绳(杆)端速度分解模型问题的分析(无答案)
巧用极限法解答高中物理试题
巧用极限法解答高中物理试题极限法在现代数学乃至物理等学科中有广泛的应用。
由有限小到无限小,由有限多到无限多,由有限的差别到无限地接近,就达到事物的本真。
下面是小编为大家整理的关于巧用极限法解答高中物理试题,希望对您有所帮助。
欢迎大家阅读参考学习!使用极限法解答高中物理1直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系.2物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题.思维模板:常用的思维方法有两种:(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.3运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类:一是绳(杆)末端速度分解的问题;二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析.4抛体运动问题题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解5圆周运动问题题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动.水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况.思维模板:(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力.(2)竖直面内的圆周运动可以分为三个模型:①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;6牛顿运动定律的综合应用问题题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高.思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律.①。
模型10绳杆关联运动模型(解析版)-备战2021年高考物理模型专题突破
10绳杆关联运动模型1.(2020·辉县市第二高级中学高一月考)如图所示,AB 杆以恒定角速度ω绕A 点转动,并带动套在光滑水平杆OC 上的质量为M 的小环运动,运动开始时,AB 杆在竖直位置,则小环M 的速度将( )A .逐渐增大B .先减小后增大C .先增大后减小D .逐渐减小【答案】A 【详解】设经过时间t ,OAB t ω∠=,则AM 的长度为cos h t ω,则AB 杆上M 点绕A 点的线速度cos hv tωω=⋅.将小环M 的速度沿AB 杆方向和垂直于AB 杆方向分解,垂直于AB 杆上分速度等于M 点绕A 点的线速度v ,则小环M 的速度2cos cos v hv t tωωω==',随着时间的延长,则小环的速度的大小不断变大.故A 正确,BCD 错误. 故选A .2.(2020·浙江高一专题练习)如图所示,套在细杆上的小环沿杆匀速下滑,其在水平方向和竖直方向的分运动分别是( )A .匀速运动,匀速运动B .匀加速运动,匀加速运动C .匀速运动,匀加速运动D .匀加速运动,匀速运动【答案】A 【详解】小环沿杆匀速下滑,说明小环的合力为零,所以小环在水平方向所受合力为零,竖直方向的合力也为零,即小环在水平方向和竖直方向都做匀速直线运动,故A 正确.3.(2020·四川眉山市·高一期中)如图所示,人用轻绳通过定滑轮拉穿在光滑竖直杆上的物块A ,人以速度v 0向左匀速拉绳,某一时刻,绳与竖直杆的夹角为θ,与水平面的夹角为α,此时物块A 的速度v 1为A .10sin cos v v αθ=B .01sin sin v v αθ=C .10cos cos v v αθ=D .01cos cos v v αθ=【答案】D 【解析】对人进行速度分解,如图所示:可知:'0cos v v α=对物块A 进行速度分解,如图所示,则可知:'1cos v v v cos cos αθθ==,故选项D 正确,选项ABC 错误. 点睛:解决本题的关键会对速度进行分解,要正确找到合运动与分运动,注意两个物体沿着绳子方向的分速度相等.4.(2020·湖南娄底市·娄底一中)两根光滑的杆互相垂直地固定竖直平面内.上面分别穿有一个小球.小球a 、b 间用一细直棒相连如图.释放后两球都开始滑动.当细直棒与竖直杆夹角为α时,两小球实际速度大小之比v a ∶v b 等于A .sin α∶1B .cos α∶1C .tan α∶1D .cot α∶1【答案】C 【详解】速度的合成与分解,可知,将两球的速度分解,如图所示,则有:a v v cos α=杆 ,而b v v sin α=杆,那么两小球实际速度之比 v a :v b =sin α:cos α=tan α:1故C 正确,ABD 错误. 故选C .5.(2020·运城市景胜中学高一期末)如图所示,小球a 、b 用一细直棒相连,a 球置于水平地面,b 球靠在竖直墙面上,释放后b 球沿竖直墙面下滑,当滑至细直棒与水平面成θ角时,两小球的速度大小之比为( )A .absin v v θ= B .ab cos v v θ= C .ab tan v v θ= D .abcot v v θ= 【答案】C 【详解】如图所示,将a 球速度分解成沿着杆与垂直于杆方向,同时b 球速度也是分解成沿着杆与垂直于杆两方向。
曲线运动运动的合成与分解知识要点归纳总结
