中考数学黄金知识点系列专题图形的相似
中考数学知识点总结图形的相似
中考数学知识点总结图形的相似在中考数学中,图形的相似是一个重要的知识点。
它不仅在几何题目中频繁出现,也是解决实际问题的有力工具。
下面就让我们一起来详细了解一下图形相似的相关知识。
一、相似图形的概念相似图形是指形状相同,但大小不一定相同的图形。
比如说,两个正方形,它们的边长可能不同,但形状是一样的,这就是相似图形。
相似多边形对应角相等,对应边的比相等。
如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形就是相似多边形。
二、相似三角形1、相似三角形的判定(1)两角分别相等的两个三角形相似。
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(2)两边成比例且夹角相等的两个三角形相似。
如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
(3)三边成比例的两个三角形相似。
如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
(1)相似三角形对应边的比等于相似比。
(2)相似三角形对应角相等。
(3)相似三角形周长的比等于相似比。
(4)相似三角形面积的比等于相似比的平方。
三、相似三角形的应用1、测量高度在实际生活中,我们常常需要测量一些物体的高度,比如旗杆、建筑物等。
这时就可以利用相似三角形的知识来解决。
通过测量一些已知长度的线段和对应的角度,构建相似三角形,从而求出物体的高度。
2、测量距离相似三角形还可以用于测量距离。
比如,在河的一岸要测量到对岸某一点的距离,可以在这一岸选取两个点,构建相似三角形,通过测量已知边的长度和角度,来计算出河的宽度。
四、位似图形1、位似图形的概念如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心。
(1)位似图形上任意一对对应点到位似中心的距离之比等于位似比。
(2)位似图形的对应边互相平行或在同一条直线上。
3、位似图形的作图在位似图形的作图中,要先确定位似中心,然后根据位似比确定对应点的位置,最后连接各点得到位似图形。
中考数学复习《图形的相似》
(3)设 EG=KD=x,则 AK=80-x. EF AK EF 80-x 3 ∵△AEF∽△ABC,∴BC=AD,即120= 80 ,∴EF=120-2x, 3 32 3 ∴矩形面积 S=x(120-2x)=-2x +120x=-2(x-40)2+2 400, 故当 x=40 时,此时矩形的面积最大,最大面积为 2 400 mm2
(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?
【解析】(1)根据正方形的对边平行得到 BC∥EF,利用“平行于三角形的 一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似” EF 判定即可;(2)设 EG=EF=x,用 x 表示 AK,根据△AEF∽△ABC 列比例式BC AK =AD可计算正方形边长; (3)设 EG=KD=x, 根据△AEF∽△ABC 用 x 表示 EF, 根据矩形面积公式可以写出矩形面积关于 x 的二次函数,根据二次函数求出矩 形的最大值.
【解析】根据题意可知一块 10 cm×5 cm 的长方形版面要付广告费 180 元, 18 因此每平方厘米的广告费为:180÷50= 5 元,然后根据相似三角形的性质, 由该版面的边长都扩大为原来的 3 倍, 18 广告费为:3×10×3×5× 5 =1620 元.故选 C.
3.(2017· 杭州)如图,在锐角三角形 ABC 中,点 D,E 分别在边 AC, AB 上,AG⊥BC 于点 G,AF⊥DE 于点 F,∠EAF=∠GAC. (1)求证:△ADE∽△ABC; AF (2)若 AD=3,AB=5,求AG的值. 证明:(1)∵AF⊥DE,AG⊥BC,
EA OD 3 (2)两个矩形不可能全等.当EG= DE =2时,两个矩形相似, 3 3 3 EA=2EG,设 EG=x,则 EA=2x,∴OB=2+2x,FB=3-x, 3 3 5 ∴F(2+2x,3-x),∴(2+2x)(3-x)=6,解得 x1=0(舍去),x2=3, 5 5 EG 3 5 ∴EG=3,∴矩形 AEGF 与矩形 DOHE 的相似比为DE=2=6
中考数学专题13 图形的相似(第01期)-2019年中考真题数学试题分项汇编(解析版)
专题13 图形的相似1.(2019•常州)若△ABC~△A′B'C′,相似比为1∶2,则△ABC与△A'B′C'的周长的比为A.2∶1 B.1∶2 C.4∶1 D.1∶4【答案】B【解析】∵△ABC~△A′B'C′,相似比为1∶2,∴△ABC与△A'B′C'的周长的比为1∶2.故选B.2.(2019•兰州)已知△ABC∽△A'B'C',AB=8,A'B'=6,则BCB'C'=A.2 B.43C.3 D.169【答案】B【解析】∵△ABC∽△A'B'C',∴8463BC ABB C A B''''=--.故选B.3.(2019•安徽)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD 上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为A.3.6 B.4 C.4.8 D.5【答案】B【解析】如图,作DH∥EG交AB于点H,则△AEG∽△ADH,∴AE EGAD DH=,∵EF⊥AC,∠C=90°,∴∠EFA=∠C=90°,∴EF∥CD,∴△AEF∽△ADC,∴AE EFAD CD=,∴EG EFDH CD=,∵EG=EF,∴DH=CD,设DH=x,则CD=x,∵BC=12,AC=6,∴BD=12-x,∵EF⊥AC,EF⊥EG,DH∥EG,∴EG∥AC∥DH,∴△BDH∽△BCA,∴DH BDAC BC=,即12612x x-=,解得,x=4,∴CD=4,故选B.4.(2019•杭州)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则A.AD ANAN AE=B.BD MNMN CE=C.DN NEBM MC=D.DN NEMC BM=【答案】C【解析】∵DN∥BM,∴△ADN∽△ABM,∴DN AN BM AM=,∵NE∥MC,∴△ANE∽△AMC,∴NE ANMC AM=,∴DN NEBM MC=.故选C.5.(2019•连云港)在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”、“兵”所在位置的格点构成的三角形相似A.①处B.②处C.③处D.④处【答案】B【解析】帅”、“相”、“兵”所在位置的格点构成的三角形的三边的长分别为2、,“车”、“炮”之间的距离为1,12==,∴马应该落在②的位置,故选B.6.(2019•重庆)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是A.2 B.3 C.4 D.5 【答案】C【解析】∵△ABO∽△CDO,∴BO ABDO DC=,∵BO=6,DO=3,CD=2,∴632AB=,解得AB=4.故选C.7.(2019•赤峰)如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是A.1 B.2 C.3 D.4【答案】C【解析】∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴AD AEAC AB=,即246AE=,解得AE=3,故选C.8.(2019•凉山州)如图,在△ABC中,D在AC边上,AD∶DC=1∶2,O是BD的中点,连接AO并延长交BC于E,则BE∶EC=A.1∶2 B.1∶3 C.1∶4 D.2∶3【答案】B【解析】如图,过O作OG∥BC,交AC于G,∵O是BD的中点,∴G是DC的中点.又AD∶DC=1∶2,∴AD=DG=GC,∴AG∶GC=2∶1,AO∶OE=2∶1,∴S△AOB:S△BOE=2,设S △BOE =S ,S △AOB =2S ,又BO =OD ,∴S △AOD =2S ,S △ABD =4S ,∵AD ∶DC =1∶2,∴S △BDC =2S △ABD =8S ,S四边形CDOE=7S ,∴S △AEC =9S ,S △ABE =3S ,∴3193ABE AEC S BE S EC S S ===△△,故选B . 9.(2019•常德)如图,在等腰三角形△ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE 的面积是A .20B .22C .24D .26【答案】D【解析】如图,根据题意得△AFH ∽△ADE ,∴2239()()416AFH ADE S FH S DE ===△△,设S △AFH =9x ,则S △ADE =16x ,∴16x -9x =7,解得x =1,∴S △ADE =16, ∴四边形DBCE 的面积=42-16=26.故选D .10.(2019•玉林)如图,AB ∥EF ∥DC ,AD ∥BC ,EF 与AC 交于点G ,则是相似三角形共有A .3对B .5对C .6对D .8对【答案】C【解析】图中三角形有:△AEG ,△ADC ,CFG ,△CBA , ∵AB ∥EF ∥DC ,AD ∥BC ,∴△AEG ∽△ADC ∽CFG ∽△CBA ,共有6个组合分别为:∴△AEG ∽△ADC ,△AEG ∽CFG ,△AEG ∽△CBA ,△ADC ∽CFG ,△ADC ∽△CBA ,CFG ∽△CBA ,故选C .11.(2019•淄博)如图,在△ABC 中,AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B .若△ADC 的面积为a ,则△ABD 的面积为A .2aB .52a C .3aD .72a【答案】C【解析】∵∠CAD =∠B ,∠ACD =∠BCA ,∴△ACD ∽△BCA ,∴2()ACD BCA S AC S AB =△△,即14BCA a S =△, 解得,△BCA 的面积为4a ,∴△ABD 的面积为:4a -a =3a ,故选C .12.