers to establish structure-property relationships by analyzing the relationship between material structure and its properties. This helps in designing materials with specific properties based on the desired application requirements.5. Database and Analysis Tools: Materials Studio includes a vast database of materials properties, allowing users to quickly access and analyze experimental and theoretical data. It also provides advanced analysis tools for data visualization and exploration.Applications of Materials Studio:Materials Studio finds applications in various fields, ranging from semiconductor design to drug discovery. Some of the key areas where Materials Studio is extensively used include:1. Nanomaterials: Materials Studio provides tools to study the behavior of nanomaterials, such as carbon nanotubes and nanoparticles. This helps in designing and optimizing nanomaterials for applications in electronics, energy storage, and catalysis.2. Polymers and Composites: Researchers can use Materials Studio to study the properties of polymers and composite materials, enabling the development of new materials with improved properties for applications in automotive, aerospace, and packaging industries.3. Pharmaceuticals: Materials Studio is widely used in the pharmaceutical industry for drug discovery and development. It helps in modeling and simulating drug interactions with various biomolecules to optimize drug design and predict drug behavior.4. Energy Storage: Materials Studio can be used to model and simulate the behavior of materials for energy storage applications, such as batteries and fuel cells. This aids in the development of advanced materials with improved energy storage capabilities.5. Catalysis: Researchers use Materials Studio to explore and optimize catalysts for various industrial processes. This helps in designing catalysts with enhanced activity, selectivity, and stability.Conclusion:Materials Studio is an advanced software package that offers powerful modeling and simulation capabilities for materials science and engineering. Its wide range of features and applications make it a valuable tool for researchers and scientists working in various fields. By enabling the design, analysis, and optimization of materials, Materials Studio plays a significant role in advancing research and development in materials science.。
材料基因组计划成分结构性能关系和数据库
材料基因组计划成分结构性能关系和数据库Understanding the relationship between the composition, structure, and properties of materials is a crucial aspect of the Material Genome Project. Materials play a vital role in various industries, ranging from aerospace to healthcare, and fundamental research in this field can lead to groundbreaking innovations. 了解材料成分、结构和性能之间的关系是材料基因组计划的一个重要方面。
材料在各种行业中起着关键作用,从航空航天到医疗保健,这个领域的基础研究会引领创新。
The Material Genome Project aims to accelerate the discovery and development of new materials by leveraging high-throughput computational and experimental methods. By creating a database that catalogs the properties of different materials and their corresponding compositions and structures, researchers can efficiently search for materials with specific desired properties. 材料基因组计划的目标是通过利用高通量计算和实验方法,加速新材料的发现和开发。
材料科学常用数据库
材料学科常用的20个数据库列表1、ASM-Internationa /asm_tms/phase_diagrams/pd/2、日本国立材料科学研究所:材料数据库--- http://mits.nims.go.jp/db_top_eng.htm3、Thermophysical Properties of Matter Database https:///Applicati ... 蹙�(NIST)物性数据库/chemistry/name-ser.html5、中科院物性及热化学数据库—/sdb_2004/all_thermochemistry.html6、Database for Solder Properties with Emphasis on Ne /div853/lead%20free/solders.html7、台湾生贸公司无铅焊料系列文献下载/service_load.asp8、la surface com /accueil/index.php9、Surface Analysis Forum(大容量)-- /10、Lead-Free Solder Alloy --- /~bozack/Pb-FreeSolder.html11、Lead-Free Solder--- /Db/_Lead-Free.html12、化工引擎--- /13、NIST XPS Database--- /xps/Bind_e_spec_query.asp14、Solder Systems Computational Thermodynamics /phase/solder/solder.html15、Phase Diagrams and Articles—http://www.crct.polymtl.ca/fact/index.php?websites=116、韩国多元相图--- http://www.icm.re.kr/mdb/phase/index.jsp?ca=2&index=A17、二(三)元相图FactSage Database- - http://www.crct.polymtl.ca/fact/ ... tel/FSstel_Figs.htm18、剑桥大学材料资源-- /index.html19、二元相图库--- http://web.met.kth.se/dct/pd/periodic-table.html20、金相实验室-- /index.html关于材料常数及论文方面一些有用的网站(转)常用的材料常数及各种标准/元素周期表http://cimesg1.epfl.ch/CIOLS/cry ... 锩嬗泻芏嘤杏玫牧唇�/cuu/Constants/i...?/codata86.html物理常数/world/lecture/index.html讲义/晶体之星/default.cfm材料科学与工程方面的论文网站/default.cfm一个关于论文的搜索网址/NewFi ... ties.html材料学数据/ludlum/p...roductLine.html/servlet/N ... 0&c=&page=2//ams/ams.asp/amse/amse.asp///cljpk//biaozun.php/fms/WebCourse/chapter1/c1-s1.asp/index.jsp?url=htt...g%3D1%26age%3D0/index.jsp材料大全A到Z (金属、陶瓷、高分子、复合材料)(免费) 材料大全A到Z (金属、陶瓷、高分子、复合材料)(免费)/materials.asp日本国立材料科学研究所:材料数据库(免费)http://mits.nims.go.jp/db_top_eng.htmDatabase of Published Interatomic Parameters(免费)/DFRL/researc ... database/index.htmlLiqCryst Online (液晶数据库)(部分免费)http://liqcryst.chemie.uni-hamburg.de/PoLyInfo (高分子材料设计所需的各种数据)(免费)http://polymer.nims.go.jp/polyinfo_top_eng.htm保温材料数据库NASA TPSX(免费)/CAMPUS (塑料产品数据库, 免费)/Chemical Resistance of Resin Materials(免费)/html/chemical.htmlGoodfellow (金属与材料)/ILL's 3D structure gallery in VRML (各种有趣的无机材料的3D结构)http://www.ill.fr/dif/3D-crystals/index.htmlKey to Metals (有色金属数据库)/Materials Science International Services (合金材料组成和相图数据)/World Wide Composites Search Engine (英特网复合材料搜索引擎)/材料手册, Ceramic Industry(免费)/F ... ook/0,2772,,00.html化学相容性(化学品与材料之间)数据库, Cole-Parmer(免费)/techinfo/chemcomp.asp金属合金物性数据库(Principal Metals, Inc.提供)(免费)/prime/step1.asp科学数据库/美国、加拿大再生塑料产品/厂家目录(Recycled Plastic Products Directory)(免费) /溶剂选择数据库(免费)/陶瓷材料参考指南,Reference Guide Index(免费)/F ... dex/0,2796,,00.html吸声材料数据表(免费)/tecref_acoustictable.html【网址推荐】材料学一些网站1. /常用的材料常数及各种标准2. /元素周期表3. http://cimesg1.epfl.ch/CIOLS/cry ... 锩嬗泻芏嘤杏玫牧唇�4. /cuu/Constants/index.html?/codata86.html物理常数5. /world/lecture/index.html讲义6. /晶体之星7. /default.cfm材料科学与工程方面的论文网站8./l ... p/G.16/qx/ProductLi ne.html9. /servlet/N ... 0&c=&page=2 关于不锈钢的数据10. http://mits.nims.go.jp/db_top_eng.htm日本国立材料科学研究所:材料数据库。
Fluent中如何创建一个新的材料
Fluent中如何创建⼀个新的材料Fluent中如何创建⼀个新的材料不说废话,直接上流程图。
基于欧拉-欧拉模型下,模拟煤粉燃烧,需要创建原煤材料,下⾯是创建原煤的的过程。
右键点击air,点击编辑会出现下张图的界⾯,点击Fluent Database,从材料库中选择与你期望材料相近的材料,点击Copy。
这⾥我选择coal-hv-volatiles(⾼挥发分)。
然后材料列表⾥⾯就出现了coal-mv-volatiles(hv_vol)这种材料,重复第⼀步操作,打开Create/Edit Materials对话框,点击User-Defined Database对话框,会出现⼀个Open Database对话框,注意:这⾥如果有原煤的.scm⽂件可以直接导⼊,如果没有原煤的.scm⽂件,下⾯的流程等于说是创建⼀个原煤的.scm⽂件。
在Database Name⾥输⼊.scm⽂件的名字。
点击Ok。
下⾯的图Copy Materials from Case > Coal-hv-volatiles>Copy ,这样在User-Defined Fluid Materials ⾥⾯会出现Coal-hv-volatiles 的选项,然后选中,点击Edit 进⾏编辑。
在Material Properties ⾥⾯Name 是填写新材料的名字,在Formula ⾥⾯填⼊新材料的分⼦式(没有分⼦式的可以填个英⽂缩写),在Types 对话框⾥选择新材料的类型,这⾥选的是燃烧颗粒。
12345在Available Properties下选择新建材料需要的特性,选中添加到Material Properties中。
将需要的材料特性选到右边框⾥之后,在进⾏编辑材料的性质。
例如选中Acentric Factor(注:只能选中⼀个,分别编辑材料的属性),点击Edit,会出现下⾯对话框。
针对这个材料性质只有模型选项,就不⽤编辑了。
材料学常用数据库
