《三角形的初步知识》测试卷

合集下载

浙教版数学八年级上册第1章《三角形的初步知识》测试卷含答案解析和双向细目表-八上1

浙教版数学八年级上册第1章《三角形的初步知识》测试卷含答案解析和双向细目表-八上1

浙教版数学八年级上册第1章《三角形的初步知识》测试考生须知:●本试卷满分120分,考试时间100分钟。

●必须使用黑色字迹的钢笔或签字笔书写,字迹工整,笔迹清楚。

●请在试卷上各题目的答题区域内作答,选择题答案写在题中的括号内,填空题答案写在题中的横线上,解答题写在题后的空白处。

●保持清洁,不要折叠,不要弄破。

一.选择题:本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 下列各组长度的三条线段能组成三角形的是()A.1,2,3B.2,2,4C.1,2,2D.1,5,72.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.两点之间线段最短B.三角形两边之和大于第三边C.两点确定一条直线D.三角形的稳定性(第3题)(第2题)3.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AC=DEB.∠BAD=∠CAEC.AB=AED.∠ABC=∠AED4.下列命题中真命题是()A.无限小数都是无理数B.9的立方根是3C.倒数等于本身的数是±1D.数轴上的每一个点都对应一个有理数5.已知,在△ABC 中,∠B 是∠A 的3倍,∠C 比∠A 大30°,则∠A 的度数是( ) A.30°B.50°C.70°D.90°6.如图所示,平行四边形ABCD 中,AC 的垂直平分线交于点E ,且△CDE 的周长为10,则平行四边形ABCD 的周长是( ) A.10B.14C.18D.207.将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1= 115°,则∠BFG 的大小为( ) A.125°B.115°C.110°D.120°8.如图,在△ABC 中,AD 是高, AE 、BF 是两内角平分线,它们相交于点O ,∠CAB=50°,∠C=60°,求∠DAE 和∠BOA 的度数之和为( ) A.115°B.120°C.125°D.130°9.如图,对(第6题)(第7题)(第8题)(第9题)任意的五角星,结论正确的是( ) A.∠A+∠B+∠C+∠D+∠E=90°B .∠A+∠B+∠C+∠D+∠E=180°C .∠A+∠B+∠C+∠D+∠E=270°D .∠A+∠B+∠C+∠D+∠E=360° 10.如图,在△ABC 中,∠B+∠C=α,按图进行翻折,使B'D//C'G//BC , B'E//FG ,则∠C"FE 的度数是( ) A.2αB.90°-2αC.α-90°D.2α-180°二.填空题:本大题有6个小题,每小题4分,共24分。

八年级上册数学单元测试卷-第1章 三角形的初步知识-浙教版(含答案)

八年级上册数学单元测试卷-第1章 三角形的初步知识-浙教版(含答案)

八年级上册数学单元测试卷-第1章三角形的初步知识-浙教版(含答案)一、单选题(共15题,共计45分)1、如图所示,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2h后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为( )A.40海里B.60海里C.70海里D.80海里2、如图,△ABC的外角∠CBD和∠BCE的平分线相交于点F,则下列结论正确的是()A.点F在BC边的垂直平分线上B.点F在∠BAC的平分线上C.△BCF是等腰三角形D.△BCF是直角三角形3、三角形的内角和为()A.540 oB.360 oC.180 oD.60 o4、在下列条件中,不能说明△ABC≌△A′B′C′的是()A.∠C=∠C′,AC=A′C′,BC=B′C′B.∠B=∠B′,∠C=∠C′,AB=A′B′C.∠A=∠A′,AB=A′B′,BC=B′C′D.AB=A′B′,BC=B′C′,AC=A′C5、如图,△ABC≌△DEF,下列结论错误的是( )A.AB=DEB.BE=CFC.BC=EFD.AC=DE6、如下图,Rt△ABC中,过直角边AC上的一点P,作直线DE交AB于D,交BC的延长线于E,若∠DPA=∠A,则D点在()A.BC的垂直平分线上B.BE的垂直平分线上C.AC的垂直平分线上 D.以上答案都不对7、以下列各组数据为边长,能构成三角形的是()A.4,4,8B.2,4,7C.4,8,8D.2,2,78、如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°9、下列说法正确的是()A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两个角和其中一角的对边对应相等的两个三角形全等10、如图,小亮同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去11、如图.已知在正方形网格中,每个小方格都是边长为1的正方形,A、B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A、B、C为顶点的三角形面积为1,则点C的个数为()A.3个B.4个C.5个D.6个12、点P到△ABC的三个顶点的距离相等,则点P是△ABC ( )的交点.A.三条高B.三条角平分线C.三条中线D.三边的垂直平分线13、如图,△ABC≌△CDA,∠BAC=∠DCA,则BC 的对应边是()A.CDB.CAC.DAD.AB14、如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直15、如图,AE∥DB,∠1=85°,∠2=28°,则∠C的度数为()A.55°B.56°C.57°D.60°二、填空题(共10题,共计30分)16、如图,∠1、∠2、∠3的大小关系为:________.(用“>”或“<”连接三个角)17、如图,在△ABC中,AD平分∠BAC,交BC于点D,BE⊥AD于E,AB=6,AC=14,∠ABC=3∠C,则BE=________.18、如图,Rt△ABC的直角边BC在x轴上,直线y= x﹣经过直角顶点B,且平分△ABC的面积,BC=3,点A在反比例函数y= 图象上,则k=________.19、如图,点C为线段AB的中点,以BC为边作正方形BCDE,点F、点G分别在边DE、DC 上,且满足DF=DG,连接BF,连接AG并延长交BF于点H,连接DH.以下结论:①ACG≌BEF;②HD=HG;③AH⊥BF;④∠DHG=45°.其中正确的有________(填序号).20、如图,∠A=12°,∠ABC=90°,∠ACB=∠DCE,∠ADC=∠EDF,∠CED=∠FEG,则∠F=________°.21、从长度分别为3,4,6,9的四条线段中任选三条作边,能构成三角形的概率为________.22、已知方程的两根恰好是Rt△ABC的两条直角边长,则Rt△ABC内切圆的半径为________.23、如图所示是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD为________度.24、如图,在直角坐标系xOy中,点A,B分别在x轴和y轴上,,∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y= 的图象过点C,若以CD为边的正方形的面积等于,则k的值是________.25、在RtΔABC中,∠B=90°,∠A=30°,DE垂直平分AC,交AC于点E,交AB于点D,连接CD,若BD=2,则AD的长是________.三、解答题(共5题,共计25分)26、如图,AD⊥BC,∠1=∠2,∠C=55°.求∠BAC的度数.27、如图,在已知△ABC和△BAD中有以下四个判断:①AD=BC;②AC=BD;③∠C=∠D;④∠BAC=∠ABD.请你从中选择两个作为条件、一个作为结论,写出一个真命题并加以证明.28、如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.29、已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD°,交AB与H,∠AGE=50°,求∠BHF的度数.30、如图,已知B,D在线段AC上,且AB=CD,AE=CF,∠A=∠C,求证:BF∥DE.参考答案一、单选题(共15题,共计45分)1、D2、B3、C4、C5、D6、B7、C9、D10、C11、D12、D13、C14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、30、。

最新浙教版八年级数学上学期《三角形的初步认识》单元测试及答案解析.docx

最新浙教版八年级数学上学期《三角形的初步认识》单元测试及答案解析.docx

《第1章三角形的初步认识》一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.132.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有个.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是.(只填写一个条件)13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 度.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= ,∠C= .15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= .16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为.17.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于度.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为cm,∠FAN= .三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?26.(14分)课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= ;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)《第1章三角形的初步认识》参考答案与试题解析一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.13【考点】三角形三边关系.菁优网版权所有【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于5,而小于13.故选C.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.2.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°【考点】平行线的性质;三角形的外角性质.菁优网版权所有【专题】计算题.【分析】首先根据平行线的性质得到∠2的同位角∠4的度数,再根据三角形的外角的性质进行求解.【解答】解:根据平行线的性质,得∠4=∠2=50°.∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:C.【点评】本题应用的知识点为:三角形的外角等于与它不相邻的两个内角的和.两直线平行,同位角相等.3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°【考点】全等三角形的性质.菁优网版权所有【分析】根据全等三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB即可.【解答】解:∵△ACB≌A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°,故选B.【点评】本题考查了全等三角形性质的应用,注意:全等三角形的对应角相等.4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种【考点】三角形三边关系.菁优网版权所有【专题】常规题型.【分析】要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.【点评】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具【考点】作图—尺规作图的定义.菁优网版权所有【分析】根据尺规作图的定义作答.【解答】解:根据尺规作图的定义可知:尺规作图是指用没有刻度的直尺和圆规作图.故选C.【点评】尺规作图是指用没有刻度的直尺和圆规作图.6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°【考点】三角形内角和定理;角平分线的定义.菁优网版权所有【分析】根据数据线的内角和定理以及角平分线的定义,可以证明.【解答】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.【点评】注意此题中的∠A和∠BDC之间的关系:∠BDC=90°+∠A.7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°【考点】平行线的性质;三角形内角和定理.菁优网版权所有【分析】根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°【考点】三角形的外角性质;三角形内角和定理.菁优网版权所有【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.【点评】本题利用三角板度数的常识和三角形内角和定理,熟练掌握定理是解题的关键.9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°【考点】旋转的性质.菁优网版权所有【分析】根据两直线平行,内错角相等可得∠ACB=∠CAB,根据旋转的性质可得AC=AE,∠BAC=∠DAE,再根据等腰三角形两底角相等列式求出∠CAE,然后求出∠DAB=∠CAE,从而得解.【解答】解:∵CE∥AB,∴∠ACB=∠CAB=75°,∵△ABC绕点A逆时针旋转到△AED,∴AC=AE,∠BAC=∠DAE,∴∠CAE=180°﹣70°×2=40°,∵∠CAE+∠CAD=∠DAE,∠DAB+∠CAD=∠BAC,∴∠DAB=∠CAE=40°.故选C.【点评】本题考查了旋转的性质,平行线的性质,等腰三角形两底角相等的性质,熟记各性质并求出∠DAB=∠CAE是解题的关键.10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定【考点】全等三角形的判定与性质;等边三角形的性质.菁优网版权所有【分析】本题可通过证△ABE和△CBD全等,来得出AE=CD的结论.两三角形中,已知了AB=BC、BE=BD,因此关键是证得∠ABE=∠CBD;由于△ABC和△BED都是等边三角形,因此∠EBD=∠ABC=60°,即∠ABE=∠CBD=120°,由此可得证.【解答】解:∵△ABC与△BDE都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠EBD=60°;∴∠ACB+∠CBE=∠EBD+∠CBE=120°,即:∠ABE=∠CBD=120°;∴△ABE≌△CBD;∴AE=CD.故选A.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,当出现两个等边三角形时,一般要利用等边三角形的边和角从中找到一对全等三角形.二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有 5 个.【考点】三角形三边关系;一元一次不等式组的整数解.菁优网版权所有【分析】设第三边的长为x,根据三角形的三边关系的定理可以确定x的取值范围,进而得到答案.【解答】解:设第三边的长为x,则4﹣3<x<4+3,所以1<x<7.∵x为整数,∴x可取2,3,4,5,6.故答案为5.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是AB=DE .(只填写一个条件)【考点】全等三角形的判定.菁优网版权所有【专题】开放型.【分析】根据“SSS”添加条件.【解答】解:若加上AB=DE,则可根据“SSS”判断△ABC≌△DEF.故答案为AB=DE.【点评】本题考查了全等三角形的判定:判定方法有“SSS”、“SAS”、“ASA”、“AAS”.13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 30 度.【考点】全等三角形的性质.菁优网版权所有【分析】根据全等三角形的性质得出∠D=∠A=110°,∠C=∠F=40°,进而得出答案.【解答】解:∵△ABC≌△DEF,∠A=110°,∠F=40°,∴∠D=∠A=110°,∠C=∠F=40°,∴∠DEF=180°﹣110°﹣40°=30°.故答案为:30;【点评】此题主要考查了全等三角形的性质,利用其性质得出对应角相等是解题关键.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= 30°.,∠C= 90°..【考点】三角形内角和定理.菁优网版权所有【分析】有三角形内角和180度,又知三角形内各角比,从而求出.【解答】解:由三角形内角和180°,又∵∠A:∠B:∠C=1:2:3,∴∠A=180°×=30°,∠C=180°×=90°.故填:30°,90°.【点评】本题考查三角形内角和定理,结合已知条件,从而很容易知道各角所占几分之几.而解得.15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= 10°.【考点】三角形内角和定理;三角形的外角性质.菁优网版权所有【分析】根据∠B=60°,∠C=40°可得∠BAC的度数,AE平分∠BAC,得到∠BAE和∠CAE 的度数,利用外角的性质可得∠AED的度数,再根据垂直定义,得到直角三角形,在直角△ABD中,可以求得∠DAE的度数.【解答】解:∵∠C=40°,∠B=60°,∴∠BAC=180°﹣40°﹣60°=80°,∵AE平分∠BAC,∴∠BAE=∠CAE=40°,∴∠AED=80°,∵AD⊥BC于D,∴∠ADC=90°,∴∠DAE=180°﹣80°﹣90°=10°,故答案为:10°.【点评】本题主要考查角平分线的定义和垂直的定义,外角性质,三角形内角和定理,综合利用各定理及性质是解答此题的关键.16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为 1 .【考点】三角形的面积.菁优网版权所有【专题】压轴题.【分析】根据等底等高的三角形的面积相等求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比求出△ACD的面积,然后根据S1﹣S2=S△ACD﹣S△ACE计算即可得解.【解答】解:∵BE=CE,∴S△ACE=S△ABC=×6=3,∵AD=2BD,∴S△ACD=S△ABC=×6=4,∴S1﹣S2=S△ACD﹣S△ACE=4﹣3=1.故答案为:1.【点评】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比,需熟记.17.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于50 度.【考点】三角形内角和定理;翻折变换(折叠问题).菁优网版权所有【分析】根据已知求出∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,根据折叠求出∠ADE+∠AED=×260°=130°,根据三角形内角和定理求出即可.【解答】解:∵∠1+∠2=100°,∴∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,∵将纸片△ABC沿DE折叠,点A落在点P处,∴∠ADE=∠ADP,∠AED=∠AEP,∴∠ADE+∠AED=×260°=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°,故答案为:50.【点评】本题考查了三角形的内角和定理和折叠的性质的应用,注意:三角形的内角和等于180°,题目比较好,难度适中.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为12 cm,∠FAN= 20°.【考点】线段垂直平分线的性质.菁优网版权所有【分析】由EF,MN分别为AB,AC的垂直平分线,可得AF=BF,AN=CN,即可得△FAN的周长等于BC;又由∠BAC=100°,求得∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,继而求得答案.【解答】解:∵EF,MN分别为AB,AC的垂直平分线,∴AF=BF,AN=CN,∴△FAN的周长为:AF+FN+AN=BF+FN+CN=BC=12cm;∴∠BAF=∠B,∠CAN=∠C,∵△ABC中,∠BAC=100°,∴∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,∴∠FAN=∠BAC﹣(∠BAF+∠CAN)=20°.故答案为:12,20°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.【考点】全等三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】根据条件可以求出AD=BC,再证明△AED≌△BFC,由全等三角形的性质就可以得出结论.【解答】证明:∵AC=DB,∴AC+CD=DB+CD,即AD=BC,在△AED和△BFC中,∴△AED≌△BFC.∴DE=CF.【点评】本题考查了线段的数量关系,全等三角形的判定及性质的运用,解答时证明△AED≌△BFC是解答本题的关键.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【考点】全等三角形的判定.菁优网版权所有【专题】证明题.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF 即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.【考点】作图—复杂作图.菁优网版权所有【分析】(1)利用直角三角板一条直角边与BC重合,沿BC平移使另一直角边过A 画BC边上的高AD即可;再根据角平分线的做法作∠A的角平分线AE;(2)首先计算出∠BAE的度数,再计算出∠BAD的度数,利用角的和差关系可得答案.【解答】解:(1)如图所示:(2)在△ABC中,∠BAC=180°﹣11°﹣40°=30°,∵AE平分∠BAC,∴∠BAE=∠BAC=15°,在Rt△ADB中,∠BAD=90°﹣∠B=50°,∴∠DAE=∠DAB﹣∠BAE=35°.【点评】此题主要考查了复杂作图,以及角的计算,关键是正确画出图形.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.【考点】作图—基本作图.菁优网版权所有【分析】(1)根据过直线外一点作已知直线平行线的方法作图即可;(2)利用直角三角板,一条直角边与BC重合,沿BC平移,使另一条直角边过点P 画垂线即可.【解答】解:如图所示:.【点评】此题主要考查了基本作图,关键是掌握利用直尺做平行线的方法.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.【考点】线段垂直平分线的性质.菁优网版权所有【专题】证明题.【分析】EF垂直平分AD,则可得AF=DF,进而再转化为角之间的关系,通过角之间的平衡转化,最终得出结论.【解答】证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAF=∠B.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.【考点】全等三角形的判定与性质;角平分线的性质.菁优网版权所有【专题】证明题.【分析】在AB上截取ME=BN,证得△BND≌△EMD,进而证得∠DBN=∠MED,BD=DE,从而证得BD平分∠ABC.【解答】解:如图所示:在AB上截取ME=BN,∵∠BMD+∠DME=180°,∠BMD+∠BND=180°,∴∠DME=∠BND,在△BND与△EMD中,,∴△BND≌△EMD(SAS),∴∠DBN=∠MED,BD=DE,∴∠MBD=∠MED,∴∠MBD=∠DBN,∴BD平分∠ABC.【点评】本题考查了三角形全等的判定和性质,等腰三角形的判定和性质.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?【考点】一元一次方程的应用;三角形的面积.菁优网版权所有【专题】几何动点问题.【分析】分为三种情况讨论,如图1,当点P在AB上,即0<t≤4时,根据三角形的面积公式建立方程求出其解即可;如图2,当点P在BC上,即4<t≤7时,由S△APE=S﹣S△PCE﹣S△PAB建立方程求出其解即可;如图3,当点P在EC上,即7<t≤9四边形AECB时,由S△APE==10建立方程求出其解即可.【解答】解:如图1,当点P在AB上,即0<t≤4时,∵四边形ABCD是矩形,∴AD=BC=6,AB=CD=8.∵AP=2t,∴S△APE=×2t×6=10,∴t=.如图2,当点P在BC上,即4<t≤7时,∵E是DC的中点,∴DE=CE=4.∵BP=2t﹣8,PC=6﹣(2t﹣8)=14﹣2t.∴S=(4+8)×6﹣×(2t﹣8)×8﹣(14﹣2t)×4=10,解得:t=7.5>7舍去;当点P在EC上,即7<t≤9时,PE=18﹣2t.∴S△APE=(18﹣2t)×6=10,解得:t=.总上所述,当t=或时△APE的面积会等于10.【点评】本题考查了矩形的性质的运用,三角形的面积公式的运用,梯形的面积公式的运用.解答时灵活运用三角形的面积公式求解是关键.26.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= 50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A .3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)【考点】三角形的外角性质;三角形内角和定理.菁优网版权所有【专题】探究型.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB ,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB ,再根据角平分线的定义求出∠PBC+∠PCB ,然后利用三角形内角和定理列式整理即可得解;(4)延长BA 、CD 相交于点Q ,先用∠Q 表示出∠P ,再用(1)的结论整理即可得解.【解答】解:(1)∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB )=360°﹣(180°﹣∠A )=180°+∠A ;(2)∵∠1+∠2=∠180°+∠C ,∴130°+∠2=180°+∠C ,∴∠2﹣∠C=50°;(3)∠DBC+∠ECB=180°+∠A ,∵BP 、CP 分别平分外角∠DBC 、∠ECB ,∴∠PBC+∠PCB=(∠DBC+∠ECB )=(180°+∠A ),在△PBC 中,∠P=180°﹣(180°+∠A )=90°﹣∠A ;即∠P=90°﹣∠A ;故答案为:50°,∠P=90°﹣∠A ;(4)延长BA、CD于Q,则∠P=90°﹣∠Q,∴∠Q=180°﹣2∠P,∴∠BAD+∠CDA=180°+∠Q,=180°+180°﹣2∠P,=360°﹣2∠P.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.。