(2019•邵阳)如图,以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A ′B ′C ′,以下说法中错误的是A .△ABC ∽△A ′B ′C ′B .点C 、点O 、点C ′三点在同一直线上 C .AO ∶AA ′=1∶2D .AB ∥A ′B ′ 【答案】C【解析】∵以点O 为位似中心,把△ABC 放大为原图形的2倍得到△A ′B ′C ′, ∴△ABC ∽△A ′B ′C ′,点C 、点O 、点C ′三点在同一直线上,AB ∥A ′B ′, AO ∶OA ′=1∶2,故选项C 错误,符合题意.故选C .13.(2019•淮安)如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别相交于点A 、B 、C 和点D 、E 、F .若AB =3,DE =2,BC =6,则EF =__________.【答案】4【解析】∵l 1∥l 2∥l 3,∴AB DEBC EF=,又AB =3,DE =2,BC =6,∴EF =4,故答案为:4.14.(2019•河池)如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则ABCD=__________.【答案】2 5【解析】∵以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,∴22235 OA ABOC CD===+.故答案为:25.15.(2019•宜宾)如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=__________.【答案】16 5【解析】在Rt△ABC中,AB,由射影定理得,AC2=AD·AB,∴AD=2ACAB=165,故答案为:165.16.(2019•本溪)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相似比为12,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为__________.【答案】(2,1)或(-2,-1)【解析】以点O为位似中心,相似比为12,把△ABO缩小,点A的坐标是A(4,2),则点A的对应点A1的坐标为(4×12,2×12)或(-4×12,-2×12),即(2,1)或(-2,-1),故答案为:(2,1)或(-2,-1).17.(2019•烟台)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(-2,-1),B(-2,-3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,-1),B1(1,-5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为__________.【答案】(-5,-1)【解析】如图,P点坐标为(-5,-1).故答案为:(-5,-1).18.(2019•南京)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠AC B.若AD=2,BD=3,则AC的长__________.【解析】∵BC的垂直平分线MN交AB于点D,∴CD=BD=3,∴∠B=∠DCB,AB=AD+BD=5,∵CD平分∠ACB,∴∠ACD=∠DCB=∠B,∵∠A =∠A ,∴△ACD ∽△ABC ,∴AC ADAB AC=,∴AC 2=AD ×AB =2×5=10,∴AC19.(2019•吉林)在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m ,同时同地测得一栋楼的影长为90 m ,则这栋楼的高度为__________m . 【答案】54【解析】设这栋楼的高度为h m ,∵在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m ,同时测得一栋楼的影长为60 m , ∴1.8390h=,解得h =54(m ).故答案为:54. 20.(2019•福建)已知△ABC 和点A ',如图.(1)以点A '为一个顶点作△A 'B 'C ',使△A 'B 'C '∽△ABC ,且△A 'B 'C '的面积等于△ABC 面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点,D '、E '、F '分别是你所作的△A 'B 'C '三边A 'B '、B 'C '、C 'A '的中点,求证:△DEF ∽△D 'E 'F '.【解析】(1)作线段A 'C '=2AC 、A 'B '=2AB 、B 'C '=2BC ,得△A 'B 'C '即可所求.∵A 'C '=2AC 、A 'B '=2AB 、B 'C '=2BC , ∴△ABC ∽△A ′B ′C ′,∴2()4A B C'ABC ''S A B''S AB==△△.(2)如图,∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴111222DE BC DF AC EF AB ===,,,∴△DEF∽△ABC同理:△D'E'F'∽△A'B'C',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.21.(2019•凉山州)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD·CD;(2)若CD=6,AD=8,求MN的长.【解析】(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD,∴AD BD BD CD=,∴BD2=AD·CD.(2)∵BM∥CD,∴∠MBD=∠BDC,∴∠ADB=∠MBD,且∠ABD=90°,∴BM=MD,∠MAB=∠MBA,∴BM=MD=AM=4,∵BD2=AD·CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2-CD2=12,∴MC2=MB2+BC2=28,∴MC=∵BM ∥CD ,∴△MNB ∽△CND ,∴23BM MN CD CN ==,且MC =,∴MN =5. 22.(2019•巴中)△ABC 在边长为1的正方形网格中如图所示.①以点C 为位似中心,作出△ABC 的位似图形△A 1B 1C ,使其位似比为1∶2.且△A 1B 1C 位于点C 的异侧,并表示出A 1的坐标.②作出△ABC 绕点C 顺时针旋转90°后的图形△A 2B 2C . ③在②的条件下求出点B 经过的路径长.【解析】①如图,△A 1B 1C 为所作,点A 1的坐标为(3,-3). ②如图,△A 2B 2C 为所作.③OB =点B 经过的路径长=90ππ1802⋅=.23.(2019•荆门)如图,为了测量一栋楼的高度OE ,小明同学先在操场上A 处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E ;再将镜子放到C 处,然后后退到D 处,恰好再次在镜子中看到楼的顶部E (O ,A ,B ,C ,D 在同一条直线上),测得AC =2 m ,BD =2.1 m ,如果小明眼睛距地面髙度BF ,DG 为1.6 m ,试确定楼的高度OE .【解析】如图,设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF 并延长交OE于点H,∵GF∥AC,∴△MAC∽△MFG,∴AC MA MO FG MF MH==,即:AC OE OE OEBD MH MO OH OE BF ===++,∴21.62.1OEOE=+,∴OE=32,答:楼的高度OE为32米.24.(2019•安徽)如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.(1)求证:△PAB∽△PBC;(2)求证:PA=2PC;(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2·h3.【解析】(1)∵∠ACB=90°,AB=BC,∴∠ABC=45°=∠PBA+∠PBC,又∠APB =135°,∴∠PAB +∠PBA =45°, ∴∠PBC =∠PAB , 又∵∠APB =∠BPC =135°, ∴△PAB ∽△PBC .(2)∵△PAB ∽△PBC ,∴PA PB ABPB PC BC ==,在Rt △ABC 中,AB =AC ,∴ABBC=∴PB PA ==,,∴PA =2PC .(3)如图,过点P 作PD ⊥BC ,PE ⊥AC 交BC 、AC 于点D ,E ,∴PF =h 1,PD =h 2,PE =h 3, ∵∠CPB +∠APB =135°+135°=270°, ∴∠APC =90°, ∴∠EAP +∠ACP =90°,又∵∠ACB =∠ACP +∠PCD =90°, ∴∠EAP =∠PCD , ∴Rt △AEP ∽Rt △CDP , ∴2PE APDP PC==,即322h h =,∴h 3=2h 2,∵△PAB ∽△PBC ,∴12h AB h BC==∴12h =,∴2212222322h h h h h h ==⋅=.即h 12=h 2·h 3.25.(2019•长沙)根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写“真”或“假”).①四条边成比例的两个凸四边形相似;(__________命题) ②三个角分别相等的两个凸四边形相似;(__________命题) ③两个大小不同的正方形相似.(__________命题)(2)如图1,在四边形ABCD 和四边形A 1B 1C 1D 1中,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1,1111AB BCA B B C =11CDC D .求证:四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)如图2,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,过点O 作EF ∥AB 分别交AD ,BC 于点E ,F .