曲线运动运动的合成与分解要点归纳一、曲线运动1.曲线运动:运动轨迹是曲线的运动。
2.曲线运动速度:1)方向:沿轨迹上各点的切线方向。
2)大小:可以变化,也可以不变化。
3.运动的性质:变速运动(加速度一定不为零)4.做曲线运动的条件:⑴运动学角度说:a的方向与v的方向不在同一条直线上。
⑵从动力学角度说:F合的方向与v的方向不在同一条直线上。
①F合(a)与v的夹角0°<θ<90°时:物体做加速曲线运动;②F合(a)与v的夹角θ=90°时:物体做匀速率曲线运动;③ F合(a)与v的夹角90°<θ<180°时:物体做减速曲线运动。
5.物体做曲线运动时的受力特点:F合(a)总是指向轨迹弯曲的内(凹)侧。
二.运动的合成与分解1.合运动与分运动1)合运动:物体对地的实际运动。
2)分运动:除合运动外,物体同时参与的其它运动。
3)合运动与分运动之间:①等效性②等时性分运动与分运动之间:③独立性2.运动的合成与分解1)运动的合成:已知分运动求合运动。
即已知分运动的位移、速度、和加速度等求合运动的位移、速度、和加速度等,遵从平行四边形定则。
2)运动的分解:已知合运动求分运动。
它是运动合成的逆运算。
处理曲线问题往往是把曲线运动按实效分解成两个方向上的分运动。
3.合运动的性质和轨迹1)合运动的性质由a决定:①a=0(F合=0)时:静止或匀速直线运动;②a≠0(F合≠0)且恒定时:匀变速运动⎩⎨⎧曲线运动不共线时物体做匀变速与线运动共线时物体做匀变速直与vava③a≠0(F合≠0)且变化时:非匀变速运动⎩⎨⎧减)速曲线运动不共线时物体做变加(与)速直线运动共线时物体做变加(减与vava2)合运动的轨迹由a与v的方向决定:①两个分运动均是匀速直线运动,其合运动是匀速直线运动;②一个分运动是匀速直线运动,另一个分运动是匀变速直线运动,当它们共线时,其合运动是匀变速直线运动,当它们互成一定夹角时,它们的合运动是匀变速曲线运动;③两个互成夹角的匀变速直线运动的合运动是匀变速运动,若a与v共线其合运动是匀变速直线运动,若a与v不共线其合运动是匀变速曲线运动。
浙江高考物理一轮复习第四章曲线运动万有引力与航天第一节曲线运动运动的合成与分解学案
第一节曲线运动运动的合成与分解[高考导航]12.宇宙c7797航行13.经典a力学的局限性实验:研1717究平抛运动平抛运动和圆周运动是高考考查的重点,命题频繁,万有引力与宇宙航行基本为必考内容。
着重考查的内容有:(1)平抛运动的规律及有约束条件的平抛运动;(2)圆周运动的运动学和动力学分析;(3)天体质量、密度的计算;(4)卫星运动的各物理量间的比较。
第一节曲线运动运动的合成与分解一、曲线运动答案:□1切线□2方向□3变速□4不在同一条直线上□5不在同一条直线上【基础练1】如图,乒乓球从斜面上滚下,以一定的速度沿直线运动。
在与乒乓球路径相垂直的方向上放一个纸筒(纸筒的直径略大于乒乓球的直径),当乒乓球经过筒口时,对着球横向吹气,则关于乒乓球的运动,下列说法中正确的是( )A.乒乓球将保持原有的速度继续前进B.乒乓球将偏离原有的运动路径,但不进入纸筒C.乒乓球一定能沿吹气方向进入纸筒D.只有用力吹气,乒乓球才能沿吹气方向进入纸筒解析:选B。
当乒乓球经过筒口时,对着球横向吹气,乒乓球沿着原方向做匀速直线运动的同时也会沿着吹气方向做加速运动,实际运动是两个运动的合运动;故一定不会进入纸筒,要提前吹才会进入纸筒,故A、C、D错误,B正确。
二、运动的合成与分解答案:□1实际□2平行四边形【基础练2】如图所示,这是工厂中的行车示意图,行车在水平向右匀速运动,同时悬挂工件的悬线保持在竖直方向,且工件匀速上升,则工件运动的速度( )A.大小和方向均不变B.大小不变,方向改变C.大小改变,方向不变D.大小和方向均改变解析:选A。
工件同时参与了水平向右的匀速运动和竖直方向的匀速运动,水平和竖直方向的速度都不变,根据矢量合成的平行四边形法则,合速度大小和方向均不变。
考点一物体做曲线运动的条件及轨迹分析1.曲线运动的条件:物体所受合外力(或加速度)方向与运动方向不共线。
2.曲线运动的类型(1)匀变速曲线运动:合力(加速度)恒定不变。
绳船模型中的速度和加速度关系深度分析
绳船模型中的速度和加速度关系深度分析摘要:速度合成和分解中,绳子两端绳上的点的速度沿绳子方向的分量才相等,而不是绳子两端的物体的速度沿绳子方向的分量相等。
同时,绳子两端的点的加速度沿绳子方向的分量也不是单纯意义上的相等,本文通过绳船模型定量给出速度及加速度的关系。
关键词:速度加速度分解相等绳杆端速度分解模型中,在绳子不松弛的情况下,在同一时刻必须具有相同的沿杆绳方向的分速度[1]。
这里的速度分量指,绳子两端点的速度沿绳子方向分量,而不是绳子两端物体的速度分量。
绳子两端点的速度与绳子两端物体的速度有很大的区别,如图1所示,数值方向的动滑轮模型,绳子端点C的速度是绳子两端物体(滑轮)速度的两倍。
本文将通过绳船模型详细说明速度关系。
图1在教学过程中,学生从速度关系直接类比加速度关系,绳子两端的点的加速度沿绳方向分量相等,这样的理解显然是不对的。
如图2所示,物体绕圆心o作匀速圆周运动,半径为r,速率为v,分析绳子两端的点的加速度沿绳方向分量的关系?绳子一端物体的加速度,这个加速度为物体的合加速度,此加速度沿半径方向的分量为,绳子一端圆心的加速度0,此加速度沿半径方向的分量为0,显然绳子两端的点的加速度沿绳方向的分量不相等。
本文将通过绳船模型详细说明加速度关系。