【期末复习提升卷】浙教版2022-2023学年八上数学第1章 三角形的初步知识 测试卷1

【期末复习提升卷】浙教版2022-2023学年八上数学第1章 三角形的初步知识 测试卷1

【期末复习提升卷】浙教版2022-2023学年八上数学第1章三角形的初步知识测试卷1考试时间:120分钟满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.如图,DE是△ABC的边BC的垂直平分线,分别交边AB,BC于点D,E,且AB=9,AC=6,则△ACD的周长是()A.10.5B.15C.12D.18(第1题)(第3题)(第4题)(第5题)(第6题)2.如图,M,A,N是直线l上的三点,AM=3 ,AN=5,P是直线l外一点,且∠PAN=60°,AP=1,若动点Q从点M出发,向点N移动,移动到点N停止,在△APQ形状的变化过程中,依次出现的特殊三角形是()A.直角三角形—等边三角形—直角三角形—等腰三角形B.直角三角形—等腰三角形—直角三角形—等边三角形C.等腰三角形—直角三角形—等腰三角形—直角三角形D.等腰三角形—直角三角形—等边三角形—直角三角形3.如图所示,一个60o角的三角形纸片,剪去这个60°角后,得到一个四边形,那么∠1+∠2的度数为()A.120O B.180O.C.240O D.30004.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠A=50°,则∠FDE的度数为()A.75°B.70°C.65°D.60°5.如图是正五边形ABCDE,DG平分正五边形的外角∠EDF,连接AD,则∠ADG= ()A.54°B.60°C.72°D.88°6.如图,在△ABC中,AB=6,AC=8,AD是边BC上的中线,则AD长的取值范围是()A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤77.如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30∘,∠C=100∘,如图2.则下列说法正确的是()A.点在上B.点在的中点处C.点在上,且距点较近,距点较远D.点在上,且距点较近,距点较远(第7题)(第8题)8.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为()A.25B.5.5C.7.5D.12.59.如图,在长方形纸片ABCD中,△EDC沿着折痕EC对折,点D的落点为F,再将△AGE沿着折痕GE对折,得到△GHE,H、F、E在同一直线上;作PH⊥AD于P,若ED=AG=3,CD=4,则PH 的长为()A.52B.5C.7225D.962510.如图,AD是ΔABC的中线,E是AD上一点,连接BE并延长交AC于点F,若EF=AF,BE=7.5,CF=6,则EF=().A.2.5B.2C.1.5D.1二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.如图,已知△ABD≌△ACE,且∠1=45°,∠ADB=95°,则∠AEC= ,∠C=. 12.如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是.13.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于点D.若B(m,3),C(n,−5),A(4,0),则AD⋅BC=.(第13题)(第14题)(第15题)(第16题)14.如图△ABC中,AD⊥BC于点D,AE平分∠CAD交BC于E,若∠C=60°,则∠DEA=.15.如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136°,∠BCD=44°,则∠ADB的度数为16.如图,D、E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△FCE 的面积为S2,若S△ABC=24,则S1﹣S2的值为.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图所示,在△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE.(1)求证:△BCE≌△AHE.(2)求证:AH=2CD.18.在ΔABC中,AC<AB<BC,∠B=36°.(1)如图1,已知线段AB的垂直平分线与BC边交于点P,连接AP,求∠APC的度数.(2)如图2,若点Q是BC上一点,且BA=BQ,连接AQ.求证:∠AQC=3∠B.19.如图,在△ABC中,AE为∠BAC的角平分线,点D为BC的中点,DE⊥BC交AE于点E,EG⊥AC 于点G.(1)求证:AB+AC=2AG.(2)若BC=8cm,AG=5cm,求△ABC的周长.20.如图,一次函数y=(m+1)x+ 32的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB的面积为3 4.(1)求m的值及点A的坐标;(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=3OA,求直线BP的解析式.21.如图,在ΔABC中,∠ABC=45°,D为BC上一点,CD=2BD,∠ADC=600,AE⊥BC 于点E,CF⊥AD于点F,AE,CF相交于点G.(1)求证:ΔAFG≅ΔCFD;(2)若BC=3,AF=√3,求EG的长.22.如图,在△ABC中,D、E为BC上的点,AD平分∠BAE,CA=CD.(1)求证:∠CAE=∠B;(2)若∠B=50°,∠C=3∠DAB,求∠C的大小.23.如图,在△ABC中,AE,CD分别是∠BAC,∠ACB的平分线,且AE,CD相交于点F.(1)若∠BAC=80°,∠ACB=40°,求∠AFC的度数;(2)若∠B=80°,求∠AFC的度数;(3)若∠B=x°,用含x的代数式表示∠AFC的度数.24.如图1,张老师在黑板上画出了一个ΔABC,其中AB=AC,让同学们进行探究.(1)探究一:如图2,小明以BC为边在ΔABC内部作等边ΔBDC,连接AD,请直接写出∠ADB的度数;(2)探究二:如图3,小彬在(1)的条件下,又以AB为边作等边ΔABE,连接CE.判断CE与AD的数量关系;并说明理由;(3)探究三:如图3,小聪在(2)的条件下,连接DE,若∠DEC=60∘,DE=2,求AE的长.。

浙江省杭州市三墩中学七年级数学《三角形的初步知识》

浙江省杭州市三墩中学七年级数学《三角形的初步知识》

《三角形的初步知识》单元检测(C 卷)班级 姓名_____________一、填空题(每空2分,共26分)1、如图(1)∠A=80º,∠2=130º,则∠1=_______º;2、如图(2)已知AC = BD ,要使△ABC≌DCB,只需增加的一个条件是___________;3、已知△ABC 中,∠C=4∠A, ∠A + ∠B = 100º,那么与∠A =______度;4、三角形的两边长分别为2cm, 5cm ,第三边长x c m 也是整数,则当三角形的周长取最大值时 x 的值为__________; 5、四条线段的长分别是5 cm ,6 cm ,8 cm ,13 cm ,则以其中任意三条线段为边可以构成 ___ _ 个三角形。

6、如图(5)△ABC 的高AD 和CE 相交于点H ,若∠B =40º,则∠AHC =_______º;7、如图(6)在△ABC 中,AD 是高,E 是AB 上一点,AD 与CE 相交于点P , 已知∠APE=50º,∠AEP=80º, 则∠B =________º8、在Rt △ABC 中,∠C =90º,CE 是△ABC 的中线,若AC=2.4cm, BC = 1.5cm, 则△AEC 的面积为________.9、如图1,AD 是△ABC 的中线,△ABC 的面积为20㎝2,则△ABD 的面积是 ㎝2。

(1)、在图2中,若E 为中点,则△BDE 的面积是 ㎝2。

(2)、在图3中,若F 为中点,则△CFE 的面积是 ㎝2。

(3)、在图4中,A 、B 、C 分别为中点,则△DFE 的面积是 ㎝2。

10、如图,正方形ABCD 与正方形OEFG 的边长都是a ,且O 是正方形ABCD 的 中心,图形阴影部分的面积是____________________二、选择题(每题2分,共20分) 11、在△ABC 中,三个内角满足以下关系:C B A ∠=∠=∠3121,那么这个三角形是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、任意三角形12、在下列长度的四根木棒中,能与4 cm, 9 cm 长的两根木棒钉成一个三角形的是( )A 、 4 cmB 、 5 cmC 、 9 cmD 、 13 cm13、如图,PD⊥AB, PE⊥AC, 垂足分别为D , E ,且AP 平分∠BAC ,则△APD 与△APE 全等的理由是( )A 、SASB 、ASAC 、SSSD 、AAS 14、下列说法错误的是( ) A 、有一个外角是锐角的三角形是钝角三角形;A CB (1)21(2)(5)AB 、有两个角互余的三角形是直角三角形;C 、直角三角形只有一条高;D 、任何一个三角形中,最大角不小于60度.15、在下列条件中,不能说明△ABC≌△A ’B ’C ’的是( )A 、∠A=∠A ’, ∠B=∠B ’, AC =A ’C ’; B 、∠A=∠A ’, AB=A ’B ’, BC =B ’C ’ C 、∠B=∠B ’, BC=B ’C ’, AB =A ’B ’;D 、AB=A ’B ’, BC=B ’C ’, AC =A ’C ’16、如图,AD, BE 都是△ABC 的高,则与∠CBE 一定相等的角是( )A. ∠ABEB. ∠BADC. ∠DACD. 以上都不是 17、下列图中,正确画出AC 边上的高的是( )A B C D18、如图,在△ABC 中,AB=AC ,AB 的中垂线DE 交AC 于点D ,交AB 于E 点,如果BC=10,△BDC 的周长为22, 那么△ABC 的周长是( )A 、24B 、30C 、32D 、34 19、如图,在△ABC 中,∠ABC 与∠ACB 的角平分线交于点O ,且∠A =α,则∠BOC 的度数是(A. 11802α︒-B. 1902α︒+C. 1902α︒- D. 12α20、如图,∠+∠+∠+∠+∠+∠E D C B A A 、1800B 、2700C 、3600D 、450三.解答题 21、(8分)如图,已知BE=CF ,AB=CD ,∠B=∠C ,问AF=DE 吗?请说明理由。

第一章 三角形的初步知识综合测试试题(含解析)

第一章 三角形的初步知识综合测试试题(含解析)

浙教版八上数学第一章:三角形的初步知识综合测试一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.下列各组线段中,能组成三角形的是( )A. 4,6,10B. 3,6,7C. 5,6,12D. 2,3,62. 如图所示,在△ABC 中,∠B =30°,∠C =70°,AD 是△ABC 的一条角平分线,则∠CAD 的度数为( )A. 40°B. 45°C. 50°D. 55°3.利用尺规作图,作不出唯一三角形是( )A.已知三边 B .已知两边及其中一边的对角 C .已知两角及夹边 D .已知两边及夹角4.如图,点E ,D 分别在AB ,AC 上,若AB =AC ,BE =CD ,BD =EC ,∠B =32°,∠A =41°,则∠BOC 度数是( )A .135°B .125°C .115°D .105°5.如图,△ABC 的三边AB 、BC 、CA 的长分别为30、40、15,点P 是三条角平分线的交点,将△ABC 分成三个三角形,则APB S ∆︰BPC S ∆︰CPA S ∆等于( )A.1︰1︰1B. 6︰8︰3C.5︰8︰3D. 4︰5︰36.如图,AD 是△ABC 的中线,CE 是△ACD 的中线,DF 是△CDE 的中线,如果△DEF 的面积是2,那么△ABC 的面积为( )A. 12B. 14C. 16D. 187.对于命题“若a 2>b 2,则a >b ”,下面四组a ,b 的值中,能说明这个命题是假命题的是( )A. a=3,b=2B. a=﹣3,b=2C. a=3,b=﹣1D. a=﹣1,b=38. 如图所示,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD ,CE 相交于点H ,已知EH =EB =6,AE =8,则CH 的长是( )A. 1B. 2C. 3D. 49.如图,∠A=120°,且∠1=∠2=∠3和∠4=∠5=∠6,则∠BDE=()A. 60°B. 70°C. 80°D. 不能确定,具体由三角形的形状确定10. 如图所示,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于点E.若AB=6 cm,则△DEB的周长为( )A. 5cmB. 6cmC. 7cmD. 8cm二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11. 已知三角形的三边长分别是3,x,9,则化简|x-5|+|x-13|=________12.用直尺和圆规作一个角等于已知角的示意图如图4,则要说明∠D′O′C′=∠ DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是(写出全等的简写)13. 如图所示,在△ABC中,AD⊥BC于点D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C=________14. 如图,点D,E,F,B在同一条直线上,AB∥CD,AE∥CF且AE=CF.若BD=10,BF=3.5,则EF =________15.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=72°,∠FAE =18°,则∠C =16.如图所示,在△ABC中,AB=AC,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下面结论中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B、C两点的距离相等;④图中共有3对全等三角形,正确的有:_______________________(填序号)三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17(本题6分)如图,在△ABC中,D是BC边上的点(不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使CF=BE(不再添加其它线段,不再标注或使用其他字母),并给出证明.18(本题8分)如图,AB=CD,AD=CB,O为BD上任意一点,过O点的直线分别交AD、BC的延长线于M、N点,求证:∠1=∠2.19(本题8分)如图,AF垂直平分BC,AD=CE,DB=AE,求证:∠D=∠E.20(本题10分). 如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于点D,E为AC上一点,AE=AB,连结DE. (1)求证:△ABD≌△AED; (2)已知BD=5,AB=9,求AC长.21(本题10分). “综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的三角形,请列举出所有满足条件的三角形;(2)用直尺和圆规作出三边满足a<b<c 的三角形(用给定的单位长度,不写作法,保留作图痕迹).22(本题12分)如图,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E ,F 分别是BC ,CD 上的点,且∠EAF =21∠BAD ,求证:EF =BD +DF.23(本题12分)如图:在△ABC 中,10==AC AB ,8=BC ,D 为AB 的中点,点P 在线段BC 上以每秒3个单位的速度由B 点向C 点运动,同时,点Q 在线段CA 上由点C 向点A 运动,(1)若Q 的运动速度与点P 相等,则1秒钟后,△BPD 与△CQP 是否全等?请说明理由;(2)若点P 与点Q 的运动速度不相等,则当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?。

测试卷

测试卷

第一章三角形的初步知识测试卷姓名一.细心选一选(每题3分,共30分)1.下列6组长度的线段中,可以首尾相接组成三角形的是()①3,4,5;②1,11,2④5,5,5;⑤2,2,5;⑥3,7,4A.①②③④⑤⑥ B.①④⑤ C.①③④ D.①②③④2.下列有关三角形的角的说法正确的是()A.三角形的外角一定大于任何一个内角B.三角形的内角和与三角形形状有关C.有一个角是钝角的三角形是钝角三角形 D一个三角形中最多只能有两个直角3.如果∠B+∠C=∠A,那么△ABC是()三角形A.直角 B.钝角 C.锐角 D.无法确定4.下列说法不正确...的是()A.三角形共有三条中线和三条角平分线 B.直角三角形只有一条高C.三角形的内角平分线是射线 D.钝角三角形的高的交点一定在三角形的外部5.如图1,AD是ABC∆中BC边上的高,CE是∠ACB的角平分线,AD,CE相交与点F,若∠B=60O,∠ACB=68O,则∠D AC和∠B EC的度数分别为()A.22O,86O B.32O,96O C.32O,86O D.22O,96OBB图1 图2 图36.已知下列条件中,能根据下列条件作出唯一的三角形的是()A.两角一夹边 B.两边一角 C.两边 D.三角7.如图2,AC=AD,BC=BD,则图中全等三角形的对数是()A.6对 B.3对 C.2对 D.1对8.如图3,AC是ABC∆和ADC∆的公共边,要判定ABC ADC∆≅∆还需补充的条件不能..是()A.∠1= ∠2,∠B= ∠D B.AB=AD,∠3= ∠4C.∠1= ∠2,∠3= ∠4 D.AB=AD,∠1= ∠29.如图4,在ABC∆中,AB=AC=10,AB的垂直平分线交AC于G,BC=7,则GBC∆的周长是()A.10 B.20 C.17 D.13 10.如图5,小明想测一块泥地AB的长度,他在AB的垂线BM上分别取C,D两点,使CD=BC,再过D点作出BM的垂线DN,并在DN上找一点E,使A,C,E三点共线,这时这块泥地AB的长度就是哪条线段的长度?()A.BC B.AC C.CD D.DED E图4 图5 图6二.用心填一填(每题4分,共20分)11.如图6,图中共有个三角形,它们分别是;12、△ABC中,∠A∶∠B∶∠C=1∶3∶5,则∠A= ,∠B= ,∠C= ,这个三角形按角分类时,属于三角形;13.如图7,OP平分BOA∠,PD OB⊥于D,PC OA⊥于C,写出你可以得到的结论(至少写出3个)14.如图8,在△ABC中,AD是BC边上的中线,若△ABC的周长为20,BC=11,且△ABD的周长比△ACD的周长大3,则AB= ,AC=15.如图9,已知AB=DC,要说明ABC DCB∆≅∆,只要增加的一个条件可以是(写出两个不同的添法)ABAB C BC图7 图8 图9三.用尺规作图16.如下图,已知ABC∆,用尺规作D E F∆,使得ABC DEF∆≅∆(不用写出作法,但要保留作图痕迹)(4分)CBABAEMDC17.任意画个三角形,试在三角形的内部找一点,使它到三角形的三边距离都相等。

浙教版数学八年级上册 第一章 三角形的初步知识单元测试(含答案)

浙教版数学八年级上册  第一章 三角形的初步知识单元测试(含答案)

浙教版数学八上第一章一、单选题1.下列长度的三条线段,能组成三角形的是( )A.5,6,10B.5,6,11C.3,4,8D.6,6,132.在证明命题“若a2>1,则a>1”是假命题时,下列选项中所举反例不正确的是( )A.a=2B.a=―2C.a=―3D.a=―43.如图,在△ABC和△BAD中,AC=BD,BC=AD,在不添加任何辅助线的条件下,可判断△ABC≌△BAD,判断这两个三角形全等的依据是( )A.ASA B.AAS C.SSS D.SAS4.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为( )A.1cm B.2cm C.3cm D.4cm5.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列符合题意的是( )A.B.C.D.6.如图所示,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于E,CF⊥BD于E,图中全等三角形有( )A.3对B.5对C.6对D.7对7.如图,已知AE是ΔABC的角平分线,AD是BC边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE的大小是( )A.5°B.13°C.15°D.20°8.如图,在△ABC中,∠BAC和∠ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+ 1∠C;②当∠C=60°时,AF+BE=AB;2③若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的是( )A.①②B.②③C.①②③D.①③9.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∠CAB和∠ABC的平分线交于点O,OM⊥BC于点M,则OM的长为( )A.1B.2C.3D.410.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点MMN的长为半径画弧,两弧交于点P,连结AP并延长交BC于和N,再分别以M、N为圆心,大于12点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1B.2C.3D.4二、填空题11.一个命题由“条件”和“结论”两部分组成,则命题“同角的余角相等”的条件是 .12.如图,∠BAD=∠CAE.BC=DE.若添加一个条件可得ΔABC≌ΔADE,则添加的条件及对应的理由是 .(写出所有满足条件的答案)13.如图,△ABC中,AB=15,BC=9,BD是AC边上的中线.若△ABD的周长为35,则△BCD的周长是 .14.如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、AB分别于点D、E,则△AEC的周长等于 。