记四边形ABFE 的面积为S 1,四边形EFCD 的面积为S 2,若四边形ABFE 与四边形EFCD相似,求21S S 的值.【解析】(1)①四条边成比例的两个凸四边形相似,是假命题,角不一定相等. ②三个角分别相等的两个凸四边形相似,是假命题,边不一定成比例. ③两个大小不同的正方形相似.是真命题.故答案为:假,假,真. (2)如图1中,连接BD ,B 1D 1.∵∠BCD =∠B 1C 1D 1,且1111BC CDB C C D =, ∴△BCD ∽△B 1C 1D 1,∴∠CDB =∠C 1D 1B 1,∠C 1B 1D 1=∠CBD , ∵111111AB BC CD A B B C C D ==,∴1111BD ABB D A B =, ∵∠ABC =∠A 1B 1C 1, ∴∠ABD =∠A 1B 1D 1, ∴△ABD ∽△A 1B 1D 1, ∴1111AD ABA D AB =,∠A =∠A 1,∠ADB =∠A 1D 1B 1, ∴11111111AB BC CD ADA B B C C D A D ===,∠ADC =∠A 1D 1C 1,∠A =∠A 1,∠ABC =∠A 1B 1C 1,∠BCD =∠B 1C 1D 1, ∴四边形ABCD 与四边形A 1B 1C 1D 1相似. (3)∵四边形ABCD 与四边形EFCD 相似. ∴DE EFAE AB=, ∵EF =OE +OF ,∴DE OE OFAE AB+=, ∵EF ∥AB ∥CD , ∴DE OE DE OC OF AD AB AD AB AB =-=,,∴DE DE OE OF AD AD AB AB +=+,∴2DE DEAD AE =, ∵AD =DE +AE , ∴21DE AE AE=+,∴2AE =DE +AE , ∴AE =DE ,∴12S S =1.祝你考试成功!祝你考试成功!。
相似知识点总结中考
相似知识点总结中考1. 相似三角形相似三角形是指具有相同形状但大小不同的三角形。
当两个三角形的对应角度相等时,它们就是相似三角形。
相似三角形有以下性质:- 对应边的比例相等:如果两个三角形ABC和DEF是相似的,那么它们对应边的长度之比相等,即AB/DE=BC/EF=AC/DF。
- 相似三角形的高线、中线和角平分线的比例:在相似三角形中,高线、中线和角平分线的比例等于相似三角形任意两条对应边的比例。
2. 相似多边形相似多边形是指具有相同形状但大小不同的多边形。
当两个多边形的对应角度相等且对应边的比例相等时,它们就是相似多边形。
相似多边形的性质与相似三角形类似,对应边的比例相等。
3. 相似图形的应用相似图形在生活和工作中有着广泛的应用,例如地图上的放大和缩小、相似三角形的测量、相似多边形的制图等。
4. 相似比相似比是指两个相似图形中对应边的比值。
在相似图形中,对应边的比值即为相似比。
当两个图形相似时,它们的相似比是相等的。
5. 直角三角形的三线比在直角三角形中,三线比是指三角形的三条高、中线和角平分线之间的比例关系。
在相似直角三角形中,三线比仍然成立。
6. 相似多边形的计算在计算相似多边形的过程中,可以利用相似三角形和相似比的性质,通过对应边的比例关系来求解未知变量。
7. 相似图形的证明在证明相似图形时,可以利用对应角度相等和对应边的比例相等的性质来进行推导和证明。
8. 相似图形的判定判定两个图形是否相似,需要验证它们的对应角度是否相等,对应边的比例是否相等,从而得出相似的结论。
9. 相似图形的变换相似图形的变换是指对已知图形进行等比例放大或缩小,保持图形的形状不变。
通过相似变换,可以得到不同大小的相似图形。
10. 相似图形的应用实例相似图形在生活中有着广泛的应用,例如建筑制图、地图测量、影视特效等方面都有相似图形的应用。
以上是关于相似知识点的总结,希望对你有所帮助。
九年级数学相似形知识点
九年级数学相似形知识点相似形是中学数学中的一个重要概念,在几何学中,它是指具有相同形状但大小不同的两个图形。
在九年级数学学习中,相似形的知识点成为了一个必然要掌握的内容。
在这篇文章中,我们将深入探讨九年级数学相似形的各个知识点,帮助同学们更好地理解和应用。
一、相似形的定义和性质相似形的定义是指形状相似、对应边成比例的两个图形。
对于两个相似形,他们的对应边之间的比值叫做相似比,记作k。
相似比的性质有两个重要的结论:一是对应角相等;二是相似形的周长、面积之比等于相似比的平方。
二、相似三角形的判定方法相似三角形的判定方法有以下几种:一是AAA判定方法,即两个三角形的对应角相等;二是AA判定方法,即两个三角形有一个对应角相等,并且有一个对应边成比例;三是SAS判定方法,即两个三角形有一个对应边成比例,并且有两个对应角相等;四是SSS判定方法,即两个三角形的对应边成比例。
三、相似三角形的性质和应用相似三角形有以下几个重要的性质:一是对应角相等;二是对应边成比例;三是面积之比等于边长之比的平方。
这些性质的运用在数学问题中有很多实际应用,比如解决高空建筑物的阴影问题、计算不规则图形的面积等。
四、相似形的测量问题在相似形的测量问题中,我们可以利用相似三角形的性质来求解各种未知量。
在实际问题中,我们可以通过测量已知长度和角度,来计算出未知长度和角度,进而解决一些实际应用问题。
五、相似形的画图问题在相似形的画图问题中,我们常常需要利用已知的相似形,根据给定的条件来画出新的相似形。
利用相似形的性质,我们可以轻松地完成这些画图问题,从而解决实际问题。
六、几何变换与相似形相似形与几何变换之间有一定的联系。
几何变换是指平移、旋转、翻转和放缩等操作,而相似形正是通过放缩操作而实现的。
理解几何变换与相似形的关系,对于理解相似形的性质和应用有很大帮助。
七、相似形的应用相似形的应用非常广泛,不仅仅局限在数学课本上。
在日常生活中,我们可以通过相似形的性质来解决各种测量问题,比如测算高楼大厦的高度、计算遥控器的控制范围等。
备战中考数学分点透练真题图形的相似(解析版)
第十六讲图形的相似命题点1 比例线段类型一比例的性质1.(2020 滦州)已知,则=.【答案】【解答】解:设===k≠0,则x=2k,y=3k,z=4k,==;故答案为:.类型二黄金分割2.(2021•百色)如图,△ABC中,AB=AC,∠B=72°,∠ACB的平分线CD交AB于点D,则点D是线段AB的黄金分割点.若AC=2,则BD=.【答案】3﹣【解答】解:∵AB=AC=2,∴∠B=∠ACB=72°,∠A=36°,∵CD平分∠ACB,∴∠ACD=∠BCD=36°,∴∠A=∠ACD,∴AD=CD,∵∠CDB=180°﹣∠B﹣∠BCD=72°,∴∠CDB=∠B,∴BC=CD,∴BC=AD,∵∠B=∠B,∠BCD=∠A=36°,∴△BCD∽△BAC,∴BC:AB=BD:BC,∴AD:AB=BD:AD,∴点D是AB边上的黄金分割点,AD>BD,∴AD=AB=﹣1,∴BD=AB﹣AD=2﹣(﹣1)=3﹣,故答案为:3﹣.类型三平行线分线段成比例3.(2021•郴州)如图是一架梯子的示意图,其中AA1∥BB1∥CC1∥DD1,且AB=BC=CD.为使其更稳固,在A,D1间加绑一条安全绳(线段AD1)量得AE=0.4m,则AD1=m.【答案】1.2【解答】解:∵BB1∥CC1,∴=,∵AB=BC,∴AE=EF,同理可得:AE=EF=FD1,∵AE=0.4m,∴AD1=0.4×3=1.2(m),故答案为:1.2.命题点2 相似的基本性质4.(2019•重庆)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2B.3C.4D.5【答案】C【解答】解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.5.(2020•铜仁市)已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为()A.3B.2C.4D.5【答案】A【解答】解:∵△FHB和△EAD的周长分别为30和15,∴△FHB和△EAD的周长比为2:1,∵△FHB∽△EAD,∴=2,即=2,解得,EA=3,故选:A.命题点3 相似三角形的判定与性质类型一A字型6.(2021•巴中)如图,△ABC中,点D、E分别在AB、AC上,且==,下列结论正确的是()A.DE:BC=1:2B.△ADE与△ABC的面积比为1:3C.△ADE与△ABC的周长比为1:2D.DE∥BC【答案】D【解答】解:∵==,∴AD:AB=AE:AC=1:3,∵∠A=∠A,∴△ADE∽△ABC,∴DE:BC=1:3,故A错误;∵△ADE∽△ABC,∴△ADE与△ABC的面积比为1:9,周长的比为1:3,故B和C错误;∵△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC.故D正确.故选:D.7.(2021•遂宁)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积是3cm2,则四边形BDEC的面积为()A.12cm2B.9cm2C.6cm2D.3cm2【答案】B【解答】解:如图,在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,且=,∴△ADE∽△ABC,∴△ADE的面积:△ABC的面积=1:4,∴△ADE的面积:四边形BDEC的面积=1:3,∵△ADE的面积是3cm2,∴四边形BDEC的面积是9cm2,故选:B.8.(2020•安徽)如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD的长度为()A.B.C.D.4【答案】C【解答】解:∵∠C=90°,AC=4,cos A=,∴AB=,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A=,∴,故选:C.9.(2021•湘潭)如图,在△ABC中,点D,E分别为边AB,AC上的点,试添加一个条件:,使得△ADE与△ABC相似.(任意写出一个满足条件的即可)【答案】∠ADE=∠C(答案不唯一).【解答】解:添加∠ADE=∠C,又∵∠A=∠A,∴△ADE∽△ACB,故答案为:∠ADE=∠C(答案不唯一).10.(2021•南充)如图,在△ABC中,D为BC上一点,BC=AB=3BD,则AD:AC的值为.