1、单绳船模型中速度关系如图3所示,人用轻质细绳通过定滑轮牵引小船靠岸,如果收绳的速度为,则在绳与水平方向夹角为的时刻,船头到滑轮的距离为,船的速度有多大[2]?分析:船在水面在直线运动,实际发生的运动就是合运动,这个合运动有两个运动效果,一是使小船沿绳拉力方向以速度运动,二是使小船随绳的一端绕滑轮做顺时针方向的圆周运动。
靠近船头绳上的速度和船的速度一样,由于绳子不松软,所以沿绳方向速度分量相等:①由①式变形得船的速度:②2、单绳船模型中加速度关系如图3所示,如果人拉绳子以恒定的加速度向前奔跑,则在绳与水平方向夹角为的时刻,船头到滑轮的距离为,船的速度有多大?错误的理解,由于绳子不松软,所以沿绳方向加速度分量相等。
速度的分解专题
2.模型分析
(1)船的实际运动是水流的运动和船相对静水的运动的合运动。 (2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度)。
21
专题二 、小船渡河模型
(3)小船渡河的两类问题、三种情景 渡河时间最短 如果v船>v水,当船头方向与上游夹角θ 满足 v船cos θ =v水时,合速度垂直河岸,渡河位移 最短,等于河宽d
d 60 m 120m 6 cos 2
最短行程, s
小船的船头与上游河岸成 600 角时,渡河的最短航程为 120m。
31
针对训练
32
解析
解析:摩托艇要想在最短时间内到达对岸,其划行方向要垂直于江岸,摩托 艇实际的运动是相对于水的划行运动和随水流的运动的合运动,垂直于江岸 方向的运动速度为v2,到达江岸所用时间t= 速v1在相同的时间内,被水冲下的距离 ;沿江岸方向的运动速度是水 ,即为登陆点距离0点距离 。
的运动也就是船的实际运动,是合运动,与船头所指方向一般情况下不共线。 (2)按实际效果分解,一般用平行四边形定则沿水流方向和船头所指方向分解。 (3)渡河时间只与船垂直河岸的分速度有关,与水流速度无关。 (4)求最短渡河位移时,根据船速v船与水流速度v水的大小情况,用三角形定则求极限的 方法处理。
29
4
1.绳端速度分解问题
【例1】(多选)如图所示,做匀速直线运动的小车A通过一根绕过定滑轮的长绳 吊起一重物B,设重物和小车速度的大小分别为vB、vA,则( )
A.vA>vB B.vA<vB C.绳的拉力等于B的重力 D.绳的拉力大于B的重力
5
解析
6
1.绳端速度分解问题
7
解析
船的速度是合速度
高考物理解题模型分类专题讲解9---杆绳速度分解(解析版)
高考物理解题模型分类专题讲解 模型 9 杆绳速度分解1.模型特点 沿绳(或杆)方向的速度分量大小相等。
2.思路与方法 合速度就是物体的实际运动速度 v 分速度 方法:v1 与 v2 的合成遵循平行四边形定则。
【典例 1】(湖北省“荆、襄、宜七校考试联盟”2017 2018 学年高一下学期期中)人 用绳子通过定滑轮拉物体 A,A 穿在光滑的竖直杆上,当以速度 v0 匀速地拉绳使物体 A 到达如图所示位置时,绳与竖直杆的夹角为 θ,则物体 A 实际运动的速率是( B )A.v0cos θv0 B.cosθC.v0sinθv0 D.sinθ【答案】B【解析】物体 A 的运动是由绳的运动和垂直绳子方向的转动合成的,如图,则 v=v0 ,故选 B。
cosθ1 / 16【变式训练 1】如图,人沿平直的河岸以速度 v 行走,且通过不可伸长的绳拖船,船 沿绳的方向行进,此过程中绳始终与水面平行。
当绳与河岸的夹角为 α 时,船的速 率为 ( )A. vsin αv cosαv B. sinαC. vcos αD.【答案】 C 【解析】如图所示,把人的速度沿绳和垂直绳的方向分解,由几何知识有 v 船=vcos α,所以 C 正确,A、B、D 错误。
【典例 2】A、B 两物体通过一根跨过定滑轮的轻绳相连放在水平面上,现物体 A 以 v1 的速度向右匀速运动,当绳被拉成与水平面夹角分别为 α、β 时,如图所示。
物2 / 16体 B 的运动速度 vB 为(绳始终有拉力)( )v1 sin α A. sin βv1 cosα B. sin βv1 sin α C. cos βD.cosα cos βv1【答案】 D 【解析】A、B 两物体的速度分解如图由图可知:v 绳 A=v1cos α v 绳 B=vBcos β 由于 v 绳 A=v 绳 Bcosα 所以 vB= cos β v1 ,故 D 对 【变式训练 2】(多选)如图甲所示,将质量为 2m 的重物悬挂在轻绳的一端,轻绳的另一 端系一质量为 m 的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为 d。
2023年高考小专题复习学案 专题18曲线运动与运动的合成分解
专题18曲线运动与运动的合成分解【知识梳理】 一、曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的 。
2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是 运动。
3.运动的条件:物体所受 的方向跟它的速度方向不在同一条直线上,或它 方向与速度方向不在同一条直线上。
4.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在 方向与 方向之间,速度方向与轨迹相切,合外力方向指向轨迹的 侧。
二、运动的合成与分解 1.遵循的法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循 。
2.合运动与分运动的关系(1)等时性:合运动和分运动经历的 相等,即同时开始、同时进行、同时结束。
(2)独立性:一个物体同时参与几个分运动,各分运动 ,不受其他分运动运动的影响。