浙教版八年级数学上《第1章三角形的初步知识》单元检测题含答案

浙教版八年级数学上《第1章三角形的初步知识》单元检测题含答案

浙教版2022-2023上学期八年级数学(上册)第1章三角形的初步知识检测题(时间:100分钟 满分:120分) 题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题(共10小题 每3分 共30分)1、以长为5cm 和3cm 的线段为边,且第三边为偶数的三角形,可以作 ( )A.1个B.2个C.3个D.4个 2、将三角形面积分成相等两部分的线是( )A.三角形的角平分线B. 三角形的三边垂直平分线C. 三角形的高线D. 三角形的中线3、如图,E D C B A ∠+∠+∠+∠+∠等于( )A.90°B.108°C.180°D.360° 4、不是利用三角形稳定性的是( )A .自行车的三角形车架B .三角形房架C .照相机的三角架D .矩形门框的斜拉条 5、如图,点E ,D 分别在AB ,AC 上,若AB =AC ,BE =CD ,BD =EC ,∠B =32°,∠A =41°, 则∠BOC 度数是( )A .135°B .125°C .115°D .105°6、如图,在△ABC 中,BD 、CE 分别是∠ABC 和∠ACB 的平分线,AM ⊥CE 于P ,交BC 于M ,AN ⊥BD 于Q ,交BC 于N ,∠BAC =110°,AB =6,AC=5,MN =2,结论①AP =MP ;②BC =9;③∠MAN =35°;④AM =AN .其中不正确的有( )A. 4个B. 3个C. 2个D. 1个7、如图,所示某人将一块三角形的玻璃打碎成了四块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带( )去.A.第①块B.第②块C.第③块D.第④块第7题图第6题图第5题图8、下列命题是真命题的是( )A.一个三角形中至少有两个锐角B. 若A ∠与B ∠是内错角, 则A B ∠=∠C.如果两个角有公共边,那么这两个角一定是邻补角D.如果3.14a b =π,那么a b = 9、如图,∠1=∠2,补充一个条件后仍不能判定△ABC ≌△ADC 是( ) A. AB =AD B. ∠B =∠D C. BC=DC D. ∠BAC =∠DAC10、如图,△ABC 的三边AB 、BC 、CA 的长分别为30、40、15,点P 是三条角平分线的交点,将△ABC 分成三个三角形,则APB S ∆︰BPC S ∆︰CPA S ∆等于( )A.1︰1︰1B. 6︰8︰3C.5︰8︰3D. 4︰5︰3二、填空题(共8小题 每题3分 共24分)11、在△ABC 中,AD 是BC 边上的中线,AB =5cm ,AD =3cm ,则AC 的取值范围是_____________; 12、如图,AB ∥CD ,∠1=42°,∠3=77°,则∠2的度数为( )13、如图,在四边形ABCD 中,AD =AD ,BC =DC ,E 是AC 上的点,则图中共有_______对全等三角形. 14、如图,△ABC 中,DH 是AC 的垂直平分线,交BC 于P ,MN 是AB 的垂直平分线,交BC 于点Q , 连接AP 、AQ ,已知∠BAC =72°,则∠P AQ = 度.15、如图,在△ABC 中,∠C =90°,AC =BC ,BD 平分∠CBA 交AC 于点D ,DE ⊥AB 于点E ,且△DEA 的周长为cm ,则AB = .第15题图第9题图第10题图第13题图第14题图第18题图第16题图16、如图,在△ABC 中,BC =6cm ,AC =2.5cm ,AB =4cm ,∠B =40°,∠C =55°,选择适当数据,画与△ABC 全等的三角形一共有 种选择方法.17、如果一个角的两边与另一个角的两边分别垂直,那么这两个角相等或互补,这个命题的题设 是 ,结论是 .18、如图,在△AB C 中, E 是边A B 上的点,CF ⊥AB 于F ,EG ⊥C B 于G ,若 △CAF ≌△CEF ≌△CEG ≌△BEG ,则∠ACB =______度. 三、解答题(共8题 共66分)19、(满分6分)已知∠α和线段a ,求作△ABC ,使∠A =∠α,∠C =90°,AB =a .20. (满分8分)将推理过程的理由填入括号内:如图,AB =CD ,AD =CB ,O 为BD 上任意一点,过O 点的直线分别交AD 、BC 的延长线于M 、N 点,试说明∠1=∠2.解:在△ABD 和△CDB 中,∴△ABD ≌△CDB ( ),∴∠ADB =∠CBD ( ), ∴ AD ∥BC ( ), ∴∠1=∠2( ).21、(满分8分)如图,点A 、B 、E 、D 在同一直线上, 已知AF ∥DC ,AF =DC ,FE ∥CB .求证:AB DE =.22、(满分6分)如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B =72°,∠F AE =18°,则∠C = 度.( )( ) ( )AB CD AD CB BD DB =⎧⎪=⎨⎪=⎩第21题图第22题图第19题图第20题图23、(满分9分)如图,已知在△ABC 中,∠ACB =90°,CF ⊥AB 于F , 点G 为BC 的中点,E 为AB 上的点,GE 的延长线与CF 的延长线 相交于D ,若CE =BE ,BC =2AC ,则AB =CD .请说明理由.24、(满分8分),如图已知AD 、A D ''分别是边BC 、B C ''上的中线,AB A B ''=,BC B C ''=,AD A D ''=,求证:C C '∠=∠.25、(满分8分)阅读以下材料:对于三个数a 、b 、c ,用}{M a b c ,,表示这三个数的平均数,用}{min a b c ,,表示这三个数中最小的数.例如:}{2121M 21233-++-==,,;}{min 2122-=-,,. 解决下列问题:(1)填空:如果}{M 211358312x x x x +---=-,,,则x 的值为 ; (2)如果}{}{M 3213min 3213a a a a +=+,,,,,求a 的值.26、(满分11分)如图,CD 是经过∠BCA 顶点C 的一条直线,且直线CD 经过∠BCA 的内部,点E ,F 在射线CD 上,已知CA =CB 且∠BEC =∠CF A =∠α.(1)如图1,若∠BCA =80°,∠α=100°,问AF BE EF -=,成立吗?说明理由.(2)将(1)中的已知条件改成∠BCA =∠β,∠α+∠β=180°(如图2),问AF BE EF -=仍成立吗?说明理由.第23题图第24题图答 案一、选择题(共10小题 每3分 共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案BDCCDBCAAB二、填空题(共8小题 每题3分 共24分)11. 1<AC <11 12.∠2=35° 13.3对 14. 36° 15.cm 16.4 三、解答题(共8题 共66分)17.条件:一个角的两边与另一个角的两边分别垂直,结论:这两个角相等或互补 18.90° 19题,作法(1)作∠MAN =∠α, (2)在AM 上截取AB =a ,(3)过点B 作AN 的垂线,垂足为C ,△ABC 为所求作. 20.解:在△ABD 和△CDB 中,AB CDAD CBBD DB =⎧⎪=⎨⎪=⎩(已知)(已知)(公共边) ∴△ABD ≌△CDB (SSS ),∴∠ADB =∠CBD (全等三角形对应角相等), ∴ AD ∥BC (内错角相等两直线平行 ), ∴∠1=∠2( 两直线平行内错角相等). 21.证明:∵AF ∥DC (已知),∴ ∠A =∠D (两直线平行内错角相等).∵FE ∥CB (已知),∴∠1=∠2(两直线平行内错角相等)∵∠F =180-(∠A +∠1),∠C =180-(∠D +∠2)(三角形内角和定理) ∴∠F =∠C (等量代换) 在△AFE 和△DCB 中,A D AF DCF C ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证),(已知),(已证), ∴△AFE ≌△DCB (ASA )∴AE =DB (全等三角形对应边相等). ∴AE -BE =DB -EB (等量减等量差相等). 即AB =DE .第21题图第20题图第19题图22.解:∵DE 是AC 的垂直平分线, ∴EA =EC , ∴∠EAC =∠C , ∴∠F AC =∠EAC +18°, ∵AF 平分∠BAC , ∴∠F AB =∠EAC +18°, ∵∠B +∠BAC +∠C =180°, ∴72°+2(∠C +18°)+∠C =180°, 解得,∠C =24°, 故答案为:24.23.证明:∵G 为BC 的中点(已知), ∴CG =BG (中点定义), ∵BC =2AC (已知), ∴AC =CG (等量代换) 在△ECG 和△EBG 中,CE BE EG EGCG BG =⎧⎪=⎨⎪=⎩(已知),(公共边),(已证), ∴△ECG ≌△EBG (SSS ).∴∠EGC =∠EGB (全等三角形对应角相等). ∵∠EGC +∠EGB =180°(平角定义) ∴∠EGC =∠EGB =90°=∠ACB (等量代换)∵CF ⊥AB (已知),∵∠DFE =∠EGB =90°(垂直定义),∠1=∠2(对顶角相等), ∴∠D =∠B (三角形内角和定理) △ABC 和△CDG 中,B D ACB CGDAC CG ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证),(已证),(已证), ∴△ABC ≌△CDG (AAS )∴AB =CD (全等三角形对应边相等).24.证明:∵AD 、A D ''分别是边BC 、B C ''上的中线(已知), ∴12BD BC =, 12B D BC ''''=(中点定义), ∵BC B C ''=(已知),第23题图第22题图∴BD B D ''=(等量代换).ABD ∆和A B D '''∆中, AB A BBD B DAD A D ''=⎧⎪''=⎨⎪''=⎩(已知),(已证),(已知), ∴ABD ∆≌A B D '''∆(SSS )∴B B '∠=∠(全等三角形对应边相等).ABC ∆和A B C '''∆中, AB A B B BBC B C ''=⎧⎪'∠=∠⎨⎪''=⎩(已知),(已证),(已知), ∴ABC ∆≌A B C '''∆(SAS )∴C C '∠=∠(全等三角形对应边相等). 25.(1)由题意,得2113583123x x x x +---=-+解方程,得2x = (2)由题意,得321333a a +++=,3213213a a a +++=+,321333a aa +++=解这三个方程,都得1a =.26.证明:(1)AF BE EF -=成立,理由如下: ∵∠BCA =80°(已知), ∴∠BCE +∠ACE =80°∵∠BEC =∠α=100°(已知), ∴∠BEF =180°-100°=80°(平角定义). ∴∠B +∠BCE =80°(三角形外角和定理) ∴∠B =∠ACE (等量代换). 在△BCE 和△CAF 中,B ACF BEC CFACB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证),(已知),(已知),∴△BCE ≌△ CAF (AAS )∴BE =CF ,AF =EC (全等三角形对应边相等). ∴EF =CF -CE =BE -AF (等量代换). (2)AF BE EF -=成立,理由如下: ∵∠BCA =∠β,第24题图∴∠BCE+∠ACE=∠β ∵∠BEC =∠α=180°-∠β, ∴∠BEF=180°-∠α=∠β. ∴∠B +∠BCE =∠β. ∴∠B =∠ACE在△BCE 和△CAF 中,B ACF BEC CFACB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证),(已知),(已知),∴△BCE ≌△ CAF (AAS ) ∴BE =CF ,AF =EC ∴EF =CF -CE =BE -AF。