【答案】【解答】解:∵BC=AB=3BD,∴,∵∠B=∠B,∴△ABC∽△DBA,∴,∴AD:AC=,故答案为:.11.(2021•菏泽)如图,在△ABC中,AD⊥BC,垂足为D,AD=5,BC=10,四边形EFGH 和四边形HGNM均为正方形,且点E、F、G、N、M都在△ABC的边上,那么△AEM 与四边形BCME的面积比为.【答案】1:3【解答】解:∵四边形EFGH和四边形HGNM均为正方形,∴EF=EH=HM,EM∥BC,∴△AEM∽△ABC,∴,∴,∴EF=,∴EM=5,∵△AEM∽△ABC,∴=()2=,∴S四边形BCME=S△ABC﹣S△AEM=3S△AEM,∴△AEM与四边形BCME的面积比为1:3,故答案为:1:3.12.(2021•玉林)如图,在△ABC中,D在AC上,DE∥BC,DF∥AB.(1)求证:△DFC∽△AED;(2)若CD=AC,求的值.【答案】(1)略(2).【解答】(1)证明:∵DF∥AB,DE∥BC,∴∠DFC=∠ABF,∠AED=∠ABF,∴∠DFC=∠AED,又∵DE∥BC,∴∠DCF=∠ADE,∴△DFC∽△AED;(2)∵CD=AC,∴=由(1)知△DFC和△AED的相似比为:=,故:=()2=()2=.13.(2020•上海)已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.(1)求证:△BEC∽△BCH;(2)如果BE2=AB•AE,求证:AG=DF.【答案】(1)略(2)略【解答】(1)证明:∵四边形ABCD是菱形,∴CD=CB,∠D=∠B,∵DF=BE,∴△CDF≌△CBE(SAS),∴∠DCF=∠BCE,∵CD∥BH,∴∠H=∠DCF,∴∠H=∠BCE,∵∠B=∠B,∴△BEC∽△BCH.(2)证明:∵BE2=AB•AE,∴,∵CB∥DG,∴=,∴=,∵BC=AB,∴AG=BE,∵△CDF≌△CBE,∴DF=BE,∴AG=DF.类型二8字型14.(2020•盐城)如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则的值为.【答案】2【解答】解:∵BC∥DE,∴△ADE∽△ABC,∴=,即=,∴AB•DE=16,∵AB+DE=10,∴AB=2,DE=8,∴,故答案为:2.15.(2021•云南)如图,在△ABC中,点D,E分别是BC,AC的中点,AD与BE相交于点F.若BF=6,则BE的长是.【答案】9【解答】解:如图,在△ABC中,点D,E分别是BC,AC的中点,∴DE∥AB,且DE=AB,∴==,∵BF=6,∴EF=3.∴BE=BF+EF=9.故答案为:9.16.(2021•包头)如图,在Rt△ABC中,∠ACB=90°,过点B作BD⊥CB,垂足为B,且BD=3,连接CD,与AB相交于点M,过点M作MN⊥CB,垂足为N.若AC=2,则MN的长为.【答案】.【解答】解:∵∠ACB=90°,BD⊥CB,MN⊥CB,∴AC∥MN∥BD,∠CNM=∠CBD,∴∠MAC=∠MBD,∠MCA=∠MDB=∠CMN,∴△MAC∽△MBD,△CMN∽△CDB,∴,,∴,∴,∴MN=.故答案为:.17.(2021•连云港)如图,BE是△ABC的中线,点F在BE上,延长AF交BC于点D.若BF=3FE,则=.【答案】【解答】解:如图,∵BE是△ABC的中线,∴点E是AC的中点,∴=,过点E作EG∥DC交AD于G,∴∠AGE=∠ADC,∠AEG=∠C,∴△AGE∽△ADC,∴,∴DC=2GE,∵BF=3FE,∴,∵GE∥BD,∴∠GEF=∠FBD,∠EGF=∠BDF,∴△GFE∽△DFB,∴==,∴,∴=,故答案为:.18.(2020•攀枝花)三角形三条边上的中线交于一点,这个点叫三角形的重心.如图G是△ABC的重心.求证:AD=3GD.【答案】略【解答】证明:连接DE,∵点G是△ABC的重心,∴点E和点D分别是AB和BC的中点,∴DE是△ABC的中位线,∴DE∥AC且DE=AC,∴△DEG∽△ACG,∴,∴,∴,∴AD=3DG,即AD=3GD.19.(2021•长春)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=4,BD=8,点E在边AD上,AE=AD,连结BE交AC于点M.(1)求AM的长.(2)tan∠MBO的值为.【答案】(1)1 (2)【解答】解:(1)在菱形ABCD中,AD∥BC,AD=BC,∴△AEM∽△CBM,∴=,∵AE=AD,∴AE=BC,∴==,∴AM=CM=AC=1.(2)∵AO=AC=2,BO=BD=4,AC⊥BD,∴∠BOM=90°,AM=OM=AO=1,∴tan∠MBO==.故答案为:.20.(2020•眉山)如图,△ABC和△CDE都是等边三角形,点B、C、E三点在同一直线上,连接BD,AD,BD交AC于点F.(1)若AD2=DF•DB,求证:AD=BF;(2)若∠BAD=90°,BE=6.①求tan∠DBE的值;②求DF的长.【答案】(1)略(2)tan∠DBE==,DF=【解答】(1)证明:∵AD2=DF•DB,∴=,∵∠ADF=∠BDA,∴△ADF∽△BDA,∴∠ABD=∠F AD,∵△ABC,△DCE都是等边三角形,∴AB=AC,∠BAC=∠ACB=∠DCE=60°,∴∠ACD=60°,∴∠ACD=∠BAF,∴△ADC≌△BF A(ASA),∴AD=BF.(2)①解:过点D作DG⊥BE于G.∵∠BAD=90°,∠BAC=60°,∴∠DAC=30°,∵∠ACD=60°,∴∠ADC=90°,∴DC=AC,∴CE=BC,∵BE=6,∴CE=2,BC=4,∴CG=EG=1,BG=5,DG=,∴tan∠DBE==.②在Rt△BDG中,∵∠BGD=90°,DG=,BG=5,∴BD===2,∵∠ABC=∠DCE=60°,∴CD∥AB,∴△CDF∽△ABF,∴==,∴=,∴DF=类型三旋转型21.(2021•黄冈)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.(1)求证:△ABC∽△DEC;(2)若S△ABC:S△DEC=4:9,BC=6,求EC的长.【答案】(1)略(2)CE=9.【解答】证明:(1)∵∠BCE=∠ACD.∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠DCE=∠ACB,又∵∠A=∠D,∴△ABC∽△DEC;(2)∵△ABC∽△DEC;∴=()2=,又∵BC=6,∴CE=9.22.(2019•凉山州)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.【答案】(1)略(2)MN=【解答】证明:(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD∴∴BD2=AD•CD(2)∵BM∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2﹣CD2=12∴MC2=MB2+BC2=28∴MC=2∵BM∥CD∴△MNB∽△CND∴,且MC=2∴MN=类型四三垂直型23.(2021•台州)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=.【答案】【解答】解:∵四边形ABCD是正方形,∴AB=AD=5,∠ABC=∠BAD=90°,∵AE=DG=1,∴AG=4,∵AF⊥EG,∴∠BAF+∠AEG=90°=∠BAF+∠AFB,∴∠AFB=∠AEG,∴△ABF∽△GAE,∴,∴,∴BF=,故答案为.类型五网络中相似三角形的判定与性质24.(2020•昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个B.5个C.6个D.7个【答案】C【解答】解:如图,所以使得△ADE∽△ABC的格点三角形一共有6个.故选:C.25.(2021•临沂)如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.3【答案】B【解答】解:方法一:作CD⊥BD于点D,作AE⊥BD于点E,如右图所示,则CD∥AE,∴△BDC∽△BEA,∴,∴=,解得BA=2,∴AC=BA﹣BC=2﹣=,故选:B.方法二:AB===2,∵BC=,∴AC=AB﹣BC=2﹣=,故选:B.26.(2021•恩施州)如图,在4×4的正方形网格中,每个小正方形的边长都为1,E为BD 与正方形网格线的交点,下列结论正确的是()A.CE≠BD B.△ABC≌△CBD C.AC=CD D.∠ABC=∠CBD 【答案】D【解答】解:由图可得,BC==2,CD==,BD==5,∴BC2+CD2=(2)2+()2=25=BD2,∴△BCD是直角三角形,∵EF∥GD,∴△BFE∽△BGD,∴,即,解得EF=1.5,∴CE=CF﹣EF=4﹣1.5=2.5,∴=,故选项A错误;由图可知,显然△ABC和△CBD不全等,故选项B错误;∵AC=2,CD=,∴AC≠CD,故选项C错误;∵tan∠ABC==,tan∠==,∴∠ABC=∠CBD,故选项D正确;故选:D.命题点4 相似三角形的实际应用27.(2020•绍兴)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为()A.20cm B.10cm C.8cm D.3.2cm【答案】A【解答】解:设投影三角尺的对应边长为xcm,∵三角尺与投影三角尺相似,∴8:x=2:5,解得x=20.故选:A.28.(2021•内江)在同一时刻,物体的高度与它在阳光下的影长成正比.在某一时刻,有人测得一高为1.8m的竹竿的影长为3m,某一高楼的影长为60m,那么这幢高楼的高度是()A.18m B.20m C.30m D.36m【答案】D【解答】解:设这幢高楼的高度为x米,依题意得:=,解得:x=36.故这幢高楼的高度为36米.故选:D.29.(2021•兰州)如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m时,标准视力表中最大的“E”字高度为72.7mm,当测试距离为3m时,最大的“E”字高度为()A.4.36mm B.29.08mm C.43.62mm D.121.17mm【答案】C【解答】解:由题意得:CB∥DF,∴=,∵AD=3m,AB=5m,BC=72.7mm,∴=,∴DF=43.62(mm),故选:C.30.