(3)等效性:各分运动的规律叠加起来与合运动的规律有完全相同的 。
3.运动性质的判断⎩⎨⎧加速度(或合外力)⎩⎪⎨⎪⎧ 变化:非匀变速运动不变:匀变速运动加速度(或合外力)方向与速度方向⎩⎪⎨⎪⎧共线:直线运动不共线:曲线运动4.两个直线运动的合运动性质的判断关键:看合初速度方向与合加速度方向是否共线。
三、两种模型 1.小船渡河模型2.绳(杆)端速度分解模型(1)模型特点:绳(杆)拉物体或物体拉绳(杆),以及两物体通过绳(杆)相连,物体运动方向与绳(杆)不在一条直线上,求解运动过程中它们的速度关系,都属于该模型。
(2)模型分析①合运动:绳(杆)拉物体的实际运动速度v ; ②分运动:⎩⎪⎨⎪⎧其一:沿绳(或杆)的分速度v ∥其二:与绳(或杆)垂直的分速度v ⊥ (3)解题原则:根据沿绳(杆)方向的分速度 求解。
【专题练习】 一、单项选择题1.2022年冬奥会将在中国北京举行,冰球是冬奥会的一个比赛项目.如图所示,冰球以速度1v 在水平冰面上向右运动,运动员沿冰面在垂直1v 的方向上快速击打冰球,冰球立即获得沿击打方向的分速度2v .不计冰面摩擦和空气阻力,下列图中的虚线能正确反映冰球被击打后运动轨迹的是( )A .B .C .D .2.羽毛球运动是我国的传统优势体育项目,屡屡在历届奥运会上争金夺银。
高中【物化生】必考经典题型+解题技巧
高中【物化生】必考经典题型+解题技巧理综是高考中分数最多的一科,同时也是最拉分的一科,所以,得理综者得天下,这句话并不是说说而已。
今天,颜老师给大家分享一下整理好的高考物化生热点题型,帮助大家提分~高中物理考试常见的类型总结下来有16种,怎样才能做好每一类型的题目呢?就是要掌握这16种常见题型的解题方法和思维模板!题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。
单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系。
题型2:物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。
物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。
思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。
题型3:运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类。
一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:主要有两种情况。
(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。
物理的答题模板
物理的答题模板物理的答题模板第一篇题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:(1)在绳(杆)末端速度分解问题中,要留意物体的实际速度肯定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;假如有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析.物理的答题模板第二篇题型概述:此题型主要涉及四种综合问题(1)动力学问题:力和运动的关系问题,其联系桥梁是磁场对感应电流的安培力.(2)电路问题:电磁感应中切割磁感线的导体或磁通量发生改变的回路将产生感应电动势,该导体或回路就相当于电源,这样,电磁感应的电路问题就涉及电路的分析与计算.(3)图像问题:一般可分为两类,一是由给定的电磁感应过程选出或画出相应的物理量的函数图像;二是由给定的有关物理图像分析电磁感应过程,确定相关物理量.(4)能量问题:电磁感应的过程是能量的转化与守恒的过程,产生感应电流的过程是外力做功,把机械能或其他形式的能转化为电能的过程;感应电流在电路中受到安培力作用或通过电阻发热把电能转化为机械能或电阻的内能等.思维模板:解决这四种问题的基本思路如下(1)动力学问题:依据法拉第电磁感应定律求出感应电动势,然后由闭合电路欧姆定律求出感应电流,依据楞次定律或右手定则推断感应电流的方向,进而求出安培力的大小和方向,再分析讨论导体的受力状况,最终依据牛顿第二定律或运动学公式列出动力学方程或平衡方程求解.(2)电路问题:明确电磁感应中的等效电路,依据法拉第电磁感应定律和楞次定律求出感应电动势的大小和方向,最终运用闭合电路欧姆定律、部分电路欧姆定律、串并联电路的规律求解路端电压、电功率等.(3)图像问题:综合运用法拉第电磁感应定律、楞次定律、左手定则、右手定则、安培定则等规律来分析相关物理量间的函数关系,确定其大小和方向及在坐标系中的范围,同时留意斜率的物理意义.(4)能量问题:应抓住能量守恒这一基本规律,分析清晰有哪些力做功,明确有哪些形式的能量参与了互相转化,然后借助于动能定理、能量守恒定律等规律求解.物理的答题模板第三篇题型概述:带电粒子在复合场中的运动是高考的热点和重点之一,主要有下面所述的三种状况.(1)带电粒子在组合场中的运动:在匀强电场中,若初速度与电场线平行,做匀变速直线运动;若初速度与电场线垂直,则做类平抛运动;带电粒子垂直进入匀强磁场中,在洛伦兹力作用下做匀速圆周运动.(2)带电粒子在叠加场中的运动:在叠加场中所受合力为0时做匀速直线运动或静止;当合外力与运动方向在始终线上时做变速直线运动;当合外力充当向心力时做匀速圆周运动.