最新浙教版八年级数学上学期《三角形的初步认识》单元检测题及答案解析.docx

最新浙教版八年级数学上学期《三角形的初步认识》单元检测题及答案解析.docx

《第1章三角形的初步知识》一、选择题1.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.2cm、6cm、3cm C.8cm、6cm、3cm D.11cm、4cm、6cm2.下列说法:①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角与一边对应相等的两个三角形全等;④两边与一角对应相等的两个三角形全等.其中正确的有()A.1个B.2个C.3个D.4个3.如图,三角形的外角是()A.∠1 B.∠2 C.∠3 D.∠44.若三角形的一个外角小于和它相邻的内角,则这个三角形为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定5.关于三角形的内角,下列判断不正确的是()A.至少有两个锐角B.最多有一个直角C.必有一个角大于60°D.至少有一个角不小于60°6.下列四组中一定是全等三角形的是()A.两条边对应相等的两个锐角三角形B.面积相等的两个钝角三角形C.斜边相等的两个直角三角形D.周长相等的两个等边三角形7.若AD是△ABC的中线,则下列结论错误的是()A.AD平分∠BAC B.BD=DC C.AD平分BC D.BC=2DC8.如果三角形的一个内角等于其它两个内角的差,这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.斜三角形9.如图,在△ABC中,BC边上的垂直平分线交AC于点D,已知AB=3,AC=7,BC=8,则△ABD的周长为()A.10 B.11 C.15 D.1210.已知一个三角形的三条高的交点不在这个三角形的内部,则这个三角形()A.必定是钝角三角形B.必定是直角三角形C.必定是锐角三角形D.不可能是锐角三角形二、填空题11.在△ABC中,AB=3,BC=7,则AC的长x的取值范围是;等腰三角形的两边长分别是3和7,则其周长为.12.如图,AD是△ABC的中线,△ABC的面积为100cm2,则△ABD的面积是cm2.13.一副三角板,如图所示叠放在一起,则图中∠α的度数是.14.如图,△ABC中,∠ABC的平分线与∠ACB的平分线相交于点O,若∠A=70°,则∠BOC= °.15.如图,△ABC中,高BD、CE相交于点H,若∠A:∠ABC:∠ACB=3:2:4,则∠BHC= .16.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是(填SSS,SAS,AAS,ASA中的一种).三、解答题17.如图,在△ABC中,∠BAC是钝角,按要求完成下列画图,并用适当的符号在图中表示(可以不写作法,必须写出结论):①△ABC的角平分线AD②AC边上的高③AB边上的中线.18.尺规作图:已知线段a,b和∠α.求作:△ABC,使BC=a,AC=b,∠C=∠α(画出图形,保留作图痕迹,不写作法,写出结论)19.如图:已知△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠B=35°,∠C=65°,求∠DAE的度数.20.如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.21.如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:OB=OD.22.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件.请你在其中选三个作为已知条件,余下的一个作为结论,写出一个正确的结沦,并说明理由.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.(填写序号即可)已知:;结沦:;理由:23.如图,点E、A、B、F在同一条直线上,AD与BC交于点O,已知∠CAE=∠DBF,AC=BD.说出∠CAD=∠DBC的理由.24.求作一点P,使点P到∠A两边的距离相等,且点P到点D和点E的距离相等.(保留作图痕迹)《第1章三角形的初步知识》参考答案与试题解析一、选择题1.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.2cm、6cm、3cm C.8cm、6cm、3cm D.11cm、4cm、6cm【考点】三角形三边关系.【分析】利用三角形三边关系判断即可,两边之和>第三边>两边之差.【解答】解:A、2+2=4,故不选;B、2+3=5<6,故不选;C、3+6=9>8>6﹣3=3,符合条件.D、4+6=10<11,故不选.综上,故选;C.【点评】利用三边关系判断时,常用两个较小边的和与较大的边比较大小.两个较小边的和>较大的边,则能组成三角形,否则,不可以.2.下列说法:①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角与一边对应相等的两个三角形全等;④两边与一角对应相等的两个三角形全等.其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据三角形全等的判定方法分别对四个命题进行判断.【解答】解:三角对应相等的两个三角形不一定全等,所以①错误;三边对应相等的两个三角形全等,所以②正确;两角与一边对应相等的两个三角形全等,所以③正确;两边与它们的夹角对应相等的两个三角形全等,所以④错误.故选B.【点评】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.3.如图,三角形的外角是()A.∠1 B.∠2 C.∠3 D.∠4【考点】三角形的外角性质.【分析】根据三角形外角的定义解答.【解答】解:根据三角形外角的定义可知,∠3是此三角形的外角.故选C.【点评】本题考查三角形外角的定义.分析时要严格按照定义进行,要看清是一条边的延长线与它邻边的夹角才是三角形的外角.4.若三角形的一个外角小于和它相邻的内角,则这个三角形为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定【考点】三角形的外角性质.【分析】三角形的一个外角<与它相邻的内角,故内角>相邻外角;根据三角形外角与相邻的内角互补,故内角>90°,为钝角三角形.【解答】解:如图,∵∠1<∠B,∠1=180°﹣∠B,∴∠B>90°.∴△ABC是钝角三角形.故选:C.【点评】本题考查了三角形外角的性质.三角形的一边与另一边的延长线组成的角,叫做三角形的外角,可见外角与相邻的内角互补.5.关于三角形的内角,下列判断不正确的是()A.至少有两个锐角B.最多有一个直角C.必有一个角大于60°D.至少有一个角不小于60°【考点】三角形内角和定理.【分析】可以利用反证的方法来判定各个命题是否正确.【解答】解:根据三角形的内角和定理,不正确的是:必有一个角大于60°.因为当三角形是等边三角形时三个角都相等,都是60度.故选C.【点评】本题主要考查三角形的内角和定理,三角形的内角和是180度.6.下列四组中一定是全等三角形的是()A.两条边对应相等的两个锐角三角形B.面积相等的两个钝角三角形C.斜边相等的两个直角三角形D.周长相等的两个等边三角形【考点】全等三角形的判定.【分析】两边相等,面积相等,一边相等的直角三角形或者角相等的三角形都不能证明三角形全等.【解答】A、错误,两边相等,但锐角三角形的角不一定相等;B、错误,面积相等但边长不一定相等;C、错误,直角三角形全等的判别必须满足直角边相等;D、正确,等边三角形的三边一定相等,又周长相等,故两个三角形的边长分别对应相等.故选D.【点评】本题考查的全等三角形的判定;全等三角形的判别要求严格,条件缺一不可.做题时要结合已知与判定方法逐个验证排除.7.若AD是△ABC的中线,则下列结论错误的是()A.AD平分∠BAC B.BD=DC C.AD平分BC D.BC=2DC【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线的概念:连接三角形的顶点和对边中点的线段叫做三角形的中线.【解答】解:A、AD平分∠BAC,则AD是△ABC的角平分线,故本选项错误;AD是△ABC的中线,则有BD=DC,AD平分BC,BC=2DC,故B、C、D正确.故选A.【点评】本题主要考查三角形的中线的概念,并能够正确运用几何式子表示是解本题的关键.8.如果三角形的一个内角等于其它两个内角的差,这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.斜三角形【考点】三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:α、β、γ,则由题意得:,解得:α=90°故这个三角形是直角三角形.故选C.【点评】本题考查的是三角形内家和定理,熟知三角形的内角和等于180°是解答此题的关键.9.如图,在△ABC中,BC边上的垂直平分线交AC于点D,已知AB=3,AC=7,BC=8,则△ABD的周长为()A.10 B.11 C.15 D.12【考点】线段垂直平分线的性质.【分析】要求△ABD的周长,现有AB=3,只要求出AD+BD即可,根据线段垂直平分线的性质得BD=CD,于是AD+BD=AC,答案可得.【解答】解:∵DE垂直且平分BC∴CD=BD.AD+BD=AD+CD=7∴△ABD的周长:AB+BD+AD=10.故选A【点评】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等),难度一般.对线段进行等效转移是正确解答本题的关键.10.已知一个三角形的三条高的交点不在这个三角形的内部,则这个三角形()A.必定是钝角三角形B.必定是直角三角形C.必定是锐角三角形D.不可能是锐角三角形【考点】三角形的角平分线、中线和高.【分析】钝角三角形的三条高所在的直线的交点在三角形的外部;锐角三角形的三条高所在的直线的交点在三角形的内部;直角三角形的三条高所在的直线的交点是三角形的直角顶点.【解答】解:一个三角形的三条高的交点不在这个三角形的内部,则这个三角形不可能是锐角三角形.故选D.【点评】通过三角形的形状可以判断三角形高线的位置,反之,通过三条高线交点的位置可以判断三角形的形状.二、填空题11.在△ABC中,AB=3,BC=7,则AC的长x的取值范围是4<x<10 ;等腰三角形的两边长分别是3和7,则其周长为17 .【考点】等腰三角形的性质;三角形三边关系.【分析】(1)根据三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边,则第三边的长度应是大于两边的差,而小于两边的和,这样就可求出第三边长的范围.(2)因为边为3和7,没明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:(1)根据三角形的三边关系,得AC的长x的取值范围是7﹣3<x<7+3,即4<x<10.(2)分两种情况:当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为17;当3为腰时,其它两边为3和7,3+3=6<7,所以不能构成三角形,故舍去,所以等腰三角形的周长为17.故答案为:4<x<10;17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.如图,AD是△ABC的中线,△ABC的面积为100cm2,则△ABD的面积是50 cm2.【考点】三角形的面积.【分析】根据等底等高的三角形面积相等可知,中线能把一个三角形分成两个面积相等部分.【解答】解:∵AD是△ABC的中线,△ABC的面积为100cm2,∴△ABD的面积是S△ABC=50cm2.【点评】本题考查了三角形的中线的性质,三角形的中线把一个三角形分成两个面积相等部分.13.一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【考点】三角形内角和定理.【分析】根据三角板的常数以及三角形的一个外角等于与它不相邻的两个内角的和求出∠1的度数,再根据直角等于90°计算即可得解.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°【点评】本题考查了三角形的外角性质以及三角形内角和定理,熟知三角板的度数是解题的关键.14.如图,△ABC中,∠ABC的平分线与∠ACB的平分线相交于点O,若∠A=70°,则∠BOC= 125 °.【考点】三角形内角和定理.【分析】先求出∠ABC+∠ACB的度数,根据平分线的定义得出∠OBC=∠ABC,∠OCB=∠ACB,求出∠OBC+∠OCB的度数,根据三角形内角和定理求出即可.【解答】解:∵∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故答案为:125.【点评】本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.15.如图,△ABC中,高BD、CE相交于点H,若∠A:∠ABC:∠ACB=3:2:4,则∠BHC= 120°.【考点】三角形内角和定理.【分析】先设∠A=3x,∠ABC=4x,∠ACB=5x,再结合三角形内角和等于180°,可得关于x的一元一次方程,求出x,从而可分别求出∠A,∠ABC,∠ACB,在△ABD中,利用三角形内角和定理,可求∠ABD,再利用三角形外角性质,可求出∠BHC.【解答】解:∵在△ABC中,∠A:∠ABC:∠ACB=3:2:4,故设∠A=3x,∠ABC=2x,∠ACB=4x.∵在△ABC中,∠A+∠ABC+∠ACB=180°,∴3x+2x+4x=180°,解得x=20°,∴∠A=3x=60°.∵BD,CE分别是边AC,AB上的高,∴∠ADB=90°,∠BEC=90°,∴在△ABD中,∠ABD=180°﹣∠ADB﹣∠A=180°﹣90°﹣60°=30°,∴∠BHC=∠ABD+∠BEC=30°+90°=120°.故答案为:120°【点评】本题考查了了三角形内角和定理、三角形外角的性质.三角形三个内角的和等于180°,三角形的外角等于与它不相邻的两个内角之和.16.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS (填SSS,SAS,AAS,ASA中的一种).【考点】全等三角形的判定;作图—基本作图.【专题】计算题;三角形.【分析】利用全等三角形的判定方法判断即可.【解答】解:用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS,故答案为:SSS.【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.三、解答题17.如图,在△ABC中,∠BAC是钝角,按要求完成下列画图,并用适当的符号在图中表示(可以不写作法,必须写出结论):①△ABC的角平分线AD②AC边上的高③AB边上的中线.【考点】作图—基本作图.【分析】①直接利用角平分线的作法得出AD;②直接利用垂线的作法得出BF即可;③首先得出AB的中点,进而得出答案.【解答】解:如图所示:①AD即为所求;②BF即为所求;③CE即为所求.【点评】此题主要考查了基本作图,正确掌握角平分线以及垂线的作法是解题关键.18.尺规作图:已知线段a,b和∠α.求作:△ABC,使BC=a,AC=b,∠C=∠α(画出图形,保留作图痕迹,不写作法,写出结论)【考点】作图—复杂作图.【分析】先作∠C=∠α,再在角的两边作AC=a,BC=b,连接即可.【解答】解.【点评】本题考查了三角形的一些基本画法.19.如图:已知△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠B=35°,∠C=65°,求∠DAE的度数.【考点】三角形内角和定理;角平分线的定义.【专题】计算题.【分析】首先根据三角形的内角和定理和角平分线的定义求出∠EAC的度数,再根据三角形的内角和定理求出∠DAC的度数,进而求∠DAE的度数.【解答】解:∵∠B=35°,∠C=65°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣35°﹣65°=80°.∵AE为∠BAC的平分线,∴∠EAC=∠BAC=×80°=40°.∵AD⊥BC,∴∠ADC=90°,在△ADC中,∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣65°=25°,∴∠DAE=∠EAC﹣∠DAC=40°﹣25°=15°.【点评】本题考查了三角形的内角和定理、角平分线的定义、垂直的定义等知识.20.如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.【考点】全等三角形的判定.【专题】证明题.【分析】由∠1=∠2,可得∠CAE=∠BAD,进而利用两边夹一角,证明全等.【解答】证明:∵∠1=∠2,∴∠CAE=∠BAD,∵AB=AC,AD=AE,∴△ABD≌△ACE.【点评】本题考查了全等三角形的判定;能够熟练掌握三角形的判定方法来证明三角形的全等问题,由∠1=∠2得∠CAE=∠BAD是解决本题的关键.21.如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:OB=OD.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【专题】证明题.【分析】根据ASA证△ABC≌△ADC,推出AB=AD,根据等腰三角形的性质三线合一定理求出即可.【解答】证明:在△ABC和△ADC中,∵,∴△ABC≌△ADC(ASA),∴AB=AD,∴△ABD是等腰三角形,且∠1=∠2,∴OB=OD.【点评】本题考查了全等三角形的性质和判定和三线合一定理等知识点,注意:等腰三角形顶角的平分线平分底边.22.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件.请你在其中选三个作为已知条件,余下的一个作为结论,写出一个正确的结沦,并说明理由.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.(填写序号即可)已知:①②④;结沦:③;理由:【考点】全等三角形的判定与性质.【专题】证明题;开放型.【分析】本题考查的是全等三角形的判定,要根据全等三角形判定条件中的SAS,AAS,ASA,SSS等条件,来判断选择哪些条件可得出三角形全等,得出全等后又可得到什么等量关系.【解答】解:已知:①②④结论:③证明:∵BE=CF,∴BE+EC=CF+EC.∴BC=EF.△ABC和△DEF中,∴△ABC≌△DEF(SSS).∴∠ABC=∠DEF.【点评】本题考查了全等三角形的判定和性质,熟练掌握这些知识点是解题的关键.23.如图,点E、A、B、F在同一条直线上,AD与BC交于点O,已知∠CAE=∠DBF,AC=BD.说出∠CAD=∠DBC的理由.【考点】全等三角形的判定与性质.【专题】证明题.【分析】本题可通过全等三角形来证得.三角形CAB和DBA中,已知的条件有AC=BD,公共边AB,只要再证得这两组对应边的夹角相等即可得出三角形全等的结论,我们已知了∠CAE=∠DBF,那么他们的补角就应该相等,即∠CAB=∠DBA,这样就构成了两三角形全等的条件(SAS),就能得出两三角形全等了,也就得出∠CAD=∠DBC.【解答】证明:∵∠CAE=∠DBF(已知),∴∠CAB=∠DBA(等角的补角相等).在△ABC和△DBA中AC=BD(已知),∠CAB=∠DBA,AB=BA(公共边),∴△ABC≌△DBA(SAS).∴∠ABC=∠BAD(全等三角形的对应角相等).∴∠CAB﹣∠BAD=∠DBA﹣∠ABC.即:∠CAD=∠DBC.【点评】本题考查了全等三角形的判定和性质;此题证明角相等,可以通过全等三角形来证明,要注意利用此题中的图形条件,等角的补角相等.24.求作一点P,使点P到∠A两边的距离相等,且点P到点D和点E的距离相等.(保留作图痕迹)【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】先作出∠BAC的平分线AF,再作出线段DE的垂直平分线GH,则AF与GH 的交点P即为所求.【解答】解:如图所示,点P即为所求.【点评】本题主要考查了尺规作图中的复杂作图,解决问题的关键是掌握角平分线的作法以及线段垂直平分线的作法.。

《三角形的初步》知识测试题(含答案)

《三角形的初步》知识测试题(含答案)

三角形的初步知识测试题第Ⅰ卷(选择题共30分)一、选择题(本题共10小题,每小题3分,共30分)1.下列各组线段中,能组成三角形的是()A.4,6,10 B.3,6,7 C.5,6,12 D.2,3,62.在△ABC中,∠A-∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形3.如图所示,在△ABC中,∠B=30°,∠C=70°,AD是△ABC的一条角平分线,则∠CAD的度数为()A.40°B.45°C.50°D.55°4.如图所示,AB⊥AD,AB⊥BC,则以AB为一条高线的三角形共有()A.1个B.2个C.3个D.4个5.如图所示,点P在BC上,AB⊥BC于点B,DC⊥BC于点C,△ABP≌△PCD,其中BP=CD,则下列结论中错误的是()A.∠A+∠CPD=90°B.AP=PDC.∠APB=∠D D.AB=PC6.如图所示,点F,C在AD上,在△ABC和△DEF中,若BC=EF,AF=CD,添加下列四个条件中的一个,能判定这两个三角形全等的是()A.∠B=∠E B.AC=DF C.∠A=∠D D.∠ACB=∠EFD7.下列命题中,真命题是()A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等8.如图所示,点C,E分别在AD,AB上,BC与DE相交于点F.若△ABC与△ADE 全等,则图中全等的三角形共有()A.4对B.3对C.2对D.1对9.如图所示,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB 于点E.若AB=6 cm,则△DEB的周长为()A.5 cm B.6 cm C.7 cm D.8 cm10.如图所示,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE相交于点H,已知EH=EB=6,AE=8,则CH的长是()A.1 B.2 C.3 D.4二、填空题(本题共6小题,每小题4分,共24分)11.已知点P在线段AB的垂直平分线上,若P A=6,则PB=________.12.如图所示,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是____________(写出一个即可).14.如图所示,两个直角三角形叠放在一起,∠B=30°,∠E=42°,则∠α=________°.14.如图所示,在△ABC中,AD⊥BC于点D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C=________°.15.已知三角形的三边长分别是3,x,9,则化简|x-5|+|x-13|=________.16.如图,点D,E,F,B在同一条直线上,AB∥CD,AE∥CF且AE=CF.若BD=10,BF=3.5,则EF=________.三、解答题(本题共8小题,共66分)17.(6分)有一块不完整的三角形玻璃,如图所示,请将它补全,并用尺规画出最小角的平分线和最长边的垂直平分线(不写作法,只保留作图痕迹).。

(完整版)八年级数学上第一章三角形的初步认识单元测试题

(完整版)八年级数学上第一章三角形的初步认识单元测试题

八年级数学上第一章三角形的初步认识单元测试题第一三角形的初步认识单元测试题一、单选题(共10题;共30分)1、下面命题正确的是()A、一组对边平行,另一组对边相等的四边形是平行四边形。

B、等腰梯形的两个角一定相等。

、对角线互相垂直的四边形是菱形。

D、三角形三条边上的中线相交于一点,并且这一点到三个顶点的距离相等.2、用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′′B′=∠AB的根据是()A、SASB、ASA 、AAS D、SSS3、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A、60°B、120°、60°或150° D、60°或120°4、如图,四边形ABD是正方形,延长B至点E,使E=A,连接AE交D于点F,则∠AF的度数是()A、150°B、125°、135° D、112.5°5、如图所示,一位同学书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是().A、SSSB、SAS 、AAS D、ASA6、以下列各组线段长为边能组成三角形的是()A、1,2,4B、8,6,4 、12,5,6 D、2,3,67、下列命题中,真命题的是()A、如果一个四边形两条对角线相等,那么这个四边形是矩形B、如果一个平行四边形两条对角线相互垂直,那么这个四边形是菱形、如果一个四边形两条对角线平分所在的角,那么这个四边形是菱形D、如果一个四边形两条对角线相互垂直平分,那么这个四边形是矩形8、下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等.A、4B、3 、2 D、19、若△AB≌△DEF,△AB的周长为100,DE=30,DF=25,那么B长()A、55B、45 、30 D、2510、在△AB中,∠B的平分线与∠的平分线相交于,且∠B=130°,则∠A=()A、50°B、60°、80° D、100°二、填空题(共8题;共24分)11、用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△D≌△D的依据是________.12、如图,AD是△AB的边B上的中线,已知AB=5,A=3,则△ABD与△AD的周长之差为________.13、△AB中,∠BA:∠AB:∠AB=4:3:2,且△AB≌△DEF,则∠DEF=________ 度.14、①三角形的三条角平分线交于一点,这点到三条边的距离相等;②三角形的三条中线交于一点;③三角形的三条高线所在的直线交于一点;④三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等.以上说法中正确的是________.15、如图,BF、F是△AB的两个外角的平分线,若∠A=50°,则∠BF=________度.16、如图,点D,B,点在同一条直线上,∠A=60°,∠=50°,∠D=25°,则∠1=________度.17、如图所示,BE⊥A于点D,且AB=B,BD=ED,若∠AB=64°,则∠E=________.18、如图,在△AB中,将∠沿DE折叠,使顶点落在△AB内′处,若∠A=75°,∠B=65°,∠1=40°,则∠2的度数为________.三、解答题(共5题;共36分)19、如图,已知E是∠AB的平分线上的一点,E⊥A,ED ⊥B,垂足分别是,D.求证:E垂直平分D.20、如图,在△AB中,D⊥AB,垂足为D,点E在B上,EF⊥AB,垂足为F.∠1=∠2,∠3=105°,求∠AB的度数.21、如图,已知DE∥B,D是∠AB的平分线,∠B=70°,∠AB=50°,求∠ED和∠BD的度数.22、如图所示,已知∠AB和∠ADB都是直角,且A=AD,P是AB上任意一点.求证:P=DP.23、如图,平分∠PQ,A⊥P,B⊥Q,A、B为垂足,AB 交于点N.求证:∠AB=∠BA.四、综合题(共1题;共10分)24、如图,在Rt△AB中,∠=90°,以A为一边向外作等边三角形AD,点E为AB的中点,连结DE.(1)证明DE∥B;(2)探索A与AB满足怎样的数量关系时,四边形DBE是平行四边形.答案解析部分一、单选题1、【答案】D【考点】线段垂直平分线的性质,菱形的判定,等腰梯形的性质,命题与定理【解析】【分析】此题需要根据平行四边形的判定、等腰梯形的性质、菱形、三角形垂直平分线的性质四个知识点,分别对四个结论进行判断,然后得出正确的结果.【解答】A、一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故本选项错误;B、等腰梯形的两个角不一定相等,还可能互补,故本选项错误;、对角线互相垂直的平行四边形是菱形,故本选项错误;D、三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,故本选项正确;故选D.【点评】本题考查了平行四边形的判定、等腰梯形的性质、菱形、三角形垂直平分线的性质,考查的知识点较多,但难度不大,注意细心判断各个选项.2、【答案】D【考点】全等三角形的判定与性质【解析】【分析】由作法易得D=′D′,=′′,D=′D′,得到三角形全等,由全等得到角相等,是用的全等的性质,全等三角形的对应角相等.【解答】由作法易得D=′D′,=′′,D=′D′,依据SSS可判定△D≌△D(SSS),则△D≌△D,即∠AB=∠AB(全等三角形的对应角相等).故选D.【点评】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.3、【答案】D【考点】三角形内角和定理,等腰三角形的性质【解析】【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分另两种情况进行讨论。

第1章 三角形的初步认识单元测试(A卷基础篇)(浙教版)(解析版)

第1章 三角形的初步认识单元测试(A卷基础篇)(浙教版)(解析版)