(2021•河北)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=()A.1cm B.2cm C.3cm D.4cm【答案】C【解答】解:如图:过O作OM⊥CD,垂足为M,过O作ON⊥AB,垂足为N,∵CD∥AB,∴△CDO∽△ABO,即相似比为,∴=,∵OM=15﹣7=8(cm),ON=11﹣7=4(cm),∴=,∴AB=3cm,故选:C.31.(2021•烟台)《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为米.【答案】3【解答】解:由题意知:AB∥CD,则∠BAE=∠C,∠B=∠CDE,∴△ABE∽△CDE,∴,∴,∴CD=3米,故答案为:3.32.(2021•朝阳)一数学兴趣小组去测量一棵周围有围栏保护的古树的高,在G处放置一个小平面镜,当一位同学站在F点时,恰好在小平面镜内看到这棵古树的顶端A的像,此时测得FG=3m,这位同学向古树方向前进了9m后到达点D,在D处安置一高度为1m的测角仪CD,此时测得树顶A的仰角为30°,已知这位同学的眼睛与地面的距离EF=1.5m,点B,D,G,F在同一水平直线上,且AB,CD,EF均垂直于BF,求这棵古树AB的高.(小平面镜的大小和厚度忽略不计,结果保留根号)【答案】(9+4)m.【解答】解:如图,过点C作CH⊥AB于点H,则CH=BD,BH=CD=1m,由题意得:DF=9m,∴DG=DF﹣FG=6(m),在Rt△ACH中,∠ACH=30°,∵tan∠ACH==tan30°=,∴BD=CH=AH,∵EF⊥FB,AB⊥FB,∴∠EFG=∠ABG=90°.由反射角等于入射角得∠EGF=∠AGB,∴△EFG∽△ABG,∴=,即=,解得:AH=(8+4)m,∴AB=AH+BH=(9+4)m,即这棵古树的高AB为(9+4)m.。
中考数学总复习之图形的相似考点归纳
中考数学总复习之图形的相似考点归纳1.黄金分割(1)黄金分割的定义:如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.(2)黄金三角形:黄金三角形是一个等腰三角形,其腰与底的长度比为黄金比值.黄金三角形分两种:①等腰三角形,两个底角为72°,顶角为36°.这样的三角形的底与一腰之长之比为黄金比:;②等腰三角形,两个底角为36°,顶角为108°;这种三角形一腰与底边之长之比为黄金比:.(3)黄金矩形:黄金矩形的宽与长之比确切值为.2.平行线分线段成比例(1)定理1:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.(2)推论1:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(3)推论2:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.3.相似三角形的性质相似三角形的定义:如果两个三角形的对应边的比相等,对应角相等,那么这两个三角形相似.(1)相似三角形的对应角相等,对应边的比相等.(2)相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.(3)相似三角形的面积的比等于相似比的平方.由三角形的面积公式和相似三角形对应线段的比等于相似比可以推出相似三角形面积的比等于相似比的平方.4.相似三角形的判定(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种基本方法.相似的基本图形可分别记为“A”型和“X”型,如图所示在应用时要善于从复杂的图形中抽象出这些基本图形.(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.5.相似三角形的判定与性质(1)相似三角形是相似多边形的特殊情形,它沿袭相似多边形的定义,从对应边的比相等和对应角相等两方面下定义;反过来,两个三角形相似也有对应角相等,对应边的比相等.(2)三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.6.相似三角形的应用(1)利用影长测量物体的高度.①测量原理:测量不能到达顶部的物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.②测量方法:在同一时刻测量出参照物和被测量物体的影长来,再计算出被测量物的长度.(2)利用相似测量河的宽度(测量距离).①测量原理:测量不能直接到达的两点间的距离,常常构造“A”型或“X”型相似图,三点应在一条直线上.必须保证在一条直线上,为了使问题简便,尽量构造直角三角形.②测量方法:通过测量便于测量的线段,利用三角形相似,对应边成比例可求出河的宽度.(3)借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.7.位似变换(1)位似图形的定义:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.(2)位似图形与坐标在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.。
九年级人教版相似图形知识点归纳
九年级人教版相似图形知识点归纳相似图形是初中数学中一个重要的概念,掌握相似图形的知识可以帮助我们解决许多几何问题。
在九年级数学课程中,我们学习了人教版教材中关于相似图形的知识点,下面对这些知识点进行归纳总结。
1. 相似三角形的定义相似三角形是指具有相同形状但大小可以不同的三角形。
两个三角形相似的条件是它们对应的角相等,对应的边成比例。
即如果∠A=∠D,∠B=∠E,∠C=∠F,那么三角形ABC与三角形DEF相似,且比例因子为AB/DE=AC/DF=BC/EF。
2. 相似三角形的角与边的性质a. 对应角相等:如果两个三角形相似,则它们对应的角相等。
b. 对应边成比例:如果两个三角形相似,则它们对应的边成比例。
3. 两种用来判断相似三角形的方法a. 三边成比例法:如果两个三角形的三条边长度分别成比例,即AB/DE=AC/DF=BC/EF,那么它们相似。
b. 两角对应相等法:如果两个三角形的两个角分别相等,且它们的第三个角也相等或者两个角分别相等,且它们的第三个角的对方边也成比例,那么它们相似。
4. 相似三角形的性质a. 相似三角形的对应边成比例,比例因子等于任意两边之比。
b. 相似三角形的高线成比例,比例因子等于任意两边之比。
5. 相似三角形与比例a. 两个相似三角形的面积之比等于相似三角形的边长之比的平方。
b. 相似三角形中,对应边的比例等于面积比。
即如果三角形ABC与三角形DEF相似,且比例因子为AB/DE=AC/DF=BC/EF,那么S(ABC)/S(DEF)=(AB/DE)^2=(AC/DF)^2=(BC/EF)^2。
6. 相似图形的面积比如果两个相似图形的边长比为a:b,那么它们的面积比为a^2:b^2。
这一性质适用于各种相似图形,如相似三角形、相似矩形等。
以上是九年级人教版相似图形知识点的归纳总结。
相似图形是几何学中一个非常重要的概念,通过掌握相似图形的性质和判断方法,我们可以在解决几何问题时更加轻松和高效。
数学图形相似九年级知识点
数学图形相似九年级知识点数学中的图形相似是指两个或多个图形在形状上相似,即它们的对应角度相等,对应边的比例相等。
图形相似在几何学中有重要的应用,能够帮助我们分析和解决各种数学问题。
本文将介绍九年级数学中关于图形相似的知识点。
1. 判断图形相似的条件在九年级数学中,判断两个图形是否相似,需要满足以下三个条件:(1)对应角相等:两个图形的对应角度相等。
(2)对应边比例相等:两个图形中,对应边的长度之比相等。
(3)对应边平行:两个图形中,对应边之间相互平行。
2. 图形相似的性质图形相似具有以下性质:(1)对应角的性质:相似图形的对应角相等,即它们的内角相等,外角相等。
(2)对应边的比例:相似图形的对应边之比等于它们的周长、面积之比。
即若图形A与图形B相似,那么两个图形的对应边AB与A'B'的比例等于它们的周长或面积之比。
3. 相似三角形的定理在相似三角形中,我们可以应用以下定理来求解各种问题:(1)AAA相似定理:如果两个三角形的三个内角分别相等,则这两个三角形相似。
(2)AA相似定理:如果两个三角形的一个内角相等,并且两个三角形的对应边比例相等,则这两个三角形相似。
(3)SAS相似定理:如果两个三角形的一个内角相等,并且两个三角形的一个对边与这个角的对边的比例相等,则这两个三角形相似。
4. 图形相似应用图形相似在实际问题中有广泛的应用,比如:(1)计算高塔的高度:通过相似三角形的定理,我们可以计算高塔的高度。
例如,利用影子定理可以测量高塔的高度,其中就用到了相似三角形的概念。
(2)建模问题:在建模问题中,相似图形的概念可以帮助我们将实际物体或建筑的比例缩小或放大,以便进行实际测量或设计。
总结:数学图形相似是九年级数学中的重要知识点,它可以帮助我们分析和解决各种数学问题。
相似图形的判断条件、性质以及应用都需要我们掌握。
通过学习相似图形的知识,我们可以更好地理解几何学中的概念和应用,提升数学解题能力。
数学九年级相似的知识点
数学九年级相似的知识点数学的相似性是一种非常重要的概念,在九年级的数学学习中也占有相当重要的地位。
相似性是指两个或多个几何图形形状和大小相似的性质。
在这篇文章中,我们将深入探讨九年级数学中关于相似性的几个重要知识点。
第一个知识点是相似形的定义。
相似形是指形状相似而大小不同的两个或多个几何图形。
要判断两个图形是否相似,首先需要注意到它们的形状是否相同,即对应的角度是否相等,并且对应的边是否成比例。
如果角度相等并且对应的边成比例,那么这两个图形就是相似形。
相似性的另一个重要概念是比例尺。
比例尺是指相似形之间边长的比值。
比例尺可以用数值表示,比如当比例尺为1:2时,实际的边长与放大或缩小后的边长之间的比值为1:2。
比例尺可以帮助我们计算相似形的尺寸,例如当已知一个相似形的边长和比例尺时,我们可以通过简单的计算得出另一个相似形的边长。
接下来我们来谈谈三角形的相似性。
在九年级数学中,三角形的相似性也是一个重要的知识点。