材料学常用数据库材料领域常用的数据库地址已验证,可以使用晶体之星:/元素周期表:/化学元素:/MatWeb数据库:/日本国立材料科学研究所材料数据库:http://mits.nims.go.jp/db_top_eng.htmThermophysical Properties of Matter Database:https:///Applications/TPMDDEMO/Demo中科院物性及热化学数据库:/sdb_2004/all_thermochemistry.html 台湾生贸公司无铅焊料系列文献下载:/service_load.aspla surface com(XPS/AES/UPS):/accueil/index.phpUK Surface Analysis Forum:/home.html化工引擎:/(美国)国家标准与技术局(NIST)物性数据库NIST XPS Database:/xps/Default.aspxSolder Systems Computational Thermodynamics:/phase/solder/solder.htmlPhase Diagrams and Articles:http://www.crct.polymtl.ca/fact/index.php?websites=1韩国多元相图:http://www.icm.re.kr/mdb/phase/index.jsp?ca=2&index=A二(三)元相图FactSage Database:http://www.crct.polymtl.ca/fact/documentation/FSstel/FSstel_Figs.htm剑桥大学材料资源:/index.html地址未验证材料大全A到Z (金属、陶瓷、高分子、复合材料)(免费) 材料大全A到Z (金属、陶瓷、高分子、复合材料)(免费)/materials.asp日本国立材料科学研究所:材料数据库(免费)http://mits.nims.go.jp/db_top_eng.htmDatabase of Published Interatomic Parameters(免费)/DFRL/researc ... database/index.htmlLiqCryst Online (液晶数据库)(部分免费)http://liqcryst.chemie.uni-hamburg.de/PoLyInfo (高分子材料设计所需的各种数据)(免费)http://polymer.nims.go.jp/polyinfo_top_eng.htm保温材料数据库NASA TPSX(免费)/CAMPUS (塑料产品数据库, 免费)/Chemical Resistance of Resin Materials(免费)/html/chemical.htmlGoodfellow (金属与材料)/ILL's 3D structure gallery in VRML (各种有趣的无机材料的3D结构)http://www.ill.fr/dif/3D-crystals/index.htmlKey to Metals (有色金属数据库)/Materials Science International Services (合金材料组成和相图数据)/World Wide Composites Search Engine (英特网复合材料搜索引擎)/材料手册, Ceramic Industry(免费)/FILES/HTML/MaterialsHandbook/0,2772,,00.html化学相容性(化学品与材料之间)数据库, Cole-Parmer(免费)/techinfo/chemcomp.asp金属合金物性数据库 (Principal Metals, Inc.提供)(免费)/prime/step1.asp科学数据库/美国、加拿大再生塑料产品/厂家目录(Recycled Plastic Products Directory)(免费) /溶剂选择数据库(免费)/陶瓷材料参考指南, Reference Guide Index(免费)/FILES/HTML/ReferenceIndex/0,2796,,00.html吸声材料数据表(免费)/tecref_acoustictable.html【网址推荐】材料学一些网站1. /常用的材料常数及各种标准2. /元素周期表3. http://cimesg1.epfl.ch/CIOLS/crystal1.pl晶体学网站,里面有很多有用的链接4. /cuu/Constants/index.html?/codata86.html物理常数5. /world/lecture/index.html讲义6. /晶体之星7. /default.cfm材料科学与工程方面的论文网站8./l ... p/G.16/qx/ProductLi ne.html9. /servlet/N ... 0&c=&page=2关于不锈钢的数据10. http://mits.nims.go.jp/db_top_eng.htm日本国立材料科学研究所:材料数据库。
SpringerMaterials数据库使用介绍
1) /whatis.html 2) /wiki/Materials_science
3) /cos/cmse/
5
材料种类
相图
50,000+ Diagrams for binary and ternary alloy systems
相图报告
4,000+ Reports covering synthesis & availability, applications, phase & equilibria
晶体学数据
240,000+ crystal structures; measurement parameters
Densities, tensile strengths, phase equilibria, osmotic pressures, etc.
Ionic liquids, biofibers, liquid crystals, polymer composites, etc.
表面科学
19
多种材料类别 : 金属, 无机, 有机
• Query: 苯并噻唑 /苯硫氮醇(benzothiazole)
腐蚀数据检索
28
• 按物料及环境搜寻及分类
Seawater-301 stainless steel / 2Ni steel
铌在硫酸 (Niobium in sulfuric acid)
晶体结构及互动功能
29
Query: ZrO2 monoclinic Crystal structure
Forming data, hardness, creep, elastic coefficients, compressibility, etc.
flow3d单词翻译
Vvect刚体初速度的矢量Delete source bitmap files--删除原位图文件Frame rate--帧速率A VI capture--动画捕捉A VI filename--动画文件名FLOW-3D (R) --FLOW-3D 简体中文版Interface version --接口版本Solver version--求解器版本Number of Processors--处理器数量Total Physical Memory (RAM) --物理内存总数(RAM) f3dtknux_license_file--授权许可文件Host Name--主机名F3D_VERSION --软件版本Operating System--操作系统Type--类型Porous--孔隙Porosity --孔隙率Lost foam--消失模Standard--标准Thermal conductivity--导热率Material name--材料名称Custom--自定义Surface area multiplier--面积倍增Unit system--系统单位Solid properties --固体属性Initial conditions--初始化条件Surface properties--表面属性Solids database--固体数据库Surface roughness--表面粗糙度Temperature--温度Temperature variables--温度变化Saturation temperature --饱和温度Units=CGS --单位=公制Solutal expansion coefficient --溶质膨胀系数Ratio of solute diffusion coefficient ---比溶质扩散系数Surface tension --表面张力Gas constant--气体常量Thermal conductivity --导热率Surface tension coeff--表面张力系数Critical solid fraction--关键凝固比率Solidus temperature--固相线温度Phase change--相变Material name --材料名称Thermal properties --热性质Custom --自定义Constant thinning rate--不断变薄率Units=SI -单位=国际单位制Partition coefficient--分隔系数Dielectric constant --介电常数Specific heat --比热Eutectic temperature --低共熔温度Coherent solid fraction --凝固Thermal expansion --热膨胀Unit System --系统单位Units=custom --单位=自定义Units=slugs --单位=斯勒格Reference temperature--起始温度Latent heat of vaporization--汽化潜热Reference solute concentration--参考溶质浓度Pure solvent melting temperature --熔点温度Liquidus temperature--液相温度Viscosity --黏度Solidification--凝固Vapor specific heat --蒸气比热Density--密度Temperature sensitivity--温度敏感性Saturation pressure --饱和压力Temperature shift --温度变化Compressibility --可压缩性Contact angle --接触角度Latent heat of fusion (fluid 1) --熔解潜热(流体1)New fluid database --新流体数据库Accommodation coefficient --调节系数Strain dependent thinning rate --应变黏度系数Constant thickening rate --不断增厚率added to materials database --添加到材料库cannot be added. --不能被添加Record already exists in materials database--在材料库已经存在该记录. New saved in materials database--新保存到材料库中.Could not find material DB--没有发现材料数据Add--添加Close--关闭Add Mesh Points --添加网点Direction --方向New Point --新的点Mesh Block --网格块2-D advanced options --2-D 高级选项Option--选项Add --添加Type--类型Component--组Cancel--取消Browse --浏览Source --来源File name--文件名Advanced --高级Numerics--数值运算Advanced options--高级选项sigma --表面张力系数Air entrainment --卷气Activate air entrainment model --激活卷气模型Surface tension coefficient --表面张力系数Dialog--对话框Remove mesh constrains--清除网格限制Size of all cells --全部单元尺寸Total Cells--单元总数Baffle options --隔板选项Baffle index --主隔板Baffle color--隔板颜色Hide selected baffles --隐藏选中的隔板Use contour color--使用轮廓颜色Selection method--择伐作业Boundary type --边界类型Specified pressure --规定压力Grid overlay --网格重叠Specified velocity --指定速度Electric potential--电位Stagnation pressure --滞止压力V olume flow rate --体积流量Z flow direction vector--Z 流向Y flow direction vector --Y 流向X flow direction vector--X 流向Electric charge--电荷Mesh Block--网格块Add to component --添加为元件Specific heat --比热Simulate--仿真Stop preprocessor--停止预处理Block distribution--块分配Porous--孔隙Component --组Scalars--标量Add to component --添加为元件Cell size --单元尺寸Render space dimensions --渲染面积Cell size is empty--单元尺寸为空Create mesh block (Cylindrical) --创建网格块(柱状) Total number of cells --单元数量Cylinder subcomponent --子气缸Add to component--添加为元件Radius --半径Setting the default workspace location is required. You can change the location at any time from the Preferences menu.--需要设置本地默认工作区位置.你可以随时通过菜单来改变位置。
低温材料物性表