(3)带电粒子在改变电场或磁场中的运动:改变的电场或磁场往往具有周期性,同时受力也有其特别性,经常其中两个力平衡,如电场力与重力平衡,粒子在洛伦兹力作用下做匀速圆周运动.思维模板:分析带电粒子在复合场中的运动,应认真分析物体的运动过程、受力状况,留意电场力、重力与洛伦兹力间大小和方向的关系及它们的特点(重力、电场力做功与路径无关,洛伦兹力永久不做功),然后运用规律求解,主要有两条思路.(1)力和运动的关系:依据带电粒子的受力状况,运用牛顿第二定律并结合运动学规律求解.(2)功能关系:依据场力及其他外力对带电粒子做功的能量改变或全过程中的功能关系解决问题.物理的答题模板第四篇题型概述:该题型是高考的重点和热点,高考对此题型的考查主要表达在闭合电路欧姆定律、部分电路欧姆定律、电学试验等方面.主要涉及电路动态问题、电源功率问题、用电器的伏安特性曲线或电源的U-I图像、电源电动势和内阻的测量、电表的读数、滑动变阻器的分压和限流接法选择、电流表的内外接法选择等.思维模板:(1)电路的动态分析是依据闭合电路欧姆定律、部分电路欧姆定律及串并联电路的性质,分析电路中某一电阻改变而引起整个电路中各部分电流、电压和功率的改变状况,即有R分→R总→I总→U端→I 分、U分.(2)电路故障分析是指对短路和断路故障的分析,短路的特点是有电流通过,但电压为零,而断路的特点是电压不为零,但电流为零,常依据短路及断路特点用仪器进行检测,也可将整个电路分成若干部分,逐一假设某部分电路发生某种故障,运用闭合电路或部分电路欧姆定律进行推理.(3)导体的伏安特性曲线反映的是导体的电压U与电流I的改变规律,若电阻不变,电流与电压成线性关系,若电阻随温度发生改变,电流与电压成非线性关系,此时曲线某点的切线斜率与该点对应的电阻值一般不相等.电源的外特性曲线(由闭合电路欧姆定律得U=E-Ir,画出的路端电压U与干路电流I的关系图线)的纵截距表示电源的电动势,斜率的肯定值表示电源的内阻.物理的答题模板第五篇题型概述:以能量为核心的综合应用问题一般分四类.第一类为单体机械能守恒问题,第二类为多体系统机械能守恒问题,第三类为单体动能定理问题,第四类为多体系统功能关系(能量守恒)问题.多体系统的组成模式:两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体.思维模板:能量问题的解题工具一般有动能定理,能量守恒定律,机械能守恒定律.(1)动能定理使用方法简洁,只要选定物体和过程,直接列出方程即可,动能定理适用于全部过程;(2)能量守恒定律同样适用于全部过程,分析时只要分析出哪些能量削减,哪些能量增加,依据削减的能量等于增加的能量列方程即可;(3)机械能守恒定律只是能量守恒定律的一种特别形式,但在力学中也特别重要.许多题目都可以用两种甚至三种方法求解,可依据题目状况敏捷选取.物理的答题模板第六篇题型概述:带电粒子在电场中的运动问题本质上是一个综合了电场力、电势能的力学问题,讨论方法与质点动力学一样,同样遵循运动的合成与分解、牛顿运动定律、功能关系等力学规律,高考中既有选择题,也有综合性较强的计?算题思维模板:(1)处理带电粒子在电场中的运动问题应从两种思路着手①动力学思路:重视带电粒子的受力分析和运动过程分析,然后运用牛顿第二定律并结合运动学规律求出位移、速度等物理量.②功能思路:依据电场力及其他作用力对带电粒子做功引起的能量改变或依据全过程的功能关系,确定粒子的运动状况(使用中优先选择).(2)处理带电粒子在电场中的运动问题应留意是否考虑粒子的重力①质子、α粒子、电子、离子等微观粒子一般不计重力;②液滴、尘埃、小球等宏观带电粒子一般考虑重力;③特别状况要视具体状况,依据题中的隐含条件推断.(3)处理带电粒子在电场中的运动问题应留意画好粒子运动轨迹示意图,在画图的基础上运用几何学问查找关系往往是解题的突破. 物理的答题模板第七篇题型概述:带电粒子在磁场中的运动问题在历年高考试题中考查较多,命题形式有较简洁的选择题,也有综合性较强的计算题且难度较大,常见的命题形式有三种:(1)突出对在洛伦兹力作用下带电粒子做圆周运动的运动学量(半径、速度、时间、周期等)的考查;(2)突出对概念的深层次理解及与力学问题综合方法的考查,以对思维能力和综合能力的考查为主;(3)突出本部分学问在实际生活中的应用的考查,以对思维能力和理论联系实际能力的考查为主.思维模板:在处理此类运动问题时,着重把握“一找圆心,二找半径(R=mv/Bq),三找周期(T=2πm/Bq)或时间〞的分析方法.(1)圆心确实定:因为洛伦兹力f指向圆心,依据f⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点)的f的方向,沿两个洛伦兹力f作出其延长线的交点即为圆心.另外,圆心位置必定在圆中任一根弦的中垂线上(如下图).(2)半径确实定和计算:利用平面几何关系,求出该圆的半径(或运动圆弧对应的圆心角),并留意利用一个重要的几何特点,即粒子速度的偏向角(φ)等于圆心角(α),并等于弦AB与切线的夹角(弦切角θ)的2倍(如下图),即?φ=α=2θ.(3)运动时间确实定:t=φT/2π或t=s/v,其中φ为偏向角,T为周期,s为轨迹的弧长,v为线速度物理的答题模板第8篇题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高.思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以依据力来分析运动状况,也可以依据运动状况来分析力.对于多过程问题一般应依据物体的受力一步一步分析物体的运动状况,直到求出结果或找出规律.对天体运动类问题,应紧抓两个公式:GMm/r2=mv2/r=mrω2=mr4π2/T2①。