两个三角形相似的条件是:对应角度相等并且对应边成比例。
当两个三角形满足这两个条件时,它们就是相似三角形。
相似三角形之间的边长之比称为它们的相似比。
相似三角形的性质是一个很有用的定理。
我们可以利用相似三角形的性质来解决一些复杂的几何问题。
例如,在实际生活中,我们需要测量高楼的高度,但是由于无法直接测量,我们可以利用相似三角形的性质来计算高楼的高度。
通过测量一个已知长度的物体在地面上的影子长度,以及高楼在同一时刻的影子长度,我们可以建立一个相似三角形的比例,从而计算出高楼的高度。
与三角形相似性相关的一个知识点是勾股定理。
勾股定理是三角形中非常重要的一个定理,它可以帮助我们判断一个三角形是否为直角三角形。
根据勾股定理,如果一个三角形的两个边的平方之和等于第三边的平方,那么这个三角形就是直角三角形。
在九年级数学中,我们可以应用相似三角形的性质结合勾股定理来解决一些实际问题。
相似性也可以应用在三维几何中。
中考数学关键知识点盘点平面几何中的相似与全等
中考数学关键知识点盘点平面几何中的相似与全等中考数学关键知识点盘点——平面几何中的相似与全等相似与全等是平面几何中非常重要的概念,经常在数学考试中出现。
掌握相似与全等的性质和判断方法对于解题至关重要。
在中考中,相似与全等的知识点也是必考的内容。
本文将对中考数学中关于相似与全等的知识进行盘点与总结。
一、相似的概念与性质相似是指两个图形在形状上相同,但大小可以不同。
在平面几何中,判断两个三角形相似一般有以下三种方法:1. AAA 判定法:如果两个三角形的对应角相等,则这两个三角形相似。
例如,已知角A等于角X,角B等于角Y,角C等于角Z,那么可以判断三角形ABC与三角形XYZ相似。
2. AA 判定法:如果两个三角形的两组对应角相等,则这两个三角形相似。
例如,已知角A等于角X,角B等于角Y,那么可以判断三角形ABC与三角形XYZ相似。
3. SSS 判定法:如果两个三角形的对应边成比例,则这两个三角形相似。
例如,已知AB与XY的比例等于BC与YZ的比例等于AC与XZ的比例,那么可以判断三角形ABC与三角形XYZ相似。
除了相似的判断方法外,相似三角形还有一些重要的性质:1. 对应角相等性质:相似的两个三角形,它们的对应角都相等。
2. 对应边成比例性质:相似的两个三角形,它们的对应边之间都成比例。
3. 周长比性质:相似的两个三角形,它们的对应边长之比等于对应边上任意一对对应线段之比。
4. 面积比性质:相似的两个三角形,它们的面积之比等于对应边上任意一对对应线段之比的平方。
相似的概念与性质在中考数学中经常被考查,学生需要掌握判断相似三角形的方法,并灵活运用相似性质解决问题。
二、全等的概念与性质全等是指两个图形在形状和大小上完全相同。
在平面几何中,判断两个三角形全等一般有以下三种方法:1. SSS 判定法:如果两个三角形的三条边对应相等,则这两个三角形全等。
例如,已知AB等于XY,BC等于YZ,AC等于XZ,那么可以判断三角形ABC与三角形XYZ全等。
初中九年级数学相似知识点
初中九年级数学相似知识点相似是数学中一个重要的概念,也是数学学习中的基础内容之一。
在初中九年级的数学学习中,相似是一个重要的知识点。
本文将介绍初中九年级数学中相似的相关知识点,以及相关应用。
一、相似的概念及性质相似是指两个图形的形状相同但尺寸不同。
在数学中,我们可以通过相似来解决一些几何问题。
相似的概念有以下几个性质:1. 对应角相等性质:两个相似图形的对应角相等。
2. 对应边成比例性质:两个相似图形的对应边成比例。
二、相似三角形的判定条件在初中九年级数学中,我们通常需要判断两个三角形是否相似。
以下是判定两个三角形相似的条件:1. AAA 判定相似定理:若两个三角形的三个角分别相等,则这两个三角形相似。
2. AA 判定相似定理:若两个三角形的两个角分别相等,并且对应边成比例,则这两个三角形相似。
三、相似比例相似的两个图形的对应边成比例。
在初中九年级的数学中,我们经常会涉及到相似比例的计算。
相似比例的计算方法如下:1. 如果两个图形相似,我们可以通过已知的两组对应边的长度,计算出它们的相似比例。
2. 设相似比例为k,则相似图形中相同位置的边长度之比为k。
四、相似图形的应用相似图形在实际问题中有广泛的应用。
以下是一些常见的相似图形应用:1. 测量高楼的高度:通过在两个相似的三角形之间设置高度比例,我们可以根据已知高楼和测量结果的比例,计算出高楼的实际高度。
2. 制作地图:在地图制作过程中,我们可以通过相似的关系将一个大区域缩小到合适的尺寸,以便于绘制。
3. 三角测量:在实际测量中,我们可以利用相似三角形的边长比例关系,计算得到难以直接测量的距离。
五、总结相似是数学中一个重要的概念,在初中九年级的数学学习中,相似是一个重要的知识点。
相似的性质和判定条件可以帮助我们解决实际问题,同时也为我们理解几何形状的变化提供了基础。
相似比例的应用也是数学在实际生活中的体现。
通过深入学习相似的概念和应用,我们可以更好地理解数学知识,提高我们的数学水平。
九年级相似图形的知识点
九年级相似图形的知识点相似图形是中学数学中的一个重要概念,它在几何学中占有重要地位。
掌握相似图形的知识点对于九年级的学生来说是至关重要的。
本文将介绍九年级相似图形的相关知识点,帮助学生更好地理解和掌握这一内容。
一、相似图形的定义相似图形指的是形状相似但尺寸不同的两个或多个图形。
在相似图形中,对应的角度相等,对应的边比例相同。
例如,两个三角形的对应角度相等且对应边的比例相同,那么它们就是相似的。
二、相似图形的判定条件判断两个图形是否相似,需要满足以下条件:1. 对应角度相等:两个图形的对应角度相等。
2. 对应边比例相同:两个图形的对应边的比例相同。
三、相似图形的性质相似图形具有以下重要性质:1. 相似图形的对应边比例相同。
2. 相似三角形的对应角度相等,且对应边比例相同。
3. 两个直角三角形若有一个角相等,则它们是相似的。
4. 相似图形的面积比等于边长比的平方。
四、相似图形的应用相似图形的概念在实际应用中有广泛的应用,例如:1. 使用相似三角形来计算高楼建筑物的高度。
2. 利用相似图形来测量远处物体的高度。
3. 在地图测量中利用相似图形来估计距离。
五、相似图形的解题方法在解题过程中,可以利用以下方法:1. 判断两个图形是否相似:根据对应角度相等和对应边比例相同的条件来判断。
2. 求取缺失边长:利用相似图形的对应边比例相同的性质,可以通过比例关系求取缺失的边长。
3. 计算面积比例:根据相似图形的面积比等于边长比的平方性质,可以计算两个相似图形的面积比。
六、相似图形的注意事项在处理相似图形时,需要注意以下几点:1. 在判断相似图形时,必须满足对应角度相等和对应边比例相同的条件。
2. 在计算面积比例时,需要注意保持一致的单位。
3. 求取缺失边长时,要注意比例关系的应用,避免计算错误。
4. 在实际应用中,要注意选择合适的比例尺。
通过对九年级相似图形的相关知识点的学习,我们可以更好地理解和应用相似图形的概念。
图形的相似九年级知识点
图形的相似九年级知识点相似是数学中的一个重要概念,在几何学中也有着广泛的应用。
图形的相似是指两个形状在形状和比例上相似,但大小不同。
本文将介绍九年级学生需要了解的有关图形相似的知识点。
一、图形的相似定义图形的相似是指两个图形具有相同的形状,但是可能存在不同的大小。
两个相似图形的对应边长之间成比例。
当两个图形相似时,它们的对应角度也相等。
二、图形的相似比例在相似图形中,可以通过比较对应边长的比值来确定它们的相似比例。
相似比例可以用以下公式表示:相似比例 = 对应边长1 / 对应边长2 = 对应边长2 / 对应边长3= ...三、判断图形的相似1. AAA准则:如果两个三角形的对应角度相等,则它们是相似的。
2. SAS准则:如果两个三角形有一个相等的对角和对应边长的比值也相等,则它们是相似的。
四、相似三角形性质相似三角形具有以下性质:1. 对应角度相等。
2. 对应边长之间成比例。
3. 对应中线之间成比例。
4. 对应高线之间成比例。
五、相似三角形的应用相似三角形在实际生活和工作中有广泛的应用,例如:1. 比例尺:地图上使用的比例尺是相似三角形的应用之一。
通过将实际距离与地图上的距离相比较,可以得出比例尺。
2. 影子问题:当太阳光照射物体时,物体和它的影子是相似的。
可以通过测量物体和影子的长度来计算物体的高度或长度。
3. 相似图形的缩放和放大:在设计和建筑中,可以通过相似图形的缩放和放大来确定比例和尺寸。
六、与相似图形相关的概念1. 比例:比例是指两个量或两个数值之间的关系或比较。
在相似图形中,角度和边长之间的比值就是比例。
2. 比例因子:比例因子是指相似图形中对应边长之间的比。
比例因子可以用来确定缩放或放大图形的尺寸。
3. 缩放因子:缩放因子是指相似图形中的线段比例因子。
通过乘以缩放因子,可以确定图形的尺寸调整比例。
结论:相似是几何学中一个重要的概念,对于九年级的学生来说,掌握图形的相似知识是非常重要的。
中考数学黄金知识点系列专题46图形的相似
专题46 图形的相似 聚焦考点☆温习理解1、比和比例的有关概念:(1)表示两个比相等的式子叫作比例式,简称比例. (2)第四比例项:若a cb d=或a:b=c :d ,那么d 叫作a 、b 、c 的第四比例项. (3)比例中项:若a b b c =或a :b=b :c,b 叫作a ,c 的比例中项. (4)黄金分割:把一条线段(AB)分割成两条线段,使其中较长线段(AC)是原线段AB 与较短线段(BC )的比例线段,就叫作把这条线段黄金分割。
即AC2=AB ·BC ,0.618AB AB ≈;一条线段的黄金分割点有两个。
2。
比例的基本性质及定理 (1)a c ad bc b d=→= (2)a c a b c d b d b d±±=→= (3)(b d n 0)a c m a c m a b d n b d n b+++===+++≠→=+++ 3.平行线分线段成比例定理(1)三条平行线截两条直线,所得的对应线段成比例.(2)平行于三角形一边截其他两边(或两边的延长线),所得的对应线段成比例;(3)如果一条直线截三角形的两边(或两边的延长线),所得的对应线段成比例,那么这条直线平行于三角形的第三边;(4)平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形三边对应成比例.4.相似三角形。