Presented at the 11th International Cryocooler ConferenceJune 20-22, 2000Keystone, Co Cryogenic Material Properties Database Cryogenic Material Properties DatabaseE.D. Marquardt, J.P. Le, and Ray RadebaughNational Institute of Standards and TechnologyBoulder, CO 80303ABSTRACTNIST has published at least two references compiling cryogenic material properties. These include the Handbook on Materials for Superconducting Machinery and the LNG Materials & Fluids. Neither has been updated since 1977 and are currently out of print. While there is a great deal of published data on cryogenic material properties, it is often difficult to find and not in a form that is convenient to use. We have begun a new program to collect, compile, and correlate property information for materials used in cryogenics. The initial phase of this program has focused on picking simple models to use for thermal conductivity, thermal expansion, and specific heat. We have broken down the temperature scale into four ranges: a) less than 4 K, b) 4 K to77 K, c) 77 K to 300 K, and d) 300 K to the melting point. Initial materials that we have compiled include oxygen free copper, 6061-T6 aluminum, G-10 fiberglass epoxy, 718 Inconel, Kevlar, niobium titanium (NbTi), beryllium copper, polyamide (nylon), polyimide, 304 stainless steel, Teflon, and Ti-6Al-4V titanium alloy. Correlations are given for each material and property over some of the temperature range. We will continue to add new materials and increase the temperature range. We hope to offer these material properties as subroutines that can be called from your own code or from within commercial software packages. We will also identify where new measurements need to be made to give complete property prediction from 50 mK to the melting point.INTRODUCTIONThe explosive growth of cryogenics in the early 50’s led to much interest in material properties at low temperatures. Important fundamental theory and measurements of low temperature material properties were performed in the 50’s, 60’s, and 70’s. The results of this large amount of work has become fragmented and dispersed in many different publications, most of which are out of print and difficult to find. Old time engineers often have a file filled with old graphs; young engineers often don’t know how to find this information. Since most of the work was performed before the desktop computer became available, when data can be found, it is published in simple tables or graphically, making the information difficult to accurately determine and use.NIST has begun a program to gather cryogenic material property data and make it available in a form that is useful to engineers. Initially we tried to use models based upon fundamental physics but it soon became apparent that the models could not accurately predict properties overTable 1A . Coefficients for thermal conductivity for metals.Coeff.6061 -T6 Aluminum 304 SS 718 Inconel Beryllium copper Ti-6Al-4V a0.07918 -1.4087 -8.28921 -0.50015 -5107.8774 b1.09570 1.3982 39.4470 1.93190 19240.422 c-0.07277 0.2543 -83.4353 -1.69540 -30789.064 d0.08084 -0.6260 98.1690 0.71218 27134.756 e0.02803 0.2334 -67.2088 1.27880 -14226.379 f-0.09464 0.4256 26.7082 -1.61450 4438.2154 g0.04179 -0.4658 -5.72050 0.68722 -763.07767 h-0.00571 0.1650 0.51115 -0.10501 55.796592 I0 -0.0199 0 0 0 data range 4-300 K 4-300 K 4-300 K 4-300 K 20-300 Ka large temperature range and over different materials. Our current approach is to choose a few simple types of equations such as polynomial or logarithmic polynomials and determine the coefficients of different materials and properties. This will allow engineers to use the equations to predict material properties in a variety of ways including commercial software packages or their own code. Integrated and average values can easily be determined from the equations. These equations are not meant to provide any physical insight into the property or to provide ‘standard’ values but are for working engineers that require accurate values.MATERIALSInitial materials that we have compiled include oxygen free copper, 6061-T6 aluminum, G-10CR fiberglass epoxy, 718 Inconel, Kevlar 49, niobium titanium (NbTi), beryllium copper, polyamide (nylon), polyimide, 304 stainless steel, Teflon, and Ti-6Al-4V titanium alloy. These were chosen as some of the most common materials used in cryogenic systems in a variety of fields.MATERIAL PROPERTIESThermal ConductivityWidely divergent values of thermal conductivity for the same material are often reported in the literature. For comparatively pure materials (like copper), the differences are due mainly to slight material differences that have large effects on transport properties, such as thermal conductivity, at cryogenic temperatures. At 10 K, the thermal conductivity of commercial oxygen free copper for two samples can be different by more then a factor of 20 while the same samples at room temperature would be within 4%. It is also not uncommon for some experimental results to have uncertainties as high as 50%. Part of our program is to critically evaluate the literature to determine the best property values. Data references used to generate predictive equations will be reported.The general form of the equation for thermal conductivity, k , islog()log (log )(log )(log )(log )(log )(log )(log ),k a b T c T d T e T f T g T h T i T =++++++++2345678 (1)where a , b , c , d, e , f , g , h , and i are the fitted coefficients, and T is the temperature. These are common logarithms. While this may seem like an excessive number of terms to use, it was determined that in order to fit the data over the large temperature range, we required a large number of terms. It should also be noted that all the digits provided for the coefficients should be used, any truncation can lead to significant errors. Tables 1A and 1B show the coefficients for a variety of metals and non-metals. Equation 2 is the thermal conductivity for an average sample of oxygen free copper. It should be noted that thermal conductivity for oxygen free copper canTable 1B . Coefficients for thermal conductivity for non-metals.Coeff. Teflon Polyamide (nylon) Polyimide (Kapton) G10 CR (norm) G10 CR(warp)a2.7380 -2.6135 5.73101 -4.1236 -2.64827 b-30.677 2.3239 -39.5199 13.788 8.80228 c89.430 -4.7586 79.9313 -26.068 -24.8998 d-136.99 7.1602 -83.8572 26.272 41.1625 e124.69 -4.9155 50.9157 -14.663 -39.8754 f-69.556 1.6324 -17.9835 4.4954 23.1778 g23.320 -0.2507 3.42413 -0.6905 -7.95635 h-4.3135 0.0131 -0.27133 0.0397 1.48806 I0.33829 0 0 0 -0.11701 data range 4-300 K4-300 K 4-300 K 10-300 K 12-300 K Figure 1. Thermal conductivity of various materials.vary widely depending upon the residual resistivity ratio, RRR, and this equation should be used with caution. The thermal conductivities are displayed graphically in Figure 1.log .............k T T T T T T T T =−+−+−+−+22154088068029505004831000032071047461013871002043000012810515205152(2) Specific HeatThe specific heat is the amount of heat energy per unit mass required to cause a unit increase in the temperature of a material, the ratio of the change in energy to the change in temperature. Specific heats are strong functions of temperature, especially below 200 K. Models for specific heat began in the 1871 with Boltzmann and were further refined by Einstein and Debye in the early part of the 20th century. While there are many variations of these first models, they generally only provide accurate results for materials with perfect crystal lattice structures. TheTable 2. Coefficients for specific heat. Coeff. OFCHcopper 6061 -T6 Aluminum 304 SS G-10 Teflon a-1.91844 46.6467 22.0061 -2.4083 31.8825 b-0.15973 -314.292 -127.5528 7.6006 -166.519 c8.61013 866.662 303.6470 -8.2982 352.019 d-18.99640 -1298.30 -381.0098 7.3301 259.981 e21.96610 1162.27 274.0328 -4.2386 -104.614 f-12.73280 -637.795 -112.9212 1.4294 24.9927 g3.54322 210.351 24.7593 -0.24396 -3.20792 h-0.37970 -38.3094 -2.239153 0.015236 0.165032 I0 2.96344 0 0 0 data range 3-300 K 3-300 K 3-300 K 3-300 K 3-300 KFigure 2. Specific heat of various materials.specific heat of many of the engineering materials of interest here is not described well by these simple models. The general form of the equation is the same as Equation 1. Table 2 shows the coefficients for the specific heat. Figure 2 graphically shows the specific heats.Thermal ExpansionFrom an atomic perspective, thermal expansion is caused by an increase in the average distance between the atoms. This results from the asymmetric curvature of the potential energy versus interatomic distance. The anisotropy results from the differences in the coulomb attraction and the interatomic repulsive forces.Different metals and alloys with different heat treatments, grain sizes, or rolling directions introduce only small differences in thermal expansion. Thus, a generalization can be made that literature values for thermal expansion are probably good for a like material to within 5%. This is because the thermal expansion depends explicitly on the nature of the atomic bond, and only those changes that alter a large number of the bonds can affect its value. In general, largeTable 3A . Integrated Linear Thermal Expansion Coefficients for Metals.Coeff.6061 -T6 Aluminum 304 SS 718 Inconel Beryllium copper Ti-6Al-4V NbTi a-4.1272E+02 -2.9546E+02-2.366E+02-3.132E+02-1.711E+02 -1.862E+02b-3.0640E-01 -4.0518E-01-2.218E-01-4.647E-01-2.171E-01 -2.568E-01 c8.7960E-03 9.4014E-03 5.601E-03 1.083E-02 4.841E-03 8.334E-03 d-1.0055E-05 -2.1098E-05-7.164E-06-2.893E-05-7.202E-06 -2.951E-05 e0 1.8780E-080 3.351E-080 3.908E-08 data range 4-300 K 4-300 K 4-300 K 4-300 K 4-300 K 4-300 KTable 3B. Integrated Linear Thermal Expansion Coefficients for Non-metals.Coeff. Teflon Polyamide G10 CR (norm) G10 CR(warp)a-2.165E+03 -1.389E+03-7.180E+02-2.469E+02 b3.278E+00 -1.561E-01 3.741E-01 2.064E-01 c-8.218E-03 2.988E-02 8.183E-03 3.072E-03 d7.244E-05 -7.948E-05-3.948E-06-3.226E-06 e0 1.181E-07 0 0 data range 4-300 K 4-300 K 4-300 K 4-300 Kchanges in composition (10 to 20%) are necessary to produce significant changes in the thermal expansion (~5%), and different heat treatments or conditions do not produce significant changes unless phase changes are involved.8Most of the literature reports the integrated linear thermal expansion as a percent change in length from some original length generally measured at 293 K,()/.L L L T −293293 (3) Where L T is the length at some temperature T and L 293 is the length at 293 K. While this is a practical way of measuring thermal expansion, the more fundamental property is the coefficient of linear thermal expansion, α,α()().T L dL T dT=1 (4) The coefficient of linear thermal expansion is much less reported in the literature. In principal, we can simply take the derivative of the integrated linear thermal expansion that results in the coefficient of linear thermal expansion. While we have had success with this method over limited temperature ranges, we have not yet determined an equation form for the integrated expansion value that results in a good approximation of coefficient of linear thermal expansion. For the time being, we will report the integrated linear thermal expansion as a change in length and provide the coefficient of linear thermal expansion when it is directly reported in the literature. The general form of the equation for integrated linear thermal expansion is L L L a bT cT dT eT T −=++++⋅−293293234510(). (5) Tables 3A and 3B provide the coefficients for the various materials while Figure 3 plots the integrated linear thermal expansions.FUTURE PLANSWe plan to continually add new materials, properties, and to expand the useful temperature range of the predictive equations for engineering use. We will report results in the literature but will also update our website on a continual basis. The initial phase of the program was a learningFigure 3. Integrated linear thermal expansion of various materials.experience on how to handle the information in the literature as well as for the development of a standard set of basic equation types used to fit experimental data. By using just a few types of equations, we hope to make the information easier to use. We shall now focus on developing large numbers of equations for a variety of materials and properties. Please check our web site at /div838/cryogenics.html for updated information.REFERENCES1. Berman, R., Foster, E.L., and Rosenberg, H.M., "The Thermal Conductivity of SomeTechnical Materials at Low Temperature." Britain Journal of Applied Physics, 1955. 6: p.181-182.2. Child, G., Ericks, L.J., and Powell, R.L., Thermal Conductivity of Solids at RoomTemperatures and Below. 1973, National Bureau of Standards: Boulder, CO.3. Corruccini, R.J. and Gniewek, J.J., Thermal Expansion of Technical Solids at LowTemperatures. 1961, National Bureau of Standards: Boulder, CO.4. Cryogenic Division, Handbook on Materials for Superconducting Machinery. Mechanical,thermal, electrical and magnetic properties of structure materials. 1974, National Bureau of Standards: Boulder, CO.5. Cryogenic Division, LNG Materials and Fluids. 1977, National Bureau of Standards:Boulder, CO.6. Johnson, V.J., WADD Technical Report. Part II: Properties of Solids. A Compendium ofThe Properties of Materials at Low Temperature (phase I). 1960, National Bureau of Standard: Boulder, CO.7. Powells, R.W., Schawartz, D., and Johnston, H.L., The Thermal Conductivity of Metals andAlloys at Low Temperature. 1951, Ohio State University.8. Reed, R.P. and Clark, A.F., Materials at Low Temperature. 1983, Boulder, CO: AmericanSociety for Metals.9. Rule, D.L., Smith, D.R., and Sparks, L.L., Thermal Conductivity of a Polyimide FilmBetween 4.2 and 300K, With and Without Alumina Particles as Filler. 1990, National Institute of Standards and Technology: Boulder, CO.10. Simon, N.J., Drexter, E.S., and Reed, R.P., Properties of Copper Alloys at CryogenicTemperature. 1992, National Institute of Standards and Technology: Boulder, CO.11. Touloukian, Y.S., Recommended Values of The Thermophysical Properties of Eight Alloys,Major Constituents and Their Oxides. 1965, Purdue University.12. Veres, H.M., Thermal Properties Database for Materials at Cryogenic Temperatures. Vol. 1.13. Ziegler, W.T., Mullins, J.C., and Hwa, S.C.O., "Specific Heat and Thermal Conductivity ofFour Commercial Titanium Alloys from 20-300K," Advances in Cryogenic Engineering Vol. 8, pp. 268-277.。
物性数据库
美国国家农药信息检索系统 (NPIRS)
美国华盛顿州立大学化学系:无机化学教学资源
模拟大气同温层(臭氧层)的化学动力学、光化学数据(Chemical Kinetics and Photochemical Data for Stratospheric Modeling)(免费)