模型09 绳杆速度分解-2021年高考物理模型问题专项突破精品课件
合位移:s= 方向:tan θ=
精讲精练
02
【典例1如图所示,倾角为θ的斜面上有A、B、C三点,现从这三点分别以 不同的初速度水平抛出一小球,三个小球均落在斜面上的D点,今测得 AB∶BC∶CD=5∶3∶1,由此可判断 ( ) A.A、B、C处三个小球运动时间之比为1∶2∶3 B.A、B、C处三个小球的运动轨迹可能在空中相交 C.A、B、C处三个小球的初速度大小之比为1∶2∶3
【变式训练6】一半径为R的半圆形竖直圆柱面,用轻质不可伸长的细绳连 接A、B两球,A球悬挂在圆柱面边缘,A球质量为B球质量的2倍,现将A球从 圆柱边缘处由静止释放,如图甲所示。已知A球始终不离开圆柱内表面,且 细绳足够长,若不计一切摩擦,求: (1)A球沿圆柱内表面滑至最低点时的速度大小。 (2)A球沿圆柱内表面运动的最大位移。 【解析】(1)设A球沿圆柱内表面滑至最低点时的速度大小为v,B球的质量 为m,则根据机械能守恒定律有 2mgR- mgR= ×2mv2+ m
√D.A、B、C处三个小球落在斜面上时速度与初速度间的夹角之比为
1∶1∶1
【解析】选D。A、B、C处三个小球下降的高度之比为9∶4∶1,根据平 抛运动的时间t= 知,A、B、C处三个小球运动时间之比为3∶2∶1,故A 项错误;因最后三个小球落到同一点,抛出点不同,轨迹不同,故三个小球的 运动不可能在空中相交,故B项错误;三个小球的水平位移之比为9∶4∶1, 根据x=v0t知,初速度之比为3∶2∶1,故C项错误;对于任意一球,因为平抛 运动某时刻速度方向与水平方向夹角的正切值是位移与水平方向夹角正 切值的2倍,三个小球落在斜面上,位移与水平方向夹角相等,即位移与水平 方向夹角正切值相等,则三个小球在D点速度与水平方向上的夹角的正切 值相等,也就是三个小球在D点的速度与水平方向的夹角相等,故D项正确。
物理一轮复习 专题14 运动的合成与分解(讲)(含解析)
专题14 运动的合成与分解1.掌握曲线运动的概念、特点及条件。
2。
掌握运动的合成与分解法则.1.曲线运动(1)速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.(2)运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动.(3)曲线运动的条件:物体所受合外力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上.2.运动的合成与分解(1)基本概念①运动的合成:已知分运动求合运动.②运动的分解:已知合运动求分运动.(2)分解原则:根据运动的实际效果分解,也可采用正交分解.(3)遵循的规律位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则.(4)合运动与分运动的关系①等时性合运动和分运动经历的时间相等,即同时开始、同时进行、同时停止.②独立性一个物体同时参与几个分运动,各分运动独立进行,不受其他运动的影响.③等效性各分运动的规律叠加起来与合运动的规律有完全相同的效果.考点一物体做曲线运动的条件及轨迹分析1.条件(1)因为速度时刻在变,所以一定存在加速度;(2)物体受到的合外力与初速度不共线.2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向曲线的“凹"侧.3.速率变化情况判断(1)当合外力方向与速度方向的夹角为锐角时,物体的速率增大;(2)当合外力方向与速度方向的夹角为钝角时,物体的速率减小;(3)当合外力方向与速度方向垂直时,物体的速率不变.★重点归纳★做曲线运动的规律小结:(1)合外力或加速度指向轨迹的“凹”(内)侧.(2)曲线的轨迹不会出现急折,只能平滑变化,且与速度方向相切.★典型案例★光滑水平面上有一质量为2kg的物体,在五个恒定的水平共点力的作用下处于平衡状态.现同时撤去大小分别为5N和15N的两个水平力而其余力保持不变,关于此后物体的运动情况的说法中正确的是:()A.一定做匀变速直线运动,加速度大小可能是5m/s2B.可能做匀减速直线运动,加速度大小可能是2m/s2C.一定做匀变速运动,加速度大小可能10m/s2D.可能做匀速圆周运动,向心加速度大小可能是10m/s2【答案】C【名师点睛】本题中物体原来可能静止,也可能做匀速直线运动,要根据物体的合力与速度方向的关系分析物体可能的运动情况。
考向07 曲线运动 平抛运动-备战2023年高考物理一轮复习考点微专题(全国通用)(解析版)
考向07曲线运动平抛运动【重点知识点目录】1.物体做曲线运动的条件与轨迹分析2.小船渡河模型3.绳(杆)端速度分解模型4.平抛运动的基本规律5.多体平抛运动6.落点有约束条件的平抛运动1.(2022•广东)如图所示,在竖直平面内,截面为三角形的小积木悬挂在离地足够高处,一玩具枪的枪口与小积木上P点等高且相距为L。
当玩具子弹以水平速度v从枪口向P点射出时,小积木恰好由静止释放,子弹从射出至击中积木所用时间为t。
不计空气阻力。
下列关于子弹的说法正确的是()A.将击中P点,t大于B.将击中P点,t等于C.将击中P点上方,t大于D.将击中P点下方,t等于【答案】B。