第1章三角形的初步认识单元测试(A卷基础篇)【浙教版】参考答案与试题解析一.选择题(共10小题,每小题3分,共30分)1.(3分)(2019秋•余杭区期末)下列各组线段中(单位:cm),能组成三角形的是()A.5,15,20 B.6,8,15 C.2,2.5,3 D.3,8,15【思路点拨】根据三角形两边之和大于第三边进行判断即可.【答案】解:A、5+15=20,不符合三角形的三边关系,故A不合题意;B、8+6<15,不符合三角形的三边关系,故B不合题意;C、2+2.5>3,符合三角形的三边关系,故C符合题意;D、8+3<15,不符合三角形的三边关系,故D不合题意;故选:C.【点睛】本题主要考查三角形的三边关系,掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.2.(3分)(2019秋•下城区期末)已知△ABC中,∠A=20°,∠B=70°,那么△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.正三角形【思路点拨】先求出∠C的度数,进而可得出结论.【答案】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.3.(3分)(2020•越城区模拟)用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是()A.B.C.D.【思路点拨】根据高线的定义即可得出结论.【答案】解:B,C,D都不是△ABC的边BC上的高,故选:A.【点睛】本题考查的是作图﹣基本作图,熟知三角形高线的定义是解答此题的关键.4.(3分)(2020春•椒江区期末)下列命题中,是假命题的为()A.两直线平行,同旁内角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.同旁内角互补,两直线平行【思路点拨】根据平行线的性质对A、B进行判断;根据平行线的判定方法对C、D进行判断.【答案】解:A、两直线平行,同旁内角互补,所以A选项为假命题;B、两直线平行,内错角相等,所以B选项为真命题;C、同位角相等,两直线平行,所以C选项为真命题;D、同旁内角互补,两直线平行,所以D选项为真命题.故选:A.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.(3分)(2019秋•海曙区期末)如图,△ABC≌△AEF且点F在BC上,若AB=AE,∠B=∠E,则下列结论错误的是()A.AC=AF B.∠AFE=∠BFE C.EF=BC D.∠EAB=∠F AC【思路点拨】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即可.【答案】解:∵△ABC≌△AEF,∴AC=AF,EF=BC,故A,C正确;∠EAF=∠BAC,∴∠F AC=∠EAB,故D正确;∠AFE=∠C,故B错误;故选:B.【点睛】本题考查了全等三角形的性质,熟记性质并准确识图,准确确定出对应边和对应角是解题的关键.6.(3分)(2019秋•桐梓县期末)如图,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,且△ABC的面积为16,则△BEF的面积是()A.2 B.4 C.6 D.8【思路点拨】因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,△EBC与△ABC同底,△EBC的高是△ABC高的一半;利用三角形的等积变换可解答.【答案】解:解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,高相等;∴S△BEF=S△BEC,同理得,S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=16,∴S△BEF=4,即阴影部分的面积为4.故选:B.【点睛】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.结合图形直观解答.7.(3分)(2020•温州模拟)如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCB B.∠ABD=∠DCA C.AC=DB D.AB=DC【思路点拨】根据全等三角形的判定定理逐个判断即可.【答案】解:A、∵在△ABC和△DCB中∴△ABC≌△DCB(ASA),故本选项不符合题意;B、∵∠ABD=∠DCA,∠DBC=∠ACB,∴∠ABD+∠DBC=∠ACD+∠ACB,即∠ABC=∠DCB,∵在△ABC和△DCB中∴△ABC≌△DCB(ASA),故本选项不符合题意;C、∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故本选项不符合题意;D、根据∠ACB=∠DBC,BC=BC,AB=DC不能推出△ABC≌△DCB,故本选项符合题意;故选:D.【点睛】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.8.(3分)(2019秋•余杭区期末)如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:①CE=BF;②△ACE和△CDE面积相等;③BF∥CE;④△BDF ≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个【思路点拨】根据“SAS”可证明△CDE≌△BDF,则可对④进行判断;利用全等三角形的性质可对①进行判断;由于AE与DE不能确定相等,则根据三角形面积公式可对②进行判断;根据全等三角形的性质得到∠ECD=∠FBD,则利用平行线的判定方法可对③进行判断.【答案】解:∵AD是△ABC的中线,∴CD=BD,∵DE=DF,∠CDE=∠BDF,∴△CDE≌△BDF(SAS),所以④正确;∴CE=BF,所以①正确;∵AE与DE不能确定相等,∴△ACE和△CDE面积不一定相等,所以②错误;∵△CDE≌△BDF,∴∠ECD=∠FBD,∴BF∥CE,所以③正确;故选:C.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.9.(3分)(2019秋•慈溪市期末)如图,已知,AB=AD,∠ACB=∠AED,∠DAB=∠EAC,则下列结论错误的是()A.∠B=∠ADE B.BC=AE C.∠ACE=∠AEC D.∠CDE=∠BAD【思路点拨】由“AAS”可得△ABC≌△ADE,可得∠B=∠ADE,AC=AE,BC=DE,可得∠ACE=∠AEC,由等腰三角形的性质和外角性质可得∠CDE=∠BAD,即可求解.【答案】解:∵∠DAB=∠EAC,∴∠BAC=∠DAE,且∠ACB=∠AED,AB=AD,∴△ABC≌△ADE(AAS)∴∠B=∠ADE,AC=AE,BC=DE,∴∠ACE=∠AEC,故选项A,C不符合题意,∵AB=AD,∴∠B=∠ADB=∠ADE,∵∠ADC=∠B+∠BAD=∠CDE+∠ADE,∴∠CDE=∠BAD,故选项D不符合题意,故选:B.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明△ABC≌△ADE是本题的关键.10.(3分)(2019秋•临海市期末)有甲、乙、丙三人,甲说乙在说谎,乙说丙在说谎,丙说甲和乙都在说谎,则()A.甲说实话,乙和丙说谎B.乙说实话,甲和丙说谎C.丙说实话,甲和乙说谎D.甲、乙、丙都说谎【思路点拨】分情况,依次推理可得.【答案】解:A、若甲说的是实话,即乙说的是谎话,则丙没有说谎,即甲、乙都说谎是对的,与甲说的是实话相矛盾,故A不合题意;B、若乙说的是实话,即丙说的谎话,即甲、乙都说谎是错了,即甲,乙至少有一个说了实话,与乙说的是实话不矛盾,故B符合题意;C、若丙说的是实话,甲、乙都说谎是对的,那甲说的乙在说谎是对的,与丙说的是实话相矛盾,故C不合题意;D、若甲、乙、丙都说谎,与丙说的甲和乙都在说谎,相矛盾,故D不合题意;故选:B.【点睛】本题考查的是推理与论证,通过假设找出条件矛盾之处是本题的关键.二.填空题(共6小题,每小题4分,共24分)11.(4分)(2019秋•唐河县期末)把命题“三条边对应相等的两个三角形全等”改写成“如果…那么…”的形式,可写为如果两个三角形的三条边对应相等,那么这两个三角形全等.【思路点拨】命题改写成“如果…那么…”的形式,其中如果后面的部分是题设,那么后面的部分是结论.【答案】解:如果两个三角形的三条边对应相等,那么这两个三角形全等.【点睛】命题由题设和结论两部分组成,命题可写成“如果…那么…”的形式,其中如果后面的部分是题设,那么后面的部分是结论.12.(4分)(2019秋•嘉兴期末)如图,已知AC=DC,BC=EC,要使△ABC≌△DEC,需添加的一个条件是AB=DE.【思路点拨】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【答案】解:添加的条件是AB=DE,理由是:∵在△ABC和△DEC中∴△ABC≌△DEC(SSS),故答案为:AB=DE.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理的内容是解此题的关键.13.(4分)(2019秋•正阳县期末)已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2b﹣2c.【思路点拨】先根据三角形三边关系判断出a+b﹣c与b﹣a﹣c的符号,再把要求的式子进行化简,即可得出答案.【答案】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2b﹣2c;故答案为:2b﹣2c【点睛】此题考查了三角形三边关系,用到的知识点是三角形的三边关系、绝对值、整式的加减,关键是根据三角形的三边关系判断出a+b﹣c与,b﹣a﹣c的符号.14.(4分)(2019秋•温州期中)如图,△ABC三边的中线AD,BE,CF的公共点为G,若S△ABC=16,则图中阴影部分的面积是.【思路点拨】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【答案】解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×16=8,∴S△CGE=S△ACF=×8=,S△BGF=S△BCF=×8=,∴S阴影=S△CGE+S△BGF=,故答案为:.【点睛】本题考查了三角形的面积,正确的识别图形是解题的关键.15.(4分)(2019秋•三台县期末)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【思路点拨】求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【答案】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【点睛】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD ≌△CAE.16.(4分)(2019秋•宁都县期末)如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于点E,交AC 于点F,∠CDE=∠ACB=30°,BC=DE,则∠ADF=45°.【思路点拨】证明△ABC≌△CED(ASA),得出AC=CD,由等腰三角形的性质得出求出∠CDA=∠CAD =75°,即可得出答案.【答案】解:∵DE∥AB,∴∠DEC=∠B=90°,∵∠CDE=∠ACB=30°,∴∠CDE=30°,在△ABC和△CED中,,∴△ABC≌△CED(ASA),∴AC=CD,∴∠CDA=∠CAD=(180°﹣30°)=75°,∴∠ADF=∠CDA﹣∠CDE=45°;故答案为:45°.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角形内角和定理;熟练掌握等腰三角形的性质,证明三角形全等是解题的关键.三.解答题(共7小题,共66分)17.(6分)(2019秋•乌鲁木齐期末)如图,已知AB∥DC,AD∥BC,求证:AB=CD.【思路点拨】根据平行线的性质得出∠BAC=∠DCA,∠DAC=∠BCA,根据ASA推出△BAC≌△DCA,根据全等三角形的性质得出即可.【答案】证明:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,在△BAC和△DCA中∴△BAC≌△DCA,∴AB=CD.【点睛】本题考查了全等三角形的性质和判定,平行线的性质的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,全等三角形的对应边相等,对应角相等.18.(8分)(2019秋•商河县期末)如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=40°,∠C=60°,求∠DAE的度数.【思路点拨】根据三角形的内角和定理求出∠BAC的度数,根据角平分线的定义求出∠BAE的度数,根据三角形的外角性质得到∠AEC的度数,再根据三角形的内角和定理即可求出答案.【答案】解:∵∠B=40°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=80°,∵AE平分∠BAC,∴∠BAE=∠BAC=40°,∴∠AEC=∠B+∠BAE=80°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=180°﹣∠ADE﹣∠AED=10°.答:∠DAE的度数是10°.【点睛】本题主要考查了三角形的内角和定理,三角形的外角性质,三角形的角平分线,垂直的定义等知识点,能熟练地运用这些性质进行计算是解此题的关键.19.(8分)(2019秋•南浔区期末)如图,已知点B,F,E,C在同一条直线上,AB∥CD,且AB=CD,∠A=∠D.求证:BE=CF.【思路点拨】先由平行线的性质得∠B=∠C,从而利用ASA判定△ABF≌△DCE,再根据全等三角形的性质得BF=CE,然后利用等量加等量和相等,可得结论.【答案】证明:∵AB∥CD,∴∠B=∠C,在△ABF和△DCE中∴△ABF≌△DCE(ASA)∴BF=CE,∴BF+EF=CE+EF,即BE=CF.【点睛】本题考查了全等三角形的判定与性质,这属于几何基础知识的考查,难度不大.20.(10分)(2020•温州三模)如图,在△ABC中,∠C=90°,在边AB上取一点D,使得BD=AC,过B 作AC的平行线BE,过D作AB的垂线与BE交于点E,连结AE.(1)求证:△ABC≌△BED.(2)若∠BAC=34°,求∠AED的度数.【思路点拨】(1)由平行线的性质得出∠BAC=∠EBD,可证明△ABC≌△BED(ASA);(2)由(1)可知AB=BE,则∠EAB=∠AEB,求出∠EAB的度数,则可求出答案.【答案】(1)证明:∵BE∥AC,∴∠BAC=∠EBD,∵DE⊥AB,∴∠EDB=90°,∴∠EDB=∠C,又∵BD=AC,∴△ABC≌△BED(ASA).(2)解:∵△ABC≌△BED,∴AB=BE,∴∠EAB=∠AEB,∵∠BAC=34°,∴∠EBD=34°,∴∠EAB===73°,∴∠AED=90°﹣∠EAB=90°﹣73°=17°.【点睛】本题考查了等腰三角形的性质,平行线的性质,全等三角形的判定与性质,三角形内角和定理等知识,熟练掌握全等三角形的判定与性质是解题的关键.21.(10分)(2019秋•苍南县期末)已知:如图,∠ACB=∠DCE,AC=BC,CD=CE,AD交BC于点F,连结BE.(1)求证:△ACD≌△BCE.(2)延长AD交BE于点H,若∠ACB=30°,求∠BHF的度数.【思路点拨】(1)根据∠ACB=∠DCE,可以得到∠ACD=∠BCE,再根据题目中的条件,利用SAS可以证明结论成立;(2)根据题意作出合适的辅助线,然后根据(1)中的结论和三角形内角和可以得到∠BHF的度数.【答案】证明:(1)∵∠ACB=∠DCE,∴∠ACB+∠DCB=∠DCE+∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE(SAS);(2)∵△ACD≌△BCE,∴∠A=∠B,∵∠BFH=∠AFC,∴∠BHF=∠ACB,∵∠ACB=30°,∴∠BHF=30°.【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,利用全等三角形的判定与性质、数形结合的思想解答.22.(12分)(2020•玉山县一模)如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC.证明:AC=BD.【思路点拨】要使AC=BD,可以证明△ACB≌△BDA或者△ACO≌△BDO从而得到结论.【答案】解:添加条件例举:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明:(1)如果添加条件是AD=BC时,∵BC=AD,∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(2)如果添加条件是OC=OD时,∵∠1=∠2∴OA=OB∴OA+OD=OB+OD∴BC=AD又∵∠2=∠1,AB=BA在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(3)如果添加条件是∠C=∠D时,∵∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(4)如果添加条件是∠CAO=∠DBC时,∵∠1=∠2,∴∠CAO+∠1=∠DBC+∠2,∴∠CAB=∠DBA,又∵AB=BA,∠2=∠1,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD.故答案为:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC.【点睛】本题考查了全等三角形的判定及性质;判定两个三角形全等的方法有:SSS,SAS,ASA,AAS,本题已知一边一角,所以可以寻找夹这个角的另外一边或者是另外两个角.23.(12分)(2019秋•新昌县期中)如图,△ABC中,∠A=40°,(1)若点P是∠ABC与∠ACB平分线的交点,求∠P的度数;(2)若点P是∠CBD与∠BCE平分线的交点,求∠P的度数;(3)若点P是∠ABC与∠ACF平分线的交点,求∠P的度数;(4)若∠A=β,求(1)(2)(3)中∠P的度数(用含β的代数式表示,直接写出结果)【思路点拨】(1)根据三角形内角和定理和角平分线定义得出∠PBC+∠PCB=(∠ABC+∠ACB)=65°,根据三角形的内角和定理得出∠P的度数;(2)由三角形内角和定理和邻补角关系得出∠CBD+∠BCE=360°﹣130°=230°,由角平分线得出∠PBC+∠PCB=(∠CBD+∠BCE)=115°,再由三角形内角和定理即可求出结果;(3)由三角形的外角性质和角平分线的定义证出∠P=∠A,即可得出结果;(4)由(1)(2)(3),容易得出结果.【答案】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∴∠PBC+∠PCB=(∠ABC+∠ACB)=×140°=70°,∴∠BPC=180°﹣70°=110°;(2)∵∠DBC=∠A+∠ACB,∵P为△ABC两外角平分线的交点,∴∠DBC=∠A+∠ACB,同理可得:∴∠BCE=∠A+∠ABC,∵∠A+∠ACB+∠ABC=180°,∴(∠ACB+∠ABC)=90°﹣∠A,∵180°﹣∠BPC=∠DBC+∠BCE=∠A+∠ACB+∠A+∠ABC,∴180°﹣∠BPC=∠A+∠ACB+∠ABC,180°﹣∠BPC=∠A+90°﹣∠A,∴∠BPC=90°﹣∠A=70°;(3)∵点P是∠ABC与∠ACF平分线的交点,∴∠PBC=∠ABC,∠PCF=∠ACF,∵∠PCF=∠P+∠PBC,∠ACF=∠A+∠ABC,∴2(∠P+∠PBC)=∠A+∠ABC,∴∠P=∠A=20°;(4)若∠A=β,在(1)中,∠P=180°﹣(180°﹣β)=90°+β;在(2)中,同理得:∠P=90°﹣β;在(3)中同理得:∠P=∠A=β.【点睛】本题考查了三角形的内角和定理、三角形的角平分线、三角形的外角性质、邻补角关系等知识点;熟练掌握三角形内角和定理,弄清各个角之间的数量关系是解决问题的关键.。

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)

第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、已知a,b,c分别是三角形的三边,则方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法判断2、Rt△ABC中,∠B=90°∠A=30°.以C为圆心,小于BC长为半径画弧与AC、BC边交于点F、E.分别以E、F为圆心,大于EF为半径画弧,两弧交于点N,若BC=,则点M 到AC的距离是()A.1B.C.D.33、下列命题中,逆命题是真命题的是()A.直角三角形的两锐角互余B.对顶角相等C.若两直线垂直,则两直线有交点D.若4、已知等腰三角形的一边等于3,一边等于7,那么它的周长等于()A.13B.13或17C.17D.14或175、如图,已知在正方形中,点分别在上,△是等边三角形,连接交于,给出下列结论:①;②;③垂直平分; ④.其中结论正确的共有( ).A.1个B.2个C.3个D.4个6、需要做一个三角形的木架,在以下四组长度的木棒中,符合条件的是()A.3cm,2cm,1cmB.3cm,4cm,5cmC.5cm,12cm,6cm D.6cm,6cm,12cm7、如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE8、如图,△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2, l3上,且l1, l2之间的距离为2,l2, l3之间的距离为3,则AC的长是()A. B. C. D.9、下列说法正确的个数是()①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合;⑤能够重合的图形是全等图形.A.5B.4C.3D.210、如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;其中正确的有()A.1个B.2个C.3个D.4个11、如图,射线射线CD,与的平分线交于点E,,点P是射线AB上的一动点,连结PE并延长交射线CD于点给出下列结论:是直角三角形;;设,,则y关于x的函数表达式是,其中正确的是()A. B. C. D.12、如图,如果△ABC≌△DEF,∠B=25°,∠F=45°,那么∠A=()A.25°B.45°C.70°D.110°13、如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为()平方米.A.96B.204C.196D.30414、如图,在中,,点是的中点,交于;点在上,,,,则的长为()A.12B.10&nbsp;C.8D.615、如果将一副三角板按如图方式叠放,那么∠1等于()A.120°B.105°C.60°D.45°二、填空题(共10题,共计30分)16、如图,点D,E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是________(只写一个条件即可).17、如图,△ABC中,BC边所在直线上的高是线段________.18、写出“对顶角相等”的逆命题________19、如图,在△ABC中,∠ABC=60°,AB=AC,AD⊥BC,垂足为D,点E在线段AD 上,∠BEC=90°,则∠ACE等于________.20、人站在晃动的公共汽车上.若你分开两腿站立,则需伸出一只手去抓栏杆才能站稳,这是利用了________.21、如图,已知D为△ABC的边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,则∠ACD的度数为________.22、如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是________.23、如图,AB∥CD, AF=EF,若∠C=62°,则∠A=________度.24、如图,△ABC为等腰直角三角形,∠B=90°,AB=2,把△ABC绕点A逆时针旋转60°得到△AB1C1,连接CB1,则点B1到直线AC的距离为________.25、已知在平面直角坐标系中,点O为坐标原点,点P的坐标为(-2,2),射线PA与x轴正半轴交于点A,射线PB与y轴负半轴交于点B,且线段OA的长度大于线段OB,同时始终满足∠APB=45°,则AOB的面积为________.三、解答题(共5题,共计25分)26、如图,AB⊥BC,DC⊥BC,若∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.27、如图,中,BD平分,于点E,于F,,,,求DE长.28、如图①是大众汽车的图标,图②是该图标抽象的几何图形,且AC∥BD,∠A=∠B,试猜想AE与BF的位置关系,并说明理由.29、如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.30、选做题:你能用SSS来解释三角形的稳定性吗?参考答案一、单选题(共15题,共计45分)1、C2、A3、A4、C5、C6、B7、D8、B9、D10、C11、A13、A14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