EPI Suite(与环境有关的物性估算程序包)(免费)
ERMS:欧洲海洋生物物种库
FYDAT (物理性质数据库)
Goodfellow (金属与材料)
Handbook of Ternary Alloy Phase Diagrams (10 Volume Set)
Infortherm (纯物质、混合物物性数据)(部分免费)
Chemical Properties Handbook
ChemSage (无机物相图计算)
COMe-the bioinorganic motif database (生物无机模体数据库)(免费)
CRC Handbook of Chemistry and Physics (Web版)
PoLyInfo (高分子材料设计所需的各种数据)(免费)
检索NIST数据库系列(NIST Data Gateway)(免费)
检索PHYSPROP演示版本(免费)
如何查找物理和化学性质数据(Finding Physical and Chemical Properties)
无机化学热力学软件及数据库集锦(FACT站点)
物性数据库
物性数据库
NIST Chemistry WebBook(免费)
MaterialsStudio快速入门教程
1. 输入一个结构
File / Import,打开输入文件对话框
(注意,此对话框也可用工具栏上的输入按钮
打开)。
选择 Examples / Documents / 3D Model / TON.msi,单击 Import 按钮。
来选择相应的对象。单击
* 在TON 结构上单击选中的原子,此原子颜色改变,说明被选中。
* 单击一个键,此键的颜色改变,说明被选中。
键被
选中
原子被选中
* 按住鼠标左键,沿斜线托拽,可以选择一定区域内的所有对象,包括原子和键。
此区域的 原子和键 都被选中
* 在结构中的某个原子或键上双击鼠标可以选择整个结构。 * 在3D Viewer 上无TON 结构的地方单击或双击鼠标,则取消对象的选择。 * 需要将结构保存为project的一部分时,单击3D Viewer 的 ,再按 Yes 按钮。 * File / Save Project ,Windows / Close All
点击Modify Element 按钮 右侧的箭头,在下拉选项中选择 Nitrogen,则碳 原子变为氮原子。
在3D Viewer的任意位置点击左键,取消原子选择。
C
N
一般选中某个原子后,在Modify 菜单下的Modify Element 中选择Oxygen 或其它原子来改变原子类型。
6. 编辑键的类型
在 3D Viewer 工具栏上,单击 3D Viewer Selection Mode 按钮 。
如果 3D Viewer 工具栏
没有出现, 在View /
ProCAST操作手册翻译续1
目录THERMAL 热分析2 GEOMETRY ASSIGNMENTS 几何体分配3 MATERIALS ASSIGNMENT 材料分配4 INTERFACES ASSIGNMENT 界面设定9 BOUNDARY CONDITIONS ASSIGNMENT 边界条件设定15 PROCESS CONDITIONS ASSIGNMENT 运行条件设定20 INITIAL CONDITIONS ASSIGNMENT 初始条件设定21 RUN PARAMETERS ASSIGNMENT 运行参数设定24 FLUID FLOW & FILLING 流场和填充24 RADIATION 辐射28 STRESS 应力28 DATABASES 数据库29 MATERIAL DATABASE 材料数据库29 MATERIAL PROPERTIES 材料属性33 THERMODYNAMIC DATABASES 热力学数据库39下面是ProCAST2005软件自带操作手册前处理部分(PreCAST)的翻译内容,从75页开始,本人E文水平极为有限,中文水平也不甚高,翻译内容必有诸多错漏之处,希望各位不要见笑。
THERMALThermal modelThe Thermal module allows to perform a heat flow calculation, by solving theFourier heat conduction equation, including the latent heat release duringsolidification. The typical results which can be obtained are the following :• Temperature distribution• Fraction of solid evolution• Heat flux and thermal gradients• Solidification time• Hot spots• Porosity prediction热分析热分析模块热分析模块执行热流计算,通过傅立叶热传导方程,包含结晶过程的潜热计算。
fluent操作界面中英讲解
fluent 操作界面中英文对照Grid 网格Read 读取文件:scheme 方案 journal 日志 profile 外形 Write 保存文件Import :进入另一个运算程序 Interpolate :窜改,插入 Hardcopy : 复制, Batch options 一组选项 Save layout 保存设计Check 检查Info 报告:size 尺寸 ;memory usage 内存使用情况;zones 区域 ;partitions 划分存储区 Polyhedral 多面体:Convert domain 变换范围 Convert skewed cells 变换倾斜的单元 Merge 合并 Separate 分割Fuse (Merge 的意思是将具有相同条件的边界合并成一个;Fuse 将两个网格完全贴合的边界融合成内部(interior)来处理,比如叶轮机中,计算多个叶片时,只需生成一个叶片通道网格,其他通过复制后,将重合的周期边界Fuse 掉就行了。
注意两个命令均为不可逆操作,在进行操作时注意保存case)Zone 区域: append case file 添加case 文档 Replace 取代;delete 删除;deactivate 使复位;Surface mesh 表面网孔Reordr 追加,添加:Domain 范围;zones 区域; Print bandwidth 打印 Scale 单位变换 Translate 转化Rotate 旋转 smooth/swap 光滑/交换Define Models 模型:solver 解算器Pressure based 基于压力Density based 基于密度implicit 隐式,explicit 显示Space 空间:2D,axisymmetric(转动轴),axisymmetric swirl (漩涡转动轴);Time时间:steady 定常,unsteady 非定常Velocity formulation 制定速度:absolute绝对的;relative 相对的Gradient option 梯度选择:以单元作基础;以节点作基础;以单元作梯度的最小正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CostUS$/lbMaterialsGray cast ironPlain Carbon and Low Alloy SteelsAlloy 1006AISI 1006 Steel cold drawn 2.91 AISI 1006 Steel hot rolledAlloy 1020AISI 1020 Steel cold rolledAISI 1020 Steel hot rolledAISI 1020 Steel normalizaedAISI 1020 Steel annealed 6.74 Alloy 1040AISI 1040 Steel Cold drawn 2.14 AISI 1040 Steel Hot rolledAISI 1040 Steel annealedAISI 1040 Steel normalizedAlloy 1090AISI 1090 Steel annealed7.77 AISI 1090 Steel hot rolledAlloy 1095AISI 1095 Steel normalized 7.77 AISI 1095 Steel annealedAlloy 1340AISI 1340 Steel annealedAISI 1340 Steel normalizedAISI 1340 Steel oil quenchedAlloy 4027AISI 4027 Steel annealedAISI 4027 Steel normalizedAISI 4027 Steel water quenchedAlloy 4140AISI 4140 Steel annealedAISI 4140 Steel normalized 3.36 AISI 4140 Steel oil quenchedAlloy 4340AISI 4340 Steel annealedAISI 4340 Steel normalizedAISI 4340 Steel oil quenchedAlloy 5140AISI 5140 Steel annealedAISI 5140 Steel normalizedAISI 5140 Steel oil quenchedAlloy 8630AISI 8630 Steel annealedAISI 8630 Steel normalized 2.99 AISI 8630 Steel water quenchedStainless SteelsAlloy 302Stainless Steel 302 annealedStainless Steel 302 25% hardenedStainless Steel 302Cold rolled9 Alloy 316Stainless Steel 316 annealedStainless Steel 316soft tempered17.87 Alloy 330Stainless Steel 330Cold rolledStainless Steel 330 annealedAlloy 405Stainless Steel 405Cold rolled394.79 Stainless Steel 405AnnealedAlloy 434Stainless Steel 434AnnealedAlloy 660Stainless Steel 660Cold rolledAlloy 17-7PHStainless Steel 17-7 PH Precipitation hardenedStainless Steel 17-7 PH cold rolled16.39Cast IronsGray Cast Irons (as cast)Gray Cast Iron ASTM class 20Gray Cast Iron ASTM class 357.42 Gray Cast Iron ASTM class 60Ductile Cast IronsDuctile Cast Iron grade 60-40-18Ductile Cast Iron grade 65-45-12Ductile Cast Iron grade 120-90-02Ductile Cast Iron grade 80-55-06Malleable Cast IronsMalleable Cast Iron ASTM class 47Malleable Cast Iron ASTM class 220Aluminum AlloysAlloy 1100Aluminum Alloy 1100AnnealedAluminum Alloy 1100H12 Temper40.85 Aluminum Alloy 1100H14 TemperAlloy 2024Aluminum Alloy 2024AnnealedAluminum Alloy 2024T3 Temper17.5 Aluminum Alloy 2024T4 TemperAluminum Alloy 2024T6 TemperAlloy 6061Aluminum Alloy 6061AnnealedAluminum Alloy 6061T4 Temper10.25 Aluminum Alloy 6061T6 TemperAluminum Alloy 6061T8 TemperAlloy 7075Aluminum Alloy 7075AnnealedAluminum Alloy 7075T6 Temper19.06 Alloy 8001Aluminum Alloy 8001AnnealedAlloy 8090Aluminum Alloy 8090T3 TemperCopper AlloysElectrolytic tough pitch Copper, (C11000)Electrolytic tough pitch Copper, (C11000) Cold Worked 6.6 Berillium Copper, (C17000)Berillium Copper, (C17000)TH04 TemperBerillium Copper, (C17000)TH01 TemperCartridge Brass, (C26000)Cartridge Brass, (C26000)H00 Temper29.59Cartridge Brass, (C26000)H04 TemperCartridge Brass, (C26000)H08 TemperMuntz metal, (C28000)Muntz metal, (C28000) H00 Temper8.68Muntz metal, (C28000) H02 TemperFree-Cutting Brass, (C36000)Free-Cutting Brass, (C36000)H01 TemperFree-Cutting Brass, (C36000)H02 Temper 6.24 Chromium Copper, (C18500)Chromium Copper, (C18500)TH04 TemperChromium Copper, (C18500)TH04 Temper90-10 Bronze, (C22000)90-10 Bronze, (C22000)H01 Temper 13.5390-10 Bronze, (C22000)H04 Temper90-10 Bronze, (C22000)H08 TemperGliding Copper, (C21000)Gliding Copper, (C21000) Quarter HardGliding Copper, (C21000) Half HardMagnesium AlloysAlloy AZ31BMagnesium Alloy AZ31B ExtrudedMagnesium Alloy AZ31B AnnealedMagnesium Alloy AZ31B Hard rolled 11.06 Alloy AZ63Magnesium Alloy AZ63 F TemperMagnesium Alloy AZ63T6 TemperMagnesium Alloy AZ63T4 TemperAlloy AZ91EMagnesium Alloy AZ91E F TemperMagnesium Alloy AZ91E T4 TemperMagnesium Alloy AZ91E T6 TemperNickel AlloysNickel-Commercially PureNickel As Cast39.02Nickel AnnealedNickel Silver 65-18 (752)Nickel-Silver 65-18 (752) annealedNickel-Silver 65-18 (752) hardenedCupronickel 