【解析】解:当玩具子弹以水平速度v从枪口向P点射出时,小积木恰好由静止释放,子弹和小积木在竖直方向上都做自由落体,在竖直方向上保持相对静止,因此子弹将击中P点,子弹在水平方向上做匀速直线运动,故击中的时间为t=,故B正确,ACD错误;(多选)2.(2019•新课标Ⅱ)如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响下落的速度和滑翔的距离。
某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v表示他在竖直方向的速度,其v﹣t图象如图(b)所示,t1和t2是他落在倾斜雪道上的时刻。
则()A.第二次滑翔过程中在竖直方向上的位移比第一次的小B.第二次滑翔过程中在水平方向上的位移比第一次的大C.第二次滑翔过程中在竖直方向上的平均加速度比第一次的大D.竖直方向速度大小为v1时,第二次滑翔在竖直方向上所受阻力比第一次的大【答案】BD。
【解析】解:A、根据图象与时间轴所围图形的面积表示竖直方向上位移的大小可知,第二次滑翔过程中的位移比第一次的位移大,故A错误;B、由图象知,第二次的运动时间大于第一次运动的时间,由于第二次竖直方向下落距离大,合位移方向不变,所以第二次滑翔过程中在水平方向上的位移比第一次的大,故B正确;C、由图象知,第二次滑翔时的竖直方向末速度小,运动时间长,据加速度的定义式可知其平均加速度小,故C错误;D、当竖直方向速度大小为v1时,第一次滑翔时图象的斜率大于第二次滑翔时图象的斜率,而图象的斜率表示加速度的大小,故第一次滑翔时速度达到v1时加速度大于第二次时的加速度,据mg﹣f=ma可得阻力大的加速度小,故第二次滑翔时的加速度小,故其所受阻力大,故D正确。
突破难点:绳末端速度分解问题及练习
突破难点:绳末端速度分解问题及练习1.如图所示,套在竖直细杆上的环A 由跨过定滑轮的不可伸长的轻绳与重物B 相连.由于B 的质量较大,故在释放B 后,A 将沿杆上升,当A 环上升至定滑轮的连线处于水平位置时,其上升速度v 1≠0,若这时B 的速度为v 2,则( ) A .v 2=v 1B .v 2>v 1C .v 2≠0D .v 2=0[答案] D[解析] 环上升过程其速度v 1可分解为两个分速度v ∥和v ⊥,如图所示,v ∥=v 2=v 1·cos θ,当θ=90°时,cos θ=0,v ∥=v 2=0.2.如图所示,A 、B 两物体系在跨过光滑定滑轮的一根轻绳的两端,当A 物体以速度v向左运动时,系A ,B 的绳分别与水平方向成α、β角,此时B 物体的速度大小为________,方向________.[答案] cos αcos βv 水平向右 [解析] 根据A ,B 两物体的运动情况,将两物体此时的速度v 和v B 分别分解为两个分速度v 1(沿绳的分量)和v 2(垂直绳的分量)以及v B 1(沿绳的分量)和v B 2(垂直绳的分量),如图,由于两物体沿绳的速度分量相等,v 1=v B 1,v cos α=v B cos β.则B 物体的速度方向水平向右,其大小为v B =cos αcos βv 3.如图所示,点光源S 到平面镜M 的距离为d .光屏AB 与平面镜的初始位置平行.当平面镜M 绕垂直于纸面过中心O 的转轴以ω的角速度逆时针匀速转过30°时,垂直射向平面镜的光线SO 在光屏上的光斑P 的即时速度大小为多大[答案] 8ωd[解析] 当平面镜转过30°角时,反射光线转过60°角,反射光线转动的角速度为平面镜转动角速度的2倍,即为2ω.将P 点速度沿OP 方向和垂直于OP 的方向进行分解,可得:v cos60°=2ω·OP =4ωd ,所以v =8ωd .4.如图6所示,用一根长杆和两个定滑轮的组合装置来提升重物M ,长杆的一端放在地上通过铰链联结形成转轴,其端点恰好处于左侧滑轮正下方O 点处,在杆的中点C 处拴一细绳,绕过两个滑轮后挂上重物M .C 点与O 点距离为l .现在杆的另一端用力.使其逆时针匀速转动,由 图6竖直位置以角速度ω缓缓转至水平位置(转过了90°角),此过程中下述说法中正确的是( )A .重物M 做匀速直线运动B .重物M 做匀变速直线运动C .重物M 的最大速度是ωlD .重物M 的速度先减小后增大解析:由题知,C 点的速度大小为v C =ωl ,设v C 与绳之间的夹角为θ,把v C 沿绳和垂直绳方向分解可得,v 绳=v C cos θ,在转动过程中θ先减小到零再反向增大,故v绳先增大后减小,重物M 做变加速运动,其最大速度为ωl ,C 正确.5.一辆车通过一根跨过定滑轮的轻绳子提升一个质量为m 的重物,开始车在滑轮的正下方,绳子的端点离滑轮的距离是H .车由静止开始向左做匀加速运动,经过时间t 绳子与水平方向的夹角为θ,如图9所示,试求:(1)车向左运动的加速度的大小; 图9(2)重物m 在t 时刻速度的大小.解析:(1)汽车在时间t 内向左走的位移:x =H tan θ, 又汽车匀加速运动x =12at 2 所以a =2x t 2=2H t 2·tan θ(2)此时汽车的速度v 汽=at =2H t ·tan θ 由运动的分解知识可知,汽车速度v 汽沿绳的分速度与重物m 的速度相等,即v 物=v汽cos θ得v 物=2H cos θt ·tan θ. 答案:(1)2H t 2·tan θ (2)2H cos θt ·tan θ6.如图4-1-3所示,物体A 和B 质量均为m ,且分别与轻绳连接跨过光滑轻质定滑轮,B 放在水平面上,A 与悬绳竖直.用力F 拉B沿水平面向左匀速运动过程中,绳对A 的拉力的大小是( )A.一定大于mg B .总等于mgC .一定小于mgD .