第1章 三角形的初步知识 单元检测(解析卷)

第1章 三角形的初步知识 单元检测(解析卷)

三角形的初步知识单元检测一、单选题1.下列各组线段的长,能组成三角形的是( )A.6,7,14B.5,6,10C.4,4,8D.3,4,8【答案】B【详解】解:A、6+7<14,故不能构成三角形,故此选项不符合题意;B、5+6>10,故能构成三角形,故此选项符合题意;C、4+4=8,故不能构成三角形,故此选项不符合题意;D、3+4<8,故不能构成三角形,故此选项不符合题意.故选:B.2.下列图形具有稳定性的是()A.B.C.D.【答案】D【详解】解:具有稳定性的图形是三角形构成的,故选:D.3.下列语句中,不是命题的是()A.如果b<a,那么a>b B.直角都相等C.垂线段最短D.反向延长射线MN【答案】D【详解】解:A、如果b<a,那么a>b,是命题,本选项不符合题意;B、直角都相等,是命题,本选项不符合题意;C、垂线段最短,是命题,本选项不符合题意;D、反向延长射线MN,不是命题,本选项符合题意;故选:D.4.公元前6世纪,古希腊哲学家泰勒斯这样测得轮船到海岸的距离:如图所示,在海边灯塔上进行测量,直立一根可以原地转动的竖竿EF(垂直于地面),在其上一点A处连接一个可以绕A转动并固定在任意位置上的横杆,先转动横杆使其转向船的位置B,再转动竖竿EF,使横杆对准岸上的一点C,然后测量D,C的距离,即得D,B的距离,哲学家得到△ADC≌△ADB的依据是( )A .SSSB .SASC .AASD .SSA【答案】B【详解】由题意知AB =AC ,∠BAD =∠CAD ,在△ADC 和△ADB 中,{AB =AC ∠BAD =∠CAD AD =AD,∴△ADC≌△ADB(SAS).故选:B5.如图,△ABC≌△A ′BC ′,过点C 作CD ⊥BC ′,垂足为D ,若∠ABA ′=55°,则∠BCD 的度数为( )A .25°B .35°C .45°D .55°【答案】B 【详解】解:∵△ABC≌△A ′BC ′,∴∠ABC =∠A ′BC ′,∴∠AB A ′+∠A ′BC =∠A ′BC +∠CB C ′,∴∠AB A ′=∠CB C ′=55°,∵CD ⊥BC ′,∴∠CDB =90°,∴∠BCD =180°−90°−∠CB C ′=35°;故选B .6.如图,在ΔABC 中,D 、E 分别足边AC 、BC 上的点,BD 是ΔABC 的一条角平分线.再添加一个条件仍不能证明ΔADB≌ΔEDB 的是()A .∠DAB =∠DEB B .AB =EBC .∠ADB =∠EDBD .AD =ED【答案】D 【详解】解:∵BD 是△ABC 的一条角平分线,∴∠ABD=∠EBD ,A.在△ADB 和△EDB 中{∠ABD =∠EBD ∠DAB =∠DEB BD =BD , ∴△ADB ≌△EDB ,故A 不符合题意;B.在△ADB 和△EDB 中{AB =EB ∠ABD =∠EBD BD =BD , ∴△ADB ≌△EDB ,故不符合题意;C.在△ADB 和△EDB 中{∠ABD =∠EBD BD =BD ∠ADB =∠EDB, ∴△ADB ≌△EDB ,故不符合题意;D.在△ADB 和△EDB 中,若添加AD =ED ,符合“SSA”,此方法不能判断△ADB ≌△EDB ,故符合题意;故选D .7.如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( ).A .1:1:1B .1:2:3C .2:3:4D .3:4:5【答案】C【详解】解:如图,过点O 分别作AB ,BC ,CA 的垂线,垂足分别为点F ,D ,E,由角平分线的性质定理得:OD =OE =OF ,∵△ABC 的三边AB ,BC ,CA 长分别是20,30,40,∴S △ABO :S △BCO :S △CAO=12AB ⋅OF:12BC ⋅OD:12CA ⋅OE =AB:BC:CA=20:30:40=2:3:4.故选:C .8.如图,在四边形ABCD 中,∠B =∠C =120°,AB =8cm ,BC =12cm ,CD =16cm ,点P 在线段BC 上以4cm/s 的速度由点B 向点C 运动,同时点Q 在线段CD 上由点C 向点D 匀速运动,若△BAP 与△PCQ 在某一时刻全等,则点Q 运动速度为( )A .4cm/sB .32cm/sC .4cm/s 或32cm/sD .4cm/s 或163cm/s 【答案】D 【详解】解:设点P 运动时间为t 秒,点Q 运动速度为vcm/s ,则BP =4tcm ,CQ =vtcm ,∴CP =(12−4t )cm ,∵∠B =∠C =120°,∴△BAP≌△CQP 或△BAP≌△CPQ ,当△BAP≌△CQP 时,CQ =AB =8cm ,BP =CP =12BC =6cm ,∴4t =6,解得:t =32,∴32v =8,解得:v =163cm/s ;当△BAP≌△CPQ 时,BP =CQ =vtcm ,∴4t =vt ,解得:v =4cm/s ;cm/s.综上所述,点Q运动速度为4cm/s或163故选:D.9.如图1,用尺规作图的方法“过直线l外一点P作直线l的平行线”,现有如图2中的甲、乙两种方法,下列说法正确的是()A.甲错乙对B.甲对乙错C.甲、乙都对D.甲、乙都错【答案】C【详解】解:利用平行线的判定方法可判断甲同学的作图正确.根据作图可得∠1=∠2,则PD∥l利用等腰三角形的性质和角平分线的定义可判断乙同学的作图正确;∵PA=PB∴∠1=∠2,∵PE是角平分线,∴∠3=∠4又∵∠3+∠4=∠1+∠2∴∠1=∠3∴PE∥l故选:C.10.如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠E =∠F =90°,∠EAC =∠FAB ,AE =AF .给出下列结论:①∠B =∠C ;②CD =DN ;③BE =CF ;④△ACN≅△ABM .其中正确的结论是( )A .①③④B .①②③④C .①②③D .①②④【答案】A【详解】解:∵∠EAC =∠FAB ,∴∠EAB =∠FAC ,在△EAB 和△FAC 中,{∠E =∠F =90°AE =AF ∠EAB =∠FAC,∴△EAB≌△FAC(ASA),∴∠B =∠C,BE =CF,AB =AC ,∴①③都正确,在△ACN 和△ABM 中,{∠B =∠C AB =AC ∠CAN =∠BAM,∴△ACN≌△ABM(ASA),故④正确,根据已知条件无法证明②是否正确,故①③④正确,故选:A .二、填空题11.在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,要使△ABC ≌△DEF ,需添加的条件是【答案】AB =DE 或BC =EF 或AC =DF【详解】解:如图,∵∠A =∠D ,∠B =∠E,∴添加AB=DE,利用ASA可以证明△ABC≌△DEF;添加BC=EF,利用AAS可以证明△ABC≌△DEF;添加AC=DF,利用AAS可以证明△ABC≌△DEF故答案为:AB=DE或BC=EF或AC=DF12.已知直线l1∥l2,将含30°角的直角三角板按如图所示摆放.若∠2=140°,则∠1= .【答案】110°/110度【详解】解:∵30°角的直角三角板,∠2=140°,∴∠4=140°−∠3=110°,又∵l1∥l2,根据平行线同位角相等得:∠4=∠5,∵∠5与∠1为对顶角,∴∠5=∠1=110°,故答案为:110°.13.如图,已知AB∥CF,E为DF的中点,若AB=9,BD=4,则CF=.【答案】5【详解】解:∵AB∥CF,∴∠A=∠ECF,∠ADE=∠F,∵E为DF的中点,∴DE=EF,∴△ADE≌△CFE,∴CF=AD,∵AB=9,BD=4,∴AD=AB−BD=5,∴CF=5.故答案为:5AC的长为半径画弧,两弧14.如图,已知△ABC的周长为20,AC=8,分别以点A和点C为圆心,大于12相交于点M,N,作直线MN,交BC于点D,连接AD,则△BAD的周长为.【答案】12【详解】解:由作图过程可知,直线MN为线段AC的垂直平分线,∴AD=CD.∵△ABC的周长为20,AC=8,∴AB+BC=12.∴△BAD的周长为AB+BD+AD=AB+BD+CD=AB+BC=12.故答案为:12.15.在如图所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于.【答案】225°/225度【详解】解:观察图形可知∠1与∠5所在的三角形全等,二角互余,∠2与∠4所在的三角形全等,二角互余,∠3=45°,∴∠1+∠5=90°,∠2+∠4=90°,∠3=45°,∴∠1+∠2+∠3+∠4+∠5=(∠1+∠5)+(∠2+∠4)+∠3=225°.故答案为:225°.16.如图,在△ABC 中,∠BAC 和∠ABC 的平分线AE ,BF 相交于点O ,AE 交BC 于E ,BF 交AC 于F 过点O 作OD ⊥BC 于D ,下列四个结论:①∠AOB =90°+12∠C ;②当∠C =60°时,AF +BE =AB ;③若OD =a ,AB +BC +CA =2b ,则S △ABC =ab .其中正确的是 .(填写正确的序号)【答案】①②③【详解】解:∵在△ABC 中,∠ABC +∠BAC =180°−∠C ,∴12∠ABC +12∠BAC =90°−12∠C ,∵AE 和BF 是∠BAC 和∠ABC 的平分线,∴12∠ABC +12∠BAC +∠AOB =180°,∴∠AOB =180°−(90°−12∠C )=90°+12∠C ,故①正确;在AB 上截取BH =BE ,∵BF 是∠ABC 的角平分线,∴∠HBO =∠EBO ,∴在△HBO 和△EBO 中,{BH =BE ∠HBO =∠EBO BO =BO,∴△HBO≌△EBO(SAS),∴∠BOH =∠BOE ,∵∠C =60°,∴∠AOB =180°−(90°−12∠C )=90°+12∠C =120°,∴∠AOF =180°−∠AOB =60°,∴∠BOH =∠BOE =∠AOF =60°,∴∠AOH =180°−∠BOH−∠AOF =180°−60°−60=60°,∴∠AOH =∠AOF ,在△HAO 和△FAO中,{∠HAO =∠FAO AO =AO ∠AOH =∠AOF,∴△HAO≌△FAO(ASA),∴AF =AH ,∴AB =BH +AH =BE +AF ,故②正确;作OM ⊥AB 于M ,ON ⊥AC 于N ,∵∠BAC 和∠ABC 的平分线AE ,BF 相交于点O ,OD =a ,∴OM =ON =OD =a ,∵AB +BC +CA =2b ,∴S △ABC =S △AOB +S △BOC +S △AOC =12×AB ×OM +12×BC ×OD +12×AC ×ON =12×(AB +BC +AC)×OD =12×2b ×a =ab ,故③正确;∴正确的序号为①②③;故答案为①②③.三、解答题17.沿着图中的虚线,请将如图的图形分割成4个全等的图形,并能拼成一个正方形.【详解】18.已知△ABC的三边分别为a,b,c.(1)若a=1,b=7,c为整数,求△ABC的周长.(2)化简:|a+b−c|−|b−a−c|+|a+b+c|.【答案】(1)15(2)a+3b−c【详解】(1)解:∵a=1,b=7,∴7−1<c<7+1,即6<c<8,∵c为整数,∴c=7,△ABC的周长为a+b+c=1+7+7=15.(2)解:∵△ABC的三边长为a,b,c,∴a+c>b,a+b>c|a+b−c|−|b−a−c|+|a+b+c|=a+b−c+(b−a−c)+a+b+c=a+b−c+b−a−c+a+b+c=a+3b−c.19.如图,一块三角板ABC,D是AB边上一点,现要求在AC边上确定点E,使DE∥BC.(1)通过尺规作图确定点E.(不写作法,留下作图痕迹,要有结论)(2)请直接写出(1)中的作图理论依据.【详解】(1)解:如图,过点D作∠ADE=∠ABC,交AC于点E,则DE∥BC,则点E即为所求.(2)作图理论依据为:同位角相等,两直线平行.20.如图,△ACE≌△DBF ,AE =DF ,CE =BF ,AD =10,BC =2.(1)试说明:AB =CD ;(2)求AC 的长度.【详解】(1)解:∵△ACE≌△DBF ,∴AC =BD ,∴AC−BC =BD−BC ,∴AB =CD ;(2)∵AD =10,BC =2,∴AB =CD =12×(10−2)=4,∴AC =AB +BC =4+2=6.21.在△ABC 和△ADE 中,AB =AD ,∠1=∠2,∠E =∠C ,求证:BC =DE .【详解】证明:∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,即∠BAC =∠DAE ,在△BAC 和△DAE 中,{∠BAC =∠DAE ∠C =∠E AB =AD,∴ △BAC≌△DAE(AAS),∴BC =DE .22.如图,在△ABC 和△BDE 中,点C 在边BD 上,边AC 交边BE 于点F ,若AC =BD ,AB =ED ,BC =BE .求证:∠AFB =2∠ACB.【详解】解:在△ABC 和△BDE 中,{AC =BD AB =ED BC =BE∴△ABC≌△DEB (SSS )∴∠ACB =∠EBD ;∵∠AFB =∠ACB +∠EBD ,∴∠AFB =2∠ACB23.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC 中,若AB =8,AC =6,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE =AD ,请根据小明的方法思考:(1)由已知和作图能得到△ADC ≌△EDB 的理由是______.(2)求得AD 的取值范围是______.【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,在△ABC 中,点D 是BC 的中点,点M 在AB 边上,点N 在AC 边上,若DM ⊥DN ,求证:BM +CN >MN .【详解】(1)解:∵在△ADC 和△EDB中,{AD =DE ∠ADC =∠BDE BD =CD,∴△ADC ≌△EDB (SAS ),故答案为:SAS ;(2)解:∵由(1)知:△ADC ≌△EDB ,∴BE=AC=6,AE=2AD ,∵在△ABE 中,AB=8,由三角形三边关系定理得:8-6<2AD <8+6,∴1<AD <7,故答案为:1<AD <7.(3)证明:延长ND 至点E ,使DE =DN ,连接BE 、ME ,如图所示:∵点D 是BC 的中点,∴BD =CD .在△BED 和△CND 中,{DE =DN ∠BDE =∠CDN BD =CD,∴△BED ≌△CND(SAS),∴BE =CN ,∵DM ⊥DN ,DE =DN ,∴ME =MN ,在△BEM 中,由三角形的三边关系得:BM +BE >ME ,∴BM +CN >MN.24.【初步探索】(1)如图1,在四边形ABCD中,AB=AD,∠B=∠ADC=90°,∠BAD=120°,E、F分别是BC、CD上的点,且∠EAF=60°,探究图中BE、EF、FD之间的数量关系.小芮同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG,先证明:△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=∠180°,∠BAD=120°,E、F分别是BC、CD上的点,且∠EAF=60°,(1)中的结论是否仍然成立,说明理由.【拓展延伸】(3)如图3,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,满足EF=BE+FD,请判断∠EAF与∠DAB的数量关系.并证明你的结论.【详解】解:(1)BE+FD=EF.理由如下:如图1,延长FD到点G,使DG=BE,连接AG,∵∠ADC =90°,∴∠ADG =180°−∠ADC =90°,又∵∠B =90°,∴∠B =∠ADG ,在△ABE 与△ADG 中,{AB =AD ∠B =∠ADG BE =DG,∴△ABE≌△ADG(SAS),∴∠BAE =∠DAG ,AE =AG ,∵∠BAD =120°,∠EAF =60°,∴∠BAE +∠DAF =∠BAD−∠EAF =60°,∴∠DAG +∠DAF =60°,即∠GAF =60°,∴∠GAF =∠EAF ;在△AEF 与△AGF 中,{AE =AG ∠EAF =∠GAF AF =AF,∴△AEF≌△AGF(SAS),∴EF =GF ,∵GF =DG +DF ,∴EF =BE +DF ,故答案为:BE +FD =EF ;(2)(1)中的结论仍成立,理由如下:如图2,延长FD 到点G ,使DG =BE ,连接AG,∠B +∠ADF =180°,∠ADG +∠ADF =180°,∴∠B =∠ADG ,又∵AB =AD ,∴△ABE≌△ADG(SAS),∴∠BAE =∠DAG ,AE =AG ,∵∠BAD =120° 120°,∠EAF =60°,∴∠BAE +∠DAF =60°,∴∠DAG +∠DAF =60°,∴∠GAF =∠EAF =60°,又∵AF =AF ,∴△AEF≌△AGF(SAS),∴EF =FG =DG +DF =BE +DF ;(3)∠EAF =180°−12∠DAB .证明:如图3,延长DC 到点G ,使DG =BE ,连接AG ,∵∠ABC +∠ADC =180°,∠ABC +∠ABE =180°,∴∠ADC =∠ABE ,在△ABE 与△ADG 中,{AB =AD ∠B =∠ADG BE =DG,∴△ADG≌△ABE(SAS),∴AG =AE ,∠DAG =∠BAE,∵EF=BE+FD,∴EF=DG+FD,∴EF=GF,在△AEF与△AGF中,{AE=AGEF=GF,AF=AF∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∠DAB.∴∠EAF=180°−12。