相似三角形的定义:对应角相等、对应边成比例的三角形叫做相似三角形相似比:相似三角形的对应边的比,叫做两个相似三角形的相似比.5.相似三角形的判定(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截得的三角形与原三角形相似;(2)两角对应相等,两三角形相似;(3)两边对应成比例且夹角相等,两三角形相似;(4)三边对应成比例,两三角形相似;(5)两个直角三角形的斜边和一条直角边对应成比例,两直角三角形相似;(6)直角三角形中被斜边上的高分成的两个三角形都与原三角形相似.6.相似三角形性质相似三角形的对应角相等,对应边成比例,对应高、对应中线、对应角平分线的比都等于相似比,周长比等于相似比,面积比等于相似比的平方.7.相似多边形的性质(1)相似多边形对应角相等,对应边成比例.(2)相似多边形周长之比等于相似比,面积之比等于相似比的平方.8.位似图形(1)概念:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,这样的图形叫做位似图形.这个点叫做位似中心.(2)性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.名师点睛☆典例分类考点典例一、比例的基本性质、黄金分割【例1】已知513ba=,则a ba b-+的值是()A.23B.32C.94D.49【答案】D.故选D.考点:比例的性质.【点睛】此题考查了比例的性质.此题比较简单,解题的关键是注意掌握比例的性质与比例变形.【举一反三】若4y-3x=0,则x y y+=【答案】73。
初三期中数学复习资料之图形的相似
初三期中数学复习资料之图形的相像家长朋友们必然要注意孩子的学习问题。
查字典数学网初中频道为大家供应了初三期中数学复习资料,希望对大家有所帮助。
知识点 1.看法把形状相同的图形叫做相像图形。
(即对应角相等、对应边的比也相等的图形)解读: (1)两个图形相像,其中一个图形可以看做由另一个图形放大或减小获取.(2)全等形可以看作是一种特其他相像,即不但形状相同,大小也相同 .(3)判断两个图形可否相像,就是看这两个图形可否是形状相同,与其他因素没关.知识点 2.比率线段对于四条线段a,b,c,d,若是其中两条线段的长度的比与另两条线段的长度的比相等,即(或 a:b=c:d) 那么这四条线段叫做成比率线段,简称比率线段.知识点 3.相像多边形的性质相像多边形的性质:相像多边形的对应角相等,对应边的比相等 .解读: (1) 正确理解相像多边形的定义,明确对应关系. (2)明确相像多边形的对应来自于书写,且要明确相像比拥有序次性 .知识点 4.相像三角形的看法对应角相等,对应边之比相等的三角形叫做相像三角形.解读: (1) 相像三角形是相像多边形中的一种;(2)应结合相像多边形的性质来理解相像三角形;(3)相像三角形应满足形状相同,但大小可以不相同;要练说,得练看。
看与说是一致的,看严禁就难以说得好。
练看,就是训练少儿的观察能力,扩大少儿的认知范围,让少儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。
在运用察见解组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,重视于少儿观察能力和语言表达能力的提高。
课本、报刊杂志中的成语、名言警句等俯首皆是 ,但学生写作文运用到文章中的甚少 ,即使运用也很难做到恰到利处。
为什么?还是没有完整“记死”的缘故。
要解决这个问题,方法很简单,每日花3-5 分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换 ,可以在每日课前的3 分钟让学生轮流讲解 ,也可让学生个人采集 ,每日往笔记本上抄写 ,教师如期检查等等。
数学中考知识点总结相似形
数学中考知识点总结相似形
关于数学中考知识点总结相似形
(4)直角三角形相似的判定定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
说明:以上四个判定定理不难证明,以下判定三角形相似的命题是正确的,在解题时,也可以用它们来判定两个三角形的相似。
第一:顶角(或底角)相等的两个等腰三角形相似。
第二:腰和底对应成比例的两个等腰三角形相似。
第三:有一个锐角相等的两个直角三角形相似。
第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的.两边和其中一边上的中线对应成比例,那么这两个三角形.相似。
5、相似三角形的性质:
(1)相似三角形性质1:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。
(2)相似三角形性质2:相似三角形周长的比等于相似比。
说明:以上两个性质简单记为:相似三角形对应线段的比等于相似比。
(3)相似三角形面积的比等于相似比的平方。
说明:两个三角形相似,根据定义可知它们具有对应角相等、对应边成比例这个性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题46 图形的相似 聚焦考点☆温习理解1、比和比例的有关概念:(1)表示两个比相等的式子叫作比例式,简称比例. (2)第四比例项:若a cb d=或a:b=c:d ,那么d 叫作a 、b 、c 的第四比例项. (3)比例中项:若a b b c =或a:b=b:c ,b 叫作a ,c 的比例中项. (4)黄金分割:把一条线段(AB )分割成两条线段,使其中较长线段(AC )是原线段AB 与较短线段(BC )的比例线段,就叫作把这条线段黄金分割.即AC2=AB ·BC ,0.618AB AB ≈;一条线段的黄金分割点有两个.2.比例的基本性质及定理 (1)a c ad bcb d=→= (2)a c a b c d b d b d±±=→= (3)(b d n 0)a c m a c m a b d n b d n b +++===+++≠→=+++L L L L 3.平行线分线段成比例定理(1)三条平行线截两条直线,所得的对应线段成比例.(2)平行于三角形一边截其他两边(或两边的延长线),所得的对应线段成比例;(3)如果一条直线截三角形的两边(或两边的延长线),所得的对应线段成比例,那么这条直线平行于三角形的第三边;(4)平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形三边对应成比例.4.相似三角形.相似三角形的定义:对应角相等、对应边成比例的三角形叫做相似三角形相似比:相似三角形的对应边的比,叫做两个相似三角形的相似比.5.相似三角形的判定(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截得的三角形与原三角形相似;(2)两角对应相等,两三角形相似;(3)两边对应成比例且夹角相等,两三角形相似;(4)三边对应成比例,两三角形相似;(5)两个直角三角形的斜边和一条直角边对应成比例,两直角三角形相似;(6)直角三角形中被斜边上的高分成的两个三角形都与原三角形相似.6.相似三角形性质相似三角形的对应角相等,对应边成比例,对应高、对应中线、对应角平分线的比都等于相似比,周长比等于相似比,面积比等于相似比的平方.7.相似多边形的性质(1)相似多边形对应角相等,对应边成比例.(2)相似多边形周长之比等于相似比,面积之比等于相似比的平方.8.位似图形(1)概念:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,这样的图形叫做位似图形.这个点叫做位似中心.(2)性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.名师点睛☆典例分类考点典例一、比例的基本性质、黄金分割【例1】已知513ba=,则a ba b-+的值是()A.23B.32C.94D.49【答案】D.故选D.考点:比例的性质.【点睛】此题考查了比例的性质.此题比较简单,解题的关键是注意掌握比例的性质与比例变形.【举一反三】若4y-3x=0,则x y y+= 【答案】73.考点:比例的性质.考点典例二、三角形相似的性质及判定【例2】(2016湖南怀化第21题)如图,△ABC 为锐角三角形,AD 是BC 边上的高,正方形EFGH 的一边FG 在BC 上,顶点E 、H 分别在AB 、AC 上,已知BC=40cm ,AD=30cm .(1)求证:△AEH ∽△ABC ;(2)求这个正方形的边长与面积.【答案】(1)详见解析;(2)正方形EFGH 的边长为7120cm ,面积为4914400cm 2.【解析】考点:相似三角形的判定与性质.【点睛】本题考查了相似三角形的性质和判定,主要考查学生综合运用性质进行推理和计算的能力.【举一反三】(2016湖北武汉第23题)(本题10分)在△ABC中,P为边AB上一点.(1) 如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2) 若M为CP的中点,AC=2,①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.【答案】(1)详见解析;(2)①BP=5;②71.∵∠BPM =∠CP 0A ,∠BMP=∠CAP 0,∴△AP 0C ∽△MPB ,∴00AP P C MP BP =, ∴MP ∙ P 0C =22201(3)(1)22x P C +-==AP 0 ∙BP =x (3-1+x ), 解得x =73-∴BP =3-1+73-=71-.考点典例三、相似三角形综合问题【例3】(2016湖北十堰第24题)如图1,AB 为半圆O 的直径,D 为BA 的延长线上一点,DC 为半圆O 的切线,切点为C .(1)求证:∠ACD=∠B ;(2)如图2,∠BDC 的平分线分别交AC ,BC 于点E ,F ;①求tan ∠CFE 的值;②若AC=3,BC=4,求CE 的长.【答案】(1)详见解析;(2)712.(2)解:①∵∠CEF=∠ECD+∠CDE ,∠CFE=∠B+∠FDB ,∵∠CDE=∠FDB ,∠ECD=∠B ,∴∠CEF=∠CFE ,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan ∠CFE=tan45°=1.②在RT △ABC 中,∵AC=3,BC=4,由勾股定理得AB=5,∵∠CDA=∠BDC ,∠DCA=∠B ,∴△DCA ∽△DBC , ∴43===CD DA BC AC DB DC ,设DC=3k ,DB=4k , ∵CD 2=DA •DB ,∴9k 2=(4k ﹣5)•4k ,∴k=720, ∴CD=760,DB=780,考点:切线的性质;相似三角形的判定和性质;勾股定理.【点睛】本题考查了切线的判定、勾股定理以及三角形相似的判定与性质等知识的综合运用.【举一反三】(2016湖北鄂州第22题)(本题满分10分)如图,在Rt △ABC 中,∠ACB =90º,AO 是△ABC 的角平分线。