以上三项都不正确解析:物体B 向左的速度vB 是合速度,根据其效果,分解为如右图所示的两个速度v 1和v 2,其中v 2=vA ,又因为v 2=vB cos θ,所以当物体B 向左匀速运动时,vB 大小不变,θ变小,cos θ变大,即A 向上做加速运动,由牛顿第二定律得F T -mg =ma ,所以绳的拉力F T =mg +ma >mg .故正确答案为A.7.如图4-1-6所示,一个长直轻杆两端分别固定一个小球A 和B ,两球的质量均为m ,两球半径忽略不计,杆AB 的长度为l ,现将杆AB 竖直靠放在竖直墙上,轻轻振动小球B ,使小球B 在水平地面上由静止向右运动,求当A 球沿墙下滑距离为l 2时A 、B 两球的速度v A 和v B 的大小.(不计一切摩擦)A 、B 两球速度的分解情况如图4-1-7所示,由题意知,θ=30°,由运动的合成与分解得v A sin θ=v B cos θ又A 、B 组成的系统机械能守恒,所以mg l 2=12m v A 2+12m v B 2② 由①②解得v A =123gl ,v B =12gl .。
高考专题讲解绳联物体的速度分解问题
绳联物体的速度分解问题指物拉绳(杆)或绳(杆)拉物问题。
由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相同求解。
合速度方向:物体实际运动方向分速度方向:沿绳(杆)伸(缩)方向:使绳(杆)伸(缩)垂直于绳(杆)方向:使绳(杆)转动速度投影定理:不可伸长的杆或绳,若各点速度不同,各点速度沿绳方向的投影相同。
这类问题也叫做:斜拉船的问题——有转动分速度的问题【例题】如图所示,人用绳子通过定滑轮以不变的速度0v 拉水平面上的物体A ,当绳与水平方向成θ角时,求物体A 的速度。
★解析:解法一(分解法):本题的关键是正确地确定物体A 的两个分运动。
物体A 的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短。
绳长缩短的速度即等于01v v =;二是随着绳以定滑轮为圆心的摆动,它不改变绳长,只改变角度θ的值。
这样就可以将A v 按图示方向进行分解。
所以1v 及2v 实际上就是A v 的两个分速度,如图所示,由此可得 θθcos cos 01v v v A ==。
解法二(微元法):要求船在该位置的速率即为瞬时速率,需从该时刻起取一小段时间来求它的平均速率,当这一小段时间趋于零时,该平均速率就为所求速率。
设船在θ角位置经△t 时间向左行驶△x 距离,滑轮右侧的绳长缩短△L ,如图2所示,当绳与水平方向的角度变化很小时,△ABC 可近似看做是一直角三角形,因而有θcos x L ∆=∆,两边同除以△t 得:θcos tx t L ∆∆=∆∆ 即收绳速率θcos 0A v v =,因此船的速率为:θcos 0v v A = 总结:“微元法”。
可设想物体发生一个微小位移,分析由此而引起的牵连物体运动的位移是怎样的,得出位移分解的图示,再从中找到对应的速度分解的图示,进而求出牵连物体间速度大小的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绳(杆)端速度分解模型
一、基础知识 1、模型特点
沿绳(或杆)方向的速度分量大小相等. 2、思路与方法
合运动→绳拉物体的实际运动速度v
分运动→⎩
⎪⎨⎪⎧
其一:沿绳(或杆)的速度v 1
其二:与绳(或杆)垂直的分速度v 2
方法:v 1与v 2的合成遵循平行四边形定则. 3、解决此类问题时应把握以下两点: (1)确定合速度,它应是小船的实际速度;
(2)小船的运动引起了两个效果:一是绳子的收缩,二是绳绕滑轮的转 动.应根据实际效果进行运动的分解. 二、练习
1、如图所示,轻绳通过定滑轮拉动物体,使其在水平面上运动.若拉绳的速度为v 0,当绳与水平方向夹角为θ时,物体的速度v 为________.若此时绳上的拉力大小为F ,物体的质量为m ,忽略地面的摩擦力,那么,此时物体的加速度为________.
2、如图所示,一人站在岸上,利用绳和定滑轮拉船靠岸,在某一时刻绳的速度为v ,绳AO 段与水平面的夹角为θ,OB 段与水平面的夹角为α.不计摩擦和轮的质量,则此时小船的速度多大?
3、如图所示,在水平地面上做匀速直线运动的小车,通过定滑轮用绳
子吊起一个物体,若小车和被吊的物体在同一时刻的速度分别为v 1和v 2,绳子对物体的拉力为F T ,物体所受重力为G ,则下列说法正确的是
( )
A .物体做匀速运动,且v 1=v 2
B .物体做加速运动,且v 2>v 1
C .物体做加速运动,且F T >G
D .物体做匀速运动,且F T =G
4、人用绳子通过定滑轮拉物体A ,A 穿在光滑的竖直杆上,当以速度v 0
匀速地拉绳使物体A 到达如图所示位置时,绳与竖直杆的夹角为
θ,则物体A 实际运动的速度是
( )
A .v 0sin θ B.v 0sin θ C .v 0cos θ
D.v 0cos θ
5、如图,人沿平直的河岸以速度v 行走,且通过不可伸长的绳
拖船,船沿绳的方向行进,此过程中绳始终与水面平行.当绳 与河岸的夹角为α时,船的速率为
( )
A .v sin α B.v sin α
C .v cos α
D.v cos α
6、A 、B 两物体通过一根跨过定滑轮的轻绳相连放在水平面上,现物体A 以v 1的速度向右
匀速运动,当绳被拉成与水平面夹角分别为α、β时,如图所示.物体B 的运动速度v B 为(绳始终有拉力)
( )
A .v 1sin α/sin β
B .v 1cos α/sin β
C .v 1sin α/cos β
D .v 1cos α/cos β。