最新2019-2020年度浙教版八年级数学上册《三角形的初步认识》单元检测题及答案解析-精品试题

最新2019-2020年度浙教版八年级数学上册《三角形的初步认识》单元检测题及答案解析-精品试题

《第1章三角形的初步知识》一、选择题1.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.2cm、6cm、3cm C.8cm、6cm、3cm D.11cm、4cm、6cm2.下列说法:①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角与一边对应相等的两个三角形全等;④两边与一角对应相等的两个三角形全等.其中正确的有()A.1个B.2个C.3个D.4个3.如图,三角形的外角是()A.∠1 B.∠2 C.∠3 D.∠44.若三角形的一个外角小于和它相邻的内角,则这个三角形为()A.锐角三角形 B.直角三角形C.钝角三角形 D.无法确定5.关于三角形的内角,下列判断不正确的是()A.至少有两个锐角B.最多有一个直角C.必有一个角大于60°D.至少有一个角不小于60°6.下列四组中一定是全等三角形的是()A.两条边对应相等的两个锐角三角形B.面积相等的两个钝角三角形C.斜边相等的两个直角三角形D.周长相等的两个等边三角形7.若AD是△ABC的中线,则下列结论错误的是()A.AD平分∠BAC B.BD=DC C.AD平分BC D.BC=2DC8.如果三角形的一个内角等于其它两个内角的差,这个三角形是()A.锐角三角形 B.钝角三角形C.直角三角形 D.斜三角形9.如图,在△ABC中,BC边上的垂直平分线交AC于点D,已知AB=3,AC=7,BC=8,则△ABD的周长为()A.10 B.11 C.15 D.1210.已知一个三角形的三条高的交点不在这个三角形的内部,则这个三角形()A.必定是钝角三角形B.必定是直角三角形C.必定是锐角三角形D.不可能是锐角三角形二、填空题11.在△ABC中,AB=3,BC=7,则AC的长x的取值范围是;等腰三角形的两边长分别是3和7,则其周长为.12.如图,AD是△ABC的中线,△ABC的面积为100cm2,则△ABD的面积是cm2.13.一副三角板,如图所示叠放在一起,则图中∠α的度数是.14.如图,△ABC中,∠ABC的平分线与∠ACB的平分线相交于点O,若∠A=70°,则∠BOC= °.15.如图,△ABC中,高BD、CE相交于点H,若∠A:∠ABC:∠ACB=3:2:4,则∠BHC= .16.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是(填SSS,SAS,AAS,ASA中的一种).三、解答题17.如图,在△ABC中,∠BAC是钝角,按要求完成下列画图,并用适当的符号在图中表示(可以不写作法,必须写出结论):①△ABC的角平分线AD②AC边上的高③AB边上的中线.18.尺规作图:已知线段a,b和∠α.求作:△ABC,使BC=a,AC=b,∠C=∠α(画出图形,保留作图痕迹,不写作法,写出结论)19.如图:已知△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠B=35°,∠C=65°,求∠DAE的度数.20.如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.21.如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:OB=OD.22.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件.请你在其中选三个作为已知条件,余下的一个作为结论,写出一个正确的结沦,并说明理由.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.(填写序号即可)已知:;结沦:;理由:23.如图,点E、A、B、F在同一条直线上,AD与BC交于点O,已知∠CAE=∠DBF,AC=BD.说出∠CAD=∠DBC的理由.24.求作一点P,使点P到∠A两边的距离相等,且点P到点D和点E的距离相等.(保留作图痕迹)《第1章三角形的初步知识》参考答案与试题解析一、选择题1.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.2cm、6cm、3cm C.8cm、6cm、3cm D.11cm、4cm、6cm【考点】三角形三边关系.【分析】利用三角形三边关系判断即可,两边之和>第三边>两边之差.【解答】解:A、2+2=4,故不选;B、2+3=5<6,故不选;C、3+6=9>8>6﹣3=3,符合条件.D、4+6=10<11,故不选.综上,故选;C.【点评】利用三边关系判断时,常用两个较小边的和与较大的边比较大小.两个较小边的和>较大的边,则能组成三角形,否则,不可以.2.下列说法:①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角与一边对应相等的两个三角形全等;④两边与一角对应相等的两个三角形全等.其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据三角形全等的判定方法分别对四个命题进行判断.【解答】解:三角对应相等的两个三角形不一定全等,所以①错误;三边对应相等的两个三角形全等,所以②正确;两角与一边对应相等的两个三角形全等,所以③正确;两边与它们的夹角对应相等的两个三角形全等,所以④错误.故选B.【点评】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.3.如图,三角形的外角是()A.∠1 B.∠2 C.∠3 D.∠4【考点】三角形的外角性质.【分析】根据三角形外角的定义解答.【解答】解:根据三角形外角的定义可知,∠3是此三角形的外角.故选C.【点评】本题考查三角形外角的定义.分析时要严格按照定义进行,要看清是一条边的延长线与它邻边的夹角才是三角形的外角.4.若三角形的一个外角小于和它相邻的内角,则这个三角形为()A.锐角三角形 B.直角三角形C.钝角三角形 D.无法确定【考点】三角形的外角性质.【分析】三角形的一个外角<与它相邻的内角,故内角>相邻外角;根据三角形外角与相邻的内角互补,故内角>90°,为钝角三角形.【解答】解:如图,∵∠1<∠B,∠1=180°﹣∠B,∴∠B>90°.∴△ABC是钝角三角形.故选:C.【点评】本题考查了三角形外角的性质.三角形的一边与另一边的延长线组成的角,叫做三角形的外角,可见外角与相邻的内角互补.5.关于三角形的内角,下列判断不正确的是()A.至少有两个锐角B.最多有一个直角C.必有一个角大于60°D.至少有一个角不小于60°【考点】三角形内角和定理.【分析】可以利用反证的方法来判定各个命题是否正确.【解答】解:根据三角形的内角和定理,不正确的是:必有一个角大于60°.因为当三角形是等边三角形时三个角都相等,都是60度.故选C.【点评】本题主要考查三角形的内角和定理,三角形的内角和是180度.6.下列四组中一定是全等三角形的是()A.两条边对应相等的两个锐角三角形B.面积相等的两个钝角三角形C.斜边相等的两个直角三角形D.周长相等的两个等边三角形【考点】全等三角形的判定.【分析】两边相等,面积相等,一边相等的直角三角形或者角相等的三角形都不能证明三角形全等.【解答】A、错误,两边相等,但锐角三角形的角不一定相等;B、错误,面积相等但边长不一定相等;C、错误,直角三角形全等的判别必须满足直角边相等;D、正确,等边三角形的三边一定相等,又周长相等,故两个三角形的边长分别对应相等.故选D.【点评】本题考查的全等三角形的判定;全等三角形的判别要求严格,条件缺一不可.做题时要结合已知与判定方法逐个验证排除.7.若AD是△ABC的中线,则下列结论错误的是()A.AD平分∠BAC B.BD=DC C.AD平分BC D.BC=2DC【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线的概念:连接三角形的顶点和对边中点的线段叫做三角形的中线.【解答】解:A、AD平分∠BAC,则AD是△ABC的角平分线,故本选项错误;AD是△ABC的中线,则有BD=DC,AD平分BC,BC=2DC,故B、C、D正确.故选A.【点评】本题主要考查三角形的中线的概念,并能够正确运用几何式子表示是解本题的关键.8.如果三角形的一个内角等于其它两个内角的差,这个三角形是()A.锐角三角形 B.钝角三角形C.直角三角形 D.斜三角形【考点】三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:α、β、γ,则由题意得:,解得:α=90°故这个三角形是直角三角形.故选C.【点评】本题考查的是三角形内家和定理,熟知三角形的内角和等于180°是解答此题的关键.9.如图,在△ABC中,BC边上的垂直平分线交AC于点D,已知AB=3,AC=7,BC=8,则△ABD的周长为()A.10 B.11 C.15 D.12【考点】线段垂直平分线的性质.【分析】要求△ABD的周长,现有AB=3,只要求出AD+BD即可,根据线段垂直平分线的性质得BD=CD,于是AD+BD=AC,答案可得.【解答】解:∵DE垂直且平分BC∴CD=BD.AD+BD=AD+CD=7∴△ABD的周长:AB+BD+AD=10.故选A【点评】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等),难度一般.对线段进行等效转移是正确解答本题的关键.10.已知一个三角形的三条高的交点不在这个三角形的内部,则这个三角形()A.必定是钝角三角形B.必定是直角三角形C.必定是锐角三角形D.不可能是锐角三角形【考点】三角形的角平分线、中线和高.【分析】钝角三角形的三条高所在的直线的交点在三角形的外部;锐角三角形的三条高所在的直线的交点在三角形的内部;直角三角形的三条高所在的直线的交点是三角形的直角顶点.【解答】解:一个三角形的三条高的交点不在这个三角形的内部,则这个三角形不可能是锐角三角形.故选D.【点评】通过三角形的形状可以判断三角形高线的位置,反之,通过三条高线交点的位置可以判断三角形的形状.二、填空题11.在△ABC中,AB=3,BC=7,则AC的长x的取值范围是4<x<10 ;等腰三角形的两边长分别是3和7,则其周长为17 .【考点】等腰三角形的性质;三角形三边关系.【分析】(1)根据三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边,则第三边的长度应是大于两边的差,而小于两边的和,这样就可求出第三边长的范围.(2)因为边为3和7,没明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:(1)根据三角形的三边关系,得AC的长x的取值范围是7﹣3<x<7+3,即4<x<10.(2)分两种情况:当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为17;当3为腰时,其它两边为3和7,3+3=6<7,所以不能构成三角形,故舍去,所以等腰三角形的周长为17.故答案为:4<x<10;17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.如图,AD是△ABC的中线,△ABC的面积为100cm2,则△ABD的面积是50 cm2.【考点】三角形的面积.【分析】根据等底等高的三角形面积相等可知,中线能把一个三角形分成两个面积相等部分.【解答】解:∵AD是△ABC的中线,△ABC的面积为100cm2,∴△ABD的面积是S=50cm2.△ABC【点评】本题考查了三角形的中线的性质,三角形的中线把一个三角形分成两个面积相等部分.13.一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【考点】三角形内角和定理.【分析】根据三角板的常数以及三角形的一个外角等于与它不相邻的两个内角的和求出∠1的度数,再根据直角等于90°计算即可得解.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°【点评】本题考查了三角形的外角性质以及三角形内角和定理,熟知三角板的度数是解题的关键.14.如图,△ABC中,∠ABC的平分线与∠ACB的平分线相交于点O,若∠A=70°,则∠BOC= 125 °.【考点】三角形内角和定理.【分析】先求出∠ABC+∠ACB的度数,根据平分线的定义得出∠OBC=∠ABC,∠OCB=∠ACB,求出∠OBC+∠OCB的度数,根据三角形内角和定理求出即可.【解答】解:∵∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故答案为:125.【点评】本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.15.如图,△ABC中,高BD、CE相交于点H,若∠A:∠ABC:∠ACB=3:2:4,则∠BHC= 120°.【考点】三角形内角和定理.【分析】先设∠A=3x,∠ABC=4x,∠ACB=5x,再结合三角形内角和等于180°,可得关于x的一元一次方程,求出x,从而可分别求出∠A,∠ABC,∠ACB,在△ABD 中,利用三角形内角和定理,可求∠ABD,再利用三角形外角性质,可求出∠BHC.【解答】解:∵在△ABC中,∠A:∠ABC:∠ACB=3:2:4,故设∠A=3x,∠ABC=2x,∠ACB=4x.∵在△ABC中,∠A+∠ABC+∠ACB=180°,∴3x+2x+4x=180°,解得x=20°,∴∠A=3x=60°.∵BD,CE分别是边AC,AB上的高,∴∠ADB=90°,∠BEC=90°,∴在△ABD中,∠ABD=180°﹣∠ADB﹣∠A=180°﹣90°﹣60°=30°,∴∠BHC=∠ABD+∠BEC=30°+90°=120°.故答案为:120°【点评】本题考查了了三角形内角和定理、三角形外角的性质.三角形三个内角的和等于180°,三角形的外角等于与它不相邻的两个内角之和.16.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS (填SSS,SAS,AAS,ASA中的一种).【考点】全等三角形的判定;作图—基本作图.【专题】计算题;三角形.【分析】利用全等三角形的判定方法判断即可.【解答】解:用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS,故答案为:SSS.【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.三、解答题17.如图,在△ABC中,∠BAC是钝角,按要求完成下列画图,并用适当的符号在图中表示(可以不写作法,必须写出结论):①△ABC的角平分线AD②AC边上的高③AB边上的中线.【考点】作图—基本作图.【分析】①直接利用角平分线的作法得出AD;②直接利用垂线的作法得出BF即可;③首先得出AB的中点,进而得出答案.【解答】解:如图所示:①AD即为所求;②BF即为所求;③CE即为所求.【点评】此题主要考查了基本作图,正确掌握角平分线以及垂线的作法是解题关键.18.尺规作图:已知线段a,b和∠α.求作:△ABC,使BC=a,AC=b,∠C=∠α(画出图形,保留作图痕迹,不写作法,写出结论)【考点】作图—复杂作图.【分析】先作∠C=∠α,再在角的两边作AC=a,BC=b,连接即可.【解答】解.【点评】本题考查了三角形的一些基本画法.19.如图:已知△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠B=35°,∠C=65°,求∠DAE的度数.【考点】三角形内角和定理;角平分线的定义.【专题】计算题.【分析】首先根据三角形的内角和定理和角平分线的定义求出∠EAC的度数,再根据三角形的内角和定理求出∠DAC的度数,进而求∠DAE的度数.【解答】解:∵∠B=35°,∠C=65°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣35°﹣65°=80°.∵AE为∠BAC的平分线,∴∠EAC=∠BAC=×80°=40°.∵AD⊥BC,∴∠ADC=90°,在△ADC中,∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣65°=25°,∴∠DAE=∠EAC﹣∠DAC=40°﹣25°=15°.【点评】本题考查了三角形的内角和定理、角平分线的定义、垂直的定义等知识.20.如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.【考点】全等三角形的判定.【专题】证明题.【分析】由∠1=∠2,可得∠CAE=∠BAD,进而利用两边夹一角,证明全等.【解答】证明:∵∠1=∠2,∴∠CAE=∠BAD,∵AB=AC,AD=AE,∴△ABD≌△ACE.【点评】本题考查了全等三角形的判定;能够熟练掌握三角形的判定方法来证明三角形的全等问题,由∠1=∠2得∠CAE=∠BAD是解决本题的关键.21.如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:OB=OD.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【专题】证明题.【分析】根据ASA证△ABC≌△ADC,推出AB=AD,根据等腰三角形的性质三线合一定理求出即可.【解答】证明:在△ABC和△ADC中,∵,∴△ABC≌△ADC(ASA),∴AB=AD,∴△ABD是等腰三角形,且∠1=∠2,∴OB=OD.【点评】本题考查了全等三角形的性质和判定和三线合一定理等知识点,注意:等腰三角形顶角的平分线平分底边.22.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件.请你在其中选三个作为已知条件,余下的一个作为结论,写出一个正确的结沦,并说明理由.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.(填写序号即可)已知:①②④;结沦:③;理由:【考点】全等三角形的判定与性质.【专题】证明题;开放型.【分析】本题考查的是全等三角形的判定,要根据全等三角形判定条件中的SAS,AAS,ASA,SSS等条件,来判断选择哪些条件可得出三角形全等,得出全等后又可得到什么等量关系.【解答】解:已知:①②④结论:③证明:∵BE=CF,∴BE+EC=CF+EC.∴BC=EF.△ABC和△DEF中,∴△ABC≌△DEF(SSS).∴∠ABC=∠DEF.【点评】本题考查了全等三角形的判定和性质,熟练掌握这些知识点是解题的关键.23.如图,点E、A、B、F在同一条直线上,AD与BC交于点O,已知∠CAE=∠DBF,AC=BD.说出∠CAD=∠DBC的理由.【考点】全等三角形的判定与性质.【专题】证明题.【分析】本题可通过全等三角形来证得.三角形CAB和DBA中,已知的条件有AC=BD,公共边AB,只要再证得这两组对应边的夹角相等即可得出三角形全等的结论,我们已知了∠CAE=∠DBF,那么他们的补角就应该相等,即∠CAB=∠DBA,这样就构成了两三角形全等的条件(SAS),就能得出两三角形全等了,也就得出∠CAD=∠DBC.【解答】证明:∵∠CAE=∠DBF(已知),∴∠CAB=∠DBA(等角的补角相等).在△ABC和△DBA中AC=BD(已知),∠CAB=∠DBA,AB=BA(公共边),∴△ABC≌△DBA(SAS).∴∠ABC=∠BAD(全等三角形的对应角相等).∴∠CAB﹣∠BAD=∠DBA﹣∠ABC.即:∠CAD=∠DBC.【点评】本题考查了全等三角形的判定和性质;此题证明角相等,可以通过全等三角形来证明,要注意利用此题中的图形条件,等角的补角相等.24.求作一点P,使点P到∠A两边的距离相等,且点P到点D和点E的距离相等.(保留作图痕迹)【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】先作出∠BAC的平分线AF,再作出线段DE的垂直平分线GH,则AF与GH 的交点P即为所求.【解答】解:如图所示,点P即为所求.【点评】本题主要考查了尺规作图中的复杂作图,解决问题的关键是掌握角平分线的作法以及线段垂直平分线的作法.。

八年级上册数学单元测试卷-第1章 三角形的初步知识-浙教版(含答案)

八年级上册数学单元测试卷-第1章 三角形的初步知识-浙教版(含答案)

八年级上册数学单元测试卷-第1章三角形的初步知识-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.150°B.120°C.90°D.60°2、如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.3对B.4对C.2对D.5对3、下列说法正确的是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等边三角形都全等4、如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是()A.3B.4C.5D.65、如图,△ABC≌△ADE,∠C=40°,则∠E的度数为()A.80°B.75°C.40°D.70°6、如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD 为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有()A.1个B.2个C.3个D.4个7、如图,平分交于点,平分交于点,若,,则的度数为()A. B. C. D.8、已知△ABC中,AB=8,BC=15,AC=17,则下列结论无法判断的是( )A.△ABC是直角三角形,且AC为斜边B.△ABC是直角三角形,且∠ABC=90° C.△ABC的面积为60 D.△ABC是直角三角形,且∠A=60°9、如图所示图案是我国汉代数学家赵爽在注解《周懈算经》时给出的,人们称它为“赵爽弦图”.已知AE=4,BE=3,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD 内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为:()A. B. C. D.10、如图,在△ABC中,∠C=90°,BD平分∠ABC,交AC于点D;若DC=3,AB=8则△ABD的面积是( )A.8B.24C.12D.1611、如果三角形的三个内角的度数比是2:3:4,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形12、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C.30海里D.60海里13、如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,则下列结论:①AD=BC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是()A.①②B.①③④C.①②④D.①②③④14、如图,在四边形ABCD中,CD∥AB,AC⊥BC,若∠B=50°,则∠DCA等于()A.30°B.35°C.40°D.45°15、如图,己知直线y= x-3与x轴、y轴分别交于A,B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA,PB,则△PAB面积的最大值是( )A.8B.12C.D.二、填空题(共10题,共计30分)16、人站在晃动的公共汽车上.若你分开两腿站立,则需伸出一只手去抓栏杆才能站稳,这是利用了________ .17、己知,在△ABC中,AD是BC边上的高线,且,,则________.18、如图,在△ABC中,高AD和BE交于点H,且BH=AC,则∠ABC=________.19、如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是BC上一动点,若将沿EF对折后,点B落在点P处,则点P到点D的最短距为________.20、如图,矩形OABC的顶点A、C的坐标分别为(4,0)、(0,2),对角线的交点为P,反比例函数y= (k>0)的图象经过点P,与边BA、BC分别交于点D、E,连接OD、OE、DE,则△ODE的面积为________.21、如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠ACP=∠PBC,则∠BPC=________.22、在中,若对角线AC=6,BD=8,AB=a,则a的取值范围是________.23、一副三角板如图放置,若∠1=90°,则∠2的度数为________.24、“等角对等边”的逆命题是________25、如图,等腰中,,的垂直平分线交边于点,且,则的度数是________.三、解答题(共5题,共计25分)26、如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=30°,∠E=20°,求∠ACE和∠BAC的度数.27、如图四边形ABCD和四边形OEFG都是正方形,点O是正方形ABCD两对角线的交点,已知AB=2,EF=3,正方形OEFG绕点O转动,OE交BC上一点N,OG交CD上一点M.求四边形OMCN的面积.28、如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,求∠BAC的度数.29、如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?30、如图,DC⊥CA,EA⊥CA,CD=AB,CB=AE.求证:△BCD≌△EAB.参考答案一、单选题(共15题,共计45分)1、B2、A3、4、A5、C6、C7、A8、D10、C11、A12、C13、D14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。