30(715)Cupronickel 30(715) annealed Cupronickel 30(715)hardenedTitanium-Commercially PureTitaniumAs cast 57.77AlloyTi-6Al-2Nb-1Ta-0.8MoTitanium AlloyTi-6Al-2Nb-1Ta-0.8Mo as-rolled Titanium AlloyTi-6Al-2Nb-1Ta-0.8MoAnnealedInvar Invar Alloy 32-5 (Cold drawn)15Invar Alloy 36 Alloy (Cold Drawn)Haynes 25Hayness 25cold rolled and annealed 40Hayness 25hot rolled and annealedBiodur Biodur Hot rolled BiodurAnnealed38144004370.571052684292110213531Elastomers Elastomer-Styrene Butadiene Rubber (SBR) 6.4Elastomer-Natural Rubber (Not Vulcanized)31Elastomer-Natural Rubber (Vulcanized)Elastomer-Nitrile Rubber5.07Epoxies Epoxy Unreinforced 5EpoxySilica Filled14.2105Polycarbonate (PC)Polycarbonate Molded 7.47Polycarbonate ConductiveNylon 66 Unreinforced Phenolic (Unreinforced)Polybutylene terepthalate (PBT)Niobium Gold Iridium Palladium SilverPlatinum, AnnealedINCONEL 725 (Annealed)Berylium S-200 Tungsten Tantalum ZincRhenium Titanium AlloysMiscellaneous AlloysNoble MetalsPolymersKovar AlloyCo-Cr-Ni AlloyINCONEL (Cold Rolled)INCOLOY 9037.25Polyetheretherketone (PEEK)Polyetheretherketone (PEEK) Glass Fiber Filled Polyetheretherketone (PEEK)Carbon Fiber Filled Polyethylene Terephthalate (PET)Polyethylene Terephthalate (PET)Unreinforced Polyethylene Terephthalate (PET)30% Glass Reinforced Polyethylene Terephthalate (PET)Base ResinPolyethylene (Molded)Polyethylene - Molded Low Density Polyethylene - Molded Medium Density 11.3Polyethylene - Molded High DensityAcrylonitrile Butadiene Styrene (ABS)Acrylonitrile Butadiene Styrene (ABS) Molded 13.84Acrylonitrile Butadiene Styrene (ABS) 40% Glass Fiber Filled Acrylonitrile Butadiene Styrene (ABS) 40% Carbon Fiber Filled Polymethyl Methacrylate (PMMA)Polymethyl Methacrylate (PMMA)Unreinforced 3.25Polymethyl Methacrylate (PMMA)Glass Fiber ReinforcedPolypropylene (PP)Polypropylene (PP)Unreinforced 2.58Polypropylene (PP) 10% Glass Fiber Filled Polypropylene (PP) 10% Carbon Fiber filled15.0522Polyvinyl Chloride (PVC)15.1224.75Aluminum Oxide Aluminum Oxide- 99.9% Alumina 129.57Aluminum Oxide-95% Alumina Aluminum Oxide-85% AluminaDiamond Diamond Natural 40000Diamond Synthetic DiamondPolycrystalline1500Glass102.25Ceramics, Graphite and Semiconducting MaterialsConcreteGallium ArsenideBorosilicate Glass Cellulose Acetate Acrylonitrile Polyacetal Acetal CopolymerSilica GlassPolyphenylene Sulfide MoldedPolysulfone PolyureaPolychloroprene RubberPolyester (Rigid)Polytetrafluoroethylene (PTFE)Styrene Acrylonitrile PolystyrenePolyvinyl Chloride (PVC) UnreinforcedPolyvinyl Chloride (PVC) 30% Glass fiber einforced8189Silicon Carbide202.230183451Titanium Carbide Tungsten Carbide Fused SilicaGraphite Carbon C-Glass Fiber Generic Carbon Fiber PrecursorComposite MaterialsAlumina 96%Boron Nitride Titania SteatileWoodSodium Chloride Calcium FlourideFibersE-Glass Fiber Generic Polycarbonate Aramid Fiber Reinforced Aramid Fiber reinforced Nylon 6/6carbon Fiber Reinforced polycarbonate carbon+Glass Fiber Reinforced Plolycarbonate 30% Glass Fiber reinforced Clear PolycarbonateSilicon Carbide Sintered Silicon Carbide Sublimed Epoxy/Glass composite Epoxy/Carbon Fiber Composite Zirconium Carbide Hafnium carbide Fused quartz (silica)Silicon Nitride ZirconiaZirconium Oxide Ceramic StablizedAmerican Red Oak WoodWhite Oak WoodAmerican Red Maple Wood American red Gum Wood American Alaska Cedar Wood American Redwood WoodRelative costHardness(based on 1020 steel)g/cc lb/in^3Brinell unless specified Mpa KsiMPa7.150.25820827640.020.4317507427.8720.2849533047.852857.8720.2848629542.7751657.870.28412142060.93507.870.28411138055.12057.870.28413144063.834517.870.28411139557.2752950.3175074187.8450.28317058584.8255157.8450.28314952576.1252907.8450.28314951574.6753507.8450.28317059586.2753701.1528189917.850.284197696100.925407.870.284248841121.9454601.1528189917.850.2842931015147.1755057.850.28419266596.4253807.870.284207703101.9354347.870.284248834120.935587.870.284285951137.8958347.850.28414351574.6753257.850.28417964092.84207.850.2843111035150.0759177.850.28419765594.9754150.498516327.850.2843021020147.96557.850.2843111075155.8759867.850.284217745108.0254707.850.2843631282185.898627.850.2843521207175.01511457.850.28416757082.652957.850.284229793114.9854707.850.284293972140.948417.850.28415656581.9253700.4436201787.850.28418765094.254257.850.2842931015147.1759107.860.28414762089.9275Yield StreDensity Tensile Strength ultimate7.860.284261860124.7515 1.3353115737.860.28458584.82525580.28914358084.1290 2.65133531280.28968999.90551580.28958684.9729080.28955079.75260 58.574183987.80.28246968.0052767.80.28215044864.962767.80.28216451774.9653457.920.2861007146.0157037.80.2824331650239.251590 2.4317507427.80.2823781380200.112107.150.25815615222.041.1008902087.150.25821225236.547.150.25830243162.4957.150.25816746166.8453297.150.25816746467.283327.150.258331974141.238647.150.25819255981.0553627.150.25815634550.0252247.150.25817341460.032762.710.0979239013.0535 6.060830861 2.710.09792811015.9510320710.09793212417.981172.780.12.596439169 2.780.112048370.0353452.780.112046968.0053242.780.112542761.9153452.70.0975*******.98551.5207715132.70.0975*******.9451452.70.0975*******.952762.70.0975********.952762.810.1026022833.06103 2.827893175 2.810.10215057282.945032.750.0994*******.95402.540.09189134049.32100.9792284878.890.3219534550.0253108.260.2983531310189.9511508.260.2983201190172.551110 4.3902077158.530.308109400583158.530.30815452576.1254358.530.30818965094.251.2878338288.390.30310241560.1752408.390.30313548570.3253458.50.30711238555.825310 0.9258160248.50.307143400583108.890.32115453076.854508.890.32116047568.875435 2.0074183988.80.3188631044.952408.80.31812542060.93708.80.31814349571.7754258.860.328229042.052208.860.329833047.852751.770.06394926037.72001.770.06395625536.975150 1.640949555 1.770.06397329042.052201.830.06615020029971.830.0661*******.8751301.830.0661*******.875971.810.06546316523.925971.810.06545527539.875901.810.06547027539.875145 5.7893175078.880.32131745.965598.880.3217945 6.5258.70.3147538655.978.70.31415158684.978.920.3228337954.9558.920.32214751774.9658.571216617 4.50.1637022031.91404.480.162290830120.357604.480.162290830120.357108.360.30212051774.965345 2.2255192888.140.29413548370.0352768.050.29118462190.045483 5.9347181019.130.331005145.7254759.130.331015147.1755058.280.2994001365197.9259308.2870.2992901035150.0755858.30.3192860124.7520 5.6379821968.050.291757109.7653838.250.2981310189.951100 2.0771513358.30.3170855123.975427 59.34718101 1.8440.0666765110.925414 0.5934718119.30.697294980142.1750 5.48961424316.60.668999.9050.0741839767.10.25737 5.36521.030.761651070155.152908.570.3119528.275105 1054.15430319.320.69825(vickers)12017.4398.219584622.650.8185652000290433.382789312.020.43437(vickers)18026.115.1335311610.4910.37925(vickers)14020.32007.56676621.450.77540(Vickers)14521.0250.9495548960.930.033671(Shore-A)30 4.354.5994065280.930.033660(Shore-A)28 4.060.950.034365(Shore-A)28 4.060.752225519 1.250.0451565(Shore-A)17 