以O 为圆心,OC 为半径作⊙O 。
(1)(3分)求证:AB 是⊙O 的切线。
(2)(3分)已知AO 交⊙O 于点E ,延长AO 交⊙O 于点D , tanD =21,求ACAE 的值。
(3)(4分)在(2)的条件下,设⊙O 的半径为3,求AB 的长。
【答案】(1)详见解析;(2)21;(3)7100. 【解析】试题分析:(1)过O 作OF ⊥AB 于F ,由角平分线上的点到角两边的距离相等即可得证;(2)连接CE ,证明△ACE ∽△ADC 可得CD CE AC AE = = tanD =21;(3)先由勾股定理求得AE 的长,再证明△B0F ∽△BAC ,得ACOF BA BO BC BF ==,设BO=y ,BF=z ,列二元一次方程组即可解决问题. 试题解析:⑴证明:作OF ⊥AB 于F∵AO 是∠BAC 的角平分线,∠ACB=90º∴OC=OF∴AB 是⊙O 的切线易证Rt △B0F ∽Rt △BAC 得AC OF BA BO BC BF ==, 设BO =y BF=z4334=+=+y z z y 即4z=9+3y ,4y=12+3z解得z=727 y=725 ∴AB=727+4=7100 考点:圆的综合题.考点典例四、相似多边形与位似图形【例4】(2016辽宁营口第15题)如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC 的三个顶点均在格点(网格线的交点)上.以原点O 为位似中心,画△A 1B 1C 1,使它与△ABC 的相似比为2,则点B 的对应点B 1的坐标是 .【答案】(4,2)或(﹣4,﹣2).考点:作图-位似变换.【点睛】本题考查了位似的作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.【举一反三】(2016湖北十堰第5题)如图,以点O 为位似中心,将△ABC 缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC 的面积比为( )A .1:3B .1:4C .1:5D .1:9【答案】D.考点:位似变换. 课时作业☆能力提升 1. (2016黑龙江哈尔滨第9题)如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE∥BC,BE 与CD 相交于点F ,则下列结论一定正确的是( )A .AC AE AB AD = B .EC AE FC DF = C .BC DE DB AD = D .FCEF BF DF = 【答案】A.【解析】试题分析: ∵DE ∥BC ,∴ACAE AB AD =(平行线分线段成比例).故选A.考点:平行线分线段成比例.2. (2016山东东营第8题)如图,在平面直角坐标系中,已知点A (―3,6)、B (―9,一3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点A 的对应点A ′的坐标是( ) A .(―1,2) B .(―9,18)C .(―9,18)或(9,―18)D .(―1,2)或(1,―2)【答案】D.考点:位似变换.3. (2016湖南湘西州第17题)如图,在△ABC中,DE∥BC,DB=2AD,△ADE的面积为1,则四边形DBCE 的面积为()A.3 B.5 C.6 D.8【答案】D.考点:相似三角形的判定与性质.4.(2016河北第15题)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是()第15题图【答案】C.【解析】试题分析:只要三个角相等,或者一角相等,两边成比例即可。
选项C项不能判定两个三角形相似,故答案选C.考点:相似三角形的判定.5. (2016新疆生产建设兵团第7题)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( )A .DE=BCB .AC AE AB AD C .△ADE ∽△ABC D .S △ADE :S △ABC =1:2 【答案】D.考点:相似三角形的判定及性质.6. (2016湖北随州第7题)如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE∥AC,AE 、CD 相交于点O ,若S △DOE :S △COA =1:25,则S △BDE 与S △CDE 的比是( )A.1:3 B.1:4 C.1:5 D.1:25【答案】B.【解析】试题分析:由DE∥AC可得△DOE∽△COA,又S△DOE:S△COA=1:25,根据相似三角形的性质可得DE:AC=BE:BC=1:5,所以BE:EC=1:4,即S△BDE与S△CDE的比是1:4,故答案选B.考点:相似三角形的判定与性质.7.(2016湖南湘西州第17题)如图,在△ABC中,DE∥BC,DB=2AD,△ADE的面积为1,则四边形DBCE 的面积为()A.3 B.5 C.6 D.8【答案】D.考点:相似三角形的判定与性质.8.(2016湖南衡阳第16题)若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为.【答案】5:4.【解析】试题分析:已知△ABC与△DEF相似且面积之比为25:16,根据相似三角形面积的比等于相似比的平方求出相似比,可得△ABC与△DEF的相似比为5:4;即可得△ABC与△DEF的周长之比为5:4.考点:相似三角形的性质.9. (2016辽宁沈阳第16题)如图,在Rt△ABC 中,∠A=90°,AB=AC ,BC=20,DE 是△ABC 的中位线,点M 是边BC 上一点,BM=3,点N 是线段MC 上的一个动点,连接DN ,ME ,DN 与ME 相交于点O .若△OMN 是直角三角形,则DO 的长是 .【答案】625或1350.考点:三角形综合题.10. .(2016新疆第13题)如图所示,△ABC 中,E ,F 分别是边A B ,AC 上的点,且满足A EE B =AF FC =12,则△AEF 与△ABC 的面积比是 .【答案】1:9.【解析】 试题分析:∵AE EB =AF FC =12,∴AE AB =AF AC =13.又∵∠A=∠A ,∴△AEF ∽△ABC ,∴△AEF 与△ABC 的面积比是1:9. 考点:相似三角形的判定与性质.11. (2016湖南娄底第14题)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是 .(只需写一个条件,不添加辅助线和字母)【答案】∠B=∠DEF (答案不唯一,符合要求即可)【解析】试题分析:已知∠A=∠D ,当∠B=∠DEF 时,△ABC ∽△DEF ,因为AB ∥DE 时,∠B=∠DEF ,添加AB ∥DE 时,使△ABC ∽△DEF .考点:相似三角形的判定.12. (2016内蒙古巴彦淖尔第7题)如图,E 为▱ABCD 的边AB 延长线上的一点,且BE :A B =2:3,△BEF 的面积为4,则▱ABCD 的面积为( )A .30B .27C .14D .32【答案】A .考点:相似三角形的判定与性质;平行四边形的性质.13.(凉山州)在▱ABCD 中,M ,N 是AD 边上的三等分点,连接BD ,MC 相交于O 点,则S △MOD :S △COB = . 【答案】19或49.考点:1.相似三角形的判定与性质;2.平行四边形的性质.14.(辽宁沈阳)如图,△ABC 与△DEF 位似,位似中心为点O ,且△ABC 的面积等于△DEF 面积的49,则AB :DE = .【答案】2:3.【解析】试题分析:∵△ABC 与△DEF 位似,位似中心为点O ,∴△ABC ∽△DEF ,∴△ABC 的面积:△DEF 面积=2()AB DE=49,∴AB :DE =2:3,故答案为:2:3. 考点:位似变换.15.(2016福建南平第21题)如图,Rt △ABC 中,∠C =90°,AB =14,AC =7,D 是BC 上一点,BD =8,DE ⊥AB ,垂足为E ,求线段DE 的长.【答案】4.考点:相似三角形的判定与性质.16. (2016福建莆田第25题)若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,△ABC 中,设BC =a ,AC =b ,AB =c ,各边上的高分别记为a h ,b h ,c h ,各边上的内接正方形的边长分别记为a x ,b x ,c x .(1)模拟探究:如图,正方形EFGH 为△ABC 的BC 边上的内接正方形,求证:111a aa h x +=; (2)特殊应用:若∠BAC =90°,b x =c x =2,求11b c+的值; (3)拓展延伸:若△ABC 为锐角三角形,b <c ,请判断b x 与c x 的大小,并说明理由.【答案】(1)证明见解析;(2)12;(3)b x >c x . 【解析】试题分析:(1)先根据EH ∥FG ,判定△AEH ∽△ABC ,再根据相似三角形对应边成比例,列出比例式变形即可得到111a aa h x +=; (2)先根据(1)中的结论得出111b b b h x +=,再将b h =c 和b x =2代入变形,即可求得11b c +的值;考点:三角形综合题;相似三角形的判定与性质;探究型;和差倍分;压轴题.17.(山东泰安,第27题)(10分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.【答案】(1)证明见试题解析;(2)253.【解析】考点:1.相似三角形的判定与性质;2.综合题.。