浙教版八年级上册数学第一章 三角形的初步知识 单元提升测试卷含答案

浙教版八年级上册数学第一章  三角形的初步知识  单元提升测试卷含答案

浙教版八上数学第1章《三角形的初步知识》单元提升测试卷考试时间:120分钟满分:120分班级姓名一、选择题(本大题有12小题,每小题3分,共36分)1.已知n正整数,若一个三角形的三边长分别是n+2、n+8、3n,则满足条件的n的值有()A.4个B.5个C.6个D.7个2.己知钝角△ABC中,∠A=30°,则下列结论正确的是()A.0°<∠B<60°B.90°<∠B<150°C.0°<∠B<60°或90°<∠B<150°D.以上都不对3.如图,点在的延长线上,于点,交于点.若,则的度数为().A.65°B.70°C.75°D.85°(第3题)(第4题)(第6题)(第7题)4.如图△ABC中,D为BC边上一点,且△ABD与△ADC面积相等,则线段AD一定是()A.△ABC的高B.△ABC的中线C.△ABC的角平分线D.以上选项都不对5.用尺规作已知角的平分线的理论依据是()A.SAS.B.AASC.SSSD.ASA6.如图,点P在BC上,于点B,于点C,≌,其中BP=CD,则下列结论中错误是()A. B. C. D.7.将一副三角板如图放置,其中∠BAC=∠ADE=90°,∠E=30°,∠B=45°,其中点D落在线段BC上,且AE∥BC,则∠DAC的度数为()A.30°B.25°C.20°D.15°8.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A.8B.11C.16D.17(第8题)(第9题)(第10题)(第12题)9.如图,在△ABC中,CD⊥AB于点D,BE平分∠ABC,交CD于点E,若S△BCE=10,BC=5,则DE等于()A.10B.7C.5D.410.如图,直线a、b、c表示互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的站址有()A.一处B.二处C.三处D.四处11.已知下列四个命题:①已知三条线段的长为、、,且,则以这三条线段为三边可以组成三角形;②有两边和其中一边上的高线对应相等的两个三角形全等;③顶角相等的两个等腰三角形全等;④有两边和其中一边上的中线对应相等的两个三角形全等.其中真命题是().A.①②③B.①③C.②④D.④12.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4B.3C.2D.1二、填空题(本大题有6小题,每小题3分,共18分)13.把命题“在平面内,垂直于同一条直线的两条直线互相平行”改写成一般形式________.14.如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角,且点E、A、B三点共线,若AB=2,则阴影部分的面积是________.(第14题)(第15题)(第16题)15.如图,等边△ABC中,点D、E分别在边AB、BC上,把△BDE沿直线DE翻折,使点B落在点B处,DB、EB分别交边AC于点F、G.若∠ADF=86°,则∠EGC=________度。

(浙教版)2020版八年级上:第1章《三角形的初步知识》单元测试卷(含答案)

(浙教版)2020版八年级上:第1章《三角形的初步知识》单元测试卷(含答案)

精品"正版〞资料系列,由本公司独创 .旨在将"人教版〞、〞苏教版"、〞北师大版"、〞华师大版"等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友 .本资源创作于2021年8月,是当前最||新版本的教材资源 .包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最||正确选择 .第1章三角形的初步知识检测卷一、选择题(每题2分,共20分)第1题图1.如图 ,为估计池塘两岸A ,B间的距离 ,杨阳在池塘一侧选取了一点P ,测得PA=16m ,PB=12m ,那么AB间的距离不可能是()A.5m B.15m C.20m D.28m2.一个三角形三个内角的度数之比为2∶3∶5 ,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形第3题图3.张师傅不小心将一块三角形玻璃打破成如图中的三块 ,他准备去店里重新配置一块与原来一模一样的 ,最||省事的做法是()A.带1去B.带2去C.带3去D.三块都带去4.以下说法:①全等三角形的面积相等;②全等三角形的周长相等;③全等三角形的对应角相等;④全等三角形的对应边相等.其中正确的有()A.1个B.2个C.3个D.4个5.如图 ,以下A ,B ,C ,D四个三角形中 ,能和模板中的△ABC完全重合的是(A)第5题图6.BD是△ABC的中线 ,假设AB=5cm ,BC=3cm ,那么△ABD与△BCD的周长之差是()A.1cm B.2cm C.3cm D.5cm7.如图 ,MB=ND ,∠MBA=∠NDC ,以下不能判定△ABM≌△CDN的条件是()A .∠M =∠NB .AB =CDC .AM =CND .AM ∥CN第7题图第8题图第9题图第10题图8.如图 ,AD 是△ABC 中∠BAC 的角平分线 ,DE ⊥AB 于点E ,S △ABC =7 ,DE =2 ,AB =4 ,那么AC 长是()A .3B .4C .6D .59.如图 ,锐角三角形ABC 中 ,直线l 为BC 的中垂线 ,直线m 为∠ABC 的角平分线 ,l 与m 相交于P 点.假设∠BAC =60° ,∠ACP =24° ,那么∠ABP 是()A .24°B .30°C .32°D .36°10.如图 ,在△ABC 中 ,∠C =90° ,∠B =30° ,以点A 为圆心 ,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心 ,大于12MN 的长为半径画弧 ,两弧交于点P ,连结AP 并延长交BC 于点D ,那么以下说法中正确的个数是()①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④S △DAC ∶S △ABC =1∶3.A .1个B .2个C .3个D .4个二、填空题(每题3分 ,共30分)11.木工师傅在做完门框后 ,为防止变形常常像图中所示那样钉上两条斜拉的木板条(即图中AB 、CD 两个木条) ,这样做根据的数学道理是____.第11题图第12题图第13题图第15题图12.如图 ,点D ,E 分别在线段AB ,AC 上 ,BE ,CD 相交于点O ,AE =AD ,要使△ABE ≌△ACD ,需添加一个条件是____________________________________________(只要求写一个条件).13.一副具有30°和45°角的直角三角板 ,如图叠放在一起 ,那么图中∠α的度数是________________________________________________________________________.14.可以用来证明命题 "如果a ,b是有理数 ,那么|a+b|=|a|+|b|〞是假命题的反例可以是____ .15.如图 ,在△ABC中 ,∠C=90° ,BD平分∠ABC ,交AC于D.假设DC=3 ,那么点D到AB的距离是__________.16.如图 ,在△ABC中 ,AB=12 ,EF为AC的垂直平分线 ,假设EC=8 ,那么BE的长为________________________________________________________________________.第16题图第18题图第19题图第20题图17.一个三角形的两边长分别是3和7 ,且第三边长为奇数 ,这样的三角形的周长最||大值是___________.18.如图 ,在△ABC中 ,高BD,CE相交于点H,假设∠BHC=110° ,那么∠A等于________________________________________________________________________.19.如图 ,把△ABC纸片沿DE折叠 ,当点A落在四边形BCDE内部时 ,∠A ,∠1 ,∠2之间有一种数量关系始终保持不变 ,这种关系是___.20.如图 ,在△ABC中 ,BC边不动 ,点A竖直向上运动 ,∠A越来越小 ,∠B ,∠C 越来越大 ,假设∠A减少α度 ,∠B增加β度 ,∠C增加γ度 ,那么α ,β ,γ三者之间的等量关系是___.三、解答题(共50分)21.(6分)线段a ,b及∠α ,用直尺和圆规作△ABC ,使∠B=∠α ,AB=a ,BC=b.第21题图22.(7分)如图 ,△ABC≌△ADE ,且∠CAD=35° ,∠B=∠D=20° ,∠EAB=105° ,求∠BFD和∠BED的度数.第22题图23.(6分)如图 ,△ABC与△BAD中 ,AD与BC相交于点M ,∠1=∠2 ,________ ,试说明△ABC≌△BAD.请你在横线上添加一个条件,使得它可以用"AAS〞来说明△ABC≌△BAD ,并写出说理过程.第23题图24.(7分)(永州(中|考))如图 ,在四边形ABCD中 ,∠A=∠BCD=90° ,BC=DC ,延长AD到E点 ,使DE=AB.第24题图(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.25.(8分)如图 ,在△ABC中 ,∠C=90° ,BE平分∠ABC,AF平分外角∠BAD,BE 与FA交于点E.求∠E的度数.第25题图26.(8分)如图 ,在△ABC中 ,AC=6cm,AB=9cm,D是边BC上一点 ,AD平分∠BAC,在AB上截取AE=AC ,连结DE ,DE=2cm ,BD=3cm.求:(1)线段BC的长;(2)假设∠ACB的平分线CF交AD于点O ,且O到AC的距离是acm ,请用含a的代数式表示△ABC的面积.第26题图27.(8分)如图 ,在△ABC中 ,AB=AC ,∠BAC=90° ,∠1=∠2 ,CE⊥BD交BD 的延长线于点E ,求证:BD=2CE.第27题图参考答案第1章 三角形的初步知识检测卷一、选择题1.D 2.B 3.C 4.D 5.A 6.B 7.C 8.A 9.C 10.D二、填空题11.三角形的稳定性12.AB =AC 或∠B =∠C 或∠ADC =∠AEB13.75°14.答案不唯一 ,如a =-1 ,b =3等异号两数15.316.417.1918.70°19.2∠A =∠1+∠220.α=β+γ三、解答题21.略22.∠BFD =90° ,∠BED =70°23.答案不唯一 ,如横线上添加的条件是∠C =∠D.理由如下:在△ABC 与△BAD 中 ,⎩⎪⎨⎪⎧∠C =∠D ( )∠2=∠1 ( ) AB =BA (公共边 )∴△ABC ≌△BAD(AAS).第24题图24.(1)证明:在四边形ABCD 中 ,∵∠A =∠BCD =90° ,∴∠B +∠ADC =180°.又∵∠ADC +∠EDC =180° ,∴∠ABC =∠EDC.(2)证明:连结AC.在△ABC 和△EDC 中 ,∵⎩⎪⎨⎪⎧BC =DC ∠ABC =∠EDC AB =ED∴△ABC ≌△EDC.25.∠E =45°26.(1)BC =5cm (2)10a cm 227.证明:延长CE 与BA 的延长线交于点F ,∵∠BAC =90° ,CE ⊥BD ,∴∠BAC =∠DEC ,∵∠ADB =∠CDE ,∴∠ABD =∠DCE ,在△BAD 和△CAF 中 , ⎩⎪⎨⎪⎧∠BAD =∠CAF AB =AC ∠ABD =∠DCE ∴△BAD ≌△CAF(ASA) ,∴BD =CF ,在△BEF 和△BEC 中 , ⎩⎪⎨⎪⎧∠1=∠2 BE =BE ∠BEF =∠BEC ∴△BEF ≌△BEC(ASA) ,∴CE =EF ,∴DB =2CE.第27题图教学反思撰写根本格式和主要内容一、题目:课题 +教学反思二、正文包括以下四方面的主要内容:(一 )教学设计反思针对教学设计中的某一个环节或者这几个环节进行反思 .比方反思教学目标的设置是否得当 ,教学时间的安排是否适宜 ,问题的设计是否科学 .例如:新课程标准对本课的要求是:在具体生活情境中 ,感受并认识吨 ,并能进行简单的换算 .根据这一要求我做了深入地教材分析及学生分析 .并制定了如下教学目标:目标1:认识中国地图目标2:确定方位:上北下南 ,左西右东目标3:提高学生认识抽象事物的能力 ,提高学生分析问题、解决问题的能力 . 目标4:感受地理知识与生活实际的联系 .(二 )教学过程反思主要针对课堂教学的过程中的某一个或者几个环节反思 ,如导入 ,提问、小结等 .例如:教学过程中第|一个探究环节是认识中国地图 ,我认为这个环节虽然是重点 ,但难度很小 ,所以采用了自主学习的方式 .课堂效果符合我的预想 ,学生用大约3分钟的时间掌握了这两个知识点 .我想原因有二:一是知识本身难度很小 ,二是以前初中学过第二个探究环节是在具体生活情境中 ,在中国地图上找出自己所在的位置 ,实际教学中效果非常好 ,学生对次非常感兴趣 ,并形成了深刻的印象 .(三 )存在问题反思主要是指课后对课堂教学中存在的问题的一个集中的回忆和思考 .例如:1、设计的教学内容太多以至||于每个环节都很匆忙 ,没有给学生留下充分活动、感知、体验的时间 .2、运用教学语言不够熟练 ,出现了几次口误 .这是不应该的 ,因为在这节课中明辩质量和重量的区别对教师来说是很重要的 .(四 )改进措施反思1、教学设计应更严密、更科学 .尤其要预留出学生活动的时间 .2、实行弹性教学 ,在本节课未能充分进行的环节移到练习课上加以延伸 .应多找几组同学 ,使学生充分感知 .3、提高自己的教学素养 ,提高自己教学语言表达能力 .多听、多学、多练 . 整堂课学生们在一种欢快的气氛中学习新知识 .在教学中 ,让学生分组自己动手去掂一掂 ,让学生自主探索 ,为学生学习数学提供了一个广阔的空间 ,培养学生的动手操作的实践能力和探索精神 ,也提高了学生的综合能力 .让学生在操作中思考 ,在交流中思考 ,在思考中探索获取新知识 ,充分发挥学生的主体性和积极性 .三、结束语 .简要的总结 ,认识 ,感悟 ,心得 .例如:经过这次课堂教学的反思 ,我在哪些方面得到提高 ,在今后的教学工作中 ,将怎样开展工作 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3题图
第4题图
第5题图
第6题图
《三角形的初步认识》测试卷

名___________ 一、填空题 (30分) :
1、在Rt △ABC 中,一个锐角为250, 则另一个锐角为________;
2、 在△ABC 中,AB =3,BC =7,则AC 的长x 的取值范围是________;
3、如图,AD 是△ABC 的中线, △ABC 的面积为100cm 2,则△ABD 的是2
4、如图, △ABC 中, ∠ABC=740,AD 为△ABC 的高,则∠BAD=_______;
5、如图, △ABC 中,AB=12,EF 为AC 的垂直平分线,若EC=8,则BE 的长为_______;
6、如图, △ABC 中,∠ABC 和∠ACB 的平分线交于点O,若∠A=700,则∠BOC=_______;
7、如图
, △ABC 中,高BD 、CE 相交于点H,若∠A=600,则∠
8、 如上右图,∠1∶∠2∶∠3=1∶2∶3,则∠4=________;
9、已知△ABC 中, ∠A= ∠B= ∠C,则△ABC 为___________ 三角形;
10、 如图,四边形ABCD 是一防洪堤坝的横截面,AE ⊥CD ,BF ⊥CD ,且AE=BF ,∠D=∠C ,问AD 与BC 是否相等?说明你的理由。

解:在△ADE 和△BCF 中, ∠D=∠C ( ) ∠AED=∠ (垂直的意义) AE=BF ( ) ∴△ADE ≌△BCF (_______ ) ∴AD=BC (______________________)
二、选择题(30分):
1、以下列各组线段为边,能组成三角形的是( ); A .2cm 、2cm 、4cm B .2cm 、6cm 、3cm C .8cm 、6cm 、3cm D .11cm 、4cm 、6cm
2、 有下列关于两个三角形全等的说法:
㈠三个角对应相等的两
2
131
个三角形全等;㈡三条边对应相等的两个三角形全等;㈢两角与一边对应相等的两个三角形全等;㈣两边和一角对应相等的两个三角形全等.其中正确的个数是( ); A.1 B.2 C.3 D.4
3、如右图,三角形的外角是( ); A. ∠1 B.∠2 C.∠3 D.∠4
4、若三角形的一个外角小于和它相邻的内角,则这个三角形为( );
A.锐角三角形
B.钝角三角形
C. 直角三角形 D 无法确定
5、对于三角形的内角,下列判断中不正确的是( ); A.至少有两个锐角 B.最多有一个直角 C.必有一个角大于600 D.至少有一个角不小于600
6、下列四组中一定是全等三角形的是( );
A .两条边对应相等的两个锐角三角形
B .面积相等的两个钝角三角形
C .斜边相等的两个直角三角形
D .周长相等的两个等边三角形
7、若AD 是△ABC 的中线,则下列结论错误的是( ); A.AD 平分∠BAC B.BD=DC C.AD 平分BC D.BC=2DC
C
8.如果三角形的一个内角等于其他两个内角的差,那么这个三角形是 ( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.无法确定
9. 如图,在ΔABC 中,BC 边上的垂直平分线交AC 于点D,
已知AB=3,AC=7,BC=8,则ΔABD 的周长为: A.10 B.11 C.15 D.12
10.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是 ( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.无法确定
三、解答题(6+8+8+8+10=40分):
1、如图,在⊿ABC 中, ∠BAC 是钝角,按要求完成下列画图,并用适当的符号在图中表示(必须写出结论): ①∠BAC 的角平分线 ②AC
边上的高 ③AB 边上的中线
b
a
2、尺规作图:已知线段a,b 和∠α. 求作:ΔABC,使BC=a , AC=b , ∠C=∠α (画出图形,保留作图痕迹,不写作法,
3、如图:已知△ABC 中,AD ⊥BC 于D ,AE 为∠BAC 的平分线,且∠B=35°,
∠C=65°求∠DAE 的度数。

4、如图,已在AB=AC,AD=AE, ∠1=∠2,试说明ΔABD ≌ΔACE 的理由.
解:∵∠1=∠2( ) ∴∠1+∠ =∠2+∠
即:∠BAD=∠CAE 在△BAD 和△CAE 中
A
B
E D
C
AB=AC ( ) ∠BAD=∠CAE AD=AE ( ) ∴△BAD ≌△CAE( )
5、如图.在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件.请你在其中选三个作为已知条件,余下的一个作为结论,写出—个正确的结沦,并说明理由。

①AB =DE ;②AC =DF ;③∠ABC =∠DEF ;④BE =CF .(填写序号即可) 已知: ; 结沦: ; 理由:
四、附加题(9+11=20分):
1
、设计三种不同方案,把Δ
ABC 的面积三等分
2、如图,点E、A、B、F在同一条直线上,AD与BC交于点O,已知∠CAE=∠DBF,AC=BD.
说出∠CAD=∠DBC的理由
参考答案:
一、填空题:
1、650
2、4<x<10
3、50
4、160
5、4
6、1250
7、1200
8、720
9、直角
10、已知,BFC,已知,AAS,全等三角形的对应边相等。

二、选择题:
1、(略).
2、(略).
3、150.
4、已知,BAE,BAE,已知,已知,SAS.
5、答案不唯一.
四、附加题:
1、(略);
2、解:∵∠CAE=∠DBF(已知)
∴∠CAB=∠DBA(等角的补角相等)
在△ABC和△DBA中
AC=BD(已知)
∠CAB=∠DBA
AB=BA(公共边)
∴△ABC≌△DBA(SAS)
∴∠ABC=∠BAD(全等三角形的对应角相等)
∴∠CAB-∠BAD=∠DBA-∠ABC
即:∠CAD=∠DBC。

相关文档
最新文档