2.4650.741839763 1.20.043495R(Rockwell-M)7010.15601.80.065100(Rockwell-M)7010.15702.106824926 1.0950.0395576R(Rockwell-M)628.9963 1.483679525 1.7050.0695110568.12520.741839763 1.3550.0489581(Rockwell-M)557.975671.108308605 1.310.0473570(Rockwell-M)659.425651.310.04735110(Rockwell-R)8612.471.075667656 1.650.0596590(Rockwell-M)588.41701.4750.0533101(Rockwell-M)14020.3981.4360.0518596(Rockwell-M)17625.521.3150.047595(Rockwell-M)557.975541.5950.0576587(Rockwell-M)13719.8651411.30.04598.5550.9250.034560(Rockwell-R)16 2.32161.6765578640.9380.033959(Shore-D)25 3.625151.1590.041962(Rockwell-R)30 4.35162.053412463 1.1150.04025103(Rockwell-R)47 6.815461.42750.05155110(Rockwell-R)8011.61101.3050.04715110(Rockwell-R)11516.6751200.482195846 1.170.0422585(Rockwell-M)628.99691.4450.0522110(Rockwell-R)10715.5150.382789318 1.070.0386592(Rockwell-R)507.25281.180.0426596(Rockwell-R)36 5.22410.950.034326 3.772.232937685 1.060.038172(Rockwell-m)45 6.525463.264094955 2.2250.080458(Rockwell-R)25 3.62519 2.243323442 1.3050.0471599(Rockwell-R)47 6.815381.580.05705108(Rockwell-R)9013.051.160.0419584(Rockwell-M)659.425651.280.0462570(Rockwell-R)33 4.785261.30.04760(Rockwell-M)669.571.390.050278(Rockwell-M)608.7691.360.0491573(Rockwell-M)527.54521.570.056790(Rockwell-M)9513.7756809 3.672106825 1.2450.04581(Rockwell-M)7310.585741.20.0434200291.4250.051565(Shore-A)28 4.0619.22403561 3.960.1431365(Vickers)30043.53.680.13251720(Vickers)20529.7253.4650.12551450(Vickers)13719.8651.280.046255934.718101 3.5150.12710(Mohs)1050152.253.360.121510(Mohs)12001743.50.126562(Vickers)222.5519288 5.3160.1927500(Knoop)669.571.4836795252.40.08672(Knoop)578.2650.333827893 2.180.07884436910.0051.186943622.250.081328.04154303 1.8550.06710415.082.967359053.10.11230043.53.1860.1152.20.0795********.53.20.1161600(Vickers)8001165.680.2056.60.2384.940.1783200(Vickers)25837.4115.70.56780034449.886.560.2372600(Vickers)8912.90512.20.4412250(Vickers)03.80.137200293.480.12527947 6.81540.145722527.542.50.0903659.4252.170.078403.180.11515400.326409496 2.570.092853448499.962.540.0917********.954.451038576 1.810.06545650819.252.670623145 1.6350.059124335.2355.044510386 1.530.05528 1.60.2327.566765579 1.270.04585120(Rockwell-R)679.7151.220.044111917.2551.30.04695119(Rockwell-R)15021.751101.3770.0497513519.5751.430.0517121(Rockwell-R)01240.8010.02893(Wood Indentation)40.580.8010.0289 2.5(Wod Indentation)40.580.60.02162(Wood Indentation)20.290.40.0145 2.1 (Wood Indentation)20.290.210.00758 4.3 (Wood Indentation) 5.50.79750.9930.0359 4.8(Wood Indentation)60.87d Strength Modulus of ElasticityPoisson's Ratio%Elongation at break%Reduction of area Ksi Gpa10^6 Psi41.32520529.7100.29204523.92520028.9860.29305550.7520529.7100.29154029.7250.29255050.02520028.9860.2935.867.942.77520028.9860.2936.56674.67520028.9860.29123542.0520028.9860.29184050.7520028.9860.29305753.6520028.9860.29255578.320529.7100.29104066.720028.9860.29102573.22520529.7100.29101455.120529.7100.29132162.9320028.9860.2925.557.380.9120028.9860.292262.9120.9320028.9860.2919.257.447.12520529.7100.293052.960.920529.7100.2925.860.2132.96520529.7100.291657.860.17520529.7100.2925.756.994.97520529.7100.2917.746.8142.9720529.7100.2915.556.968.1520529.7100.292250124.9920529.7100.2912.236.3166.02520529.7100.2914.245.942.77520529.7100.2928.659.268.1520529.7100.2922.757.3121.94520529.7100.2918.55853.6520529.7100.29295361.62520529.7100.2923.558131.9520529.7100.2916.25439.87519327.9710.255574.67519327.9710.251236.97519327.9710.255742.0519327.9710.275074.67519327.9710.275042.0519728.5510.274337.719728.5510.274040.0220028.9860.273040.0220028.9860.273050.02520028.9860.2725101.93520028.9860.272536.8 230.5520429.5650.271175.4520429.5650.2718312.0290.2911416.5220.2915222.0290.2947.70516924.4930.291548.1416824.3480.2915125.2816423.7680.28 1.552.4916824.3480.3111.232.480.291040.020.291105.0756910.0000.333514.9356910.0000.331216.9656910.0000.33207310.5800.3350.0257310.5800.331846.987310.5800.331950.0257210.4350.3357.9756910.0000.332521.0256910.0000.332240.026910.0000.331240.026910.0000.33814.9357210.4350.331672.9357210.4350.33115.87010.1450.333030.457711.1590.331344.9512217.6810.3312166.7511516.6670.3 2.5160.9511516.6670.3 4.545.67511015.9420.3753563.07511015.9420.375811015.9420.375334.810515.2170.3463050.02510515.2170.3461044.959714.0580.3112044.959714.0580.3112550 65.2513018.8410.31663.07513018.8410.32634.811516.6670.3072553.6511516.6670.307561.62511516.6670.307331.911516.6670.3072539.87511516.6670.307122945 6.5220.351521.7545 6.5220.352131.945 6.5220.351514.06545 6.5220.35618.8545 6.5220.35514.06545 6.5220.351214.06545 6.5220.35 2.513.0545 6.5220.351521.02545 6.5220.3568.55520730.0000.313020730.0000.3112417.9710.333512417.9710.33315222.0290.334515222.0290.331520.311616.8120.3454110.211716.9570.311028 102.9511516.6670.311130 50.02513820.0000.3173040.0214521.0140.234070.03514821.4490.232060 68.87522532.6090.245173.22522532.6090.2460134.852268 84.8252523 75.419027.5360.2263855.53521030.4350.38247159.514721.3040.2391461.91520429.5650.315760.0330343.9130.1410108.7540057.9710.2818626.9570.359714.0580.2542.0546967.9710.2962015.22510314.9280.3830807711.1590.423052475.9420.262011716.9570.39317611.0140.39461711247.9710.39350.01630.0025005000.484503208.7 2.250.326510.1529.135 2.10.3040.391527.547 1.014 1.39.71512 1.7391489.425 2.30.3330.3662050.725610.15 3.50.507 2.414.2121 3.0430.45311 1.5940.4427.83 2.70.391200 20.44510 1.4490.4 3.82.480.359102.320.250.0360.38350 2.1750.50.072550 2.320.90.1307506.67 2.40.34855 15.959 1.304 1.5 17.422 3.188 1.25 10.005 2.90.4201509.2 1.3337.80.0004.06 2.250.3264275.945 3.750.5432504.750.6889 6.67 3.250.4710.3322.5 2.7550.60.0870.463255.51 3.10.4490.386250.7250.41 2.5 9.425 3.70.536 3.8 3.77 1.70.246353.60.522 3.5 10.005 2.40.3480.35105 7.54 2.30.333127 987.305 3.50.5073 10.73 2.60.37742.540450 37053.6230.2228240.87022833.043950137.6810.18865125.3620.2850123.1880.1385.512.391628.986689.8550.1941059.4200.1446767.6817410.7250.1729042.0290.2516023.18845065.2170.1868298.84139557.2460.1935251.0140.1830043.4780.226910.00022833.0430.2710014.4930.247210.4350.2 4.86910.0000.276 4.829042.029 1.8557.9710.4922532.6090.343.50.507 6.29 1.304 1.6 15.9513 1.884 4.510 1.449 2.75 17.98911.3 1.6380.0411.31 1.6397.89 1.1439.24 1.3390.3612.5 1.8120.3312.6 1.8260.036J Ft-lb Mpa(m)^0.5Ksi(in)^0.5W/m-K Btu/ft-h-F J/g-K Btu/lb-F51.930.000.4810.1154451.930.000.4810.1154451.930.000.4860.1166451.930.000.4860.1166412088.53651.930.000.4860.1166412592.22551.930.000.4860.116644936.15225448.651.930.000.4860.116644936.152251.930.000.4860.116644533.20151.930.000.4860.116646547.95751.930.000.4860.1166449.828.790.4720.113284 2.951251.930.000.4720.113285 3.68949.828.790.4610.110643 2.213449.828.790.4610.110644633.938851.930.000.4720.113285439.841251.930.000.4720.1132851.930.000.4720.1132844.525.720.4750.11444.525.720.4750.1146245.743642.624.620.4730.113528764.1886605442.624.620.4730.1135242.624.620.4730.113525137.627844.525.720.4750.1141611.80485549.544.525.720.4750.11444.525.720.4750.1144130.249844.625.780.4520.1084844.625.780.4520.1084844.625.780.4520.108489570.09146.626.940.4750.1149570.09146.626.940.4750.11446.626.940.4750.114136100.340816.29.360.50.12Thermal conductivity Specific Heat CpacityIzod Impact Fracture Toughness16.29.360.50.1216.29.360.50.12 12995.176216.39.420.50.1216.39.420.50.1212.57.230.460.110412.57.230.460.1104 4130.24982715.610.460.1104 4130.24982715.610.460.110426.115.090.460.110412.67.280.460.1104 11584.84716.49.480.460.110416.49.480.460.11045028.905028.905028.903620.813620.813620.813620.814023.124023.12222128.320.9040.21696220127.170.9040.21696220127.170.9040.21696193111.560.8750.214439.612169.940.8750.213430.612169.940.8750.2115187.280.8750.21180104.050.8960.2150415489.020.8960.21504 2926.116796.530.8960.2150417098.270.8960.21504173100.000.960.2304 2522.513075.140.960.23040.880.211295.355.090.930.2232388224.280.3850.092411868.210.420.100811868.210.420.100812069.360.3750.0912069.360.3750.0912069.360.3750.0912371.100.3750.0912371.100.3750.0911566.470.380.091211566.470.380.09120.3850.09240.3850.0924189109.250.3760.09024189109.250.3760.09024189109.250.3760.09024234135.260.380.0912234135.260.380.0912 2825.29655.4910.249655.4910.249655.4910.2459.234.22 1.050.2526135.26 1.050.25252.230.17 1.050.25272.742.020.80.19272.742.02 1.0470.2512872.742.02 1.0470.2512860.735.090.460.110460.735.090.460.1104179.830.5280.126726.4 3.700.5520.132486.4 3.700.5520.1324817.310.000.4390.1053610.15 5.870.5150.12369.4 5.439.4 5.4312.7667.380.4520.1084812.667.320.470.112812.57.230.430.103212.57.230.4440.1065616.79.650.4350.1044216124.86 1.9250.462163.394.390.1340.0321659.434.340.1380.03312112.264.860.38980.09355239.622.890.1380.033120.5230.30301173.990.13230.03175214784.970.1350.032471.241.160.2470.05928419242.200.2340.0561669.139.940.1340.032160.140.080.450.1080.150.090.440.1056 0.30.221340.60.540.20.1210.24 0.20.147560.60.3510.247 5.1646 2.8 2.520.260.15 2.10.504 0.180.1328040.560.32 1.60.384 0.270.1992060.20.1220.48 4.78 3.526684 3.1 2.790.20.12 1.10.264 0.520.38365600.220.1623160.60.540.170.101.10.811580.330.19 1.90.4560.120.0885360.60.35 1.90.4561.4 1.032925 4.50.21.10.811580.290.172.30.552 0.2670.1969930.000.001.0680.787970.30.172.20.528 4.83.541440.350.20 2.20.5284.01 2.9585780.350.20 2.20.528 3.2 2.360960.1580.0920.48 0.630.4648140.230.130.50.36890.550.320.160.118048 1.2 1.080.220.13 1.460.3504 0.450.332010.160.118048 3.7 3.330.120.0720.481.120.8263360.240.140.80.590240.180.1328040.160.09 1.70.4081.6 1.180480.30.17 1.30.312 5.3 3.910342.3 2.070.80.590240.170.1254260.1630.09 1.70.408 2.42 1.7854760.250.14 1.40.336 2.7 1.992060.2250.130 5.2 3.836560.310.180 3.8 2.803640.260.150 1.250.922250.310.180 0.80.590240.180.10 1.20.288 2.4 1.770724.5 4.053017.340.850.2043.6 3.242011.560.4390.10536158.670.4190.100560.90.810.510.296.5 5.852*******.070.47150.1131687.220001156.071200693.645028.900.3250.0780.80.72 1.10.640.70.63 1.380.800.750.182413.870.690.16560.80.720.80.463.4 3.06125.672.600.670.16084 3.611063.581.70.980.70.1684.5 4.05109 1.6750.972.2 1.276 5.42514.450.880.211211.9 6.880.70.1683 1.7310.241.30.750.810.19441.10.640.7870.18888158.6714.110.402980.470.27200115.61 1.10.2640.60.442680.220.131.44 1.0624321.260.9296280.620.361.220.9001161.6 1.18048Coefficient of thermal expansionElectrical Resistivity1E-6/K1E-6/F Ohm-cmC-3.25(min), Cr-0.05(min), Cu-0.15(min), Mn-0.5(min), Mo-0.05(min),N12.67.01 1.74E-0512.67.01 1.74E-0511.7 6.51 1.59E-051.59E-0511.7 6.51 1.59E-0511.7 6.51 1.59E-0511.3 6.29 1.71E-0511.3 6.29 1.71E-0511.3 6.29 1.71E-0511.3 6.29 1.71E-051.74E-0511.5 6.40 1.74E-0511 6.12 1.80E-0511 6.12 1.80E-050.0011.5 6.40 1.74E-0511.5 6.40 1.74E-0511.5 6.40 1.74E-052.45E-052.45E-052.45E-0512.2 6.79 2.20E-0512.2 6.79 2.20E-0512.2 6.79 2.20E-0512.3 6.84 2.48E-0512.3 6.84 2.48E-0512.3 6.84 2.48E-0512.67.01 2.28E-0512.67.01 2.28E-0512.67.01 2.28E-0512.2 6.79 2.34E-0512.2 6.79 2.34E-0512.2 6.79 2.34E-0517.29.577.20E-0517.29.577.20E-0517.29.577.20E-05168.907.40E-05168.907.40E-0514.48.010.00010214.48.010.00010210.8 6.01 6.00E-0510.8 6.01 6.00E-0510.4 5.79 6.00E-05Fe-56,Al-0.035(max),B-0.001(min),C-0.08(max),Cr-13.5(min),Cu-0.25(max),Mn-2(max),N 16.99.4011 6.128.30E-0511 6.128.30E-05C-3.25(min), Cr-0.05(min), Cu-0.15(min), Mn-0.5(min), Mo-0.05(min),N 13.57.518.00E-0513.57.518.00E-0513.57.518.00E-05Fe-90.68(min),C-3(min),Ce-0.005(min), Cr-0.03(min), Cu-0.15(min),Mg-0.03(min), Mn-0.15(m 137.23 6.00E-05137.23 6.00E-05137.23 6.00E-05137.23 6.00E-0512 6.68 3.40E-0512 6.68 3.40E-0523.613.13 2.99E-0623.613.13 3.00E-0623.613.13 3.00E-06Fe-0.5(max),Al-90.7(min),Cr-0.1(max),Cu-3.8(min),Mg-1.2(max),Mn-0.3(max),Other,each -0 23.212.91 3.49E-0623.212.91 5.82E-0623.212.91 5.82E-0623.212.91 4.49E-06Fe-0.7(max),Al-95.8(min),Cr-0.35(max),Cu-0.15(min),Mg-1.2(max),Mn-0.15(max),Other,each -23.613.13 3.66E-0623.613.13 4.32E-0623.613.13 3.99E-0623.613.13 3.70E-06Fe-0.5(max),Al-87.1(min),Cr-0.18(max),Cu-1.2(min),Mg-2.9(max),Mn-0.3(max),Other,each -23.613.13 3.80E-0623.613.13 5.50E-06Fe-0.7(max),Al-98.3(min),B-0.001(max),Cd-0.003(max),Co-0.001(max),Cu-0.15( 2413.35 2.80E-06Fe-0.3(max),Al-93(min),Cr-0.1(max),Cu-1(min),Li-2.2min),Mg-1.3(max),Mn-0.1(max),Other,each -0.05 21.411.91 2.80E-06179.46 1.70E-0616.79.29 6.90E-0616.79.29 6.90E-0619.911.07 6.20E-0619.911.07 6.20E-0619.911.07 6.20E-0620.811.57 6.16E-0620.811.57 6.16E-0620.511.41 6.60E-0620.511.41 6.60E-0617.69.79 2.16E-0617.69.79 2.16E-0618.410.24 2.72E-0618.410.24 2.72E-0618.410.24 2.72E-061810.02 2.44E-061810.02 2.44E-062614.479.20E-062614.479.20E-062614.479.20E-0626.114.52 1.15E-0526.114.52 1.18E-0526.114.52 1.40E-052614.47 1.43E-052614.47 1.70E-052614.47 1.29E-0513.17.29 6.40E-0613.17.29 6.40E-06179.46 2.90E-05179.46 2.90E-0515.58.62 3.75E-05 15.58.62 3.75E-05 8.9 4.95 5.54E-050.009.2 5.120.00016 9.2 5.120.00016 5.86 3.26 4.90E-050.1940.118.00E-051.30.728.20E-0512.3 6.848.86E-05 12.3 6.848.86E-0512.7917.127.40E-0513.187.337.40E-05 15.178.449.96E-05 13.467.499.85E-05 7.65 4.26 6.10E-05 137.23 1.30E-04 11.5 6.40 4.30E-06 4.4 2.45 5.65E-06 6.5 3.62 1.24E-05 31.217.36 5.92E-066.2 3.45 1.90E-057.1 3.95 1.40E-05 14.48.01 2.20E-06 6.8 3.78 4.70E-06 11.1 6.189.93E-06 19.610.91 1.55E-06 9.1 5.06 1.06E-051.00E+15 666370.56 1.00E+15 225125.19 1.00E+16 702390.59 1.00E+1610055.64 1.00E+15 5530.60 1.00E+14 10558.42 1.00E+12 7742.84 3.42E+11 9753.97 1.00E+147742.84 1.00E+15 5932.83 1.00E+1413575.11 1.00E+142513.91 1.00E+15 2111.68 1.00E+090.008346.18 2.00E+15 2513.91 1.00E+15 8346.18 1.00E+1513072.33 1.00E+15 2715.02 1.00E+15 11262.32 1.00E+0610759.53 1.00E+14 2312.80 1.00E+15 2212.24 5.00E+04 9552.86 1.00E+141.00E+1610558.42 1.00E+14 5128.38 1.00E+155.00E+04 8748.41 1.00E+15 11966.21 1.00E+11 5027.82 6.00E+14 2111.686536.17 1.00E+15 15988.47 1.00E+12 6636.7213575.11 1.00E+14 8748.41 1.00E+05 3217.80 1.00E+15 7742.84 1.00E+15 7.4 4.12 1.00E+14 6.2 3.45 1.00E+16 5.57 3.10 1.00E+141.180.66 1.00E+152.6 1.455.4 3.00 1.00E+07 4 2.23 1.00E+16 0.750.42 5.00E+09。